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The distributed detection fusion formulation (DDFF) in ideal multisensor systems has been studied over the last two decades. If
some local sensors cannot work normally, the detection performance of systemmay reduce significantly. It is meaningful to design
fault-tolerant detection fusion rules which can guarantee the performance of system no matter whether the fusion center and local
sensors work well or not. A new distributed detection fusion strategy is thus proposed by minimizing a weighted sum of risk at the
fusion center and risks at the local sensors, and then a fault-tolerant distributed detection fusion formulation (FT-DDFF) is derived.
Some numerical examples illustrate the performance of the proposed formulation. If the whole system is perfect, compared with
the DDFF, the FT-DDFF has both small risks of local sensors and a little small risk of fusion center with an appropriately selected
parameter. While some local sensors cannot work, the FT-DDFF would perform better than the DDFF at fusion center in average.

1. Introduction

In the past, more than two decades, multisensor information
fusion techniques have received significant attentions in
practice (see, e.g., [1–9]). In distributed architectures, the
local decisions or estimates using the observations from indi-
vidual processors are made and then transmitted to a fusion
center where the final global decision or estimate is made
in terms of some criterions. Such distributed multisensor
architecture has many advantages, such as more capability,
reliability, robustness, and survivability than the centralized
architecture.

For a parallel distributed multisensor system, the optimal
detection fusion formulation was addressed (see, e.g., [3, 4,
7, 10, 11]). In [3], a distributed detection fusion formulation
(DDFF) was provided in ideal conditions. It seeks a detection
fusion rule for whole system and information compression
rules for all local sensors. Some necessary conditions of
an optimal fusion rule and optimal sensor decision rules
are derived using a person-by-person optimization (PBPO)
methodology.The desired PBPO solution consists of a fusion
rule and some sensor decision rules. For distributed detection
fusion systems with correlated noises, the fusion rule and

sensor decision rules were formulated to the fixed points of
some equations and an iterative algorithm was developed in
[4, 7]. It provides the approximate solutions to the necessary
conditions for optimum sensor decision rules. An algorithm
to simultaneously search for an optimal fusion rule and the
corresponding optimal sensor decision rules was derived in
[12]. In [13], a computationally efficient iterative algorithm to
simultaneously and alternately search for a fusion rule and
sensor decision rules was proposed. All of the above works
are to minimize the Bayesian risk at the fusion center, and
the solutions were derived when the system is perfect.

As the local sensors are just to serve for the fusion center,
when the optimal performance of fusion center is attained,
the performances of some local sensors may be ignored.
If the fusion center is destroyed, each local sensor would
use its own decision rule to make the final decision for the
two hypotheses. Then, the performance of the whole system
would be reduced. If some local sensors are destroyed, or
the communications between fusion center and those sensors
are cut off, the fusion center can only use the available local
decisions so that its performance would not be guaranteed.
Thus, it is meaningful to design fault-tolerant fusion rule and
sensor decision rules.
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The fault-tolerance capability is an important factor in
many applications, such as designing classification systems
in wireless sensor networks (WSN). Several researchers have
considered the design of fault-tolerant distributed detection
fusion systems [14–16]. However, they only designed the
system based on a known a priori failure probability and
considered the binary detection problem.The extension from
binary detections for fault-tolerant detection to multihy-
pothesis detections was also considered in WSN [17]. The
authors proposed a classification fusion approach which was
implemented via error correcting codes to incorporate fault-
tolerance capability. In [18], a fusion rule that combined
both soft-decision decoding and sensor decision rules was
proposed in WSN with fading channels. Besides the error
correcting codes which provide good sensor fault-tolerance
capability, the soft decoding scheme is utilized to combat
channel fading. In [19], the optimal sensor decision rules with
channel errors for a given fusion rule were proposed in which
sensor observations are not necessarily independent of each
other. Furthermore, the results on the unified fusion rules for
network decision systems with ideal channels were extended
to systems with channel errors.

In this paper, for a general parallel distributed detection
fusion system, we extend the idea of existing DDFF by
employing a newdetection fusion strategy so as to find a fault-
tolerant formulation. It can guarantee the performances of
both fusion center and local sensors whether the system is
perfect or imperfect. Under Bayesian criterion, the risks at
local sensors (local risks) are defined similar to the risk at
fusion center (system risk).The new detection fusion strategy
is adopted tominimize the total risk, that is, theweighted sum
of system risk and local risks. A new fault-tolerant distributed
detection fusion formulation (FT-DDFF) is obtained by the
PBPO methodology as the DDFF.

The rest of this paper is organized as follows. A statement
of the problem and a brief review of the DDFF are given in
Section 2. In Section 3, we model the fault-tolerant detection
fusion under a new strategy and derive an FT-DDFF by
PBPO methodology. Some numerical examples are provided
in Section 4, and a conclusion is given in Section 5.

2. Problem Statement

Consider a distributed detection fusion system depicted in
Figure 1 which has 𝑁 local sensors and a fusion center.

Let 𝐻
0
and 𝐻

1
be two hypotheses with associated prior

probabilities 𝑃
0
and 𝑃
1
, respectively. All local sensors observe

the same phenomenon. The observations of local sensors
are denoted by 𝑦

𝑖
, 𝑖 = 1, . . . , 𝑁, and their joint conditional

probability density functions 𝑝(𝑦
1
, . . . , 𝑦

𝑁
| 𝐻
𝑗
), 𝑗 = 0, 1, are

assumed to be known. For all 𝑖 = 1, . . . , 𝑁, based on its own
observation 𝑦

𝑖
, the 𝑖th local sensor makes a local decision 𝑢

𝑖

as follows:

𝑢
𝑖
=

{

{

{

0, 𝐻
0
is declared present,

1, 𝐻
1
is declared present.

(1)

Then, the fusion center yields a global decision 𝑢
0
based on

the received decision vector u = (𝑢
1
, . . . , 𝑢

𝑁
)
𝑇. Note that the

Phenomenon
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Figure 1: Distributed detection fusion system.

local decisions are transmitted over bandlimited channels to
the fusion center and there is no communication among local
sensors.

The distributed detection fusion problem is to seek an
optimal set of rules:

Γ = {𝛾
0
, 𝛾
1
, . . . , 𝛾

𝑁
} , (2)

where 𝛾
0
and 𝛾

𝑖
, respectively, denote the fusion rule and

decision rule at the 𝑖th sensor for 𝑖 = 1, . . . , 𝑁, which map
from observation space to decision space as follows:

𝑢
0
= 𝛾
0
(𝑢
1
, . . . , 𝑢

𝑁
) ,

𝑢
𝑖
= 𝛾
𝑖
(𝑦
𝑖
) , 𝑖 = 1, . . . , 𝑁.

(3)

Denote the probabilities of false alarm, miss, and detec-
tion at fusion center by 𝑃

0

𝐹
, 𝑃
0

𝑀
, and 𝑃

0

𝐷
, respectively.

In [3], the distributed detection fusion is modeled by
minimizing the following system risk:

𝑅
0
=

1

∑

𝑖=0

1

∑

𝑗=0

𝐶
0

𝑖𝑗
𝑃
𝑗
𝑃 (𝑢
0
= 𝑖 | 𝐻

𝑗
) , (4)

where 𝐶
0

𝑖𝑗
is the cost of global decision being 𝐻

𝑖
when 𝐻

𝑗
is

present. Using the PBPO methodology, the sensor decision
rules and fusion rule can be obtained from the following
DDFF:

𝑝 (𝑦
𝑘
| 𝐻
1
)

𝑝 (𝑦
𝑘
| 𝐻
0
)

𝑢
𝑘
= 1

≷

𝑢
𝑘
= 0

∑u𝑘 ∫Y𝑘 𝐴(u𝑘) 𝐶0
𝐹
𝑃 (u𝑘 | Y𝑘) 𝑝 (Y𝑘 | 𝑦

𝑘
, 𝐻
0
) 𝑑Y𝑘

∑u𝑘 ∫Y𝑘 𝐴 (u𝑘) 𝐶0
𝐷
𝑃 (u𝑘 | Y𝑘) 𝑝 (Y𝑘 | 𝑦

𝑘
, 𝐻
1
) 𝑑Y𝑘

,

(5)

𝑃 (u∗ | 𝐻
1
)

𝑃 (u∗ | 𝐻
0
)

𝑢
0
= 1

≷

𝑢
0
= 0

𝐶
0

𝐹

𝐶
0

𝐷

, (6)
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where u∗ denotes one out of 2𝑁 possible values of u and

𝐶
0

𝐹
= 𝑃
0
(𝐶
0

10
− 𝐶
0

00
) ,

𝐶
0

𝐷
= (1 − 𝑃

0
) (𝐶
0

01
− 𝐶
0

11
) ,

𝐶
0
= 𝐶
0

01
(1 − 𝑃

0
) + 𝐶
0

00
𝑃
0
,

u𝑘 = (𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢
𝑘+1

, . . . , 𝑢
𝑁
)
𝑇
,

Y𝑘 = (𝑦
1
, . . . , 𝑦

𝑘−1
, 𝑦
𝑘+1

, . . . , 𝑦
𝑁
)
𝑇
,

u𝑘𝑗 = (𝑢
1
, . . . , 𝑢

𝑘−1
, 𝑢
𝑘
= 𝑗, 𝑢
𝑘+1

, . . . , 𝑢
𝑁
)
𝑇
,

𝑗 = 0, 1,

𝐴 (u𝑘) = 𝑃 (𝑢
0
= 1 | u𝑘1) − 𝑃 (𝑢

0
= 1 | u𝑘0) .

(7)

Thus, the DDFF consists of𝑁 equations given by (5) and
2
𝑁 equations given by (6). It provides us a way to find a stable
solution to the detection fusion problem. Note that the DDFF
derived by PBPO methodology cannot ensure providing a
globally optimal solution in general.

The purpose of Bayesian criterion in [3] is to optimize the
performance of fusion center. As the optimal performance
of fusion center is attained, the performances of some local
sensorsmay be ignored. From (5) and (6), the sensor decision
rules and fusion rule are coupled with each other. If the
system is imperfect, for example, some local sensors fail or
the joint conditional probability density functions of obser-
vations vary; the performance of fusion center would become
very poor. In addition, it is also important to guarantee the
performances of local sensors in many practical applications.

3. The Fault-Tolerant Detection
Fusion Formulation

The local risk of the 𝑘th local sensor is expressed as

𝑅
𝑘
=

1

∑

𝑖=0

1

∑

𝑗=0

𝐶
𝑘

𝑖𝑗
𝑃
𝑗
𝑃 (𝑢
0
= 𝑖 | 𝐻

𝑗
) , (8)

where 𝐶
𝑘

𝑖𝑗
denotes the cost of the 𝑘th local sensor decision

being 𝐻
𝑖
when 𝐻

𝑗
is present. It is easy to see that the local

risk 𝑅
𝑘 can be expressed as

𝑅
𝑘
= 𝐶
𝑘

𝐹
𝑃
𝑘

𝐹
− 𝐶
𝑘

𝐷
𝑃
𝑘

𝐷
+ 𝐶
𝑘
, (9)

where

𝐶
𝑘

𝐹
= 𝑃
0
(𝐶
𝑘

10
− 𝐶
𝑘

00
) ,

𝐶
𝑘

𝐷
= (1 − 𝑃

0
) (𝐶
𝑘

01
− 𝐶
𝑘

11
) ,

𝐶
𝑘
= 𝐶
𝑘

01
(1 − 𝑃

0
) + 𝐶
𝑘

00
𝑃
0
.

(10)

In order to design a fault-tolerant formulation which
could guarantee the performances of both fusion center and

local sensors, we will consider the total risk, that is, the
weighted sum of system risk and local risks:

𝑅 =

𝑁

∑

𝑘=0

𝑤
𝑘
𝑅
𝑘
=

𝑁

∑

𝑘=0

1

∑

𝑖=0

1

∑

𝑗=0

𝑤
𝑘
𝐶
𝑘

𝑖𝑗
𝑃
𝑗
𝑃 (𝑢
0
= 𝑖 | 𝐻

𝑗
) , (11)

where w = (𝑤
0
, 𝑤
1
, . . . , 𝑤

𝑁
)
𝑇 is the weighting vector such

that 𝑤
𝑖
≥ 0, 𝑖 = 0, 1, . . . , 𝑁 and ∑𝑤

𝑖
= 1. For the given

weighting vector w, we consider the following unconstrained
optimization problem:

min
Γ

𝑅. (12)

Theorem 1. The solution Γ of problem (12) by the PBPO
methodology can be obtained from the following FT-DDFF:

(a) The formulation for fusion rule at fusion center as the
DDFF is

𝑃 (u∗ | 𝐻
1
)

𝑃 (u∗ | 𝐻
0
)

𝑢
0
= 1

≷

𝑢
0
= 0

𝐶
0

𝐹

𝐶
0

𝐷

. (13)

(b) The formulation for decision rule at the 𝑘th sensor for
all 𝑘 = 1, . . . , 𝑁 alternatively is

𝑝 (𝑦
𝑘
| 𝐻
1
)

𝑝 (𝑦
𝑘
| 𝐻
0
)

𝑢
𝑘
= 1

≷

𝑢
𝑘
= 0

𝑤
𝑘
𝐶
𝑘

𝐹
+ 𝑤
0
∑u𝑘 ∫Y𝑘 𝐴(u𝑘) 𝐶0

𝐹
𝑃 (u𝑘 | Y𝑘) 𝑝 (Y𝑘 | 𝑦

𝑘
, 𝐻
0
) 𝑑Y𝑘

𝑤𝑘𝐶
𝑘

𝐷
+ 𝑤0∑u𝑘 ∫Y𝑘 𝐴 (u𝑘) 𝐶0

𝐷
𝑃 (u𝑘 | Y𝑘) 𝑝 (Y𝑘 | 𝑦

𝑘
, 𝐻
1
) 𝑑Y𝑘

.

(14)

Proof. First, we consider the fusion rule. By the PBPO
methodology, we assume that all sensor decision rules have
been designed and then the local risks are fixed. Therefore,
we only need to minimize the system risk function 𝑅

0 as 𝑤0
is a constant. The fusion rule thus can be obtained using the
same method in [3].

Next, we deal with the decision rule at the 𝑘th sensor
by the PBPO methodology for 𝑘 = 1, . . . , 𝑁. Noting that
the fusion rule and other sensor decision rules have been
designed and fixed, we may express 𝑅 as

𝑅 = 𝑤
0
𝐶
0
+ 𝑤
𝑘
𝐶
𝑘
+

𝑁

∑

𝑖 ̸=𝑘

𝑤
𝑖
𝑅
𝑖

+ 𝑤
0
𝐶
0

𝐹
∑

u
𝑃 (𝑢
0
= 1 | u) 𝑃 (u | 𝐻

0
)

− 𝑤
0
𝐶
0

𝐷
∑

u
𝑃 (𝑢
0
= 1 | u) 𝑃 (u | 𝐻

1
)

+ 𝑤
𝑘
[𝐶
𝑘

𝐹
𝑃 (𝑢
𝑘
= 1 | 𝐻

0
) − 𝐶
𝑘

𝐷
𝑃 (𝑢
0
= 1 | 𝐻

1
)] .

(15)
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Since w, 𝐶0, 𝐶𝑘, and ∑
𝑁

𝑖 ̸=𝑘
𝑅
𝑖 are constants, we only need to

minimize the remaining items:

𝑅 fl 𝑤
0
𝐶
0

𝐹
∑

u
𝑃 (𝑢
0
= 1 | u) 𝑃 (u | 𝐻

0
)

+ 𝑤
𝑘
𝐶
𝑘

𝐹
𝑃 (𝑢
𝑘
= 1 | 𝐻

0
)

− 𝑤
0
𝐶
0

𝐷
∑

u
𝑃 (𝑢
0
= 1 | u) 𝑃 (u | 𝐻

1
)

− 𝑤
𝑘
𝐶
𝑘

𝐷
𝑃 (𝑢
0
= 1 | 𝐻

1
) .

(16)

For 𝑘 = 1, . . . , 𝑁, we have

∑

u𝑘
𝑃 (𝑢
0
= 1 | u𝑘) [𝐶0

𝐹
𝑃 (u | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u | 𝐻

1
)]

= ∑

u𝑘
{𝑃 (𝑢
0
= 1 | u𝑘1)

⋅ [𝐶
0

𝐹
𝑃 (u𝑘1 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘1 | 𝐻

1
)]

+ 𝑃 (𝑢
0
= 1 | u𝑘0)

⋅ [𝐶
0

𝐹
𝑃 (u𝑘0 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘0 | 𝐻

1
)]}

= ∑

u𝑘
{𝑃 (𝑢
0
= 1 | u𝑘0)

⋅ [𝐶
0

𝐹
𝑃 (u𝑘 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘 | 𝐻

1
)]

+ [𝑃 (𝑢
0
= 1 | u𝑘1) − 𝑃 (𝑢

0
= 1 | u𝑘0)]

⋅ [𝐶
0

𝐹
𝑃 (u𝑘1 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘1 | 𝐻

1
)]} = 𝐶

+ ∑

u𝑘
{𝐴 (u𝑘) [𝐶0

𝐹
𝑃 (u𝑘1 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘1 | 𝐻

1
)]} ,

(17)

where

𝐶 = ∑

u𝑘
{𝑃 (𝑢
0
= 1 | u𝑘0)

⋅ [𝐶
0

𝐹
𝑃 (u𝑘 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘 | 𝐻

1
)]} .

(18)

Therefore, 𝑅 can be expanded in terms of the 𝑘th local
decision 𝑢

𝑘
as follows:

𝑅 = 𝑤
0
{𝐶 + ∑

u𝑘
{𝐴 (u𝑘)

⋅ [𝐶
0

𝐹
𝑃 (u𝑘1 | 𝐻

0
) − 𝐶
0

𝐷
𝑃 (u𝑘1 | 𝐻

1
)]}}

+ 𝑤
𝑘
[𝐶
𝑘

𝐹
𝑃 (𝑢
𝑘
= 1 | 𝐻

0
) − 𝐶
𝑘

𝐷
𝑃 (𝑢
0
= 1 | 𝐻

1
)] .

(19)

The conditional density of u is given by

𝑃 (u | 𝐻
𝑗
) = ∫

Y
𝑃 (u | Y) 𝑃 (Y | 𝐻

𝑗
) 𝑑Y, (20)

where Y = (𝑦
1
, . . . , 𝑦

𝑁
)
𝑇 and ∫Y ⋅ represents a multifold

integral over all components of Y. Since the decision of each
local sensor depends only on its own observations, then

𝑃 (u | Y) =

𝑁

∏

𝑖=1

𝑃 (𝑢
𝑖
| 𝑦
𝑖
) ,

𝑃 (u𝑘𝑖 | Y) = 𝑃 (𝑢
𝑘
= 𝑖 | 𝑦

𝑘
) 𝑃 (u𝑘 | Y𝑘) , 𝑖 = 0, 1.

(21)

From

𝑃 (u𝑘𝑖 | 𝐻
𝑗
) = ∫

Y
𝑃 (u𝑘𝑖 | Y) 𝑃 (Y | 𝐻

𝑗
) 𝑑Y

= ∫
Y
𝑃 (𝑢
𝑘
= 𝑖 | 𝑦

𝑘
) 𝑃 (u𝑘 | Y𝑘) 𝑝 (Y | 𝐻

𝑗
) 𝑑Y,

(22)

for 𝑗 = 0, 1, we have

𝑅 = 𝑤
0
𝐶 + ∫
𝑦𝑘

𝑃 (𝑢
𝑘
= 1 | 𝑦

𝑘
) 𝑑𝑦
𝑘

⋅ {𝑤
0
∑

u𝑘
∫
Y𝑘

𝐴(u𝑘) 𝑃 (u𝑘 | Y𝑘)

⋅ [𝐶
0

𝐹
𝑝 (Y | 𝐻

0
) − 𝐶
0

𝐷
𝑝 (Y | 𝐻

1
)] 𝑑Y𝑘

+ 𝑤
𝑘
[𝐶
𝑘

𝐹
𝑝 (𝑦
𝑘
| 𝐻
0
) − 𝐶
𝑘

𝐷
𝑝 (𝑦
𝑘
| 𝐻
1
)]} .

(23)

Again noting that the fusion rule and other sensor decision
rules are fixed and𝑤

0
𝐶 is a constant, we obtain the following

sensor decision rule:

𝑃 (𝑢
𝑘
= 1 | 𝑦

𝑘
) =

{

{

{

0, if 𝐷 (𝑘) ≤ 0,

1, otherwise,
(24)

where
𝐷 (𝑘) = 𝑤

𝑘
[𝐶
𝑘

𝐹
𝑝 (𝑦
𝑘
| 𝐻
0
) − 𝐶
𝑘

𝐷
𝑝 (𝑦
𝑘
| 𝐻
1
)]

+ 𝑤
0
∑

u𝑘
∫
Y𝑘

𝐴(u𝑘) 𝑃 (u𝑘 | Y𝑘)

⋅ [𝐶
0

𝐹
𝑝 (Y | 𝐻

0
) − 𝐶
0

𝐷
𝑝 (Y | 𝐻

1
)] 𝑑Y𝑘.

(25)

From

𝑃 (Y | 𝐻
𝑗
) = 𝑃 (Y𝑘 | 𝑦

𝑘
, 𝐻
𝑗
) 𝑝 (𝑦

𝑘
| 𝐻
𝑗
) , (26)

we conclude that the decision rule at the 𝑘th sensor can be
expressed in an alternate form as (14).

Remark 2. Similar to the DDFF, the fusion rule and sensor
decision rules of the FT-DDFF given in (13) and (14) are
also coupled with each other. In addition, the FT-DDFF is
derived by the PBPOmethodology so that it only obtains the
suboptimal solution of original optimization problem (12) in
general. However, as the FT-DDFF partly optimizes the local
risks, the performances of the local sensorsmay be better than
the DDFF. More importantly, the new detection formulation
has some superiorities of fault tolerance for the imperfect
detection fusion system. It will be shown in Section 4.
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Table 1: Ratios of average risks by the FT-DDFF to those by the DDFF.

𝑚
1
= 1.0,𝑚

2
= 1.0,𝑚

3
= 1.4 𝑚

1
= 1.7,𝑚

2
= 1.5,𝑚

3
= 1.3

𝜏 𝜎
1
= 1.4, 𝜎

2
= 1.0, 𝜎

3
= 2.0 𝜎

1
= 1.0, 𝜎

2
= 1.4, 𝜎

3
= 2.0

𝑟
0

𝑟
1

𝑟
2

𝑟
3

𝑟
0

𝑟
1

𝑟
2

𝑟
3

0.1 0.9532 0.9096 0.9391 0.9162 0.8642 0.9716 0.7172 0.5728
0.2 0.9551 0.9111 0.9400 0.9177 0.8890 0.9725 0.7200 0.5730
0.3 0.9579 0.9142 0.9423 0.9208 0.9006 0.9732 0.7255 0.5732
0.4 0.9611 0.9195 0.9462 0.9260 0.9202 0.9741 0.7343 0.5739
0.5 0.9639 0.9259 0.9511 0.9324 0.9437 0.9826 0.7421 0.5765
0.6 0.9670 0.9338 0.9574 0.9401 0.9840 0.9958 0.7595 0.5809
0.7 0.9709 0.9433 0.9651 0.9492 1.0048 1.0047 0.7833 0.5848
0.8 0.9757 0.9546 0.9745 0.9598 1.0077 1.0106 0.8168 0.5908
0.9 0.9827 0.9686 0.9866 0.9723 1.0041 1.0120 0.8698 0.6053
1.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

4. Numerical Examples

In this section, some numerical simulations are provided for
the binary detection fusion problem in a distributed system
with three local sensors; that is, 𝑁 = 3. The performance
of the FT-DDFF is evaluated and compared with that of the
DDFF. The observations at local sensors are assumed to be
conditionally independent; then the sensor decision rules (14)
reduce to the following threshold tests:

𝑝 (𝑦
𝑘
| 𝐻
1
)

𝑝 (𝑦
𝑘
| 𝐻
0
)

𝑢
𝑘
= 1

≷

𝑢
𝑘
= 0

𝑤
𝑘
𝐶
𝑘

𝐹
+ 𝑤
0
∑u𝑘 𝐴(u𝑘) 𝐶0

𝐹
∏
𝑁

𝑖=1,𝑖 ̸=𝑘
𝑃 (𝑢
𝑖
| 𝐻
0
)

𝑤𝑘𝐶
𝑘

𝐷
+ 𝑤0∑u𝑘 𝐴 (u𝑘) 𝐶0

𝐷
∏
𝑁

𝑖=1,𝑖 ̸=𝑘
𝑃 (𝑢
𝑖
| 𝐻
1
)

.

(27)

Let the costs of the correct decision andmistaken decision
be zero and unity, respectively; that is, 𝐶𝑘

00
= 𝐶
𝑘

11
= 0,

and 𝐶
𝑘

10
= 𝐶
𝑘

01
= 1; the system risk 𝑅

0 and the local risk
𝑅
𝑘 are just the probabilities of error decisions. Furthermore,

we assume that each local sensor has equal importance; then
the weighting vector can be expressed as w = (𝜏, 𝑞, 𝑞, 𝑞)

𝑇,
𝑞 = (1−𝜏)/3, where the value of 𝜏 ∈ [0, 1] reflects the different
importance of system risk and local risks.

Assume that the observation noises at three sensors
follow the Gaussian distribution. Under 𝐻

0
, the conditional

probability densities at three local sensors are assumed to
be identical with mean zero and variance one. Under 𝐻

1
,

the mean and variance of observation at the 𝑘th sensor are
denoted by𝑚

𝑘
and 𝜎

2

𝑘
, respectively, for 𝑘 = 1, 2, 3.

The purpose of this paper is to design a fault-tolerant
detection fusion rule which can guarantee the performance of
system no matter whether it works well or not. Therefore, we
will just evaluate the performance of the FT-DDFF for perfect
and imperfect distributed systems.

4.1. Perfect Distributed Systems. We will compare the perfor-
mances of two formulations when the system is perfect. As
mentioned before, besides the system risk, we also focus on

the local risks so that the performances of local sensors and
fusion center will be evaluated simultaneously.

Suppose that the prior probability 𝑃
0
follows uniformly

distribution on the interval [0, 1]. Table 1 reports the ratios of
average risks by the FT-DDFF to those by the DDFF:

𝑟
𝑘
=

E (𝑅
𝑘
) by the FT-DDFF

E (𝑅𝑘) by the DDFF
, 𝑘 = 0, 1, 2, 3, (28)

where the symbol E(⋅)means the expectation with respect to
the prior probability 𝑃

0
.

In Table 1, for some different 𝜏, we computed all average
risk ratios of fusion center and local sensors. When 𝜏 = 1, as
the weight of each local sensor is zero, the FT-DDFF is equal
to the DDFF. When 𝜏 < 0.7, all the values of 𝑟𝑘, 𝑘 = 0, 1, 2, 3,
in Table 1 are less than 1, which means that the FT-DDFF has
more significant advantages than the DDFF. How to take an
appropriate 𝜏 depends on the structure of system, historical
experience and subjective factors, and so forth. One way is to
choose an optimal 𝜏opt byminimizing the expectation of total
risk 𝑅:

𝜏opt = argmin
𝜏

𝜏E (𝑅
0
)

+
1 − 𝜏

3
[E (𝑅

1
) + E (𝑅

2
) + E (𝑅

3
)] .

(29)

When 𝑚
1

= 1.0, 𝑚
2

= 1.0, and 𝑚
3

= 1.4 and 𝜎
1

= 1.4,
𝜎
2
= 1.0, and 𝜎

3
= 2.0, one can obtain the optimal 𝜏opt = 0.17

using an iterative algorithm. Figure 2 shows the total risk 𝑅

with respect to different weight 𝜏 in this case.
If𝑚
1
= 1.7,𝑚

2
= 1.5, and𝑚

3
= 1.3 and𝜎

1
= 1.0,𝜎

2
= 1.4,

and 𝜎
3
= 2.0, we have 𝜏opt = 0.3. Next, we denote this case as

Scenario A :

{{{{

{{{{

{

𝜏 = 0.3,

𝑚
1
= 1.7, 𝑚

2
= 1.5, 𝑚

3
= 1.3,

𝜎
1
= 1.0, 𝜎

2
= 1.4, 𝜎

3
= 2.0.

(30)

For Scenario A, the comparisons of probabilities of
error detections for fusion center and local sensors under



6 International Journal of Distributed Sensor Networks

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2075

0.208

0.2085

0.209

0.2095

0.21

0.2105

0.211

0.2115

0.212

0.2125

The weight of fusion center

Th
e a

ve
ra

ge
 to

ta
l r

isk
 R

Figure 2:The total risk 𝑅 versus the weight 𝜏 at fusion center, while
𝑚
1

= 1.0, 𝑚
2

= 1.0, and 𝑚
3

= 1.4 and 𝜎
1

= 1.4, 𝜎
2

= 1.0, and
𝜎
3
= 2.0.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

Sy
ste

m
 ri

sk

P0

System risk for DDFF
System risk for FT-DDFF

Figure 3: Comparison of the system risks for Scenario A.

the DDFF and FT-DDFF are shown in Figures 3 and 4.
Figure 5 shows the comparisons of the receiver operating
characteristics (ROCs) of local sensors.

Figure 3 shows the system risks of two fusion formula-
tions. Although the system risk of the FT-DDFF is not less
than that of the DDFF uniformly, the average system risk is
less certainly. Note that the curve of system risk 𝑅

0 by the FT-
DDFF is not smooth because it is only a part of total risk
𝑅 which is the objective function in optimization problem
(12). It seems that the performances of local sensors under
both formulations are the same as those in Figure 5, while
Figure 4 shows that the FT-DDFF has smaller local risks than
the DDFF uniformly.

4.2. Imperfect Distributed Systems. There are many kinds of
deteriorations for a distributed fusion system. The fusion
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Figure 4: Comparison of the local risks for Scenario A.
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Figure 5: Comparison of ROCs at local sensors for Scenario A.

center may be destroyed or could not work normally; some
of local sensors may be destroyed or the communications
between fusion center and some local sensors may be
cut off, which means that some local sensors are missing
from the standpoint of fusion center; some of local sensors
may be interfered and then the conditional distributions of
observations or some parameters of the distributions may
be changed. Next, we will consider the above deteriorations,
respectively. More complicated situations, such as some
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Table 2: Ratios of average system risk for missing local sensors with different noise variances.

𝜎
1

𝜎
2

𝜎
3

𝜌
1

𝜌
2

𝜌
3

𝜌

1.0 1.4 1.4 0.9679 0.9844 1.0029 0.9851
1.0 2.0 1.4 0.9606 1.0138 0.9756 0.9833
1.0 2.5 1.4 0.9084 1.0287 0.9789 0.9720
1.4 1.0 1.4 0.9562 0.9851 1.0399 0.9937
1.4 1.0 2.0 0.9513 0.9062 1.0832 0.9802
1.4 1.0 2.5 0.9435 0.8756 1.0962 0.9718
1.4 2.0 1.0 0.9392 1.0879 0.9414 0.9895
2.0 2.0 1.0 0.9732 1.0214 0.9843 0.9929
2.5 2.0 1.0 0.9913 0.9935 1.0019 0.9956

combination of above deteriorations, could be processed
similarly.

(1) The Fusion Center Is Destroyed. If the fusion center is
destroyed, each local sensor has to use its own decision rule to
make the final decision for the two hypotheses. Owing to the
absence of fusion center, we only compare the performances
of the local sensors. As shown in Section 4.1, if an appropriate
𝜏 is taken, the FT-DDFF can outperform theDDFF at all local
sensors.

(2) Some of Local Sensors Are Missing. If some of local sensors
are missing, the fusion center has to make a final decision
using the available local decisions. We suppose that only one
local sensor will be missing without loss of generalization.
Table 2 reports the ratios of average system risk by the FT-
DDFF to that by the DDFF for 𝜏 = 0.3, 𝑚

1
= 1.7, 𝑚

2
= 1.5,

and𝑚
3
= 1.3, where 𝜌

𝑘
is 𝑟0 given by (28), while the 𝑘th local

sensor is missing, 𝑘 = 1, 2, 3, and 𝜌 is the average of 𝜌
1
, 𝜌
2
,

and 𝜌
3
.

From Table 2, we can see that, compared with the DDFF,
the FT-DDFF decreases the average system risks, while some
special sensors are missing and increase the average system
risks if the remaining sensor is missing. Specifically, we have
the following observations.

(i) For all kinds of situations, every 𝜌 is less than 1. For
every situation, two of 𝜌

1
, 𝜌
2
, and 𝜌

3
are less than 1, while

the remaining is larger than 1. It shows that although the
FT-DDFF cannot uniformly decrease the system risks, it will
decrease the average system risk if one local sensor ismissing.

(ii) If Sensor 1 is missing, every 𝜌
1
is less than 1, which

shows that the FT-DDFF does decrease the system risks for
different parameters.

(iii) Combining the above with results in Table 1, we
conclude that, compared with the DDFF, if the system is
perfect, the FT-DDFF has better performances of both fusion
center and local sensors; if one local sensor is missing, the
FT-DDFF has a little improvement in average; in particular,
the performance of fusion center uniformly has a little
improvement if Sensor 1 is missing.

For Scenario A, the performances of both formulations
given in Table 2 could be furthermore revealed in Figures
6 and 7. It shows that, compared with the DDFF, the
performance of fusion center by the FT-DDFF is better when

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sy
ste

m
 ri

sk
 as

 o
ne

 se
ns

or
 is

 m
iss

in
g

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
P0

System risk for DDFF missing Sensor 1
System risk for DDFF missing Sensor 2
System risk for DDFF missing Sensor 3
System risk for FT-DDFF missing Sensor 1
System risk for FT-DDFF missing Sensor 2
System risk for FT-DDFF missing Sensor 3

Figure 6: Comparison of system risks when one of local sensors is
missing for Scenario A.

Sensor 1 or Sensor 2 is missing and worse as Sensor 3 is
missing. Note that the ROCs of fusion center by the FT-DDFF
and DDFF are almost identical while Sensor 2 is missing and
are similar to that by the FF-DDFF while Sensor 3 is missing.

(3) Some of Local Sensors Are Interfered. If some of local
sensors are interfered, the conditional distributions of obser-
vations or their parameters may be changed. We suppose
that only one local sensor would be interfered and its noise
variance increases. Table 3 reports the ratios of average system
risks by the FT-DDFF to those by the DDFF for Scenario A,
where 𝛿

𝑘
is 𝑟0 given by (28) while only 𝜎

𝑘
varies, 𝑘 = 1, 2, 3.

From Table 3, we can see that, compared with the
DDFF, the FT-DDFF decreases the average system risks
while the values of changed 𝜎

1
and 𝜎

2
become large enough

and increases the average system risks while 𝜎
3
changed.

Specifically, we have the following observations.
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Table 3: Ratios of average system risks for interfering local sensors with different noise variances.

𝜎
1

𝛿
1

𝜎
2

𝛿
2

𝜎
3

𝛿
3

1.5 1.0008 2.0 1.0301 2.0 1.0498
2.0 0.9788 2.5 1.0244 2.5 1.0351
2.5 0.9678 3.0 1.0164 3.0 1.0233
3.0 0.9623 3.5 1.0084 3.5 1.0139
3.5 0.9598 4.0 1.0006 4.0 1.0130
4.0 0.9588 4.5 0.9876 4.5 1.0115
4.5 0.9586 5.0 0.9866 5.0 1.0064
5.0 0.9589 5.5 0.9874 5.5 1.0063

ROC of system for DDFF when missing Sensor 1
ROC of system for DDFF when missing Sensor 3
ROC of system for FT-DDFF when missing Sensor 1
ROC of system for FT-DDFF when missing Sensor 3
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Figure 7: Comparison of detection probabilities at fusion center
when one of local sensors is missing for Scenario A.

(i) If Sensor 1 is interfered, the ratio 𝛿
1
deceases as 𝜎

1

increases. While 𝜎
1
> 2.0, all the corresponding ratio 𝛿

1
< 1

which means the FT-DDFF has some superiorities of fault
tolerance. Similarly, conclusion could be derived as Sensor 2
is interfered.

(ii) If 𝜎
3
increases, the corresponding ratio 𝛿

1
deceases.

But all 𝛿
1
are larger than 1 whatever 𝜎

3
changes to.

(iii) The above findings are consistent with the results in
Table 2. This is as 𝜎

𝑘
becomes larger, the signal-to-noise ratio

(SNR) at the 𝑘th sensor decreases. If 𝜎
𝑘
is large enough, the

corresponding SNR would be close to zero just as the 𝑘th
sensor is missing.

For Scenario A, the performances for both formulations
given in Table 3 with varying 𝜎

𝑘
= 4.0, 𝑘 = 1, 2, 3, are also

revealed in Figures 8 and 9.These results show that, compared
with the DDFF, the FT-DDFF has better performance at
fusion center when Sensor 1 or Sensor 2 is interfered and
worse performance as Sensor 3 is interfered.

A lot of simulations also have the similar results for
different values of 𝑚

𝑘
, 𝜎
𝑘
, 𝑘 = 1, 2, 3, with an appropriate

𝜏. From all of the simulations we could conclude that if the
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Figure 8: Comparison of system risks when one of local sensors is
interfered for Scenario A.

system is perfect, the FT-DDFF obviously outperforms the
DDFF; if one local sensor is missing, the FT-DDFF slightly
outperforms the DDFF in average; if one local sensor is
interfered seriously, especially is missing, the FT-DDFF also
slightly outperforms the DDFF in average.

5. Conclusion

In this paper, we deal with the distributed detection fusion
having fault-tolerance capacities. A new detection fusion
strategy is proposed by minimizing the weighted sum of
system risk and local sensor risks.We solve this teamdecision
problem by the PBPO methodology and provide the FT-
DDFF for fault-tolerant fusion rule and sensor decision
rules. Although the FT-DDFF could not ensure an optimal
solution to the original detection fusion problem, it does have
some superiorities compared with the DDFF in average. The
numerical examples confirm the above claims and show that
the new detection formulation has more fault tolerance in
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Figure 9: Comparison of ROCs at fusion center when one of local
sensors is interfered for Scenario A.

some certain situations such as the destroy of fusion center,
failure of some local sensors, and variety of distributions of
sensor noises.
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