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Ground Penetrating Radar with Application to Full
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Abstract—The simulation, or forward modeling, of Ground
Penetrating Radar (GPR) is becoming a more frequently used
approach to facilitate interpretation of complex real GPR data,
and as an essential component of full-waveform inversion (FWI).
However, general full-wave 3D electromagnetic (EM) solvers,
such as ones based on the Finite-Difference Time-Domain (FDTD)
method, are still computationally demanding for simulating
realistic GPR problems. We have developed a novel near real-
time, forward modeling approach for GPR that is based on a
machine learning (ML) architecture. The ML framework uses an
innovative training method which combines a predictive principal
component analysis technique, a detailed model of the GPR
transducer, and a large dataset of modeled GPR responses from
our FDTD simulation software. The ML-based forward solver is
parameterized for a specific GPR application, but the framework
can be applied to many different classes of GPR problems.

To demonstrate the novelty and computational efficiency of our
ML-based GPR forward solver, we used it to carry out FWI for
a common infrastructure assessment application – determining
the location and diameter of reinforcement bars in concrete.
We tested our FWI with synthetic and real data, and found
a good level of accuracy in determining the rebar location, size,
and surrounding material properties from both datasets. The
combination of the near real-time computation, which is orders
of magnitude less than what is achievable by traditional full-wave
3D EM solvers, and the accuracy of our ML-based forward model
is a significant step towards commercially-viable applications of
FWI of GPR.

Index Terms—Concrete, Deep learning, FDTD, FWI, GPR,
Machine Learning, NDT, Neural Networks, Rebar

I. INTRODUCTION

Ground Penetrating Radar (GPR) is a non-destructive elec-
tromagnetic (EM) tool that is commonly used for infrastructure
assessment and geophysical investigations. The simulation, or
forward modeling, of GPR is now more frequently carried out
for two primary reasons: firstly, as a tool to assist with the
interpretation of, often complex, real GPR data; and secondly,
because an accurate and fast forward model is a key compo-
nent in the full-waveform inversion (FWI) of GPR data. There
have been recent advancements in the capabilities and accu-
racy of GPR simulations [1], [2], as well as improvements to
the performance of the software. Nevertheless, full-waveform
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three dimensional (3D) EM forward solvers, like the Finite-
Difference Time-Domain (FDTD) method, remain computa-
tionally demanding algorithms. This is especially challenging
for FWI, particularly when global optimizers are used, where
the forward problem has to be evaluated hundreds, if not
thousands, of times. To attempt to mitigate this, simplifications
of the forward model have been proposed, such as 3D to two
dimensional (2D) transformations, and the use of simplified
GPR antenna models [3], [4]. However, when targets are
located in the near or intermediate field of the GPR antenna
these methods do not produce sufficiently accurate results.
Therefore FWI algorithms that use realistic and accurate 3D
forward models have only been used where high-performance
computing (HPC) resources are available. This has led to
extremely limited mainstream/commercial adoption of FWI for
GPR.

We propose a novel near real-time 3D forward model for
GPR based on machine learning (ML). One of the most
mainstream ML methods are neural networks, which have
been extensively used in a wide range of applications [5].
Deep networks are theoretically capable of resolving highly
complicated patterns in multi-dimensional spaces when ad-
equate training data are available. Nonetheless, training a
deep architecture using traditional neural networks is not a
straightforward task, and for many years neural networks were
constrained to use a maximum of three hidden layers [5].
Recent advancements in ML make it possible to train deep
architectures by using a new spectrum of neural networks
like convolutional neural networks, long-short term memory
networks, and neural networks that use initial weights ob-
tained from pre-trained unsupervised learning (e.g. using auto-
encoders) [6]. In addition, training techniques like the dropout
[7], rectified linear unit activation functions [8], and stochastic
optimization approaches [9] manage to reduce over-fitting
allowing deep architectures to be effectively trained.

The initial kernel for our ML approach was developed
in [10], where we accurately predicted the direct coupling
response of a GPR antenna for specific soil parameters based
on the Peplinksi model [11], the height of the antenna, and
the roughness of the surface. A similar concept has also
been proposed to estimate the arrival times in 2D ray-based
tomography [12]. However, our initial approach could not
predict the response from a buried target with sufficient
accuracy. This is because the complex interactions between the
target and the surface, combined with ringing noise and losses
give rise to a multi-parametric scenario that neural networks,
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even with deep architectures, could not capture. The new ML-
based approach we present here is capable of predicting the
complex interactions between the target, the free surface, and
the antenna, subject to realistic dispersive losses. The concept
is based on parameterizing the GPR model and using an
innovative training technique for the neural network, that is
then used to predict the resulting waveform based on those
parameters. The training process combines two important
features: firstly, it utilizes principal component analysis (PCA);
and secondly, it uses a comprehensive and realistic training
dataset generated from our FDTD-based simulation software.
PCA tries to find an orthonormal hyper-plane in which the data
can be mapped using a small number of axes, named principal
axes or principal components. It has been successfully applied
to GPR as a means to eliminate direct coupling and the
ground reflection [13], [14], [15]. Although PCA has been
used for clutter reduction in GPR its primary purpose is to
compress and reduce the dimensionality of data [16]. We use
an innovative predictive PCA for training our neural network.
Although generating the training data and training the neural
network is a computationally intensive process, it takes place
only once. The resulting trained network can be used with near
real-time speed (≈ 1 sec) as a forward solver. Obviously the
ML-based forward solver is only applicable to a subset of the
scenarios it was trained for. However, there are many specific
GPR applications where one can effectively limit the range of
expected variations and thus specify suitable training models.

A real-time forward solver is a powerful asset that can have
applications in many areas of GPR. In particular, FWI can
greatly benefit from a fast forward solver since traditional
solvers like FDTD are time consuming algorithms which
necessitate substantial computational resources. In this paper,
FWI coupled with our proposed ML-based numerical frame-
work is applied for estimating the depth and the radius of
metallic rebars inside concrete slabs. This application was
chosen based on the fact that the problem can be effectively
parameterized, and that estimating the radius of the rebar is
a challenging problem for which no conclusive approach has
yet been reported.

It is well known that GPR has been extensively used for
non-destructive testing problems [17], [18], [19] with main-
stream civil engineering applications that include: mapping of
utilities [20], [21], bridge evaluation [22], [23], road inspection
[24], [25], [26], pipe location, [27], [28] and crack detection
[29], [30]. The mapping of reinforcement in concrete using
GPR [31] is particularly attractive due to the high contrast
in dielectric properties between concrete and steel, combined
with the fact that concrete is a relatively homogeneous medium
which further increases the overall signal-to-clutter ratio. De-
spite this popularity, estimation of the location and, especially,
the diameter of rebar in concrete remains a challenging prob-
lem for which there is not yet a conclusive approach. In [32]
a novel technique is suggested to estimate the radius of rebar
based on post-processing raw data. Initially hyperbola fitting is
applied in an effort to obtain the permittivity of the concrete.
Furthermore, the ratio between the amplitudes measured in
different antenna positions is used in order to evaluate the
effective conductivity. Subsequently, a parametric study is con-

ducted using a ray-based forward solver in order to establish a
relationship between the maximum amplitude of the reflected
signal with respect to conductivity, permittivity, depth, and
radius of the rebar. A set of 81 models is evaluated and
polynomial fitting is used in order to establish a relationship
between the reflected amplitude and the radius of the rebar.
This method does not take into account either the directivity
pattern of the antenna, or the fact that the pattern is medium-
dependent [33]. Furthermore, near-field phenomena, such as
coupling effects and ringing noise, can strongly affect the
estimation of conductivity, permittivity, as well the dependence
of the reflected signal on the radius of the rebar. In [34] a
different approach is proposed that is based on the coefficients
of power reflectivity combined with an empirical evaluation of
the radius of the rebar based on the width of the reflectivity
pattern. Similar to [32], the method suggested in [34] does not
take into account the antenna, assumes a uniform directivity
pattern, no ringing noise, and an absence of coupling affects. In
[35], synthetic measurements over steel rebars are conducted,
and an investigation of two different polarizations, and the
dependence on depth and the radius of the rebar is carried out.
This method, similar to the aforementioned ones, is evaluated
for a specific host medium and uses simplified transmitters
and receivers with no conclusive results. In [36] a discrete and
stationary wavelet transform is used in order to estimate the
diameter of the rebar assuming that the velocity of the medium
is known. Direct knowledge of the velocity of the host medium
also allows the usage of hyperbola fitting, with the radius of the
rebar as the only unknown [37]. In [38] it is shown that using
a Kirchoff-based linearized inversion can effectively recover
some information regarding the shape of the targets regardless
of the medium velocity. In the same context, a FWI approach
is suggested in [39] to estimate the host medium properties and
the size and depth of a steel rebar. The suggested inversion
assumes a simplified source but the source wavelet is one
of the unknowns and is evaluated through a deconvolution
in each iteration step. The permittivity and conductivity are
also calculated in different steps avoiding imbalances due to
sensitivity differences. The misfit is calculated for specific
frequencies in order to reduce the computational cost. A shuf-
fled complex evolution is employed to minimize the residuals
between the predicted and the actual waveform. The validity
of the algorithm is evaluated with synthetic data in which
the SCE is shown to be capable of accurately retrieving the
dielectric properties of the medium as well as the size and
the depth of the rebar. The method is a robust and systematic
approach for automatic evaluation of the size of the rebar using
all the available information of the waveform with minimum
simplifications. Nonetheless, the absence of an actual antenna
decreases somewhat the general applicability of the approach.
In addition, wavelet estimation based on deconvolution is an
ill-posed problem that without any regularization can lead
to non-unique results [40]. Lastly, the forward-solver, is still
a time-consuming routine that, when coupled with a global
optimizer, greatly increases the computational requirements of
the inversion.

We aim to develop and apply our ML-based forward solver
as part of a FWI to estimate the cover depth and diameter
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Fig. 1. Diagram showing the geometry of the GPR model used for training
the ML-based forward solver (axes values are in metres). The antenna model
is within the red box, and the cylindrical object is the PEC rebar.

of rebar, as well as the moisture content of the concrete.
A near real-time or very fast numerical solver reduces the
computational requirements of FWI making global optimizers
usable on computers with modest resources.

II. ML-BASED FORWARD SOLVER

A. Training using FDTD simulations

A training set should include a wide spectrum of possible
scenarios in order to adequately map the feature space of
a given problem [5]. To achieve this we used numerical
modeling to obtain synthetic, but nonetheless realistic and
most importantly well-labeled data [41], [42]. Our forward
solver used to generate the training data is gprMax [1],
which is an open source electromagnetic simulation software
based on the FDTD method [43]. gprMax has recently been
upgraded to allow the FDTD solver to be executed on multiple
graphical processing units [2], which significantly accelerated
the generation of the training set. A 1 mm cubic cell is used
as a spatial discretization for the FDTD models, and the time-
step is set equal to the Courant limit (∆t = 1.925 ps) [44].
The dimensions of the models are 0.5× 0.3× 0.4 m.

The dielectric properties of concrete are described by the
extended Debye model given in (1)

ε = ε∞ +
εs − ε∞
1 + jωt0

+
σ

jωε0
(1)

where ε∞ is the relative permittivity at infinite frequency, εs is
the relative permittivity at zero frequency, t0 is the relaxation
time, σ is the conductive term, ω is the angular frequency,
j =

√
−1, and ε0 is the absolute permittivity of vacuum. A

piece-wise linear recursive convolution is used to implement
the Debye properties in FDTD model [45]. The properties of
the extended Debye model for concrete are given in Table I and
were calculated using experimental measurements [46], [47],
[48]. A spline interpolation is used to evaluate the parameters
for any water fraction between 0.2-12 %. Describing the
dielectric properties of concrete using only water fraction is

TABLE I
EXTENDED DEBYE PROPERTIES OF CONCRETE [46]

WC εs ε∞ t0 σ (Ω−1m−1)

12 % 12.84 7.42 0.611 ns 20.6× 10−3

9.3 % 11.19 7.2 0.73 ns 23× 10−3

6.2 % 9.14 5.93 0.8 ns 6.7× 10−3

5.5 % 8.63 6.023 1 ns 5.15× 10−3

2.8 % 6.75 5.503 2.28 ns 2.03× 10−3

0.2 % 4.814 4.507 0.82 ns 6.06× 10−4

particularly useful for FWI since there is only one unknown
parameter to be estimated instead of three. It also overcomes
the problem of instabilities due to differences in sensitivity
between permittivity and conductivity [49], [50]. This is the
reason why a two-step procedure is used in the FWI by [39]
(similar to that of [50]), in which an initial permittivity is
estimated and subsequently, subject to the derived permittivity
an optimized conductivity is calculated. Relating the dielectric
properties to the water fraction overcomes these aforemen-
tioned instabilities, and furthermore accelerates the overall
inversion process.

The GPR antenna used in the FDTD simulations is a
modeled version of the Geophysical Survey Systems Inc.
(GSSI) 1.5 GHz antenna, which was also used for collect-
ing measured real data. This model was initially created by
[51], where the geometry of the antenna was measured, and
a Taguchi optimization was subsequently used in order to
derive unknown dielectric properties of the antenna. A cost
function of the difference between real and modeled free-
space cross-talk responses was used. This antenna model has
subsequently been revised and improved by [40], where a
hybrid linear/non-linear inversion was employed in order to
include the excitation waveform in the unknowns. Through
this procedure an optimized pulse is derived simultaneously
with the dielectric properties of the antenna. This updated and
improved model of the GSSI 1.5 GHz [40] is used in the
FDTD simulations for generating the training data.

The rebar is modeled as a perfect electric conductor (PEC)
cylinder with a radius varying from 2-25 mm, and with a cover
depth that could vary from 0-300 mm. The polarization of the
antenna model is parallel to the main axis of the rebar. Figure 1
gives a general overview of the typical geometry of the FDTD
models used for the training process.

The training set consisted of 2000 models based on a
random variation of the following parameters:
• Water fraction of the concrete (WC)
• Radius of the rebar (R)
• Depth of the rebar (D)

The post-trained neural networks use the aforementioned pa-
rameters as inputs in order to predict the resulting waveform
in near real-time (≈1 sec).

B. Principal Component Analysis (PCA)

Principal Component Analysis (PCA) is one of the oldest
representation techniques used to reduce the dimensionality
of ML problems [16], and is a key aspect of our proposed
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Fig. 2. Eight most dominant principal components of the training set.

ML-based forward solver. The training data consisted of 2000
measurements each of which contained 3000 time-steps. Since
the FDTD time-step is 1.925 ps and we do not expect to
have useful information at frequencies >7 GHz, the traces
were under-sampled in time domain to accelerate the training
process and reduce the overall computational requirements.
Thus, the training set can be represented by a matrix T =
[tr1, tr2 ... trm] = Ti,j ∈ Rm×n, where m = 2000 is
the total number of models (A-Scans), n = 300 are the
under-sampled time-steps, and tri is the under-sampled trace.
The principal components of T are 300 vectors, and can be
represented in a matrix form as P= Pi,j ∈ Rn,n. Figure 2
shows the eight dominant principal axes of the training set to
illustrate the components in which the signal is decomposed.
The full signal consists of 300 components, but to illustrate
the concept we show only the 8 most dominant ones here. A
linear combination of the principal axes can exactly replicate
any trace in the training set. Thus, any trace can be calculated
through tri = Pwi, where wi is a vector containing the
eigenvalues of the ith trace. When using all the principal
axes the system is well-determined and the solution is exact.
Choosing a subset of principal axes Q ∈ Rn,v (n > v) results
in an over-determined system that can be solved using least

squares wi =
(

QT Q
)−1

QT tri. By doing so, the data can be
represented by a smaller amount of unique linear coefficients
multiplied by a common set of principal axes. This results
in decreasing the dimensionality with the cost of losing the
information contained in the neglected principal components.
For the present problem, using 40 principal components was
found to be sufficient to represent any given trace of the
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Fig. 3. Average error between the actual and the compressed normalized A-
Scans. The error is plotted with respect to the number of principal axes used
in the compression. The error bars correspond to one standard deviation.

set. Figure 3 shows the average absolute error between the
actual and the compressed normalized traces with respect to
the number of principal axes used to approximate the data.

Using the 40 most dominant principal axes, the training
set can be represented by a matrix W = Wi,j ∈ Rm,N

where N = 40 is the number of linear coefficients that
uniquely define each trace. Figure 4 shows three full A-Scans
calculated using FDTD and their corresponding compressed
PCA representations using 40 principal axes. From 3000 time-
steps the data have been compressed without compromising
the overall accuracy to a set of 40 coefficients that are unique
for each trace. Based on the inputs of the model (WC,R,D)
the vector wi will be the final output of the ML-based forward
solver that will subsequently be decompressed to retrieve the
complete A-Scan.

C. Design of the network architecture

Supervised ML tries to establish a causal relationship be-
tween given inputs and their corresponding outputs. As already
mentioned, in the current problem the inputs are the water
content of the concrete (WC), the radius of the rebar (R),
and the depth of the rebar (D). Initially, it was attempted to
establish a relationship between the given inputs and the actual
A-Scans, subject to the 2000 randomly generated scenarios.
Following that approach the resulting outputs were very noisy
and the late reflections, ringing noise, and complicated near-
field phenomena could not be predicted regardless of the neu-
ral network architecture. Subsequently, an attempt was made
to establish a relationship between the given inputs and the 40
unique principal components of each trace. Similarly to the
first direct approach, the neural network could not predict the
complicated phenomena, and it was only possible to resolve
the direct coupling. Note that a number of different neural
network architectures, different activation functions, as well
as different optimization approaches were tested producing no
satisfactory results.
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Fig. 4. Left column: 40 principal coefficients used to represent the compressed
signal. These are the outputs of the ML-based numerical solver which are
subsequently decomposed to form the resulting signal. Right column: Three
full A-scans calculated using FDTD and their corresponding compressed PCA
representations using 40 principal components.

It is apparent that scattering from a PEC rebar in the close
proximity to an actual GPR antenna is a complicated problem
that requires a deep architecture specifically designed for the
problem. The main design idea of our proposed architecture
is to try and exploit the fact that the principal components
are not independent from each other, and that knowing the
values of the previous ones should assist in predicting the next
ones. Figure 4 shows that the principal components follow
a specific pattern that can be approximately described as a
periodic function with an exponential decay.

Our proposed neural architecture is divided into two sec-
tions, with each section further divided into 40 steps. In the
first section the inputs of the model (R, D, WC) are used
in order to predict the first principal axis. The neural network
architecture used is a two hidden layers model using 30 and 10
neurons respectively. The activation functions of the neurons
are sigmoid apart from the output which is linear, as shown in
Figure 5. This architecture is used in each step of the proposed
algorithm. For the training process, the data are divided into
three sets: a training set, a validation set, and a testing set.
The training set is used to calculate the gradients and the cost
function of the optimization. The validation set is used as a
flag in order to stop the process when the system starts to over-
fit. Lastly, the testing set is used to evaluate the performance
of the resulting neural network. The optimization used for the
current problem is a complex-conjugate gradient method.

The first step of the first section results in a system that
uses the parameters of the model as inputs in order to predict
the first principal component. Subsequently, the parameters of
the model plus the predicted value of the first component are
used to predict the value of the second principal component
(using the neural network described in Figure 5). The causal
relationship between the principal components constrains the

Sigmoid AF

Linear AF
weights

.

.

.

30 neurones

Weights

neurons

Fig. 5. Neural network architecture used in each step of the proposed ML-
based forward solver. All the activation functions (AF) are sigmoid apart from
the last one which is linear.

possible outcomes thus decreasing the search space of the
optimization. In the third step, the parameters of the model
are used in addition to the previously predicted principal
components (i.e. both the first and the second one) in order
to predict the third one. This procedure is continued until all
40 of the components have been predicted. Note that each
step is trained individually, thus avoiding vanishing gradients
and over-fitting that arise when training deep architectures.
In addition, in each step, the data are divided into different
training, validation, and testing sets which decreases over-
fitting by forcing the neural network to be inclusive and not
biased to a specific set of data. Figure 6 provides an overview
of the architecture of the first section, where each box contains
the neural network architecture presented in Figure 5. The
first section is a 120 layer neural network in which every
three layers are trained individually using the parameters of
the model plus the outputs of the previous steps.

After the evaluation of the first section, a full set of predicted
principal components are available. These coefficients are sub-
ject to errors due to inaccurate predictions. To overcome this, a
second section is introduced which tries to establish a causal
relationship between the errors in the predicted values with
respect to the actual principal axes and the parameters of the
model. In the first step of the second section, the parameters
of the model plus all the predicted principal components apart
from the first one are used in order to predict the revised first
principal axis. The same neural network described in Figure 5
is used for all the steps in the second section, similar to the first
section. During the second step, the parameters of the model
and the revised first component together with all the predicted
components from the first section apart from the second one



IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 6

1
2

1

1

2

3

. . . 

1

2

3

4

5

6

.

.

.

.

37

38

39

40

1
2

1

1

2

3

. . . 

1

2

3

4

5

6

.

.

.

.

37

38

39

40

Inputs

PCA coefficients

Neural Network

Fig. 6. The architecture of the first section of the proposed ML-based forward
solver. Each box corresponds to the neural network in Figure 5. The network
is a 120 layers deep and each step is trained individually using the outputs
of the previous layers as inputs plus the parameters of the model.

2

3

4

5

6

.

.

.

.

37

38

39

1

40

3

4

5

6

.

.

.

.

37

38

39

40

1

4

5

6

.

.

.

.

37

38

39

40

2

. . .

1

4

5

6

.

.

.

.

37

38

39

2

3

40

2

3

4

5

6

.

.

.

.

37

38

39

1

40

3

4

5

6

.

.

.

.

37

38

39

40

1

4

5

6

.

.

.

.

37

38

39

40

2

. . .

1

4

5

6

.

.

.

.

37

38

39

2

3

40

Predicted PCA

Final PCA

Neural Network

Fig. 7. The architecture of the second section of the proposed ML-based
forward solver. The boxes correspond to the neural network described in
Figure 5. In each step the predicted values of the first section (Figure 6)
plus the revised values of the previous steps, and the parameters of the model
are used as inputs in order to revise the next principal component.

are used to predict the revised second principal component.
The same procedure is repeated until all the components are
successfully revised. Figure 7 presents the architecture of the
second section which follows the first one in a sequential
manner. Similarly to the first section, each step of the second
section is trained individually using as inputs the parameters of
the model and the outputs of the first section and the outputs
of the previous steps of the second section. Again, in each
step the training set is divided in different training, validation,
and testing sets that furthermore reduces over-fitting.

The final neural network architecture including the first
section and the second section with all their steps, consists
of 240 layers. Although generating the training set and tuning
the suggested neural network is computationally intensive, the
final output is a near real-time (≈ 1 sec) estimator of the 40
principal components that can be decompressed to give the
predicted time-domain modeled GPR A-Scan. Notice that the
proposed neural network uses as inputs the predicted principal
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Fig. 8. Four different cases used to compare the proposed ML-based solver
with the FDTD solver. The inputs of the model – rebar radius, rebar depth,
and water content of the concrete – are given as the title of each subplot.

components and not the actual ones. The only inputs required
from the user are values for the water content of the concrete,
and the radius and cover depth of the rebar.

The accuracy of the ML-based forward solver is demon-
strated in Figure 8, which presents four case studies that
compare A-Scans from the ML-based forward solver with ones
obtained directly using the FDTD forward solver. The results
are almost identical showing that the suggested neural network
architecture can resolve the underlying pattern between the
given inputs and their corresponding A-Scans.

D. Generalization capabilities

The proposed ML-based numerical solver has been trained
for the GSSI 1.5 GHz commercial antenna. In addition, the
current scheme is tuned for predicting the resulting signal
of a metallic rebar buried in concrete. It is apparent that the
architecture described in Figure 7 is not capable of predicting
the response produced using other antenna systems in different
environments. Applying deep learning to simulate different
scenarios will result in a different network architecture, which
in turn will require different training strategies and different
training sets. There is neither a universal method to train neural
networks for electromagnetic simulations, nor an inclusive
neural network that can replace Maxwell’s equations. The ML-
based solver described in this section is specifically designed
for the GSSI 1.5 GHz commercial antenna used on concrete
with different water content and buried rebar with different
depths and radii.

III. FWI RESULTS

We now apply our ML-based forward solver as part of a
FWI to estimate the cover depth and diameter of rebar, as well
as the moisture content of the concrete. A simulated annealing
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Fig. 9. Actual and predicted parameters using FWI and our ML-based solver.
The numerical study includes 21 models. The frequency of occurrence with
respect to error is plotted on the right side. The depth of the rebar and the
water content of the concrete can be accurately predicted. Due to the frequency
content of the pulse as well as due to the inherent non-uniqueness of the
problem, the radius of the rebar can be obtained with a maximum error of
6 mm.

optimization [52] is used in order to minimize the average
mean absolute error between the modeled, using the ML-based
forward solver, and the objective traces. A global optimizer can
constrain the model to exist within given boundaries, which is
particularly useful since our ML-based forward solver has been
trained for a specific set of cases (R = 2−25 mm, D = 0−300
mm, WC = 0.2−12 %). Trying to estimate resulting A-Scans
for values outside these predefined boundaries, will result in
unreliable extrapolations, and should be avoided.

Global optimizers can overcome local minima that are
present in FWI problems in electromagnetics. In addition,
using global optimizers makes initialization of the problem un-
necessary, thus avoiding ray-based tomography inversion prior
to FWI. The main drawback of global optimizers is that they
require substantially more computational resources compared
to convex optimizers. Our ML-based numerical scheme, is a
near real-time solver with minimum computational require-
ments. This makes the usage of global optimizers attainable
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Fig. 10. Two case studies presented in order to illustrate the inherent non-
uniqueness of the rebar problem. For the first case the water content of the
concrete is WC = 9.7 %, the rebar has R = 25.53 mm radius, and a depth
of D = 161.1 mm. For the second case, WC = 9.5 %, R = 18.8 mm, and
D = 155.4 mm.

and commercially appealing. Although in the current work
the chosen global optimizer is the simulated annealing, the
proposed numerical solver can be applied in a straightforward
manner using other global optimizers like genetic algorithms,
and particle swarm optimization.

A. Synthetic data

The proposed FWI using our novel ML-based forward
solver was first tested with 21 synthetic datasets. The cases
were randomly selected and the results of the FWI are shown
in Figure 9. The depth of the rebar as well as the water content
of the concrete can be accurately predicted. The radius of the
rebar can be obtained with a maximum error of about 6 mm.
The reason for this error is the inherent non-uniqueness of the
problem (i.e. different models can result in similar A-Scans)
illustrated in Figure 10. This occurs because the frequency
content of the pulse is not adequate to resolve differences of
the order of 6 mm in a low dielectric medium such as concrete.
Nonetheless, given the efficiency of the current method in
the field as it only requires a single measurement, and the
minimum computational requirements, a maximum error of
6 mm is a good approximation that could be considered useful
for a number of applications. No initialization is required from
the user, nor any calibration of the GPR antenna. A single trace
over the investigated position is the only necessary input.

B. Real data

The proposed methodology is an attractive method for
mainstream/commercial applications with real GPR data, due
to its efficiency and degree of automation. Nonetheless, the
suggested technique uses a ML-based forward solver that
has been trained using synthetic data, so any discrepancies
between real and synthetic data used in the FDTD training can
affect the overall accuracy of the FWI scheme. To minimize
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Fig. 11. FWI results for real measurements over four rebars with different
radii and depths. The recovered water content of the concrete is approximately
11.5 %.

these effects, special attention was given to simulate the GSSI
1.5 GHz antenna used in the training as realistically as possible
[40], and likewise in modeling the dielectric properties of
concrete [46].

Four case studies were examined using data collected from
a reinforced concrete slab in the Non-Destructive Testing
laboratory at the School of Engineering, The University of Ed-
inburgh. The measurements were taken using a GSSI 1.5 GHz
antenna over four different steel rebars in a well-cured concrete
slab (> 3 years). The measurements were made directly above
each rebar, with the polarization of the antenna parallel to the
longitudinal axis (as Figure 1). Similarly to [40], filters for the
antenna on the GPR system were disabled in order to record
the raw antenna response. The only post-processing applied
was the removal of low frequency (static) phenomena that
can be approximated with a second order polynomial [40].
The resulting water fraction from the FWI was approximately
11.5 %. The estimated and the actual depths and radii of
the rebars are shown in Figure 11. The predicted and the
actual rebar characteristics are in good agreement indicating
the usefulness and the potential of the proposed methodology
for field applications.

IV. CONCLUSIONS

A novel forward solver based on machine learning (ML)
for Ground Penetrating Radar (GPR) has been developed
that can be executed at near real-time speeds (≈ 1 sec),

overcoming the computational costs of more general full-
wave three dimensional (3D) numerical solvers like the Finite
Difference Time Domain (FDTD) method. The approach is
based on innovative training of a deep neural network through
a combination of predictive principal component analysis, and
a comprehensive training dataset using realistic data from
representative 3D FDTD simulations. As a result, for the first
time, a near real-time forward solver makes full waveform
inversion (FWI) using global optimizers attainable on standard
desktop/laptop computers. Using global optimizers tackles the
problem of local minima that are widely present in FWI
problems in electromagnetics. In addition, global optimizers
do not require initialization from the user, thus making the
procedure fully automatic. A simulated annealing optimization
is employed in order to minimize the mean absolute error
between the real and the synthetic traces. Through numerical
and real experiments it is shown that, for the given antenna,
the position of the rebar and the water content of the concrete
can be readily obtained, and the radius of the rebar can be
estimated with a maximum error of ≈ 6 mm. The proposed
methodology provides fast and accurate results using a single
trace measured over the investigated rebar. These benefits
make our approach very attractive for field applications, and
a step forward in making FWI commercially viable.

The concept of using ML to create a forward electromag-
netic solver for GPR is not a solution to the general GPR
modeling problem, and consequently we do not suggest that
this approach makes general FWI feasible, without any prior
information or constraints. However it is clear that there are
classes of GPR problems (where the forward model can be ad-
equately parametrized) that the proposed ML-based approach
can be successfully applied. An example of such a type of
scenario is the assessment of pavements with GPR, where
the forward model is essentially based on a one dimensional
layered approximation. Extending our methodology to more
complicated scenarios, where multiple scattering events are
more important, should be possible and will expand the
applicability of the approach. Indeed, our concept can be
employed for other electromagnetic sensing applications, that
require complex inverse scattering solutions, to reduce the
computational demands of forward modeling.
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