
Available on CMS information server CMS CR -2013/366

The Compact Muon Solenoid Experiment

Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report
28 October 2013

XRootd, disk-based, caching-proxy for
optimization of data-access, data-placement and

data-replication

Matevz Tadel for the CMS Collaboration

Abstract

Following the smashing success of XRootd-based USCMS data-federation, AAA project investigated
extensions of the federation architecture by developing two sample implementations of an XRootd,
disk-based, caching-proxy. The first one simply starts fetching a whole file as soon as a file-open
request is received and is suitable when completely random file access is expected or it is already
known that a whole file be read. The second implementation supports on-demand downloading of
partial files. Extensions to the Hadoop file-system have been developed to allow foran immediate
fallback to network access when local HDFS storage fails to provide the requested block. Tools needed
to analyze and to tweak block replication factors and to inject downloaded blocks into a running
HDFS installation have also been developed. Both cache implementations are in operation at UCSD
and several tests were also performed at UNL and UW-M. Operational experience and applications to
automatic storage healing and opportunistic computing, especially on T3 sites and campus resources,
will be discussed.

Presented at CHEP2013 Computing in High Energy Physics 2013



XRootd, disk-based, caching-proxy for optimization

of data-access, data-placement and data-replication

L A T Bauerdick1, K Bloom3, B Bockelman3, D C Bradley4, S Dasu4,
J M Dost2, I Sfiligoi2, A Tadel2, M Tadel2,5, F Wuerthwein2 and
A Yagil2 for the CMS collaboration
1 Fermilab, Batavia, IL 60510-5011, USA
2 UC San Diego, La Jolla, CA 92093, USA
3 University of Nebraska – Lincoln, Lincoln, NE 68588, USA
4 University of Wisconsin – Madison, Madison, WI 53706, USA

E-mail: mtadel@ucsd.edu

Abstract. Following the success of XRootd-based US CMS data-federation, AAA project
investigated extensions of the federation architecture by developing two sample implementations
of an XRootd, disk-based, caching-proxy. The first one simply starts fetching a whole file as soon
as a file-open request is received and is suitable when completely random file access is expected
or it is already known that a whole file be read. The second implementation supports on-
demand downloading of partial files. Extensions to the Hadoop file-system have been developed
to allow for an immediate fallback to network access when local HDFS storage fails to provide
the requested block. Both cache implementations are in pre-production testing at UCSD.

1. Introduction
In February 2013 the CMS experiment [1] at the CERN LHC finished its first data-taking
period, called ”Run 1”, and entered into the ”Long Shutdown 1” period expected to last until
spring 2015. However, the physics analyses of the harvested data are still ongoing, as are the
detector simulations and related computing activities required for an efficient commencement
of upcoming ”Run 2”. The 20 PB of experiment data in various formats is distributed among
participating Tier 0, Tier 1 and Tier 2 computing sites with the goal of optimizing the usage of
available computing resources as well as to provide sufficient processing power to all physicists
that require access to the data. The ”Anydata, Anytime, Anywhere project (AAA) [1] was
started with the goal of opening up computing model of CMS to various degrees of remote data-
access among all the involved sites. The first stage happened in the US in 2011 by exposing all
Tier 1 and Tier 2 storage to the collaboration via the XRootd system [3] and by implementing
a comprehensive monitoring framework [4]. The main initial use-case was interactive access for
data-analysis. Soon after, standard computing jobs were allowed to utilize remote access both
as a fallback in case of a local access error as well as intentionally to better utilize the available
CPU resources. Within US, during the first half of 2013, average data-rate among all sites
was 250 MB/s, corresponding to about 1,000 concurrent running jobs or about 4% of total US

5 To whom any correspondence should be addressed.



CMS capacity. There is an ongoing campaign to export data from all remaining, non US, CMS
computing centers before summer 2014.

Success of the AAA project, expected increase in data rates for ”Run 2”, and the promise
of 100 Gbps networks becoming available in 2014 are all arguing in favor of loosening up of the
CMS computing model. In particular, usage of Tier 2 CPU and disk resources should become
more flexible: with all data available at Tier 1 sites there is little incentive for pre-placement of
most data on Tier 2 sites — it can always be downloaded when it is actually needed and then
kept for as long as it seems reasonable. A significant part of Tier 2 storage, up to 50% and
more, could thus be operated as a fluid cache space. Furthermore, as it is known the data exists
elsewhere there is no need to store the files in a redundant manner as long as the fallback to
remote access can be provided at any point of file-access. Efficient reuse of data cached at Tier
2 centers requires further attention as job scheduling programs need to be both aware of and
interact with the file caching infrastructure.

This paper presents two implementations of a XRootd, disk-based caching-proxy developed in
the context of the AAA project. We believe that these two services can be used to demonstrate
operation of a Tier 2 center on non-subscribed data-sets. Section 2 describes the two caching
proxy implementations in detail and section 3 shows results of a scaling test of a proxy running
on standard server hardware.

2. Two implementations of disk-based caching-proxy
Since CMS data federation already relies completely on XRootd to provide remote file access, the
decision to base caching proxies on XRootd was an obvious one. The XRootd system provides
a basic proxy service [5] with a limited in-memory cache. Its main purpose is to provide access
into and out-of private networks. However, the implementation allows for an user-provided
implementation to be loaded at start-up as a plugin — our two implementations are such plugins,
specializations of XrdOucCache interface. Both of them are currently undergoing pre-production
testing at UCSD.

2.1. Complete-file auto-prefetching proxy
The first implementation simply prefetches complete files and stores them on local disk, serving
client request as they come along. This is suitable for optimization of access latency, especially
when reading is not strictly sequential or when it is known in advance that a significant fraction
of a file will be read. Of course, once parts of a file are downloaded, access speed is the same as
it would be for local XRootd access.

The prefetching is initiated by the file open request, unless the file is already available in full.
It proceeds sequentially, using a configurable block size (1 MB is the default). Requests from
clients are put to the beginning of the download queue and are served as soon as all requested
data becomes available. Vector reads are fully supported, too. If a file is closed before prefetching
is complete, further downloading is also stopped. When downloading of the file is complete it
could in principle be moved to local storage. Currently, however, there are no provisions in the
proxy itself to coordinate this procedure. Scheme of proxy operation is shown in figure 1.

A state information file is maintained in parallel with each cached file to store the block
size used for the file and a bit-field of blocks that have been committed to disk; this allows for
complete cache recovery in case of a forced restart. Information about all file-accesses through
the proxy (open & close time, # of bytes read and # of requests) is also put into the state file
to provide cache reclamation algorithms with ample details about file usage.

It would be straightforward to modify the proxy code to only fetch required blocks but a
preliminary analysis showed that granularity of file access is much higher than a reasonable
network request size. Besides, this would lead to increased latency which presents, at this time,
a larger problem than the newtork bandwidth.



Figure 1. High-level diagram of
caching-proxy operation. The same
steps happen for both proxy implemen-
tations.

1. Reading from local storage fails.

2. Client contacts local proxy.

3. Proxy contacts a redirector to find a
replica of the file on some other site.

4. Proxy downloads data, serves it to lo-
cal clients and stores a copy to disk.

5. File or file fragments can be injected
into local storage.

2.2. Partial-file block-based on-demand proxy
The distinguishing feature of the second implementation is that it only downloads the requested
fixed-size blocks of a file. The main motivation was to provide prefetching of HDFS blocks
(typical size 64 or 128 MB) when they become unavailable on local site, either permanently or
temporarily due to server overload or other transient failures. When additional file replicas exist
in a data-federation, the remote data can be used to supplement local storage, to improve its
robustness, and to provide a means for healing of local files. In particular, our intention is to
avoid any local file replication of rarely-used, non-custodial data at Tier 2 sites. As HDFS block
size is a per-file property, it has to be passed to the proxy on per-file basis as an opaque URL
parameter.

Unlike the full-file prefetching version, the partial-file proxy does not begin prefetching any
data until a read request is actually received. At that point a check is made if the blocks required
to fulfill the request exist on disk and, if they don’t, they get queued for prefetching in whole.
The client request is served as soon as the data becomes available. Each block is stored as
a separate file, post-fixed by block size and its offset in the full file; this facilitates potential
reinjection back into HDFS to heal or increase replication of a file-block.

2.2.1. Extension of HDFS client for using XRootd fallback. After detailed inspection of
HDFS client code it was decided to develop a new specialization of DFSInputStream class,
XFBFSInputStream (standing for XRootd fall-back file-system input stream), and to bind it
to a custom protocol, xfbfs, in HDFS site configuration. This allows users to specify if they
want XRootd fallback or not by simple selection of access protocol name. However, in typical
HDFS deployment at US Tier 2 centers, HDFS is mounted via FUSE centrally for all users,
thus breaking the flexibility of the scheme. To compensate for that a special configuration entry
allows system administrators to enumerate HDFS namespaces for which XFBFSInputStream
should be instantiated. Note that one instance of input-stream gets instantiated for every file
that gets opened.

Internally, the work of maintaining an XRootd client instance and communicating to a block-
based proxy gets delegated to Java class XrdBlockFetcher that has the majority of its functions
implemented in C++ using JNI. This class only gets instantiated when lower-level classes of
HDFS client can not locate a data source and throw an exception that gets intercepted in read()
functions of XFBFSInputStream. A list of bad blocks is kept so any further attempts at accessing



the same block get redirected to XRootd without retrying to locate it in HDFS.6 Both classes,
XFBFSInputStream and XrdBlockFetcher, report their operations via UDP to allow monitoring
of failures in real time, to estimate performance and load on the proxy, and to, eventually, provide
information for storage healing algorithms. This is important because the XRootd fallback can
get invoked on any node, for any HDFS client, and the common reporting scheme provides a
way of aggregating reports from all computing nodes into a single log file.

Both XRootd proxy implementations, the minimal changes that had to be made to HDFS,
and the additional hdfs-xrootd-fallback package are expected to become available via OSG yum
repository before the end of 2013.

3. Scaling test of a complete-file prefetching caching-proxy
It is interesting to observe the limits of caching-proxy in action as this affects its deployment
setup at Tier 2 centers under various work-load conditions. A standard, current server machine
was chosen for the test: 2× 6-core Xeon E5-2620 processors, 64 GB RAM, with ZFS file-system
over a RAID–5 disk array. One 1 Gbps NIC was used in the test and kernel network parameters
were tuned so as to saturate incoming traffic with a single multi-request stream, e.g., by running
xrdcp of a file from FNAL.

The test itself was, of course, designed to cause trouble on the machine so that the weakest
link in the setup could be determined. The test ran at UCSD Tier 2. In the beginning the
disk-cache was empty and all data-files used in the test were known to be available at other
US Tier 1 and Tier 2 sites. After that, a dummy CMSSW job was run every 5 seconds on a
set of worker machines, each opening a new, unique file. Each job was asking for 2.4 MB every
10 s (240 kB/s). Size of each file was about 1 GB. These numbers are based on average values
observed over a large sample of CMS computing jobs, obtained from the AAA XRootd detailed
monitoring.

Figure 2. Network traffic on the caching-proxy node during the scaling test. The left picture
shows the complete test, data-points are averages over 2 minute periods. The right figure is a
detail of the ramp-up period, sampled every 15 s.

Network traffic on the proxy node as a function of time is shown in figure 2. The prefetching
traffic rose steeply from the start and began to saturate towards 800 Mbps when 25 connections
were open (5 min). Outgoing traffic rose linearly, fully satisfying the requested data-rate up to
400 Mbps or 200 client connections (16 min). After that, a lower output rate increase continued
up to 240 connections. At that point, the network stack of the machine become overloaded, the
outgoing traffic become chaotic and soon dropped for about 50%. Incoming traffic also dropped

6 HDFS peforms the block search three times with increasing, randomly staggered delays, all together taking
between 20 and 30 s.



for 6%. The machine did not appear to be otherwise stressed, both process load and disk I/O
remained low. When prefetching of files began to ramp-down, the output rate soon climbed up
to reach the total request rate of all 250 jobs. As another example, a 5-year old server machine
had trouble with both disk I/O and network interrupts much earlier, causing lower input traffic
(600Mbps) and earlier saturation of output rate (about 280 Mbps or 140 standard jobs).

Therefore, one proxy machine with a single NIC can, with very little tuning, deliver up to
400 Mbps of output traffic and provision about 200 average CMS jobs when no files are available
in the cache. We believe this performance can be improved further and following that we will
also test setups with multiple, higher bandwidth NICs.

4. Conclusion
Two disk-based prototype implementations of an XRootd caching-proxy have been presented.
The main motivation for this development was to provide an optimized access to remote-data,
both in terms of latency and data reuse, as well as to facilitate more flexible data-placement
strategies among Tier 2 and Tier 3 centers. The prefetching caching-proxy implementation is also
suitable for just-in-time data placement. The partial-block caching-proxy implementation, on
the other hand, allows computing center operators to reduce replication factor of non-custodial
files residing on HDFS-based storage, freeing up disk space for other uses.

Further work will focus first on final optimizations of the proxy implementations and on full-
scale, production-grade testing at UCSD. After that, in anticipation of proxy deployment across
the whole data federation, integration with job scheduling will be investigated to provide early
preloading of data and a better reuse of existing, cached replicas. Interaction of cache with
local storage will be studied and tools needed to manage block replication factors and block
movement from cache into a running HDFS will be developed.

Acknowledgments
This work is partially sponsored by the US National Science Foundation under Grants No. PHY-
0612805 (CMS Maintenance & Operations), PHY-1104549, PHY-1104447, and PHY-1104664
(AAA), and the US Department of Energy under Grant No. DE-FC02-06ER41436 subcontract
No. 647F290 and NSF grant PHY-1148698 (OSG).

References
[1] CMS Collaboration 2008 JINST 3 S08004.
[2] Bauerdick L, et al 2012 ”Using XRootd to Federate Regional Storage”, J.Phys.Conf.Ser. 396 042009.
[3] XRootd project page: http://www.xrootd.org/.
[4] Bauerdick L, et al 2012 ”XRootd monitoring for the CMS experiment”, J.Phys.Conf.Ser. 396 042058.
[5] XRootd proxy service documentation, in http://xrootd.slac.stanford.edu/doc/prod/ofs config.htm.


