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Abstract

Nonsmooth Riemannian optimization is a still scarcely explored subfield of optimiza-
tion theory that concerns the general problem of minimizing (or maximizing), over a
domain endowed with a manifold structure, a real-valued function that is not everywhere
differentiable. The purpose of this paper is to illustrate, by means of nine concrete exam-
ples, that nonsmooth Riemannian optimization finds numerous applications in engineering
and the sciences.

1 Introduction

Optimization on manifolds, also termed Riemannian optimization, concerns optimizing a
real-valued function defined on a nonlinear search space endowed with a manifold structure.
Manifolds that frequently arise in applications include the Stiefel manifold of orthonormal
p-frames in Rn, the Grassmann manifold of p-planes in Rn, and the manifold of matrices of
fixed rank and size. The area is motivated by numerous applications, notably in machine
learning, but also in computer vision, imaging sciences, mechanics, physics, chemistry and
genetics. A way to keep abreast of the rapidly evolving field of applications is to track papers
that refer to general-purpose Riemannian optimization toolboxes such as Manopt [BMAS14],
Pymanopt [TKW16], and ROPTLIB [HAGH16].

In considering an optimization problem on a Riemannian manifold, fundamental challenges
occur due to the nonlinear nature of the search space. Indeed, any method based on the linear
structure of the spaces—that is, virtually any method known in optimization—breaks down.
A manifold is locally isomorphic to a linear space via chart maps, therefore one might ask
whether it is possible to simply work in a chart domain and use classical linear algorithms to
solve optimization problems on manifolds efficiently. Unfortunately, such an approach seldom
leads to wieldy algorithms, because of the following reasons. First of all, symmetries of the
underlying Riemannian manifold will in general not be respected by such algorithms. Second,
while the existence of charts is inherent to the notion of manifold, they may not be readily
available or they may be computationally impractical. Third, localizing to a chart inevitably
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leads to distortions in the metric, which may cause slower convergence. Finally, for a chart-
based algorithm to have access to the whole manifold, chart transition mechanisms need to be
devised, and such mechanisms may prove to be intricate (see [SBCA13] for an example). For
these reasons, together with the wealth of applications, Riemannian optimization has become
a thriving area of research in the past few decades.

Early attempts to adapt standard optimization methods to smooth problems on complete
Riemannian manifolds were presented by Gabay in 1982, who introduced the steepest de-
scent, Newton and quasi-Newton algorithms on manifold settings. Furthermore, he provided
the global and local convergence properties of the presented algorithms [Gab82]. Udriste
also presented a steepest descent and a Newton algorithm for smooth objective functions on
complete Riemannian manifolds and proved their (linear) convergence under the assumption
of exact line search; see [Udr94]. Fairly recently, other versions of smooth optimization al-
gorithms such as the steepest descent method, Newton’s method, trust-region methods and
conjugate gradient methods, have been extended to solving smooth optimization problems
on complete Riemannian manifolds (see, e.g., [ADM+02, AMS08, HGA15, Sat16]). These
methods can be found in the general-purpose Riemannian optimization toolboxes mentioned
above.

Regardless of the applications, a conceptual appeal of Riemannian optimization is that
manifolds are arguably the natural generalization of Rn as the search space of smooth opti-
mization problems: the notion of smoothness remains well defined for a real-valued function
on an abstract manifold, and the notion of steepest descent direction follows from the Rie-
mannian metric. In view of this, the concept of nonsmooth Riemannian optimization may
seem paradoxical. However, it turns out that several important problems can be phrased as
optimizing a nonsmooth function over a (smooth) Riemannian manifold.

The purpose of this paper is to give an overview of a few such problems that fit in the
framework of nonsmooth Riemannian optimization (NRO). Our aim is to give just enough
information for the reader to get a clear idea of what the problems are about and how they
fit in the NRO framework, while referring to the original work for details.

The applications covered in this paper are not meant to form an exhaustive list. For
example, Dirr et al. [DHL07, §3.4] present an application in grasping force optimization that
we do not cover here, and our choice of applications is also complementary to [KGB16] where
experimental results are shown for compressed modes, funcational correspondance, and robust
Euclidean embedding.

Though NRO is a fairly recent and still scarcely explored area, a few general-purpose
NRO methods are currently available. First, derivative-free techniques on manifolds (but not
necessarily their convergence analysis) are readily applicable to NRO. A few derivative-free
schemes such as Powell’s method, direct local search methods and particle swarm optimiza-
tion algorithms are available on complete Riemannian manifolds; see [BIA10, CSA15, Dre06].
Second, the NRO problems of interest have a locally Lipschitz—hence almost everywhere
differentiable—objective function, and several methods exist that exploit this fact, such as
gradient sampling [HU17, Hua13, §7.2], an ε-subdifferential algorithm [GH16b], a trust re-
gion algorithm [GH16a], nonsmooth BFGS methods [HHY16, Hua13, §7.3], and a manifold
ADMM [KGB16]. In each section, we also give pointers to existing techniques to handle the
specific problem considered.
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2 Sparse PCA

Consider a data matrix A =
[
a1 . . . aj

]
∈ Rm×n, where m and n are the number of

variables and observations, respectively. For example, in the case of gene expression data, Aij

may represent the expression level of gene i in experiment (or microarray) j.
Principal component analysis (PCA) relates to singular value decomposition (SVD) [GV96].

An SVD of A consists in expressing A as the matrix product UΣV T , where p = min{m,n},
U ∈ Rm×p is orthonormal (UTU = I), V ∈ Rn×p is also orthonormal, and Σ ∈ Rp×p is a
diagonal matrix with nonnegative diagonal entries sorted in decreasing order. The lth column
of U , denoted by ul, is then the loading vector of the lth principal component of A. In the
gene expression application, the columns of U have been called eigenarrays and the columns
of V , eigengenes [ABB00].

For simplicity, let us focus on the first loading vector, u1, which has the remarkable
property of giving the direction of the best fitting line in the least squares sense to the data
points a1, . . . , an, a concept that dates to Pearson [Pea01]. Equivalently, u1 is solution of the
optimization problem maxu∈Rm, ‖u‖=1 u

TAATu, which expresses that the columns of A are
largest (in the mean square sense) along the direction of u1. However, a possible drawback
of u1 is that its entries are typically nonzero. This may make the principal component—
the projection onto the direction of u1—unpleasantly heavy to compute, and hamper the
interpretability of u1 [Tre14].

Addressing this drawback leads to seek a new u that strikes a balance between the ob-
jectives of making uTAATu large and keeping small the cardinality ‖u‖0, i.e., the number
of nonzero elements of u. Such a task can be approached in three ways: the Ivanov ap-
proach [Iva76] minimizes the data attachment term (here uTAATu) under a constraint on
the regularizer (here ‖u‖0); the Morozov approach [Mor84] minimizes the regularizer under a
constraint on the data attachment term; the Tikhonov approach [TA77] mixes the two terms
in the objective function. Let us focus on the last one, which yields the formulation

max
u∈Rn

uTAATu− ρ‖u‖0

subject to uTu = 1,
(1)

with the parameter ρ ≥ 0. In problem (1), the objective function is not only nonsmooth; it is
discontinuous, in view of the ‖u‖0 term. Optimizing a discontinuous function is an unpleasant
task, hence the ‖u‖0 term is often relaxed to the sparsity-inducing (see, e.g., [Tib96, DT05])
`1 norm ‖u‖1 :=

∑n
i=1 |ui|, yielding the surrogate problem

max
u∈Rn

uTAATu− ρ‖u‖1

subject to uTu = 1,
(2)

a continuous but nonsmooth optimization problem on the unit sphere. Since the unit sphere
is a submanifold of Rn, (2) constitutes nonsmooth Riemannian optimization problem.

Techniques to handle this problem are discussed in [JTU03, ZHT06, dGJL07, JBAS10,
JNRS10, GHT15] and references therein.

3 Secant-based dimensionality reduction

The purpose in this application is to pick the “easiest to invert” projection of a high-
dimensional system. Let S be a subset of Rn, which can be, e.g., the orbit of a dynamical
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system, and let Σ :=
{

x−y
‖x−y‖ : x, y ∈ S, x 6= y

}
be its set of unit secants. We want to find a

p-dimensional subspace U of Rn on which to orthogonally project the data. The projection
is injective if Σ and the orthogonal complement of U have an empty intersection. In order
to make the projection “as safely injective as possible”, we look for the subspace U in the
Grassmann manifold Gr(n, p) of p-planes in Rn that maximizes

f(U) = min
s∈Σ
‖πUs‖,

where πU denotes the orthogonal projection onto U and ‖ · ‖ denotes the Euclidean norm.
In practice, S comes to us as a finite set, e.g., the samples of a numerical integration of

the dynamical system. The problem therefore consists in maximizing over the Grassmann
manifold Gr(n, p) an objective function defined as the pointwise minimum of a finite collection
of smooth functions. This is thus a nonsmooth optimization problem on a manifold.

This problem was addressed in [BK05] in the surrogate smooth form

min
U∈Gr(n,p)

∑
s∈Σ

1

‖πUs‖
.

The only existing work that addresses the nonsmooth problem directly appears to be the very
recent paper [Dre17] where a direct search method on the Grassmann manifold is advocated.

4 Economic load dispatch

The economic load dispatch problem consists in finding the most cost-effective repartition of
power generation between production units in order to satisfy the demand, while accounting
for transmission losses and keeping each unit within its allowed operating zone. Letting

p =
[
p1 . . . pn

]T
denote the power output of the n available units, a popular load dispatch

model is

min
p∈Rn

fT(p) :=
n∑

i=1

aip
2
i + bipi + ci +

∣∣di sin
[
ei
(
pmin
i − pi

)]∣∣ (3a)

subject to pmin
i ≤ pi ≤ pmax

i , i = 1, . . . , n, (3b)
n∑

i=1

pi = pD + pL(p), (3c)

where pD is the power demand (MW) and pL(p) stands for the power loss (MW) expressed
as pL(p) = pTBp + pT b0 + b00. Coefficients Bij , b

0
i , b

00 are the transmission loss coefficients
(B-coefficients) given by the elements of the square matrix B of size n × n, the vector b0 of
length n, and the constant b00, respectively. The matrix B is symmetric positive-definite,
hence pL(p) is a convex quadratic function of p, and thus the set of points that meet the
power balance constraint (3c) form an ellipsoid, i.e., a submanifold of Rn. The feasible set
of (3) is thus the intersection of an ellipsoid and an axis-aligned box.

The objective function (3a) follows a frequently-encountered formulation where the contri-
bution of each unit is made of a quadratic term and a rectified sine that models the so-called
valve-point effect [WS93, WWS14]. The rectified term makes the objective function nons-
mooth and turns (3) into a nonsmooth optimization problem on a Riemannian manifold with
additional box constraints. The geometry of the problem was taken into account in [BSBA13]
where a Riemannian subgradient approach is proposed.
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5 Range-based independent component analysis

Independent component analysis (ICA) is the problem of extracting maximally independent
linear combinations of given signals. An ICA algorithm typically consists of (i) a contrast
function which measures the dependence between signals and (ii) an optimization method to
minimize the contrast function. Since contrast functions are in principle invariant by scaling
(the “measure of dependence” between signals should not be affected by scaling), it is common
to break this indederminacy by imposing a normalization yielding, e.g., the oblique manifold
OB(D) of D ×D matrices with unit-norm columns [AG06, KS10, SGB15].

Letting matrix M ∈ RD×N contain the D signals of length N to be unmixed, a contrast
function introduced in [VLV07] is

f(X;M) :=

D∑
d=1

logR(xTdM)− log |detX|, (4)

where X ∈ OB(D) is the candidate unmixing matrix (yielding the candidate unmixed signals
found in the rows of XTD) and R returns the range of its argument. Vrins et al. [VLV07]
propose to use a robust estimator of the range defined as

R([b1, b2, . . . , bN ]) :=
1

m

m∑
r=1

Rr([b1, b2, . . . , bN ])

where Rr([b1, b2, . . . , bN ]) := b(N−r+1)−b(r) and b(i) stands for the ith element of [b1, b2, . . . , bN ]
by increasing values. We have thus obtained the problem

min
X

f(X;M)

subject to X ∈ OB(D)
(5)

which is a nonsmooth optimization problem over the oblique manifold. This problem was
tackled by a derivative-free optimization method in [SBCA13] and by a nonsmooth quasi-
Newton method in [SGB15]. The latter is a Riemannian generalization (see also [Hua13,
Ch. 7]) of the nonsmooth BFGS method of Lewis and Overton [LO13].

6 Sphere packing on manifolds

LetM be an n-dimensional Riemannian manifold equipped with a Riemannian distance dist,
and let B(P, r) denote the ball with respect to this distance in M centered at P with radius
r. The sphere packing problem aims at finding m points P1, . . . , Pm in M such that

max{r : B(Pi, r) ∩B(Pj , r) = ∅ ∀i < j}, (6)

is maximized. This problem (6) is equivalent to maximizing the following nonsmooth function,

F (P1, . . . , Pm) := min
1≤i<j≤m

dist(Pi, Pj), (7)

onM×. . .×M. In [LH07] sphere packing on Grassmannians as an example of sphere packing
on Riemannian manifolds is considered and a new formulation for the objective functions is
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presented. Specifically, let the Grassmannian Gr(n, k) be the set of all k-dimensional linear
subspaces of Rn. It can be identified with

{P ∈ S(n) : P 2 = P and trace(P ) = k},

where S(n) denotes the set of n× n symmetric matrices. Moreover, assume that

dist(P,Q) :=

√
1

2
‖P −Q‖F ,

where ‖.‖F denotes the Frobenius norm. It is proved in [DHL07] that minimizing (7) is
equivalent to minimizing the following nonsmooth function,

G(P1, ..., Pm) := max
1≤i<j≤m

trace(PiPj),

on Gr(n, k)× ...×Gr(n, k). Motivated by applications in multi-antenna channel communica-
tions [GD09, ZT02], techniques to solve this problem are discussed in [DHL07, LH07, GH16b,
GH16a].

7 Robust low-rank matrix completion

The aim of low-rank matrix completion is to recover an unknown low-rank matrix by knowing
only a small subset of its entries, which might be corrupted by noise or contain outliers. In
the noiseless case, the problem could be stated as finding the lowest rank matrix X which
matches the matrix M , which is the underlying matrix to be reconstructed, on some observed
entries in a set Ω, i.e.,

Xij = Mij (i, j) ∈ Ω.

More explicitly,
min
X

rank(X)

subject to Xij = Mij (i, j) ∈ Ω.
(8)

If a matrix has rank r, then it has exactly r nonzero singular values, which means that the
rank function in (8) is simply the number of nonzero singular values. Therefore, much as in
section 2 where the cardinality was replaced by the `1 norm, one may consider a surrogate
problem for (8), which minimizes the sum of the singular values, called nuclear norm, over the
constraint set. As many of the existing applications for matrix completion involve very large
data sets, it is therefore important to develop algorithms that can be applicable with such a
large-scale setting, but, unfortunately, minimizing the nuclear norm by the existing methods
for convex optimization scales very badly in the matrix dimension. This has motivated a
considerable amount of algorithms that aim to minimize the nuclear norm relaxation by
creating methods that use the low-rank structure of the solution, among which there exists
an approach based on a direct optimization over the set of all fixed-rank matrices having
assumed that the rank r of the target matrix is known in advance. Indeed, the problem can
be stated as

min
X

‖PΩ(X −M)‖F ,

subject to X ∈Mr := {X ∈ Rn×m : rank(X) = r},
(9)
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where PΩ is the projector defined by (PΩ(X))ij = Xij if (i, j) ∈ Ω and 0 otherwise, and ‖X‖F
denotes the Frobenius norm of X. It can be seen that this method is robust to Gaussian
additive noise, in the sense that a small Gaussian additive noise still allows recovery of the
underlying low-rank matrix with an error proportional to the noise level, however it is not
well suited to recover the underlying low-rank matrix when some entries are corrupted by
large errors, so-called outliers. To consider low-rank matrix completion in the presence of
outliers, several methods have been proposed; see [CA16] and references therein. In [CA16] it
has been shown that in this case the low-rank matrix completion can be solved by minimizing
the `1 norm on the manifold of fixed rank matrices, i.e.,

min
X

‖PΩ(X −M)‖`1 ,

subject to X ∈Mr := {X ∈ Rn×m : rank(X) = r},
(10)

where ‖X‖`1 denotes the sum of the absolute values of the entries of X. The adequacy of
the framework of nonsmooth optimization on Riemannian manifolds here stems from the fact
that the constraint set is a Riemannian manifold and the objective function is nonsmooth;
see [CA16, HU17] for techniques solving this problem.

One of the most common applications of low-rank matrix completion is in recommender
systems as in the Netflix Prize, for which the data is a big matrix with each entry recording
the rating of customer i for movie j. The problem is how to predict the ratings that have not
been made yet based on the current observation. A popular solution is to assume that the
rating matrix is low-rank, an assumption that can be a priori motivated by the fact that it
should be possible to accurately recover user profiles by linearly combining a few meta user
profiles.

8 Finding the sparsest vector in a subspace

Suppose that a linear n-dimensional subspace W embedded in Rm contains a nonzero sparse
vector. Given an arbitrary orthogonal basis of W , one aims to recover the sparsest vector in
W . Letting Q ∈ Rm×n denote a matrix whose columns form an orthonormal basis for W , the
problem is as follows

min ‖Qx‖0, x ∈ S, (11)

where S is the Euclidean unit sphere in Rn and ‖Qx‖0 is the number of nonzero elements of
Qx. As in most applications we only care about the solution up to scaling, it is natural to
force x to live on the unit sphere. Since the objective function is not locally Lipschitz, we
may replace it with the 1-norm as a surrogate; see [QSW16]. This leads to the problem

min ‖Qx‖1, x ∈ S. (12)

As the unit sphere is a submanifold of Rn, this problem fits into the framework of nonsmooth
optimization on Riemannian manifolds. Finding the sparsest vector in a subspace has several
important applications for instance in sparse dictionary learning; [DH14]. Techniques to
handle this problem are discussed in [QSW16, HU17] and references therein.

9 Restoring manifold-valued images

Consider an image u : V → M, where V is a set of pixels, which are usually on a two-
dimensional grid, and M is a Riemannian manifold. In many applications, we have only
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noisy measurements, i.e., un = u+ n, where n denotes the noise. Furthermore, it sometimes
happens that various pixel values are corrupted, which leads to the noisy measurements on
a subset Vk of the pixel set V . The aim is to restore the image u : V → M, which can be
considered as u ∈MV , from partial and noisy data un ∈MVk . To this goal, one can consider
the total variation (TV) of an image u : V →M defined by

TV (u) :=
∑

(i,j)∈E

dist(ui, uj),

where E ⊂ V × V is a given set of pairs of pixels that are close to each other and dist :
M×M → R is the Riemannian distance on M. The TV denoising approach consists in
finding an image u ∈ MV whose TV is relatively small while still being close to the noisy
image un ∈MVk ; see [ROF92]. This yields the problem

min J(u) :=
1

2

∑
i∈Vk

dist2(ui, u
n
i ) + λTV (u), u ∈MV ,

where λ > 0 is a positive number which balances the two parts of the functional. Since the
distance function is not differentiable on the diagonal, the TV function is not differentiable.
Therefore, this problem can be considered as a nonsmooth optimization problem onMV . We
refer to [GS16, BBSW16, GH16a, GH16b] for techniques to solve this problem, which has
applications, e.g., in in diffusion-tensor magnetic resonance imaging (where M is the set of
positive-definite 3× 3 matrices, aptly endowed with the so-called affine-invariant metric that
turns it into a complete manifold) and in crystal lattice analysis (where M is the rotation
group SO(3)).

10 Oriented bounding box

The oriented bounding box problem aims at finding a minimum volume parallelepipedic box
containing a given collection of points in Rd.

Suppose K points are given by a matrix E ∈ Rd×K , where the ith column contains the
coordinates of the ith point. For a given orientation Q ∈ SO(3) of the box (i.e., the three
columns of Q in the rotation group SO(3) give the direction of the three axes of the box), the
minimal volume is readily found to be

f(Q) :=

d∏
i=1

(ei,max − ei,min),

where ei,max and ei,min denote max and min entries, respectively, of the ith row of QTE. The
oriented bounding box problem can thus be phrased as minQ∈SO(3) f(Q).

If there exists more than one entry at any row of QTE reaching the maximum or mini-
mum values, then the cost function f is not differentiable at Q. Therefore, the problem can
be considered as a nonsmooth problem on a Riemannian manifold; see [BA10, HHY16] for
techniques to solve this problem.

This problem arises in several applications in computer graphics [SE02], physical simula-
tions [Eri04] and spatial data structures [GLM96], as well as other areas, such as computer-
aided design [Cha03].
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11 Conclusion

This paper has illustrated that NRO admits several important applications. NRO is moreover
a challenging topic, as it calls for leveraging Riemannian optimization techniques to take
advantage of the differentiable structure of the feasible set, while resorting to strategies to
exploit the nonsmooth but almost everywhere smooth nature of the objective function. This
mix of mathematical challenges and real-life applications makes NRO an exciting research
area.
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