
Automatic Generation of Certifiable Space
Communication Software

Johann Schumann and Ewen Denney
RIACS / NASA Ames, Moffett Field, CA 94035
{schumann|edenney}@email.arc.nasa.gov

Abstract— Reliable, secure and effective communication
between a spacecraft and the ground station, or be-
tween multiple spacecraft is central to all space missions.
Smooth control of spacecraft and the downlink of mission
and science data rely heavily on reliable means of com-
munication. Moreover, heightened needs for operations
security in recent years add complexity to communica-
tion system requirements. The communication system,
therefore, is a highly safety and mission critical compo-
nent. A single successful malicious attack or a flaw in the
code can have serious consequences that put the mission
or even human life at risk.

We are integrating and adapting a set of existing tools in
order to provide a unified end-to-end approach to the de-
sign, analysis, implementation, and certification of space
communication software. Our tools are based upon rig-
orous logical and mathematical foundations, and are ca-
pable of automatically generating high-quality commu-
nication software from a high-level model. Automatic,
tamper-proof formal certification techniques are used to
provide explicit guarantees about important reliability
and security properties and the absence of implementa-
tion errors.

TABLE OF CONTENTS

1 Introduction

2 Space Communication Software

3 Software Development Process

4 The Individual Stages

5 Related Work

6 Conclusions

A Protocol Specification

1. INTRODUCTION

Reliable, secure and effective communication between
a spacecraft and ground station is central to all space
missions. An optimal design and implementation of the
communication subsystems is an important prerequisite
for a successful mission, since control of the spacecraft
and the effective downlink of mission or science data rely
on reliable communication. This is especially the case for

1-4244-0525-4/07/$20.00/ c©2007 IEEE

deep-space missions, where bandwidth is at a premium,
and elaborate and special purpose communication proto-
cols are used. Heightened needs for operations security
also add complexity to the communication system re-
quirements. A malicious attack or a simple flaw in the
code can put the mission or even human life at risk.

Although secure communication protocols are in wide
use, history has shown that many errors and vulnerabili-
ties do exist and have been actively exploited. Such secu-
rity flaws can be introduced (or fail to be detected) dur-
ing all stages of the software development cycle. Space-
specific requirements, such as low bandwidth, high la-
tency, or constrained computational capabilities, pose
additional severe challenges for developing communica-
tion software.

It is our contention that reliable and secure communi-
cation software can best be developed with a unified
approach throughout the entire software life cycle. We
have developed a set of tools that facilitate a unified
end-to-end approach to the design, analysis, implemen-
tation, and certification of communication software. Our
tools are based upon rigorous logical and mathematical
foundations, and are capable of automatically generating
high quality communication (protocol execution) soft-
ware from a high-level model using certifiable program
synthesis. Moreover, automatic, tamper-proof certifica-
tion provides explicit guarantees about important relia-
bility and security properties and the absence of imple-
mentation and design errors. These properties include
absence of buffer-overflow errors, guarantees for variable
initialization and correct usage (i.e., all required data
are packed/unpacked and transmitted in the right way),
and the correct use of encryption algorithms1. Security
authentication properties are expressed using the well-
known BAN logic [3]. Although this logic is relatively
weak, it is amenable to automatic processing and, as
our tools can produce readable proofs, allows protocol
designers to quickly find flaws in protocols.

The remainder of this paper is structured as follows. In
Section 2, we discuss important requirements and issues
with secure space communications software and intro-
duce a simple demonstration example. Section 3 focuses

1We are not, however, analyzing the strength or correctness of encryption
algorithms themselves.

1

on the development process for safety critical software
and its augmentations to address security issues. In Sec-
tion 4, we describe our tools for modeling, analysis, au-
tomated code generation, and certification. Section 5 de-
scribes related work and Section 6 discusses future work
and concludes.

2. SPACE COMMUNICATION SOFTWARE

Despite the fact that many security protocols exist and
are used in everyday life, new or customized protocols
are continually being designed and implemented to suit
specific needs. In space applications, for example, a low
bandwidth and high latency time (e.g., 20 minutes to
Mars) as well as strongly limited on-board computing
power, poses specific constraints on communication soft-
ware. Other applications, e.g., for Next Generation Air
Traffic Control or sensor networks [13], pose different,
but still severe constraints on protocol design (or cus-
tomization) and implementation.

History has shown that errors and vulnerabilities can and
actually do occur in communication software, even if it is
based upon simple protocols. More elaborate protocols
or specialized protocols not only require substantial ef-
fort in design, implementation, and testing (a major cost
driver), but can also introduce errors and vulnerabilities
during the development. The following examples list a
few reasons for security flaws and protocol failures:

• misunderstanding of protocol requirements: the wrong
protocol may be used for a specific application, or spe-
cific requirements might be violated (e.g., the existence
of a trusted key server).
• weak cryptography: often, cryptographic algorithms are
used that are much weaker than originally intended.
Thus, attackers can hack or reverse engineer the code to
open up vulnerabilities. Sometimes, proprietary encod-
ing schemas are much weaker than published and proven
protocols and algorithms.
• coding errors are a major source of vulnerabilities.
Most security warnings regarding software like the Win-
dows OS or Internet browsers have been caused by imple-
mentation errors like buffer overflow, uninitialized vari-
ables, deadlocks, etc.
• errors in protocol optimization: optimizing a complex,
layered protocol toward maximal performance can lead
to hard-to-detect errors and security vulnerabilities.
• errors during testing and deployment: a bad or incom-
plete selection of test cases would not exhibit flaws in
the protocol. Incorrect testing and deployment proce-
dures can also lead to serious problems.

All these issues must be addressed with respect to the
application specific requirements (e.g., for bandwidth,
quality of service, computing requirements) to yield safe,
reliable, and re-usable communications software that can
be developed at an affordable price.

For this paper, let us consider a highly simplified exam-
ple: a secure download of telemetry data from a satel-
lite to a ground station (Figure 1). Upon request from
the ground station to download telemetry data, a secure
channel (with a session key Ksg) must be established,
using a (trusted) security server on the ground. For
this purpose, the well-known Yahalom protocol will be
used. In the following sections, we will use this example
to illustrate our modeling, analysis, and synthesis tools.
Although our tools are capable of addressing data and
control-flow issues (e.g., packing of data into buffers), in
this paper we mainly focus on the aspect of establishing
a secure authenticated channel with session key Ksg.

Figure 1. Simplified scenario for a data downlink between
satellite, ground station and trusted key server.

3. SOFTWARE DEVELOPMENT PROCESS

Communication software is developed using a similar
process to that of traditional software, with phases for
requirements, specification, coding, testing, and deploy-
ment. High-quality software requires the software de-
velopers to accommodate the issues of verification and
validation (V&V), which must be carried out in each in-
dividual step of the software life cycle (see Figure 2).
Verification tasks demonstrate the correctness between
subsequent stages of the life cycle (e.g., proving that the
implementation correctly conforms to the specification),
whereas validation aims to ensure consistency (horizontal
arrows) of implemented artifacts (on the right leg of the
V) with the requirements and design. Because a man-
ual software development process can introduce errors at
each stage, V&V is a very important, but difficult and
time-consuming task.

The main difference for secure communication software
is that, in addition to traditional functional and safety
requirements, security properties (e.g., about encryption,
secrecy, authentication) need to be defined and checked
during V&V.

In our work, we provide a tool-supported approach that
will substantially reduce V&V effort by automating the
transition between the individual software design and
development stages. Because our framework is based
on rigorous formal methods, guarantees can be provided
that important and specific classes of errors (e.g., buffer

2

Figure 3. Tool workflow (see Figure 7 for tool architecture)

overrun, deadlocks) are not introduced. The approach is
illustrated in Figure 3. Starting from a specification of
the protocol along with its requirements and constraints,
tools are used to analyze the protocol, generate test
cases, produce reliable code with certificates and gen-
erate the design documentation. Results of the analyses
can be fed back into the original design and specification,
supporting an iterative approach to software generation.

4. THE INDIVIDUAL STAGES

Modeling

During the development process, a model of the com-
munication software is developed that captures all im-
portant details and architectural considerations. This
high-level model needs to reflect the requirements.

We are using UML sequence diagrams (or scenarios) to
model the behavior of the protocol. Given a set of par-
ticipants (in our example, the satellite or the ground sta-
tion), a sequence diagram defines the temporal sequence
of communications between the participants. In order
to formalize a deeper semantic content, we augment the
sequence diagrams with formal logical annotations.

Figures 4 and 5 show a (simplified) example of proto-
col model that could be used to securely communicate

between a satellite and the ground station (Figure 1).
In the scenario in Figure 4, the ground station requests
some telemetry data from the satellite by sending a re-
quest send tel(N), where N is a nonce (e.g., a time
stamp). The receiver on the satellite requests the ac-
quisition of the sensor data, detects that this is a new
communication request, and thus initiates run of the Ya-
halom authentication protocol with the key server and
the ground station. The final result is that the satellite
now has a new (“fresh”) session key Ksg for communica-
tion between this satellite and the ground station. Upon
receipt of this key, the receiver requests the data handler
to obtain the data and encrypt it with the session key
Ksg. Finally, the data are packed as p(e data) and
down-linked to the ground station.

For our example, we use the following notation: Ksk is
the shared key between satellite and the key server, Ksg

is the shared key between satellite and ground station,
and Kgk is the shared key between ground station and
key server. Messages 2, 3, and 4 of the Yahalom protocol
are relatively complex and contain various information
about nonces, the shared keys, and identification infor-
mation of satellite and ground station. Table 2 lists all
protocol messages.

A second scenario (Figure 5) shows a situation, where

3

Figure 2. V-shaped software development and V&V
process. Dependencies between the development phases are

indicated by solid arrows. Dashed arrows concern
verification activities; dotted lines validation activities.

the receiver on the satellite detects that the current ses-
sion key is still valid (the nonce, sent from the ground
station, is still sufficiently “fresh”. In this case, no new
authentication needs to take place and the data can be
directly encrypted with K and sent to the ground sta-
tion. A full model of the communication protocol can
consist of many scenarios. In particular, failure scenar-
ios (e.g., wrong messages, time-outs) are necessary to
define all details of the communication mechanism. In
this paper, we only present two nominal scenarios.

Figure 4. Simplified example of protocol specification.

Logic expressions in OCL (UML’s Object Constraint
Language) or other formalisms can be used to augment
the sequence diagrams. With those mechanisms, infor-
mation about system state (e.g., if a secure channel has
been established), constraints, and assumptions can be
expressed. For our tools, annotations are formulated ei-
ther OCL or, in the case of the security properties, the
BAN logic, which will be described in the next section.

Figure 6 shows simplified OCL annotations for the trans-
mitter/receiver object of the satellite. Here, we have a
boolean variable key recd, which reflects a part of the
state of the satellite communications subsystem. This

Figure 5. Communication scenario using an existing shared
key K.

<features>
<type> SAT_RXTX

<attributes>
key_is_valid : Boolean;
key_recd : Boolean;

</attributes>
<operations>

read_sensor(...) : Void;
msg2(...) : Void;
...

</operations>
...

<invariants>
context SAT_RXTX:: msg4(...) : Void

post: key_recd = true;

context SAT_RXTX:: rqenc(...) : Void
pre: key_recd = true;

context SAT_RXTX:: dwnlink_tel(...)...
pre: key_recd = true;
post: key_recd = false;

...

Figure 6. OCL annotations (excerpt).

variable is set to true, if and only if a valid session key
has been obtained. The other boolean state variable
key is valid keeps information about the validity of
the session key. These state variables can be used as
guards in the software and also guide our code genera-
tion tools (see below).

Protocol Analysis

Analyzing the security properties of a protocol (speci-
fied as a sequence of messages between the participants)
can be a complicated and time-consuming effort. During
analysis, properties about authentication, secrecy, confi-
dentiality, availability, etc. are proven in a formal way, or
attack scenarios are generated if a security property can
be violated. For this task, a large body of approaches
and research tools exist (see Section 5) that are based
upon simulation, model checking, or theorem proving.

In an iterative software process, it is important that ma-
jor requirements and design errors are captured as early
as possible. Our protocol analysis tool is designed for
this purpose. For formalization of the security proper-

4

ties, it uses the well-known BAN (Burrows, Abadi, Need-
ham) [3] logic. Although this logic is relatively weak (for
example, secrecy cannot expressed within this logic), the
formalism is very intuitive to the user and protocol anal-
ysis with the BAN logic can be fully automated.

The BAN logic is a multi-sorted modal logic of belief. Its
statements describe what the communication partners
believe (|≡), what they receive (see, /), which informa-
tion they send (said, |∼), and which information they
control (|⇒). With additional operators, expressions
about the freshness of nonces (typically timestamps, #),
communication methods, and ways of encryption can be
formulated and reasoning can be performed. For a de-
tailed description of the BAN logic, see [3].

Within our framework of protocol synthesis, the protocol
(or, actually, an extracted abstracted version thereof)
as well as additional assumptions form the basis of the
analysis. Table 3 lists the security assumptions. So,
for example, satellite and ground believe that they can
communicate with their shared keys (e.g., K sg), that
the produced timestamps are recent, and that the key
server is producing reliable keys.

As a run of the protocol is executed, various security
properties are valid at the various stages of the proto-
col. If a successful communication has been established,
the satellite and the ground station believe that they
communicate securely with the session key K. Table 1
lists all 12 security properties which have to be proven
in order to show BAN-security of this protocol. The
formalization of the assumptions and security properties
have been adapted from [3], but they are similar for each
protocol. So our tool can provide a small default set of
security properties.

For the actual security analysis, we are using the tool
PIL-SETHEO [16]. It takes the BAN representation of
the protocol as extracted from the model and the as-
sumptions and tries to automatically prove the given se-
curity properties. If the system succeeds, it will produce
a human readable proof in BAN logic to document the
validity of the security property.

For the example protocol, the set of 12 security proper-
ties can be proven by PIL-SETHEO within a few seconds
(Table 1). If, however, the protocol designer mistakenly
sends the message msg3 from the key server directly to
the satellite instead to the ground station2, the modified
protocol will not work properly. Our PIL analysis tool
can detect this problem immediately as it now fails to
prove those security properties that are associated with
the message msg3 (Table 1).

2 Such a communication pattern seems to be reasonable, since the request
to the key server originally came from the satellite.

Step BAN POK Pbad

1 3 G|≡ Kgs • ×
2 3 G|≡ K|≡ #Kgs • ×
3 3 G|≡ S|≡ Ng • ×
4 4 S|≡ K|∼ Kgs • •
5 4 S|≡ G|∼ K|≡ #Kgs • •
6 4 S|≡ G|≡ K|≡ #Kgs • •
7 4 S|≡ K|≡ freshKgs • •
8 4 S|≡ #Kgs • ×
9 4 S|≡ Kgs • ×

10 4 G|≡ Kgs • ×
11 4 G|≡ S|≡ Ng • ×
12 4 S|≡ G|≡ Kgs • •

Table 1. PIL-SETHEO analysis results for the correct
protocol POK and the “broken” protocol Pbad. A • means

that the property could be proven, × indicates a failure. The
first column is the property number, the second column

defines after which protocol step (i.e., after which protocol
message) the property must hold.

Protocol Software Synthesis

Up to this stage, all analysis steps have been performed
on a high-level specification of the security protocol.
This specification now needs to be implemented as real
code. As discussed earlier, this coding phase is very
error-prone. We therefore use automatic code genera-
tion tools to produce reliable target code from our spec-
ifications. Figure 7 shows how the various tools for code
generation work together. From our set of annotated se-
quence diagrams, we first generate a set of (hierarchical)
statecharts. This tool, which is described in [22], [17],
has been used to generate control code for communica-
tion modules within NASA’s CTAS advanced air traffic
control system (advisory system) [21] and for various
agent-based systems [17].

The tool merges all sequence diagrams, automatically
recognizes loops, and detects and reports various incon-
sistencies. The OCL annotations of messages in the se-
quence diagrams enable the tool to automatically pro-
duce compact, hierarchical statecharts. Figure 8 shows
the statechart for the component “Satellite RxTx” as it
is generated from the sequence diagrams (Figures 4, 5).

The next step is to translate the statechart into exe-
cutable code. For the actual generation of the executable
code, we use a tool based upon the GReAT [11] frame-
work, which is being developed in collaboration with
the Vanderbilt university. This tool produces efficient C
code from Stateflow diagrams. Stateflow is a part of the
MathWorks toolset3. The generated statecharts (Fig-
ure 8) can be directly translated into Stateflow diagrams,

3http://www.mathworks.com

5

http://www.mathworks.com

albeit manually, at this point. Future work will enable
automatic translation of the generated statecharts.

Figure 7. Automatic code generation: tools (shaded) and
artifacts.

Figure 8. Automatically generated statechart.

Automatic Certification of Protocol Software

Once the security software has been synthesized, it still
needs to be verified before it can be deployed. This could
be avoided if the synthesis tool was itself verified (“quali-
fied”), but a protocol synthesis tool is an extremely large
and complex piece of software itself, so its formal verifi-
cation is not feasible. In order to overcome this problem,
we use the product certification approach, in which checks
are performed on each and every generated program by
a certification engine (Figure 7) rather than on the gen-
erator itself. We will adapt existing technology of the
AUTOBAYES/AUTOFILTER system [6], [5], and focus on

safety properties, which are generally accepted as impor-
tant for quality assurance and are used in code reviews
of high-assurance software.

The safety policies checked by our system describe either
language-specific or domain-specific properties which
a safe program must satisfy. A typical example of
a language-specific property (C/C++) is array-bounds
safety; violations can lead to serious flaws, as many
buffer-overrun attacks have shown. Checks for consis-
tency of physical units or symmetry of matrices are
specifically tailored to the application domain and pro-
vide additional assurance.

The system uses program verification techniques based
on Hoare logic and processes logical pre- and post-
conditions statement by statement to produce proof obli-
gations. These are then discharged by an automatic
theorem prover. However, such techniques require ad-
ditional program annotations (usually loop invariants)
which makes their application very hard in practice. We
overcome this obstacle by extending our code genera-
tor to synthesize simultaneously the code and all required
annotations. This enables a fully automatic certification
which is transparent to the user and produces machine-
readable certificates showing that the generated code
does not violate the given safety policies.

5. RELATED WORK

Modeling and formal analysis of security protocols is a
wide field with a long tradition. One of the most well-
known formalisms is the BAN logic [3] and its many suc-
cessors. UML has been used to specify security proto-
cols; a security extension to UML, UMLsec [7] has been
developed. In UMLsec, security properties can be mod-
eled. Specific UML patterns can be used to construct
and refine communication models that exhibit specific
security properties. After model development, code gen-
erators for UML tools can be used to produce executable
code.

Tools and methods for the analysis of protocols have
been developed using a number of different paradigms.
Security and vulnerability of protocols can be analyzed
by simulation or model checking (e.g., FDR (Failures-
Divergences Refinement) [8] or by modeling as finite
state machines [9]). Other approaches use automated
([15], [18], [19]) or interactive ([12]) theorem provers.
A number of vulnerabilities can be detected with these
tools, but they usually require a specific input format
and the results they produce are specific for each tool.

In contrast to approaches based on post hoc analysis and
verification on an existing protocol and its implementa-
tion, there is a number of approaches toward the auto-
matic synthesis of security protocols from specifications.

6

For example, the Degas tool4, extracts UML protocol
specifications and generates an ML program from them.
The main application of this tool is consistency analy-
sis using type-checking. The authors of [1] also extract
protocol specifications and convert them into logic for
subsequent analysis, while [20] has developed a tool to
convert protocol specifications (in CAPSL [10], [2]) into
executable Java.

The main goal of the approaches described in [14], [23],
and [4] is to automatically generate secure and efficient
protocols from property-based specifications. This task
is quite challenging because the tools have to “invent”
the appropriate steps of the protocol. In our approach,
on the other hand, the user will give, as input, a detailed
specification of the protocol, so that well known (and
fully analyzed) protocols (or protocol variants) can be
used, and a simpler and correct synthesis approach can
be used.

6. CONCLUSIONS

In this paper we have outlined ongoing work on the de-
velopment of a set of tools for the design, analysis, and
automatic verification of security protocols. The aim of
our approach is to provide an integrated toolset that will
provide a unified framework for all stages of protocol de-
sign and implementation.

There are a number of additional functionalities which
could naturally be combined with this toolset, such as
the generation of marshalling code (packing/unpacking,
etc.), and protocol optimization. Further techniques for
achieving assurance could also be incorporated, such as
the automated generation of test cases, which would
complement the guarantees given by the proofs.

APPENDIX

1. PROTOCOL SPECIFICATION

The Yahalom protocol consists of four messages between
two participants (ground G and satellite S) and a trusted
key server K. Table 2 gives the (idealized) specification
of the 4 messages (similar to [3]). An expression {X}(k)
means that data X are encrypted using the key k.

This protocol requires a total of 14 assumptions shown in
Table 3. These assumptions are straight-forward and can
be taken directly from the protocol specification or the
literature [3]. These assumptions concern the freshness
of the keys and nonces which the participants issue (1-3),
the use of the keys as shared keys (4-8), the trust in the
key server K that it can produce (|⇒) the appropriate
keys and timestamps (9-13), and the non-distribution of
the satellite’s timestamps (14).

4 http://www.imm.dtu.dk/cs_LySa/

From To Message
1 G S send tel(Ng)
2 S K {Ng , Ns}(Ksk)
3 K G {Ksg , #Ksg , Ng , Ns, S|∼ Ng}(Kgk),

{Ksg}(Ksk)
4 G S {Ksg}(Ksk), {Ns, Ksg , S|≡ #Ksg}(Ksk)

Table 2. Abstracted version of the Yahalom protocol,
specified in BAN logic

Assumption
1 A|≡ #Ng

2 S|≡ #Ns

3 S|≡ #Ksk

4 A|≡ Kgk

5 K|≡ Kgk

6 S|≡ Ksk

7 K|≡ Ksk

8 K|≡ Ksg

9 G|≡ K|⇒ Ksg

10 S|≡ K|⇒ Ksg

11 S|≡ K|⇒ #Ksg

12 S|≡ G|≡ K|⇒ #Ksg

13 G|≡ S|⇒ S|∼ Nb

14 S|≡ secretNs

Table 3. Assumptions for the Yahalom protocol (formulated
in BAN logic)

REFERENCES

[1] B. Beckert, U. Keller, and P. Schmitt. Translating
the Object Constraint Language into first-order predi-
cate logic. In Proceedings, VERIFY, Workshop at Fed-
erated Logic Conferences (FLoC), Copenhagen, Den-
mark, 2002.

[2] S. Brackin, C. Meadows, and J. Millen. A CAPSL inter-
face for the NRL protocol analyzer. In In Proceedings
of ASSET99, IEEE, 1999.

[3] M. Burrows, M. Abadi, and R. Needham. A Logic
of Authentication. In ACM Operating Systems Review
23(5) / Proceedings of the Twelfth ACM Symposium on
Operating Systems Principles, 1989.

[4] H. Chen, J. Clark, and J. Jacob. Automated design of
security protocols. In Proceedings of the 2003 Congress
on Evolutionary Computation, volume 3, pages 2181–
2188. IEEE Press, 2003.

[5] E. Denney and B. Fischer. Formal safety certifica-
tion of aerospace software. In Proceedings of In-
fotech@Aerospace. AIAA, September 2005.

[6] E. Denney, B. Fischer, J. Schumann, and J. Richardson.
Automatic certification of Kalman filters for reliable
code generation. In Proceedings of the IEEE Aerospace

7

http://www.imm.dtu.dk/cs_LySa/

Conference, Big Sky, Montana, March 2005. IEEE.

[7] J. Jürjens. Secure Systems Development with UML.
Springer, 2004.

[8] G. Lowe. Breaking and fixing the Needham-Schroeder
public-key protocol using FDR. In Tools and Algo-
rithms for the Construction and Analysis of Systems
(TACAS), volume 1055, pages 147–166. Springer, 1996.

[9] W. Marrero, E. Clarke, and S. Jha. Model checking for
Security Protocols. Technical Report CMU-CS-97-139,
Carnegie Mellon University, 1997.

[10] J. Millen and F. Muller. Cryptographic protocol gener-
ation from CAPSL. SRI Technical report SRI-CSL-01-
07, 2001.

[11] S. Neema, Z. Kalmar, F. Shi, A. Vizhanyo, and
G. Karsai. A visually-specified code generator for
simulink/stateflow. In VLHCC ’05: Proceedings of
the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC’05), pages 275–
277, 2005. IEEE.

[12] L. Paulson. The inductive approach to verifying cryp-
tographic protocols. J. Computer Security, 6:85–128,
1998.

[13] A. Price, K. Kosaka, and S. Chatterjee. A secure key
management scheme for sensor networks. In Proc. 10th
Americas Conference on Information Systems, 2004.

[14] H. Saidi. Towards automatic synthesis of security pro-
tocols. In Logic-Based Program Synthesis Workshop,
AAAI 2002 Spring Symposium, Stanford University,
California, 2002.

[15] J. Schumann. Automatic Verification of Cryptographic
Protocols with SETHEO. In Conference on Automated
Deduction (CADE) 14, LNAI, pages 87–100. Springer,
1997.

[16] J. Schumann. PIL/SETHEO: A Tool for the Automatic
analysis of Authentication Protocols. In Proc. Computer
Aided Verification (CAV) ’99, LNAI. Springer, 1999.

[17] J. Schumann and J. Whittle. Automatic synthesis of
agent designs in UML. 1871:148–162, 2001.

[18] G. Steel, A. Bundy, and E. Denney. Finding counterex-
amples to inductive conjectures and discovering secu-
rity protocol attacks. AISB Journal, 1(2), 2002.

[19] G. Steel, A. Bundy, and E. Denney. Using the CORAL
system to discover attacks on security protocols. In
Computer Systems: Theory, Technology and Applica-
tions. Springer-Verlag, 2003. Festschrift for Roger
Needham.

[20] B. Tobler and A. Hutchison. Generating network se-
curity protocol implementations from formal specifica-
tions. In Proceedings IFIP World Computer Congress -
CSES 2004 2nd International Workshop on Certification
and Security in Inter-Organizational E-Services, 2004.

[21] J. Whittle, R. Kwan, and J. Saboo. From scenarios to

code: An air traffic control case study. Journal of Soft-
ware and Systems Modeling, 2004.

[22] J. Whittle and J. Schumann. Generating Statechart
Designs From Scenarios. In Proceedings of Inter-
national Conference on Software Engineering (ICSE
2000), pages 314–323, Limerick, Ireland, 2000.

[23] H. Zhou and S. Foley. Fast automatic synthesis of se-
curity protocols using backward search. In Proc. FMSE
(Formal Methods in Security Engineering), 2002, 2002.

Dr. Johann Schumann (PhD 1991, ha-
bilitation degree 2000) is a Senior Sci-
entist with RIACS and working in the
Robust Software Engineering Group at
NASA Ames. He is engaged in research
on verification and validation of auton-
omy software, adaptive controllers, and
learning software. He is also working

on automatic generation of navigation and state estimation
code. Dr. Schumann is author of a book on theorem proving
in software engineering and has published more than 60 arti-
cles on automated deduction and its applications, automatic
program generation, and neural network oriented topics.

Dr. Ewen Denney (PhD University of
Edinburgh, 1999) has published 40 pa-
pers in the areas of automated code
generation, software modeling, software
certification, and the foundations of
computer science. His research interests
at NASA are mainly on the theory and
application of automated code genera-

tion and automated code certification.

8

	Introduction
	Space Communication Software
	Software Development Process
	The Individual Stages
	Related Work
	Conclusions
	Protocol Specification

