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We propose a linear alternating variable step-size adaptive long-range prediction (AVSS-ALRP) scheme to predict fading signals
which is especially suitable for a versatile two-state land mobile satellite (LMS) channel model at S-band. A three-step design
procedure is presented to optimize the prediction performance. Firstly, we establish the Gilbert-Elliot channel model based on first-
order Markov chain for satellite communication downlink and take advantage of smoothing average to obtain channel observed
values. At a second stage, eigenvalue decompositionmethod is applied to predict future long-range channel state instead of weighted
prediction. Finally, combining variable step-size least mean squares and adaptive long-range prediction, we introduce the VSS-
ALRP algorithm to predict LMS channel fading signals in the case of “good” state, and the obtained prediction results would be
revised based on the linear prediction of error when shadowing condition is in the “bad” state. Simulation results show that the
proposed scheme cannot only offer an accurate prediction for long-range channel state and fading signals over the two-stateGilbert-
Elliot channel model and greatly enhance the fading signals’ autocorrelation, but also have considerably better performance than
long-range prediction (LRP) algorithm from the results of mean square error (MSE) and correlation coefficient.

1. Introduction

As an important part of land mobile satellite (LMS) commu-
nication systems, the LMS channel will affect the reliability
of transmitted signal distorted by multipath, shadowing, or
obstacles between satellite and receiver whenmobile terminal
is in the situation of fastmovement. In order to achieve a good
trade-off between power efficiency and spectral efficiency for
LMS communication systems, domestic and foreign scholars
take advantage of the accurate channel information which is
fed back to the transmitter to adjust the parameters of adap-
tive coded modulation and multiple-input multiple-output
(MIMO) [1–3]. However, the predicted information would
be inaccurate and rapidly outdated due to the abrupt change
of shadowing state, blocked behavior, and large propagation
delay of LMS channel in the case of fast movement. To ensure
the reliable adaptive transmission for LMS communication
systems, the fading signals need to be accurately predicted in
advance. The main work in this paper is to study the long-
range prediction of LMS fading signals including two aspects;
that is, one is to model a flexible LMS channel at S-band and

make it effective in the different shadowing conditions and
the other is to provide a reliable prediction scheme for the
fading channel.

The existing algorithms are practical and effective for
short delay prediction of terrestrial wireless mobile fading
channel, such as long-range prediction (LRP) with leastmean
square filter [4, 5], adaptive long-range prediction (ALRP)
[6], and Kalman filter [7]. Nevertheless, the drawbacks of
such algorithms applied to LMS fading signals are as follows:
the sum of sinusoid model is established based on the
physical scattering mechanism, and the prediction perfor-
mance decreases quickly when the future long-range predic-
tion is much longer than the correlation time of observed
values.

In recent years, a survey of the state-of-the-art modeling
methods concerning the LMS channel is provided in [8]. The
long-range fading signals are difficult to be predicted for LMS
channel when the channel is in the condition of larger propa-
gation delay and variable shadowing with travelled distance.
A linear prediction based FIR channel estimator is proposed
based on Loo channel model [9]. Zhou and Cao analyzed
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Figure 1: Implementation block diagram of fading signals.

the predictability of LMS channel and presented a linear
long-range prediction algorithm by combining the weighted
prediction and LRP algorithm [10]. The nonlinear autore-
gressive integrate moving average (ARIMA) and smooth-
ARIMA prediction algorithms were proposed based on LTE-
compatible low earth orbit (LEO) and geosynchronous orbit
(GEO) mobile satellite communication systems [11, 12]. An
ALRP of fading signals over three-state LMS channel was
presented by [13]. The above-mentioned prediction schemes
are inflexible and complex caused by fixed propagation
parameters in channel model and transition among three
states as well as multistep prediction. Meanwhile, the pre-
diction performance is degraded because of a relative low
correlation, error propagation, autoregression (AR) model
stationary parameters, and fixed step-size. Up to now, the
practical prediction scheme for solving the above problem
has not been discussed yet. In this paper, a linear alternating
prediction scheme is considered instead.

Aiming at the above-mentioned problems, we directly
obtain the observed values of fading signals through a ver-
satile two-state LMS channel model which has the outstand-
ing advantage in flexibility about selection of propagation
parameters and universality application for more scenarios
and then introduce smoothing average method to prevent
the received signals’ correlation from decreasing. In addition,
a novel linear alternating variable step-size adaptive long-
range prediction (AVSS-ALRP) algorithm inspired by [14] is
proposed by combining with eigenvalue decomposition [15]
to improve prediction performance.

The rest of the paper is organized as follows. Section 2
introduces the structure of two-state Gilbert-Elliot channel
model with variable propagation parameters briefly. Section 3
expounds the proposed scheme in detail including the eigen-
value decomposition prediction, variable step-size adaptive
long-range prediction (VSS-ALRP) algorithm, error predic-
tion, and computational complexity analysis. Simulations are
discussed in Section 4. Finally, we conclude the paper in
Section 5.

2. Two-State Gilbert-Elliot Channel Model

To reduce the complexity of state transitions and increase
the randomness of channel fading signals compared with
other models in the literature [16–19], we use a two-state
Gilbert-Elliot channel model to characterize the changes of
shadowing conditions with travelled distance for the LMS
channel. The shadowing conditions are divided into “good”
and “bad” states that represent a range of LoS-to-moderate
shadowing and deep-to-blocked shadowing, respectively,
according to the fading of line-of-sight (LoS) [20]. The
implementation block diagram of fading signals is illustrated
in Figure 1, which consists of state sequence generator (SSG),
propagation parameter generator (PPG), and small-scale
fading generator (SSFG).

The complex fading signals are composed by multipath
and shadowing fading within each state as shown in Figure 1.
The probability density function of the envelope is denoted
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Figure 2: Fading signals generated by the two-state LMS channel
model.

as a stationary Loo distribution [21]. Each time a new state
is reached, a Loo parameter triplet is updated by the joint
probability distribution, which can be expressed as
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are multipath average power and

the mean and standard deviation of log-normal distribution,
respectively, which are all given in dB. The coefficients 𝑢
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, and 𝑏
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are fixed for a given environment type, satellite

elevation, and azimuth. For 60∘ elevation and mobile speed
of 12.5m/s in intermediate tree-shadowed environment at S-
band, the simulated fading signals are shown in Figure 2.
With regard to the travelled distance scales, we can clearly
observe that the channel model describes two different
shadowing states and the large dynamic range of fading
signals envelope due to variable propagation parameters.The
excellent reliability of the model has also been verified by
[20], and the model has been widely used in many practical
systems, for example, digital video broadcasting via satellite
handheld (DVB-SH) system, mobile satellite channel for
angle diversity (MiLADY) system [22, 23], MIMO system
[24], and so forth.

3. ALRP of LMS Fading Channel

Because of long transmission delay (about 266.66 microsec-
onds) at S-band and time-varying shadowing conditions as
well as the abrupt deep shadowing state, LMS communi-
cation systems will result in the performance degradation
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Figure 3: State transitions model based on Markov chain.

of channel prediction. For the sake of achieving a more
accurate prediction performance, we firstly predict channel
shadowing state by using eigenvalue decomposition method
and then adopt the smoothing average to obtain the observed
values of fading signals. Finally, the future fading signals are
predicted based on linear VSS-ALRP algorithm if the current
shadowing condition is in the case of “good” state; otherwise
the predicted results will be modified by combining with
linear prediction of error within “bad” state.

3.1. Prediction of Future Channel Shadowing State. The eigen-
value decomposition method rather than weighted pre-
diction is chosen to improve the prediction accuracy of
channel shadowing state for avoiding the twice sampling of
channel observed values and reducing state prediction error.
According to state frame orminimum state length of 3∼5m at
S-band indicated by [16], Figure 3 shows the state transitions
model governed by a first-order discrete-time Markov chain.

In Figure 3, 𝑝
2|1
= 𝑝
𝑔
is the transition probability from

“good” to “bad” state and 𝑝
1|2
= 𝑝
𝑏
is the transition prob-

ability from “bad” to “good” state. 𝑏
𝑖
, 𝑖 = 1, 2, represent the

observed values of fading signals directly obtained through
the two-state LMS channel model within state 𝑖. So the state
transition probabilities’ matrix is given by
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are the eigenvector and eigenvalue matrices, respectively. 𝑃
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Through (3), (4), and (6), the transition probabilities
matrix P𝑚 of the𝑚th state frame is derived by
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The prediction error of channel shadowing state in the𝑚th state frame when the initial state is “good” or “bad” can
be expressed as
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The prediction error can be derived from the state
transition probabilities; that is,
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It is observed that 𝐹
𝑒
is approaching the maximum value

when both 𝑝
𝑏
and 𝑝

𝑔
are close to 0.5, and a large 𝑚 will

cause a fast convergence. The prediction error is below or
equal to 10% as long as any one transition probability is
less than 0.05. That is to say, the prediction performance is
improved when the shadowing condition with low transition
probability remains unchanged for a long time.

3.2. Alternating Variable Step-Size Adaptive Long-Range Pre-
diction Algorithm. The LMS channel has the nature of long
transmission delay and fast time-varying fading compared
with the terrestrial wireless mobile channel, which will cause
a decrease in prediction performance. So a desired ALRP
algorithm for LMS channel is necessary to compensate the
outdated problem and improve the prediction performance.
There are two main problems to be solved in the process of
applying ALRP algorithm into two-state LMS channel—high
prediction error during “bad” state duration and AR model
instability parameters. They can be solved to some extent
by updating the step-size parameter according to correlation
of the latest observed values in the tracking model and

predicting the error of ALRP algorithm. Based on the above-
mentioned fact, a novel linear AVSS-ALRP algorithm, which
uses a variable step-size parameter in the update equation,
is proposed. In this algorithm, the channel fading signals are
predicted by applying VSS-ALRP in the case of “good” state,
and the obtained prediction results would be revised based
on the linear prediction of error if shadowing condition is in
the “bad” state.

We consider 1-step linear prediction of the future channel
fading signals.The prediction of 𝑏

𝑛
using the latest𝐾 previous

observed values based on linear AR model can be expressed
by 𝑏̂
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is the difference of the mean of channel fading
signals between state 𝑞 and state 𝑖. d = [𝑑

0
, . . . , 𝑑

𝐾−1
]𝑇 are the

optimal initial coefficients of theARmodelwithin a predicted
state 𝑖 estimated by solving the Yule-Walker equations [25]
firstly.

The reduced correlation of channel fading signals over
time, the assumption of fixed coefficients throughout the state
duration, and the error propagation caused by previously
predicted values make the prediction performance decrease.
So, the initial coefficients of state 𝑖 are estimated by using the
minimum mean square error approach in the nontracking
mode, and the coefficients are updated by using the variable
step-size adaptive iterativemethod [26] in the trackingmode.
Let us consider 𝑞

𝑛
as a smooth parameter at time 𝑛 given by
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At time 𝑛 + 1, the step-size based on positive parameters𝛼, 𝛽, and 𝛾 is shown as follows:𝜇
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= 𝛼𝜇
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Subsequently, the update equation of coefficients can be
determined using 𝐾 previous observed values to follow the
channel fading variations as

d
𝑛+1
= d
𝑛
+ 𝜇
𝑛+1
𝑒
𝑛
b𝐻
𝑛
, (13)

where 𝑒
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𝑛
− 𝑏
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is the channel prediction error.

The LMS channel is nonstationary during a short period
after the appearance or disappearance of “bad” state. The
proposed VSS-ALRP algorithm could take a relative long
convergence time which will result in a bad performance due
to a big step-size. To obtain a good prediction performance,
the prediction results of “bad” state are revised by utilizing the
linear error prediction of ALRP. Similar to (10), the prediction
of future long-range error based onARmodelwithmaximum
order 𝑞 (𝑞 < 𝐾) is recursively defined as
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Table 1: Computation complexities of AVSS-ALRP algorithms.

Algorithms States Multiplications Additions
LRP “good” and “bad” 𝐾 𝐾
ALRP “good” and “bad” 2𝐾 + 1 2𝐾 + 1
VSS-ALRP “good” 4𝐾 + 8 4𝐾 + 3

“bad” 2𝑞 + 4𝐾 + 9 3𝑞 + 4𝐾 + 4
where e𝑏

𝑛
= [𝑒𝑏
𝑛−1
, . . . , 𝑒𝑏

𝑛−𝑞
]𝑇 are previous predicted errors

of VSS-ALRP algorithm within a predicted “bad” state and
d𝑒 = [𝑑𝑒

0
, . . . , 𝑑𝑒

𝑞−1
]𝑇 are the AR coefficients vector for error

prediction. The update equation of coefficients d𝑒 based on a
fixed step-size 𝜇𝑒 is expressed as

d𝑒
𝑛+1
= d𝑒
𝑛
+ 𝜇𝑒𝑒 𝑒
𝑛
e𝑏
𝑛
, (15)

where 𝑒 𝑒
𝑛
is the error function obtained by 𝑒 𝑒

𝑛
= 𝑒 𝑏
𝑛
− 𝑒𝑏
𝑛
. By

combining (10) and (14), the final result of channel prediction
for a predicted “bad” state can be revised as

𝑏̃
𝑛
= 𝑏̂
𝑛|𝑛−1

+ 𝑒 𝑏
𝑛
. (16)

3.3. Algorithm Complexity Analysis. The complexity analysis
of ALRP algorithm for three-state LMS channel model has
been considered in [13]. Table 1 shows the computation
complexities of AVSS-ALRP algorithms at time 𝑛 + 1 except
for the optimal initial coefficients of AR model. As shown in
Table 1, when the step-size is updated at time 𝑛+1, the number
of multiplications and additions of VSS-ALRP algorithm
increases by 2𝐾 + 7 and 2𝐾 + 2 compared with ALRP,
respectively. In addition, the number of multiplications and
additions of the prediction for future long-range error is 2𝑞+1
and 3𝑞 + 1 in the case of “bad” state, respectively. On the
whole, the additional complexity of AVSS-ALRP algorithm is
acceptable due to small maximum order of AR model.

4. Simulation Results

In order to test the validity of the proposed scheme, we
employed Monte Carlo simulations to evaluate the perfor-
mance of the proposed scheme based on the two-state LMS
channelmodel. Correlation coefficient andmean square error
(MSE) between the fading signals of predicted results and
actual values (channel envelopes or gains) are used as predic-
tion evaluation standard. A comparative analysis between the
results predicted by the proposed algorithm and the existing
scheme [10] is presented for intermediate tree-shadowed
(ITS) environment at S-band and 60∘ satellite elevation. The
simulation parameters are set up as follows. The extracted
propagation parameters are listed in Table 2. Additionally,
initial transition probabilities of “good” and “bad” states
are equal to 𝑝

2|1
= 0.1724 and 𝑝

1|2
= 0.2, respectively.

Furthermore, we assume that the carrier frequency is 2.2 GHz
and the minimum state length is 5m. The sample rate of
observed values is 𝑓

𝑠
= 500Hz. The maximum orders of AR

model are fixed at 𝐾 = 5 and 𝑞 = 3 in the AVSS-ALRP
algorithm.The parameters 𝛼, 𝛽, are 𝛾 are equal to 0.941, 0.961,
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Figure 4: Correlation coefficient of channel observed values.

and 2.3 × 10−4, respectively. The initial and fixed step-size
parameters are both set at 0.045.

4.1. Prediction Performance of Channel Shadowing State. In
this paper, the fading signals directly obtained through the
proposed channel model are smoothed to get the prediction
observed values; that is, smoothing average method is per-
formed over the observation period with rate of 𝑓

𝑠
. Figure 4

shows the correlation coefficient of the observed values
for smoothing average and downsampling. The results in
Figure 4 demonstrate that the smoothing average is remark-
ably superior to the downsampling, which is more beneficial
to the long-range prediction of shadowing state.

The comparison of the channel shadowing state predic-
tion errors of different methods is given in Table 3. Here,
the mobile speed is fixed at V = 12.5m/s and the order
of weighted prediction 𝐾 = 3. The true state prediction
error is approximately 0.3014 via (9). From Table 2 we can
see that the prediction error of the eigenvalue decomposition
combined with smoothing average (denoted as SD) is most
close to the true value compared to others, and SD can be
regarded as a more potential way to achieve state prediction
than downsampling weighted prediction (DW).

4.2. Prediction Performance of Fading Signals. Thecorrelation
coefficient of SD and DW combined with the classical LRP
algorithm [5] is given in Figures 5 and 6 under different
signal-to-noise ratio (SNR) and mobile speed conditions.
The fading signals’ correlation properties are directly related
to the MSE performance; namely, MSE performance is
improved with the increasing of correlation coefficient.

In the two figures we observe that the correlation coeffi-
cient in all schemes is significantly improvedwith the increas-
ing of SNR and tends to be convergent when the SNR is larger
than 30 dB. We see that the correlation coefficient based on
SD-LRP always outperformsDW-LRP in low tomediumSNR
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Table 2: Propagation parameters for 60∘ elevation in its environment at S-band.

States
Parameters𝑀

𝐴
Σ
𝐴
(𝜇
2
) Σ

𝐴
(𝜎
2
) MP𝜇

1
𝜎
1

𝑎
1

𝑎
2

𝑎
3

𝑏
1

𝑏
2

𝑏
3

𝜇
3

𝜎
3

“good” −0.9914 0.3894 0.6458 1.6841 1.8242 0.0728 0.3421 0.3800 −10.2 3.0840
“bad” −5.2672 1.3666 −0.0357 −0.8572 −1.3569 0.0203 0.3421 0.4190 −10.0 1.4142

Table 3: Prediction error of channel states.

Methods Weighted
prediction

Eigenvalue
decomposition

Downsampling 0.3187 0.2960
Smoothing average 0.3003 0.2923
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Figure 5: Correlation coefficient of various schemes with mobile
speeds.

region or very slow/moderate movement (approximately
the range of 1∼10m/s in our simulation). In addition, the
improvement of different schemes is insignificant in fast
mobile and high noise conditions. As shown in Figure 6, SD-
LRP is a more effective scheme to enhance the correlation
than DW-LRP in case of mobile conditions. So the proposed
SD method is feasible and meaningful to be applied in LMS
channel prediction process.

The future long-range fading signals are predicted accord-
ing to the 𝐾 latest observed values using SD-AVSS scheme
and shown in Figure 7. In this Figure, the first half is
the latest observed values plotted with dash line, and the
second half is the observed true fading signals labeled by
solid line. The results indicate that the predicted fading
signals approximate the observed values in dotted lines, and
therefore the proposed scheme can accurately predict the
future long-range channel state and fading signals based on
the two-state LMS channel model with variable propagation
parameters.
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Figure 6: Correlation coefficient of various schemes with SNR.
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Figure 7: SD-AVSS prediction of two-state LMS channel (V =
12.5m/s, SNR = 25 dB).

In this paper, we maintain the MSE under a certain
threshold to guarantee the overall channel prediction perfor-
mance (see [7] for reference). The correlation properties and
MSE performance related to the channel prediction of the
DW-LRP,DW-AVSS, and the proposed SD-AVSS schemes are



International Journal of Distributed Sensor Networks 7

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

0.8

1

C
or

re
lat

io
n 

co
effi

ci
en

t

DW-LRP
DW-AVSS
SD-AVSS

0 5 10 15 20 25 30 35 40 45

M
SE

DW-LRP
DW-AVSS
SD-AVSS

10−2

10−1

100

SNR (dB) SNR (dB)

Figure 8: Prediction performance of different schemes with SNR at 5m/s.
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Figure 9: Prediction performance of different schemes with SNR at 10m/s.

obtained for the mobile speeds of 5m/s and 10m/s and given
in Figures 8 and 9, respectively.

It is obvious that the proposed scheme has faster correla-
tion convergence and betterMESperformance thanDW-LRP
scheme, and the MES performance is improved by approx-
imately one order of magnitude. The correlation properties
of the AVSS using approximate observed values obtained
by smoothing average are superior to DW-AVSS but finally
converge to the same level when SNR is higher than 25 dB.
Besides, the prediction performance of slowmovement is bet-
ter than that of fast movement. The BER performance curves
of the three schemes decline gradually with the increasing

SNR. The reliability performance improvement of the pro-
posed scheme is very significant at the cost of slightly higher
computational complexity brought by error prediction.

5. Conclusion

A novel linear AVSS-ALRP scheme of LMS fading signals
over the two-state channel model with variable propagation
parameters has been proposed as a solution to the problem
of prediction error and slow convergence in the classical
LRP algorithm. Aiming at channel fading signals’ correlation
and long transmission delay, we present the prediction of
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long-range channel shadowing state based on SD method.
Simulation results under different conditions show that the
proposed scheme could not only predict the future long-
range channel state and fading signals accurately and have
a better performance in the aspects of MSE and correlation
properties compared to the DW-LRP, but also have supe-
riority in universal applicability over the LRP algorithm at
the expense of increasing acceptable complexity. Moreover,
the scheme in this paper can be extended to the prediction
of single- and multisatellite LMS narrowband channel at S-
band and is extremely applicable for the analysis of adaptive
transmission performance in LMS communication systems.
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