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Abstract

With increasing popularity of wearable and Body Sensor Network (BSN) technologies, there is a

growing concern on the security and data protection of such low-power ubiquitous devices. With

very limited computational power, BSN sensors often cannot provide the necessary data protection

on the sensitive personal health information they collect and process. Biometrics, such as face and

fingerprint, have been widely used for securing computer systems and mobile devices, however, such

methods have issues. For instance, the capturing of the biometric is quite intrusive and previously

collected data or compromised data can be reused by attackers.

The aim of the thesis is to tackle the challenges of collecting biometrics pervasively with miniaturised

BSN nodes, and ensuring the data freshness of a BSN security system, by investigating innovative

ways of using behavioural biometrics. It is hypothesised that behavioural biometrics, such as Elec-

troencephalographic (EEG) and walking patterns (gait) can be used for unobtrusive encryption of

BSN wireless communication channels and secure the BSN-based healthcare systems.

A person’s brain wave signal, also known as EEG signal, is nearly impossible to mimic and can be

easily collected with EEG headsets without user intervention; therefore, it is suitable to be used as

biometrics for securing BSNs. Due to the complex nature of EEG signals, the state-of-the-art manu-

ally feature extraction methods often cannot utilise the full potential of the underlying features neural

activities in the EEG signals. Therefore, to explore the potential of using EEG for securing BSN-

based healthcare systems and to improve the performance of the current EEG-based authentication

systems, the use of deep learning approaches is investigated.

Although EEG-based security systems perform exceptionally well, EEG headsets are still very ex-

pensive and cumbersome in size. To reduce the costs of the security systems, the walking pattern

of a person, called gait, is investigated as a biometric for securing BSNs. Gait is one of the most

promising behavioural biometric traits for securing wireless communications between BSN sensors

and coordinators. This thesis presents the work in resolving issues in using gait for BSNs, especially

the challenge of using less correlated gait signals collected from sensors located at different posi-

tions for the common entropy sources of Biometric Cryptosystems (BCS). In this context, a novel

light-weight symmetric key generation scheme based on the timing information of gait and fuzzy

commitment scheme is proposed. The effect of gait-based soft biometrics is also investigated, namely

age and gender. Through analysing a large gait database with inertial sensor data, and the results show
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that age and gender information can be accurately estimated using only gait signals. The recognised

age and gender information can be used to improve current gait-based security systems.

Next, with the advances of Artificial Intelligence (AI) for the healthcare applications, many wearable

devices and BSN sensors are now able to perform on-node inferencing. The challenge of less corre-

lation between gait signals at different body positions can be tackled by machine learning techniques.

An Artificial Neural Network (ANN) framework has been developed for estimating gait signals on

the shin and thigh positions from gait signals collected on the ankles. The work shows the possibil-

ity of using ANNs to project gait signals captured from one body position to onto another position.

Therefore, based on this finding, the ANN framework is proposed to improve the previously proposed

gait-based key generation scheme, where gait signals collected on the head, upperarm, wrist, waist,

thigh, and shin positions are all projected onto the chest position so that the transformed signals are

highly correlated and more similar secret keys can be extracted by devices at those positions.

From our experiments on using biometrics for securing BSNs, it is also found that the freshness

of gait signals can be used to generate random numbers by removing the low frequency periodical

components in the signals. The last part of the thesis investigate the use of gait signals as the entropy

source for Random Number Generators (RNG), and a novel random number generation method is

proposed for securing on-body IoT devices based on temporal signal variations of the outputs of

the Inertial Measurement Units (IMU) worn by the users while walking. The proposed method has

been tested with two inertial gait datasets and passed four well-known randomness test suites, namely

NIST-STS, ENT, Dieharder, and RaBiGeTe.
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Chapter 1

Introduction

Due to the demographic shift, elderly population will account more than a third of the overall pop-

ulation in the UK by 2050, as shown in Fig. 1.1. Given the rising cost of care and the severely

under resource of the healthcare services, the current health care systems will no longer be able to

provide quality care to the older people who require living assistance or medical attention. Techno-

logical solutions are being sought to help alleviating the growing healthcare crisis, and one target is

an autonomic health monitoring system. Such system would require pervasive and autonomous low-

level self-management to reduce labour costs and increase scalability to meet the potential demand of

millions of users. Recent wireless technology advancements have enabled the introduction of light-

weight, low energy, miniaturised sensor nodes to be worn by users or placed in the surrounding of

users to form a network system known as the Body Sensor Networks (BSNs). BSN can be applied

for a wide range of applications including sports, entertainment, and most importantly, healthcare.

BSN can play a critical role in shifting current healthcare systems to more scalable solutions by

providing low cost and autonomic wireless networks with sensors that continuously monitor the health

of the elderly population and patients who are suffering from Parkinson’s disease, cardiovascular

diseases, and other chronic diseases. These patients may have experienced early-stage symptoms but

often not realise the severity of their diseases. With continuous monitoring of patients by wearable

sensors in the BSN-based healthcare systems, early signs of deterioration can be detected and early

intervention can be introduced. However, this can only be achieved when the BSN systems can be

1
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(a) UK age pyramid in 1950 (b) UK age pyramid in 2050

Figure 1.1: UK age pyramid representing the population of aged people1

self-managed with only high-level supervision from network operators. With each patient wearing

multiple BSN devices, the scale of the sensing network could be massive and it will become humanly

impossible to manage and administrate. More importantly, any data collected from patients must be

fully protected throughout its life cycle, which includes the wireless transmissions between the BSN

sensors and their coordinators.

Applying proper security measures to the current BSN-based healthcare systems can prevent attackers

from eavesdropping vital personal information and intervening in therapeutic treatment/care plans

by manipulating patients’ long-term physiological data. Traditionally, encryption keys for wireless

communications among BSN sensors and coordinators are pre-distributed, which have been proven

to be unsafe. A more promising solution is to distribute new keys, i.e. session keys, when a new

communication link is established. The system would use a trustworthy third-party for generating

and managing keys using asymmetric cryptography, but it is too computational intense for low power

miniaturised BSN sensors.

Biometrics is another promising approach to secure BSN networks, and classic biometrics such as

face and fingerprint have been widely used for securing mobile devices. However, there are still many

concerns when applying to BSNs, for instance, the intrusiveness of the data capturing methods and

1“Population Pyramids of the World from 1950 to 2100” by PopulationPyramid.net, available from https://www.

populationpyramid.net/united-kingdom/

 https://www.populationpyramid.net/united-kingdom/
 https://www.populationpyramid.net/united-kingdom/
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the prevention of the previously collected data or compromised data being reused by attackers.

This thesis aims to tackle the technical challenges in protecting BSN-based healthcare systems, such

as to collect biometric traits pervasively, and to ensure the security systems are aware of data fresh-

ness, by investigating innovative ways of using behavioural biometrics. To this direction, it is hypoth-

esised that behavioural biometrics, especially Electroencephalographic (EEG) and walking patterns

(gait) can be used for unobtrusive encryption of BSN wireless communication channels and secure

the BSN-based healthcare systems.

1.1 Motivation and Objectives

Biometric traits such as face and fingerprint are difficult to capture using BSN sensors, therefore,

EEG and gait biometrics are investigated in this thesis, because both of them can be collected by BSN

sensors, such as EEG headsets and Inertial Measurement Units (IMUs), without user interventions.

Although much research has been carried out on EEG and gait biometrics, there are still many issues

and challenges hindering their adoption as main security measures in practice. This thesis is focused

on introducing new solutions to EEG and gait biometrics research to address the challenges.

1.1.1 Motivation for EEG biometrics

A wearable EEG headset can capture the neural activities or signals in the brain, which can be used

as biometric measurements for user identification applications. EEG biometrics have several advan-

tages over other traditional biometrics, such as fingerprints. First, EEG signals depend largely on the

person’s brain structure and association with the person’s current memory, mood, stress and men-

tal state; therefore, a person’s EEG signal is unique, constantly changing, and nearly impossible to

mimic. Secondly, to capture a user’s EEG signals, an EEG capturing device has to be attached or

worn on the user’s head and the user also has to be conscious, which greatly reduce the chances of

malicious attacks. Thirdly, EEG signals can provide a wider range of features from both time and fre-

quency domains, in the meantime, the signals captured in different time intervals will be of different
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patterns. Such high level of freshness provided by the EEG signal indicates its potentials in the user

identification applications.

Although with the aforementioned advantages over other biometrics, EEG has not been widely used

in security systems due to its cumbersome settings and high noise sensitivity. However, the new gen-

eration of EEG headsets are smaller and more accessible with less EEG electrodes than clinical EEG

machines. Targeting for the new generation of EEG headsets, this thesis investigates the application

of deep learning methods to minimise the number of EEG electrodes needed for user identification

while maintaining the performance of the system.

1.1.2 Motivation for gait biometrics

Although EEG-based security systems perform exceptionally well, EEG headsets are still very expen-

sive and cumbersome in size. Gait biometrics is studied in this thesis as it can be easily captured by

IMUs, which are ubiquitous and low cost, and can be easily embedded into any BSN sensors. Gait,

similar to other widely adopted biometric traits, is unique, fresh, and difficult to mimic, which makes

it very suitable for biometric security applications. There are mainly two ways of capturing a person’s

gait: either using a camera, or using IMUs attached to the person to sense the movements. The former

method has been greatly exploited and used in real world security systems, whereas the later method

is still being researched. Although camera-based user authentication systems are widely adopted, it

is not suitable for BSN-based healthcare systems. The reasons are twofold: first, the system will not

be able to capture the gait of the person, if the persons are not in sight of the camera or occluded by

an object or another person; secondly, the initial and maintenance costs of installing cameras in the

building is too high. On the other hand, IMU-based gait biometrics can provide more cost effective

security measures to the healthcare systems, and it could also provide better scalability and ubiquitous

than camera based gait biometrics.

However, many challenges are still needed to be addressed for IMU-based gait biometrics, and one of

the main challenges for using gait signals to generate secret binary keys for BSN applications is that

the IMU signals collected from sensors located at different positions are less correlated. This is due
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to motions from different segments of the body, such as arm swing and leg swing. In this thesis, it is

hypothesised that gait signal differences introduced by the motion of body segments can be reduced

or eliminated by machine learning and deep learning techniques.

1.1.3 Key research challenges and objectives

In this thesis, the use of gait and EEG biometrics is researched for securing wireless communica-

tions among BSN sensors and coordinators, as well as securing BSN-based healthcare systems. The

existing healthcare systems often have insufficient security measures and are vulnerable for network

attackers. To develop biometric-based security schemes for BSN and healthcare systems, many chal-

lenges still need to be tackled. In this thesis, some key issues are addressed, and the key research

challenges and objectives are summarised as follows:

• To identify suitable feature extraction techniques for EEG and gait biometrics;

• To develop methods to increase signal correlations between gait signals collected from BSN

sensors worn at different body positions;

• To develop methods for generating real-time random binary sequences as secret keys for sym-

metric cryptographic systems;

• To investigate stochastic properties of the gait signals by removing low frequency periodic

components of the signals for generating random numbers.

1.2 Thesis structure

The thesis starts with an introduction of the challenges that current healthcare systems are facing, and

the motivation for implementing EEG and gait biometrics for the healthcare systems. In chapter 2, a

review on BSN and healthcare systems is first presented. The review provides an overview of the key

challenges of implementing EEG and gait biometrics in the power and resource constrained wireless

network environments. A detailed literature review on BSN security is then presented, which outlines
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security requirements, threats, the state-of-the-art security schemes, and followed by a discussion on

the open issues and challenges. Then, a detailed review on the gait analysis is presented. By inves-

tigating the state-of-the-art methodologies applied in the gait analysis, a new perspective on how to

tackle the challenges of applying gait biometrics in BSN security is presented. The following chap-

ters describe the novel methodologies designed and developed to tackle the aforementioned issues

and challenges.

To secure BSN-based healthcare systems, a novel EEG-based user identification system is proposed

in Chapter 3, where 1D-convolutional Long Short-Term Memory (LSTM) approach is applied and

presented in detail. The system extracts the spatiotemporal features resided in the EEG signals which

outperforms the state-of-the-art deep learning approaches, and it can be used to reduce the number of

EEG channels required by the systems, subsequently reducing the costs of the systems and improve

its usability.

Chapter 4 presents a novel light-weight symmetric key generation scheme using gait event timing as

the common entropy source for cryptography. Moreover, the influence of gender and age for gait

biometrics is also analysed in this chapter. By performing gender and age recognition using only

inertial sensors, a new perspective on applying soft biometrics in the respect of securing miniaturised

BSN sensors is provided.

Following the concept on soft biometrics, Chapter 5 describes a new approach developed to improve

the symmetric key generation scheme by applying an Artificial Neural Network technique to increase

the correlations among gait signals collected from BSN sensors located at different body positions.

The chapter consists of two parts: the first part presents a novel lower limb motion estimation method

using two inertial sensors attached to the ankles; and the second part extends the proposed method to

generate higher correlations among gait signals collected from different positions, which is then used

as the common entropy source for cryptography.

Chapter 6 introduces the research on using gait signals for generating random numbers. In this respect,

a novel random number generation method is proposed in this chapter for securing on-body BSN

devices based on temporal signal variations of gait signals. The method is rigorously tested and

passed using four widely adopted randomness test suites.
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In the last chapter of the thesis, a summary of thesis achievements is presented, follow by the discus-

sions on future directions in the research of EEG and gait biometrics.

1.3 Contributions

The thesis contributes to the research of biometric security, specifically on the EEG and gait bio-

metrics for securing body sensor networks and pervasive healthcare systems. The original technical

contributions of this thesis include:

• A novel 1D-convolutional LSTM approach for EEG-based user identification for securing BSN-

based healthcare systems;

• A novel light-weight symmetric key generation scheme based on gait event timing (temporal

features) from inertial signals for securing wireless communications among BSN sensors and

coordinators;

• A deep learning approach designed for gender and age recognition using a single inertial sensor

attached to the lower back of the subjects;

• An Artificial Neural Network (ANN) framework for lower limb motion signal estimation, which

can be used for sensor reduction in real-time gait analysis as well as increasing correlations of

gait signals from different body positions;

• An improved key generation scheme based on ANN-based gait signal estimation and fuzzy key

exchange;

• A novel random number generation method using gait signals and stochastic signal energy

variation for on-body Internet of Things (IoT) devices.

The work presented in this thesis has resulted in a number of publications in peer reviewed journals

and international conference proceedings. The publications directly related to the work presented in

this thesis are as follows:



8 Chapter 1. Introduction

1. Y. Sun, F. Lo and B. Lo, “EEG-based Identification with 1D-Convolutional Long Short-Term

Memory Neural Networks,” Expert Systems with Applications, vol. 125, pp. 259-267, Elsevier,

July 2019

2. Y. Sun, F. Lo and B. Lo, “Machine Learning Approaches on Gait Biometrics for Securing

BSN-based Healthcare Systems,” The IEEE-EMBS International Conference on Biomedical

and Health Informatics (BHI), Special Session, May 2019

3. Y. Sun, F. Lo and B. Lo, “A Deep Learning Approach on Gender and Age Recognition using

a Single Inertial Sensor,” IEEE 16th International Conference on Wearable and Implantable

Body Sensor Networks (BSN), May 2019

4. Y. Sun and B. Lo, “An Artificial Neural Network Framework for Gait Based Biometrics.” IEEE

journal of biomedical and health informatics, vol. 32, pp. 987-998, May 2019

5. Y. Sun and B. Lo, “Random Number Generation Using Inertial Measurement Unit Signals for

On-Body IoT Devices,” Living in the Internet of Things: Cybersecurity of the IoT-2018, IET,

March 2018

6. Y. Sun, G.-Z. Yang, and B. Lo, “An Artificial Neural Network Framework for Lower Limb

Motion Signal Estimation with Foot-Mounted Inertial Sensors,” IEEE 15th International Con-

ference on Wearable and Implantable Body Sensor Networks (BSN), pp. 132-135, March 2018

7. Y. Sun, C. Wong, G. Z. Yang, and B. Lo, “Secure key generation using gait features for Body

Sensor Networks,” IEEE 14th International Conference on Wearable and Implantable Body

Sensor Networks (BSN), pp. 206-210, March 2017

Other relevant publications from the author, which may be of interest to readers but not directly related

to the works described in this thesis are listed as follows:

1. F. Lo, J. Qiu, Y. Sun and B. Lo, “A Novel Vision-based Approach for Dietary Assessment

using Deep Learning View Synthesis,” IEEE 16th International Conference on Wearable and

Implantable Body Sensor Networks (BSN), May 2019
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2. R. Rother, Y. Sun and B. Lo, “Internet of Things based Pervasive Sensing of Psychological

Anxiety via Wearable Devices under Naturalistic Settings,” Living in the Internet of Things:

Realising the socioeconomic benefits of an interconnected world, IET, May 2019

3. J. Howes, Z. Wang, J. Zhan, H. Zhang, Y. Sun, and B. Lo, “Pervasive Sensing of Distress using

Wearable Devices for People with Dementia,” The IEEE-EMBS International Conference on

Biomedical and Health Informatics (BHI), May 2019

4. F. Lo, Y. Sun and B. Lo, “Depth Estimation based on a Single Close-up Image with Volumetric

Annotations in the Wild: A Pilot Study,” IEEE/ASME International Conference on Advanced

Intelligent Mechatronics, July 2019

5. J. Qiu, F. Lo, Y. Sun and B. Lo, “Mining Discriminative Food Regions for Accurate Food

Recognition,” British Machine Vision Conference (BMVC), September 2019

6. F. Lo, Y. Sun, J. Qiu, and B. Lo. “Food Volume Estimation Based on Deep Learning View

Synthesis from a Single Depth Map,” Nutrients, vol.10, no.12, December 2018



Chapter 2

Literature Survey

In healthcare, significant improvements in efficiency and quality of care are expected from the diverse

range of developments in Internet of Things (IoT). In particular, smart wearable and implantable sen-

sors has attracted much interest in recent years due to the advances in microelectronics, materials,

and biosensor design. The rapid development of IoT, however, has meant that the security and safety

of these systems often have received insufficient attention. The consequences of inadequate security

in healthcare system can be, for instance, compromised patients’ privacy due to eavesdropping, and

disruption of normal operations of wearable or implantable devices due to active attacks. In 2015, a

study by HP Fortify found the 10 most popular smartwatches (at the time) all had security vulnerabil-

ities from insufficient authentication or authorisation, lack of data transmission encryption, insecure

interfaces, insecure software/firmware, and privacy concerns (Rawlinson, 2015). Authentication, for

example, is the process of confirming identity. All systems should only be accessed by authorised and

authenticated users or devices. Insufficient authentication protection could allow attackers to enter

the system and gain access to private and personal data of the users.

User/device authentication is important to a system, as it can ensure that the data is correctly attributed

and information in the systems is only accessible to the authorised entities. In the context of health-

care system, the ability to authenticate the user of a wearable sensor could be used to establish the

integrity of the data, such as activity information for obese patients, and authentication would also be

used to safeguard patients’ privacy by ensuring that information, such as the patients’ electronic med-

10
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ical records (Evans, 1999), is only accessible to the authorised and authenticated users, such as the

patients’ general practitioners. Network and system security is a well-established field, and extensive

security protection schemes and methods are available to protect computer systems and networks.

For example, public-key cryptosystems such as Rivest-Shamir-Adleman (RSA) (Kravitz, 1993) and

Digital Signature Algorithm (DSA) (Barrett, 1986) which are commonly used in securing computer

networks.

However, many of such schemes and methods cannot be applied for IoT devices due to the limitation

of low power and low computational capability (Jonsson and Tornkvist, 2017; WISeKey, 2017).

Compare to typical IoT devices, wearable and implantable medical and healthcare devices are often

designed with very low computational power and battery capacities, as they have to be miniaturised in

size. Medical and healthcare IoT devices have to store and process personalised health data, and some

devices even have actuation functions to support the users’ health (ex. insulin pump). Therefore, the

level of security required for IoT health devices is expected to be much higher than typical IoT and

computing devices (Turner, 2018). Yet, security and threats are often overlooked in the design of

medical devices and healthcare systems (Davis, 2019; Dolmatov, 2019).

With the rapid development of IoT technologies, more and more medical and healthcare devices

are internet connected, and most devices are designed to transmit and store the data in the cloud

waiting to be further processed and analysed, such as Health-CPS (Zhang, Qiu, et al., 2017) and

UbeHealth (Muhammed et al., 2018). This advancement enables the medical carer to provide faster

and more accurate responses to the patients that are being monitored by the medical and healthcare

devices. However, it also introduces risks of users’ data stored in the cloud servers being abused

or stolen (Scammell, 2019). The privacy of the users’ data, especially users’ personal data must be

well protected. Yet, many examples of security breaches of cloud servers from large enterprises, such

as Facebook (Hutchinson, 2018) and Yahoo (Garun, 2017), raise the question: can users’ sensitive

health data really be protected? In fact, more and more hackers are targeting medical servers and

eHealth systems, because personal health data is very valuable in the illegal/black markets (Yao,

2017). Therefore, medical servers require even stronger security measures, which inevitably increases

the costs of creating, running, and maintaining these services.
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In addition to developing countermeasures to attacks, post-attack measures also need to be well con-

sidered. Financial information, such as credit card security codes, can be made invalid and use-

less quickly (Fazzini, 2019), but personal health data can reveal a person’s current health conditions

(Brooks, 2019). When such data is stolen in a security breach, the retrieval and elimination of the

stolen data is critical and must be accomplished. To protect patients’ data, strong regulations and

severe penalties must be in place from governments and healthcare organisations. The Information

Commissioner’s Office (ICO) could only fine a company which is responsible for a data breach up to

500,000 pounds previously; however, with the newly introduced General Data Protection Regulation

(GDPR), ICO is now able to fine a company based on the company’s profits. For example, British

Airways was suspected to be fined up to 183 million pounds, due to a data breach of 500,000 users

from its website and mobile app (Pratley, 2019). In addition, according to the GDPR, any incidents

of data breaches in the healthcare systems must be reported promptly (ICO, 2019). It also forces

healthcare providers to introduce proper security measures for their healthcare services.

2.1 Body Sensor Network

2.1.1 BSN-based Healthcare Systems

BSN-based healthcare systems often consist of 3 tiers, sensor level, personal server level, and med-

ical server level as indicated in Fig. 2.1, such as (Kantoch, 2013; Lu, Lin, and Shen, 2012; Yeh,

2016). Medical devices and sensors are located in the sensor level, which form a local network, of-

ten referred as Body Sensor Networks. BSN can employ a star network topology, where medical

devices and sensors can only communicate with the network coordinator/gateway, which is often lo-

cated in the personal server level; or a mesh network topology, where medical devices and sensors

can communicate with each other if required. Wireless technology standards including Bluetooth

Low Energy (BLE) (Singh and Ricke, 2016), Wi-Fi (Li, Qi, et al., 2011), Wireless Body Area Net-

work (WBAN) (Wu et al., 2017), Near-Field Communication (NFC) (Masuda, Noda, and Shinoda,

2018), and Radio-Frequency IDentification (RFID) (Wang, Gu, et al., 2016), are often employed for

wireless communications in the sensor and personal server levels. BLE, Wi-Fi and WBAN support
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star and mesh network topologies, whereas NFC and RFID can only support ultra-low energy, device-

to-device close proximity direct communications, which are often used by implantable devices.

Inertial sensor

ECG sensor

PPG sensor

Motion sensors

Coordinator

Tier 1 Sensor Level

Tier 2 
Personal 
Server 
Level

Tier 3 Medical Server Level

Internet

Professionals

Telemedicine
server

Medical
servers

Wireless channels Sensors/wearable devices

Medical/telemedicine/backend serversOn-body coordiantor

Internet connections

Figure 2.1: Illustration of a 3-tier BSN/IoT-based healthcare system (Sun and Lo, 2018b)

Physiological data collected by the medical devices will be sent to personal servers, which can be

on-body devices, such as smart phones and tablets, or off-body devices, such as Wi-Fi routers and

BLE gateways. The purposes of personal servers are to process and store patients’ data locally before

sending to the centralised servers in the medical server level. A personal server is required to be able

to operate normally when the network connection to the medical servers is lost. The aggregated pa-

tients’ data will be forwarded to the databases located in the medical server level. Medical personnel,

such as doctors, are able to access patients’ data remotely, providing prompt advice to the patients.

Algorithms and computer programs for early diagnoses and rehabilitation progress assessments can

also be run on the medical servers with patients’ consents. Many BSN/IoT-based healthcare systems

have been proposed for continuous patient monitoring in the last decade, but many of them do not

adopt any security and privacy measures in their designs or left out as future work, such as Code-
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Blue (Malan et al., 2004), UbiMon (Ng, Lo, et al., 2004), MobiCare (Chakravorty, 2006), SleepSense

(Zhuang et al., 2015) and BiGRA (Vu et al., 2018). These work have focused more on other technical

challenges such as power consumption and usability, rather than the security of the systems and the

privacy of patients’ data. Recently proposed BSN/IoT-based healthcare systems, such as BSN-Care

(Gope and Hwang, 2016) and (Yeh, 2016), have adopted encryption and authentication schemes into

their designs.

2.1.2 Network Design Challenges

A protocol is a set of rules that governs the exchange or transmission of data between devices (OED,

2019). A routing protocol is inherited from traditional networks, where it specifies how network

routers exchange data with one another, disseminating information that enables them to select routes

between any two nodes in the same network or in different networks. Routing protocols in wireless

networks are more complex than those used in wired networks in many respects, including network

topology, power conservation, and channel effectiveness. Thus, transferring data between nodes is

not the only functionality required from routing protocols in wireless networks.

2.1.2.1 Postural Body Movements

On-body sensors are often moving as a group, as the patients under diagnosis or users under monitor-

ing are often not stationary, resulting in frequent changes in network topology and components (Shin

and Joe, 2015). Routing protocols in BSNs should be adaptive to both repetitive and unpredictable

changes in the quality of communication links between sensor nodes (Zheng, Zheng, et al., 2018).

Link quality varies as a function of time against postural body movements (Maskooki et al., 2011),

which can be utilised in routing protocols to conserve energy. For example, a transmission power

control scheme based on gait cycle for BSNs has been proposed in (Zang and Li, 2017), where trans-

mission time is optimised by matching link quality changes due to walking. On the other hand, there

are also unpredictable changes of link quality due to signal blockage by clothes or bags that intensify

channel attenuation.
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2.1.2.2 Temperature Rise

Antenna radiation absorption and power consumption of node circuitry are the two sources than cause

temperature rise in sensor nodes (Tang, Tummala, et al., 2005a). Radio energy can also be absorbed

by the tissues which could heat up the tissues, attenuate the signals, and cause skin or tissue burns

(Tang, Tummala, et al., 2005b). Therefore, transmission and computing power in sensor nodes should

be considered in the design of routing protocols, and extra attention should be paid for designing

protocols for implant sensor nodes, as excessive heat can cause discomfort and damage nearby tissues

and organs.

2.1.2.3 Energy Efficiency

Routing protocols in BSNs should be designed to optimise the energy efficiency for both local energy

consumption on sensor nodes and overall network lifetime. Energy efficiency is a crucial element

of BSNs, as it determines the size of the devices, the lifetime of the system, and the usability of the

devices. For instance, surgeries will be required for implant sensor nodes to replace batteries, and

such surgeries are risky and very expensive. Typical implantable devices, such as pacemakers, should

have the battery lifetime of at least 10 to 15 years to enable the user to live a normal life (Uslan et al.,

2012). For wearable sensor nodes, frequently charging or replacing batteries hinders the usability of

the devices.

2.1.2.4 Transmission Range

Short transmission range along with the postural body movements could lead to the problems of

disconnection and re-partitioning amongst sensor nodes in BSNs (Quwaider and Biswas, 2009). The

number of sensor nodes on a patient or a user should be minimised to reduce discomfort, which results

in fewer routes to neighbour sensor nodes. Therefore, if the connecting sensor node is out of range,

packets will have to be routed through an alternative path resulting in higher energy consumption and

longer time for the packets to reach the destination. In BSNs, if the alternative path includes one or
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more implantable devices, the routing protocol must be able to decide whether to take this alternative

path based on the importance of the contents in the packets.

2.1.2.5 Heterogeneous Environment

In most BSN applications, different types of sensor nodes from a variety of medical equipment ven-

dors are required to measure different physiological signals of patients or users. Therefore, routing

protocols have to be designed to tackle the challenges of heterogeneous environments in many BSN

applications. To solve this problem, many BSN platforms and frameworks have been proposed for

medical devices from different vendors to work together, such as DexterNet (Kuryloski et al., 2009)

and SPINE (Gravina et al., 2010).

2.1.2.6 Quality of Service

Real time life-critical BSN applications, such as Electrocardiogram (ECG) sensing, are both data loss

sensitive and time critical, and the Quality of Service (QoS) requirements of such applications must be

met (Liang and Balasingham, 2007; Zang and Li, 2017). However, implant sensor nodes have limited

memory and computational capability, which means routing protocols have to consider QoS measures

such as retransmission and error correction strategies without inducing additional computational load

on the sensor nodes.

2.2 Security for Body Sensor Network

2.2.1 Security Requirements

Security requirements for the IoT-based healthcare systems are similar to typical IoT-based infras-

tructures, therefore, security requirements, including the Confidentiality-Integrity-Availability (CIA)

principle (Samonas and Coss, 2014), for wireless communications and information security must be
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met. IoT-based healthcare systems have many additional security requirements, such as device locali-

sation (Huang, Zhou, et al., 2016) and self-healing (Lo, Panousopoulou, et al., 2014a), which can also

contribute to the security of the systems. The functionalities of each tier of the IoT-based healthcare

systems are different, which means each tier requires different security measures to be in place.

2.2.1.1 Data Level

Confidentiality Storage of patient health data must comply with legal and ethical privacy regula-

tions, such as GDPR, in which only authorised individuals can have access to those data. To prevent

breaches of data, adequate measures must be adopted to ensure the confidentiality of the health data

associated with individual patients. The importance of such measures cannot be overemphasised,

especially as, stolen by cyber criminals, the data could be used for malicious purposes, causing the

patient to suffer not from only privacy violation, but also possible financial and reputational damages

(Ismail, 2018).

Integrity The purpose of the data integrity requirement is to ensure that the data arriving at the

intended destination have not been compromised in any way during the wireless transmission (Pearl-

man, 2019). Attackers could gain access to and modify patient data by taking advantage of the broad-

cast characteristic of the wireless network, which could lead to severe implications in life-threatening

cases. To guarantee that the data have not been compromised, the capacity to detect potential unau-

thorised distortions or manipulations is critical. Therefore, appropriate mechanisms of data integrity

must be implemented in the system to prevent alteration of transferred data by network attacks such

as Man-in-the-Middle (Publico, 2017), viruses and malware (Swain, 2009).

Availability Services and data must be accessible when they are required to the authorised users.

Such services and data, provided by the medical sensor nodes, will become inaccessible if an attacker

captures or compromises a sensor node. Any missing data or services could lead to life threatening

incidents, such as failing to provide prompt care in the case of a heart attack. Therefore, to minimise

the risk of availability loss, the healthcare applications must be in the always-on operation to ensure
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data availability, which is regulated by GDPR (Bienkowski, 2018).

2.2.1.2 Sensor Level

The security and privacy of the sensors in the sensor level are the most challenging components in the

3-tier IoT-based healthcare system, due to the lack of computational capability and power constraint of

the medical devices and sensors (Al Ameen, Liu, and Kwak, 2012). The trend in sensor level security

is to put most of the computations in the personal server level instead, and the security measures are

required to be light-weight and less communication overheads in the sensor level.

Channel encryption Wireless channel encryption is essential to the confidentiality and integrity

in the Confidentiality-Integrity-Availability (CIA) principle (Samonas and Coss, 2014). Encryption

ensures that the wireless transmitted data cannot be comprehended by eavesdroppers without valid

decryption keys. It also prevents attackers to alter the encrypted data without being noticed by the

receivers ensuring the integrity of the patients’ personal data. The encryption of data can be im-

plemented in the network layer, such as (Raza, Duquennoy, et al., 2011), an end-to-end IPv6 over

Low-Power Wireless Personal Area Networks (6LoWPAN) extension over Internet Protocol Security

Framework (IPsec); in the transport layer, such as in (Raza, Trabalza, and Voigt, 2012), an end-to-end

6LoWPAN extension over Datagram Transport Layer Security (DTLS) for Constrained Application

Protocol (CoAP); and in the application layer, including the biometric-based methods (Bao, He, et al.,

2013; Schurmann et al., 2017; Xu, Revadigar, et al., 2016).

Tamper-proof hardware Medical and healthcare devices, especially ambient sensors, can be stolen

physically, which leads to security information, such as keys, being exposed to attackers. Further-

more, the stolen devices can be reprogrammed by attackers and redeployed to the system, which

enable the attacker to listen to communications in the network without being noticed (Nilges, 2015).

Therefore, physical theft of medical devices is a severe security threat and must be addressed in the

IoT-based healthcare systems. One of the solutions to such problems is to use tamper-proof hardware

or trusted platform model (Morris, 2011). Medical devices in the systems should at least have tamper
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resistant integrated circuits, preventing codes loaded on the devices being read by third parties once

being deployed.

Localisation Researchers are focusing on two types of sensor localisation, on-body sensor position

and sensor’s/patient’s location in an indoor environment. The former sensor localisation is typically

designed to identify whether the sensors are worn at the desired positions, for instance, on the wrist.

Such on-body sensor position identification is of vital importance for applications such as activity

recognition (Saeedi et al., 2014). The latter sensor localisation, also known as Location of Things

(LoT) (Shit et al., 2018), is designed to locate the sensor and the patient wearing the sensor in a

room or in a building. Some of the techniques for LoT are centroid (Chen, Huang, et al., 2008),

connectivity (Liu, Wang, et al., 2005), cluster (Li and Hu, 2003), and path planning (Koutsonikolas,

Das, and Hu, 2007). In addition, due to the nature of the IoT-based healthcare systems, medical

devices may join and disconnect from the network very frequently. Therefore, a real-time intrusion

detection measure is required, if the network allows its sensors to leave and rejoin irregularly. An

example of such measure is SVELTE (Raza, Wallgren, and Voigt, 2013), a 6LoWPAN-based intrusion

detection method which can be implemented on the personal server level, reporting malicious nodes

to the network administrators.

Self-healing Self-healing, one the seven self-* properties of Autonomic Computing (Kephart and

Chess, 2003) and Autonomic Sensing (Lo, Panousopoulou, et al., 2014b), is of great importance in the

IoT-based healthcare systems, as medical devices shall operate normally, when the network is under

attacked. To achieve self-healing, an IoT system should be able to detect and diagnose the attacks,

and apply corresponding security mechanisms (Stankovic, 2014) with minimal human intervention.

Self-healing methods deployed should also be light-weight, in terms of communication overheads

to the network and computational complexity to the medical and healthcare devices. An example

of self-healing architecture for IoT is proposed in (Almeida, Ribeiro, and Moreno, 2015), where a

dendritic cells algorithm is applied in the network to detect network attacks.
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Over-the-air programming Over-the-air (OTA) programming or updating (Hoffman, 2003) has

become a popular method to update an IoT system with a large number of sensor nodes, which raises

security concerns, such as malicious sensor nodes listening to updates and forging identities into the

network (Califano, 2018). OTA can be part of the self-healing mechanism, updating security rules for

the network instantly. To implement OTA programming properly, security measures must be made

to prevent OTA updates being exploited by attackers. An example solution is one-time programs

(Goldwasser, Kalai, and Rothblum, 2008), which is a computational paradigm where the program

sent to the receiver can only be executed once by the targeted sensor node and then self-destructs.

Forward and Backward Compatibility This is also a key requirement in real-time healthcare ap-

plications where faulty medical sensors are replaced promptly with new ones. Forward compatibility

is characterised by the fact that new messages cannot be read by existing medical sensors, if their

transmission occurs after the sensors have left the network. Conversely, in backward compatibil-

ity, messages that have been transmitted earlier cannot be read by a sensor just joined the network

(Spacey, 2016).

2.2.1.3 Personal Server Level

As patients’ data is often stored and aggregated in the personal server level before being forwarded

to the medical servers in the IoT-based healthcare systems (Bromwich and Bromwich, 2016; Murgia,

2017), it is essential to ensure that the data is well protected while on the personal servers. Generally,

two types of authentication schemes must be deployed to provide security and privacy in the personal

server level, namely device/sensor authentication and user/patient authentication.

Device authentication A personal server (i.e. a smart phone) shall perform authentication before

accepting data sent from the medical devices and sensors. A device authentication scheme should

be able to establish secured/encrypted communications for data confidentiality and integrity (Crilly

and Muthukkumarasamy, 2010). False information from malicious devices about patients’ physical

conditions could have severe negative impacts on the clinical diagnosis and care decisions, therefore,
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device authentication must be implemented in all BSN-based healthcare systems. Device authentica-

tion is mutual between personal servers and sensors, but the majority of the computation should be

performed on the personal servers, as they often have more computational capability than the medical

devices and sensors.

User authentication The data stored either temporarily or permanently on the personal servers

should only be accessed by the patients and/or authorised medical staff such as caregivers, there-

fore, effective user/patient authentication schemes are required (Davis, 2018; Kogetsu, Ogishima,

and Kato, 2018). Personal servers in the BSN-based healthcare systems should also support emer-

gency access of the data, if the patients are in critical conditions, such as having a stroke or a seizure.

The user authentication schemes are required to be robust and protected against attackers. A popular

solution to user authentication in the personal server level is the use of biometrics, which is particu-

larly applicable in the IoT-based healthcare systems, as most of the biometrics can be easily collected

from medical and healthcare devices (Kogetsu, Ogishima, and Kato, 2018; Orme, 2019).

2.2.1.4 Medical Server Level

Two of the most important requirements on the security and privacy of patients’ data in the medical

server level are: only authorised devices and personnel have access to the data; and the data itself

must be encrypted at all time when stored in the databases (Azeez and Van der Vyver, 2018). Failure

to meet either requirement could potentially lead to patients’ personal health data being leaked, and

severe penalty by ICO, enforced by GDPR (Pratley, 2019). With more and more paper-based medical

records being replaced by Electronic Medical Record (EMR) or Electronic Health Record (EHR), se-

curity concerns with the medical servers storing EMRs and EHRs are growing (Preidt, 2018; Raposo,

2015). Over 230 millions data breaches have benn reported in the healthcare, medical providers and

medical insurance services since 2005 (Privacyrights, 2018).

Access control To ensure only authorised devices and personnel have access to the medical servers,

effective and selective access control schemes must be deployed. It is not feasible to ask permission
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or consent of a patient every time a data access request is made; therefore, the service providers of

the medical servers should provide selective access control for patients, i.e. allowing them to choose

which data can be shared without permissions and which third parties, such as companies (Quinn,

2016) and researchers (Welpton, 2018), can gain access to their data. A popular solution of selective

access control is Attribute-Based Encryption (ABE) (Goyal et al., 2006), which is categorised as

public-key cryptography where the secret keys are generated from attributes (i.e. received signal

strength, location, and channel frequency). Access trees in the ABE solutions can be selectively

constructed with a set of attributes, so that only a set of attributes that satisfies the tree will be granted

access to the encrypted data.

Medical servers should also be able to update the access control policy efficiently. Many cloud secu-

rity measures require the change of encryption keys when updating access control policy (Murugesan

and Bojanova, 2016), which requires decryption and re-encryption of the data in the medical servers

and in the personal servers. Therefore, a scalable and less redundant policy update scheme should be

deployed to reduce or eliminate the computational overheads in cryptography. A popular solution is

the 2-layer over-encryption (Di Vimercati et al., 2007), where policy updates can be made in Surface

Encryption Layer (SEL) while a further encryption is imposed by the data owners in Base Encryption

Layer (BEL). Furthermore, emergency access control should also be supported in the medical servers,

either by disabling security measures over patient’s data or by granting a third-party emergency ac-

cess. For example, Proxy Re-Encryption (PRE) (Blaze, Bleumer, and Strauss, 1998) can be used to

convert data encrypted by a patients’ public key into encrypted data, which can be decrypted by a

third party without revealing patients’ data.

Key Management The development of secure applications depends on key management protocols,

whose goal is to implement and distribute cryptographic keys to sensor nodes (Xiao et al., 2007).

Trusted server, key pre-distribution, and self-enforcing protocols are the three major categories of key

management protocols (Kumar and Mukesh, 2013). Trusted server protocols achieve key agreement

within the network based on a trusted base station. When there is no restriction on resource gateways,

these types of protocols are deemed appropriate for hierarchical networks. However, the trusted

server protocols are inadequate for critical applications like those related to healthcare because a
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whole network failure could paralyse a trusted server in a real-time environment (Ng, Sim, and Tan,

2006).

Key pre-distribution protocols rely on symmetric key cryptography to store secret keys within the net-

work prior to its deployment. These types of protocols, such as (Chakrabarti, Maitra, and Roy, 2006;

Du et al., 2005; Liu, Wei, and Liu, 2009; Qin et al., 2014; Subash and Divya, 2011), are more appro-

priate for resource-limited sensor networks because their implementation is straightforward and are

not very complex computationally. Self-enforcing protocols are based on public-key infrastructure

and are advantageous because they ensure robust security, scalability, and memory efficiency. Modi-

fications must be made to the public key algorithms, such as RSA (Jonsson and Kaliski, 2003) to be

optimised for wireless networks in terms of the computations (Gulen, Alkhodary, and Baktir, 2019).

In addition, it has been demonstrated by some that protocols based on Elliptic Curve Cryptography

(ECC) are appropriate for resource-limited networks (Ng, Sim, and Tan, 2006).

Trust Management Trust means that there is a two-way association between two reliable nodes,

such as a sensor node and a network coordinator, that share data with one another (Rosenblatt, 2011).

Similarly, one study (Boukerche and Ren, 2009) explained trust as the extent to which a node is

secured and dependable when it interacts with another node. Distributed collaboration between the

nodes of a network must be in place for wireless healthcare applications. In this regard, the level of

trust of a node can be determined with trust management systems, which are important particularly

as the trust assessment of a node’s behaviour, such as the delivery and quality of data, is essential in

healthcare applications (Kumar and Lee, 2012). Nevertheless, to clarify how trustworthy the various

nodes are, WBANs are required to implement trust management for real-time healthcare applications

(Meng et al., 2018).

Resistance to DoS Attacks Table 2.1 lists all the Denial of Service (DoS) attacks against WBAN

health care applications (DHS, 2014; Kumar et al., 2014). Attackers can use high-energy signals to

stop the network from operating properly, such as jamming attacks (Sufyan, Saqib, and Zia, 2013)

in the physical layer. The whole network communication could be blocked or sufficiently degraded

if the jamming signal is sufficiently strong (Liu, 2012). Attackers may also cause deferrals in com-
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munication by breaching the medium access control protocol (Hamza et al., 2016). There are many

approaches proposed in safeguarding and self-repairing the network against such attacks, such as eva-

sion defence (Xu, Wood, et al., 2004) and competition strategies (Noubir and Lin, 2003), but they are

all at early stage of research (Xu, Ma, et al., 2006). Therefore, more research is required to develop

secure DoS attack counteracting strategies for real-time healthcare applications based on wireless

body area networks, due to the mobile nature of these applications.

Table 2.1: DoS attacks at each routing protocol layer

Layers DoS attacks

Physical layer
Jamming
Node tampering

MAC layer
Collision and unfairness
Denial of sleep

Network layer

Spoofing,
replaying, and wormhole
Homing
Hello floods

Transport layer
Flooding
De-synchronisation

Application layer
Overwhelming sensors
Reprogramming attacks
Route-based DoS

2.2.2 Security Threats

With the internet and wireless connectivity, the new generation of medical devices are facing new

challenges in security threats (Al Ameen, Liu, and Kwak, 2012). Instead of medical equipment

securely installed in hospital wards or laboratories, the new generation of medical and healthcare

devices are worn by or implanted in patients such that they can be monitored in their own home and

carry around with them. The majority of the new medical devices have wireless connectivity and can

be connected seamlessly with smartphones. These internet connected devices could suffer the same

security threats as other IoT devices. The devices can be captured by attackers and important user

and personal health information can be exposed to the adversary. Their wireless communication can

be attacked by other common IoT attacks, such as malicious code injection (Yang, He, et al., 2015),

false data injection (Yang, Lin, Yu, et al., 2015), replay attacks (Mo and Sinopoli, 2009; Zhao and Ge,
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2013), crypt-analysis attacks (Zhang, Gu, et al., 2010), side channel attacks (Yang, Wu, and Karri,

2004), eavesdropping (Zhao, Yu, et al., 2016), interference, sleep deprivation (Andrea, Chrysostomou,

and Hadjichristofi, 2015; Sarkar and Roy, 2011), Denial of Service (DoS) attacks (Maheswari et al.,

2016; Mahmoud et al., 2015), spoofing attacks (Andrea, Chrysostomou, and Hadjichristofi, 2015),

sinkhole attacks (Soni, Modi, and Chaudhri, 2013), wormhole attacks (Lee, Clark, et al., 2013),

man in the middle attack (Padhy, Patra, and Satapathy, 2011), Sybil attacks (Newsome et al., 2004),

malicious virus/worms, etc. Much research has been conducted in defending IoT and BSN devices,

and many security schemes, such as the RAEED protocol proposed by Maheswari et al. (2016) can

be adopted in health IoT device communication to avoid DoS attacks.

As all medical devices have to handle personal and physiological data of the users, the impact of

security attacks on the users could be more direct and severe compared to other IoT systems. Wireless

connected implantable devices are designed to manage cardiac functions, insulin functions, nerve

stimulation, etc. and equipped with electrodes, pumps and other actuators. Malicious attacks on such

devices could be fatal. As most medical devices are only equipped with minimal security protection,

these devices can easily be hacked (Rahman, 2018). For example, Radcliffe demonstrated that he

can hack into an insulin pump 150 feet away and disable the device or instruct the device to inject

excessive amount of insulin (Kaplan, 2011). Cyber-security has become an important issue for the

Food and Drug Administration (FDA) in the United States, and the FDA has issued recommendations

to medical device manufacturers to review their cyber-security practices (Klonoff, 2015).

There are always new approaches and methods to attack computer devices, and computers have to

be constantly updated with patches and anti-virus libraries to protect themselves against malicious

attacks. However, unlike computer networks where patches or virus update can easily be injected

into the systems, wearable and implantable medical devices often do not have sufficient network

bandwidth and resources to update their firmware regularly (Olavsrud, 2016). The majority of these

health devices cannot be shut down and wait for security experts to find the anti-virus or patches to

recover the devices after the attacks. Given that security attacks can be considered as unavoidable, in

addition to introducing security protection mechanisms in IoT health devices, self-recovery or self-

protection schemes have to be designed in the medical devices to enable them to recover themselves,

maintain essential functions, and protect stored information when the devices are under attack (Cole,
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Carlton, and Trinh, 2017).

2.2.3 Security Schemes

In this section, a few main security schemes applicable for wearable and implantable medical devices

are discussed. Although the majority of the security schemes are designed for cloud computing or IoT

devices, such as (Choudhury et al., 2011; Wang, Wang, et al., 2010), many of such security schemes

can potentially be applied for the new generation of medical and healthcare devices in the era of IoT.

2.2.3.1 Biometric Authentication

Different types of authentication and factors can be used to confirm identity. Facts can be knowledge

factors, such as user’s secrets, ownership factors, etc., which are verifiable objects that the user pos-

sesses, or inherent factors, which are characteristics of the user (Turner, 2016). Most commercial IoT

devices currently available for monitoring health and well-being, such as smartwatches, use numeric

or alphanumeric passwords for authentication, instead of biometric authentication (Looper, 2019).

The use of near-field communication technologies, such as radio frequency identification (RFID)

tags, to identify devices and users is also discussed in some surveys (He and Zeadally, 2015; Khoo,

2011).

For healthcare IoT, researchers are exploring the use of biometric inherent factors that are unique to

the user, such as fingerprints (Bohan et al., 2013), ECG (Miao et al., 2009a), motion (Xu, Revadigar,

et al., 2016), voice (Monrose et al., 2000), and EEG (Huang, Hu, et al., 2019) as it is assumed that

these factors are more challenging for an attacker to compromise, especially in comparison to the

short passwords commonly used in smartwatches. Such biometric-based security schemes in BSN

should meet the requirements stated in Table. 2.2.

Biometric-based security systems often perform two types of actions, namely identification and ver-

ification. Identification is the matching of a sample against all the samples in the database, whereas,

verification is the matching of a sample against one person’s samples in the database (Goode, 2018).
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Table 2.2: Characteristics of biometric traits and the requirements of biometric authentication
schemes (Guennouni, Mansouri, and Ahaitouf, 2019)

Characteristics Explanations
Universal All potential users can use the system
Unique Each user must be differentiated

Measurable The system must be able to collect/measure the biometrics
Acceptable The sampling process must be user-friendly

Circumvention The system must prevent attackers bypassing itself

Fig. 2.2 is a block diagram of general biometric authentication systems, which is retrieved from

(Dharavath, Talukdar, and Laskar, 2013).

As it can be seen from Fig. 2.2, there are two phases, enrolment and matching, in the biometric

authentication systems. In the enrolment phase, subjects register their biometric samples or a fea-

ture vector extracted from their samples into the database. The recorded biometric samples will be

processed into a template or a feature vector and compared against the stored templates or feature

vectors. The new template or feature vector will be discarded if it matches with any existing ones

in the database. If a match is not found, the new template or feature vector will be stored into the

database. In the matching phase, similar process is performed. The subject will be authenticated only

if his/her sample matches one or many templates or feature vectors of the claimed identity. If not, the

authentication attempt will be rejected by the system. It’s worth mentioning that the person must be

physically present in front of the biometric authentication systems; otherwise, another person can use

any pre-recorded samples to bypass the system.

To assess the performance of biometric authentication systems, some likelihood-based performance

metrics, as listed in Table. 2.3, are commonly used (Thakkar, 2017). A trade-off will be made between

False Acceptance Rate (FAR) and False Rejection Rate (FRR) by choosing a decision threshold value

t for the biometric authentication systems, as shown in Fig. 2.3 (a). If the matching score s is larger or

equal than t, the authentication is considered to be successful. If s is smaller than t, the authentication

is failed and the person is considered to be an impostor. The higher the decision threshold t is, the

more secure the biometric authentication systems are, and t is often chosen based on the security

requirement of the applications.

Behavioural biometric traits, including signature, voice, gait, ECG, Photoplethysmographic (PPG),
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Figure 2.2: Block diagram of general biometric authentication systems (Dharavath, Talukdar, and
Laskar, 2013)

(a) Probability against matching score (b) ROC curve

Figure 2.3: Trade-off between FRR and FAR (Prabhakar, Pankanti, and Jain, 2003)
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Table 2.3: Common performance metrics in biometric authentication systems (Thakkar, 2017)

Performance Metrics Acronym Explanations
Failure-to-Enrol Rate FTE It is the percentage of the subjects who were not

able to register their biometrics after several at-
tempts

Failure-To-Acquire Rate FTA It is the probability where the system is not able to
acquire data or extract template of subjects

False Acceptance Rate FAR It is the probability where the system matches the
testing sample to non-matching templates

False Rejection Rate FRR It is the probability where the system fails to match
the testing sample to the matching templates

Equal Error Rate EER It is the probability where both FFR and FAR are
equal in the ROC curve

Graphical Plot
Receiver Operating Characteristic ROC FAR against FRR

and keystrokes, can be used in both authentication applications. The strengths and weaknesses of

those behavioural biometric traits are summarised in Table. 2.4 (Yampolskiy and Govindaraju, 2008).

Behavioural biometric traits can often be captured with low-cost hardware, requiring only algorithms

for feature extraction, which makes behavioural biometric based security systems simpler and less

costly. Signature and keystroke dynamics are not applicable to BSN sensors, due to the size of the

sampling hardware, such as keypad and electronic signature pad. However, they can be used on

mobile phones, which are often the coordinators of BSNs.

On the other hand, a large number of physical biometric traits of humans can be used for a variety

of biometric authentication applications. In the recent years, the majority of physical biometric traits

have been exploited in biometric security systems, including fingerprint (Maltoni et al., 2009), palm

print (Han et al., 2003), face (Zhao, Chellappa, et al., 2003), retina/iris (Wildes, 1997), hand geometry

(Ross, Jain, and Pankati, 1999), ear shape (Yan and Bowyer, 2007), body odour (Shu, Liu, and Fang,

2014), vein pattern (Watanabe et al., 2005), and DNA (Zayaraz, Vijayalakshmi, and Jagadiswary,

2009), as summarised in Table. 2.5. Every physical biometric trait has its own application scenarios

regarding to security requirement and hardware availability. Therefore, no individual biometric sys-

tem can perform well in all scenarios. In order to achieve a higher level of security, multi-biometric

fusion has drawn much attention. A few biometric traits have selected and discussed in details in the

following sections.
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Table 2.4: Common behavioural biometric traits (Yampolskiy and Govindaraju, 2008)

Biometric
traits

Strengths Weaknesses

Signature Can be captured by either
a touch pad or a camera

Lack of long-term reliability and accuracy; signatures
can be easily imitated

Voice Only low-cost sensors,
such as a microphone, are
required

Changes, due to emotion, sick, or misspoken of pass
phrase, in the voice degrade the performance of the
voice-based biometric systems

Gait Easily accessible; can be
captured by either wear-
able sensors or cameras

Changes, due to injury, ageing, or on-purpose, in the
gait degrade the performance of the gait-based bio-
metric systems

ECG/PPG Easily accessible by im-
planted or on-body sensors

Changes, due to cardiac diseases, activities, and emo-
tion, in the ECG/PPG degrade the performance of the
ECG/PPG-based biometric systems

Keystroke Can be captured without
user intervention

Require keystroke recorder in either mobile devices
and computers; it depends on either a keyboard or a
touch screen is used

Face Human identifies others mainly by observing the visual features on their faces. Due to the

complexity in quantifying facial features, face recognition has not been widely adopted for security

applications until recently. Face recognition has been adopted by smartphones for user authentication.

Bommagani, Valenti, and Ross (2014) proposed a face recognition system for mobile phone user

identification with a cloud based framework. To improve the efficiency in face recognition, Osadchy

et al. (2013) proposed a face identification system which divides a face image into a set of patches

and identify the user by matching the patches with the patches of authorised users’ face images. Face

recognition has been extended for IoT applications, for instance, Hu, Ning, et al. (2017) proposed a

face identification framework using fog computing for IoT applications.

Fingerprint Fingerprint is the most well-developed person identification technique. The concept

of using fingerprint was first proposed by Faulds (1880), and then widely adopted in forensic system

of the Scotland Yard and other police forces since 1901 (Wojciechowska, Choras, and Kozik, 2017).

With the recent advances in cloud and mobile computing and services, fingerprints have been adopted

for user authentication. Yang, Xiong, et al. (2011) proposed a fingerprint system for authenticating

cloud service users. Rassan and Al Shaher (2013) proposed a method of using mobile images of

fingerprints for authentication. In (Prakash and Venkatram, 2016), fingerprint recognition is chosen
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for authentication over voice or iris recognition as the technology is more reliable and can be im-

plemented at a lower cost. A detector (Menotti et al., 2015) designed to identify fake iris, face, and

fingerprint attacks provides further evidence to support the use of fingerprint recognition by showing

that the current state-of-the-art is able to detect fingerprint spoofing more consistently than iris or face

spoofing.

Heart rhythm or Electrocardiogram (ECG) Bao, Poon, et al. (2008) proposed an ECG-based

BSN security scheme using grouped Inter-pulse Interval (IPI) of heartbeats as the source for key gen-

eration, which requires longer processing time comparing with only using individual IPIs. Bao, He,

et al. (2013) further improved the scheme by using error correcting codes. Zheng, Fang, Shankaran,

Orgun, Zhou, et al. (2017) uses multiple fiducial points of ECG signals instead of only one to im-

prove key generation efficiency. The experiment results indicate that the generated keys process high

randomness, but it does not show the performance of key matching amongst sensors. Karimian et al.

(2017) proposed Interval Optimised Mapping Bit Allocation (IOMBA), which is a framework that

takes consideration of statistical information of the population, the individual users, and trade off

parameters in terms of binary key reliability and entropy. Chizari and Lupu (2019) proposed a new

randomness extraction method, Martingale Randomness Extraction IPI of ECG signals, which largely

increased randomness of the extracted binary sequences but it requires longer time for the extraction.

Iris and retina It is well established that everyone has a different vascular pattern in our retina, and

retina recognition is found to be very accurate and difficult to forge, but due to the intrusive method

of data acquisition, retina recognition has not been widely adopted (Borgen, Bours, and Wolthusen,

2008). To capture the vascular pattern in our retina, a retina scanner has to illuminate the retina

through the pupil, and the user’s head has to be fixed on a chin rest or something similar to minimise

motion artefacts. Instead of retina recognition, recent research has proposed the use of iris pattern

recognition. Comparing to retinal pattern, iris images can be easily acquired and which enable large

scale user authentication and deployment. Kumar and Passi (2010) proposed the use of iris images for

user identification. Barra et al. (2015) proposed the use of mobile devices for iris recognition based

on spatial histograms from the iris images.
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Motion and Gait Compare to iris and fingerprint, gait is a relatively new biometric measurement.

Due to the difference in bio-mechanical structure and phenotypes, everyone walks differently, and

by capturing the gait parameters, individual can be identified (Gafurov, Helkala, and Sondrol, 2006).

Apart from user authentication, device-to-device authentication can also be achieved by using gait

parameters, as wearable or implantable inertial sensors can capture the same gait parameters when

the user walks. A study carried out by Muaaz and Mayrhofer (2017) demonstrates that a person’s

gait inertial signals are very difficult to imitate, because impersonators often lose their own regularity

between steps when mimicking legitimate users. Zhang, Pan, et al. (2015) presented an inertial sensor

based gait recognition study on a large gait dataset of 175 subjects, showing the feasibility of gait

biometrics to be used on a large population. A fuzzy commitment based gait authentication was

proposed by Hoang, Choi, and Nguyen (2015) for encrypting gait templates in the dataset for privacy

preservation against potential data breach. Despite open problems such as gait changes due to ageing

and low performance on false agreement rate compared to fingerprint and iris, gait biometric holds

great potential in cryptographic applications due to its uniqueness, freshness, and availability.

Voice Instead of using pin numbers, banks have started to use voice recognition for user authenti-

cation in their telephone banking services (HSBC, 2017). Due to the structural difference in vocal

chords, trachea, nose, teeth and accentuates sounds, one’s voice can be as distinctive as his/her finger-

print (Khitrov, 2013). Unlike other biometric, voice print does not require physical contact with the

scanner/reader and can be taken remotely. Voice authentication methods have been extended for IoT

systems. For instance, Gong et al. (2017) proposed a proximity-based user authentication method for

access control of IoT devices. Voice identification has also been integrated with other biometric mea-

surement devices to provide secured authentication. For example, Spanakis et al. (2016) proposed the

SpeechXRays system which uses voice acoustics analysis and audio-visual identity to authenticate

the users.

EEG Many wearable EEG sensors have been developed over the years, and EEG biometrics has

been studied over the last few decades (Jayarathne, Cohen, and Amarakeerthi, 2017). EEG biometrics

is very rich in discriminative information or features in both time and frequency domains. Moreover,
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Table 2.5: Common physical biometric traits

Biometric traits Strengths Weaknesses
Fingerprint (Maltoni et
al., 2009)

Easily accessible Wet and wrinkled fingers degrade the
performance of fingerprint-based bio-
metric systems

Palm print (Han et al.,
2003)

Easily accessible Wet and wrinkled palms degrade the
performance of fingerprint-based bio-
metric systems; the size of a palm
print template is much larger than a
fingerprint template, requiring larger
databases; larger size optical readers are
required, which is not feasible to be
used in mobile phones or IoT devices

Face (Zhao, Chellappa,
et al., 2003)

Easily accessible Require high quality cameras; variation
in lights and facial expressions can af-
fect the performance of face-based bio-
metric systems; accessories and masks
can also affect the performance

Retina/iris (Wildes,
1997)

Easily accessible, blood ves-
sel pattern within a retina pro-
vides a large set of feature
vectors

Require high precision retinal scanners;
sunglasses and lens can degrade the per-
formance of retina-based biometric sys-
tems; not applicable to WBANs/BSNs

Hand geometry (Ross,
Jain, and Pankati, 1999)

Easily accessible, an ad-
equate amount of features
available

Require specific hardware and soft-
ware, which has not been widely
commercialised yet; not applicable to
WBANs/BSNs

Ear shape (Yan and
Bowyer, 2007)

Easily accessible Ear can be easily covered by hair, hats,
and glasses, affecting the performance
of ear-based biometric systems

Body odour (Shu, Liu,
and Fang, 2014)

Easily accessible; can be eas-
ily captured by on-body sen-
sor nodes in BSNs

Deodorants can alter natural body
odour, affecting the performance; only a
small amount of studies on body odour
recognition available

Vein pattern (Watanabe
et al., 2005)

Provide a large amount of
features, thus, high level of
security

Require infrared light based special
cameras; not very reliable due to the
complexity in vein patterns

DNA (Zayaraz, Vijay-
alakshmi, and Jagadis-
wary, 2009)

Provide a high recognition
rate; can be easily obtained
via saliva, hair, or blood

Sample processing is complex and
not automatic; not applicable to
WBANs/BSNs
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EEG biometrics has both unique/time-varying patterns, which may occur when subject is watching

an unique picture (visual stimuli), as well as permanent patterns. Traditionally, researchers exploited

feature extraction techniques, including Power Spectrum Density (PSD) (Marcel and Millan, 2007),

Auto Regressive (AR) coefficients (Paranjape et al., 2001), and Wavelet Transform (Yang and Deravi,

2013), and manually designed features for subject recognition. Recently, deep learning approaches

have also been applied to EEG biometrics for subject recognition, identification, and authentication

(Arnau-Gonzalez et al., 2017; Mao, Yao, and Huang, 2017; Schons et al., 2017). As stated in (Gui et

al., 2015), a person’s EEG signals varies from that of another person due to different brain structures,

memory, mood, stress, and mental state, mimicking an individual’s EEG signals is very difficult to

achieve with current technologies (Marcel and Millan, 2007).

Biometrics has yet to be widely adopted for user authentication in medical and healthcare devices.

Given the fact that most medical devices capture physiological measurements of the user, the unique

and individual characteristics of users’ physiology can be used as biometric to enable authentication

and secure communication. For example, a real-time biometric key authentication can be carried

out by comparing physiological measurements of the patient captured by wearable devices with the

signals obtained by implanted sensors.

In theory, this authentication is only available with physical access and contact to the patient. One

example of this is authentication via comparison of ECG signals obtained by electrodes attached

to a pacemaker programmer with the ECG signal measured by the pacemaker (Rostami, Juels, and

Koushanfar, 2013). The programmer attempts to authenticate itself by transmitting the externally

measured ECG data to the implant. The implant subsequently compares the received ECG signal

with its own recordings to authenticate the programmer.

2.2.3.2 Cryptography

Encryption/Decryption There are generally two types of encryption: symmetric, such as AES

(Rouse, 2017), Blowfish DES (Nie and Zhang, 2009), and asymmetric where an identical key is

used in symmetric encryption and a pair of public and private keys are used in asymmetric ciphers

(Russell and Van Duren, 2016). Due to the limited computational resources, symmetric key cipher
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is commonly used in IoT devices. Advanced Encryption Standard (AES) (Rouse, 2017) is the most

popular symmetric key cipher and it has been widely adopted in IoT and Wireless Sensor Network

(WSN) (Zhang, Heys, and Li, 2010). Many IoT wireless network chipset has already hardware AES

encryption built-in, such as the Nordic BLE nRF52 series (Nordic, 2019), and, TI Zigbee wireless

micro-controller series (TI, 2017), which all have built-in 128-bit or 256-bit AES.

Compared to symmetric encryption, asymmetric ciphers provide better security but require signifi-

cantly more computational power. Wander et al. (2005) have shown that it is viable to implement

public-key cryptography on an 8-bit low power Atmel ATmega128L platform, and Doukas et al.

(2012) proposed the use of IoT gateways for public key encryption. However, most IoT devices have

yet to adopt the use of asymmetric ciphers. Medical and healthcare device development are mainly

following the IoT development and adopting the established encryption and decryption schemes into

their devices.

Due to the limited computational capabilities of medical and healthcare devices, any data encryption

and decryption solutions proposed for securing such devices should be light-weighted with minimal

overhead to the communication channels. A popular approach is to modify existing light-weight

protocols, such as 6LoWPAN, NFC, and RFID, to support secure communication for medical and

healthcare devices. For example, an IoT architecture for securing medical devices is proposed in

(Valera, Zamora, and Skarmeta, 2010), where the communication to and from medical devices is

secured by security techniques, such as symmetric ciphers, and cryptographic SIM cards. Another

example of existing network protocol modification is Lithe (Raza, Shafagh, et al., 2013), an integra-

tion of DTLS and CoAP for IoT applications. Lithe has been proven to be able to significantly reduce

the power consumption, packet size, and transmission and response time of the IoT networks.

Random Number Generator One of the fundamental requirement for cryptography is to have a

True Random Number Generator (TRNG) for data encryption (Knight, 2012). Random numbers are

often generated by a Pseudo-Random Number Generator (PRNG) with a random seed in modern

computers (Hoffman, 2019). PRNGs are deterministic approaches implemented in software. The

PRNGs with the same seed will always generate the same sequence of random numbers. If the seed
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is not generated from a true random source, the PRNGs can be deduced by potential attackers.

For instance, Goldberg and Wagner (1996) found that Netscape’s random number generator seed was

derived from the process and its parent process IDs and the time of day, which could be computed

easily by an attacker. Physical processes or phenomena are often adopted as the random sources.

Thermal, atmospheric noise or bit error rate have been proposed as the source of random data. Such

TRNG can be formatted as follows (Lo Re, Milazzo, and Ortolani, 2015a):

rt = f (mt−w,mt−w+1, ...,mt)

where mt is the physical phenomenon (temperature, noise, etc.) at time t, w is the window size, and rt

is the random number generated. For instance, Intel’s RNG is based on sampling the thermal noise in

undriven resistors and noise is expected to be coupled with other environmental noise, such as power

supply fluctuations (Jun and Kocher, 1999), etc. Fukushima et al. (2014) proposed a TRNG based

on spintronics where binary random bits are generated by using the stochastic nature of spin-transfer-

torque switching in magnetic tunnel junctions. Such TRNG requires post processing to ensure that the

random numbers are widely distributed, but due to the deterministic design of conventional hardware,

the implementation of TRNG is often slow.

Recent advances in quantum mechanics have led to the introduction of new Quantum Random Num-

ber Generator (QRNG) (Jennewein et al., 2000). QRNG exploits the randomness of quantum mea-

surements. Most of the QRNG are developed as photonic system using high quality optical com-

ponents, such as the single photon systems proposed in (Ma, Xie, and Wu, 2005; Nie, Zhang, et

al., 2014), where RNG is generated based on the arrival time between single photons, the homo-

dyne measurement approach proposed by Gabriel et al. (2010), where random numbers are generated

based on the purity of a continuous-variable quantum vacuum state, and the amplified spontaneous

emission technique proposed by Abellan et al. (2014), where random numbers are generated by the

interferometric detection of phase diffusion in a pulsed laser diode. On the other hand, instead of

using expensive physics instruments, Sanguinetti et al. (2014) proposed the use of conventional mo-

bile phone camera to generate QRNG with a standard LED as the light source. Based on the quantum

uncertainty of the light emitted, true random numbers can be generated using a low cost mobile phone
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camera. Although some of the QRNG approaches can potentially be implemented in the size of a chip

(Ma, Yuan, et al., 2016), QRNG is still yet to be implemented in any chipset. Given that QRNG can

generate true random numbers at very high speed and potentially very low power, it will be a very

attractive hardware option for TRNG designs.

Due to the size and power constraint of IoT Health devices, many true random number generators

are not suitable for the miniaturised sensors. Different approaches have been proposed for the imple-

mentation of random number generators with low power devices. For instance, Seetharam and Rhee

(2004) proposed an efficient PRNG based on a free running timer for low power sensor networks.

Francillon and Castelluccia (2007) proposed the TinyRNG, a random number generator based on the

received bit error as the source of randomness for wireless sensor nodes. Lo Re, Milazzo, and Ortolani

(2015b) proposed a decentralised approach, called ScatterRNG, where the source data for generating

the random number is captured by multiple nodes with an authenticated reading collection protocol

(Gaglio et al., 2010; Jun and Kocher, 1999).

As such, to break the TRNG, the attacker will need to acquire a large number of sensor nodes. How-

ever, the reliance of multiple sensor nodes could expose the network to other attacks. Instead of using

analogue circuitry, Xu and Potkonjak (2013) proposed a Field Programmable Gate Array (FPGA)

based random number generators with look up tables and hot carrier injection. It is based on the

phenomenon that each static random access memory cell will randomly alter its bit if the circuit is

powered up for an excessively long period of time (125s). The power consumption of hot carrier

injection and FPGA could hinder its application for IoT platforms.

Another approach to generate true random numbers is the use of inertial sensors on mobile devices.

Voris, Saxena, and Halevi (2011) proposed the use of an accelerometer as the random source for

generating random numbers on a RFID tag. Suciu, Lebu, and Marton (2011) proposed a TRNG

design using GPS and inertial sensors. Another inertial sensors based RNG design is proposed in

(Loutfi et al., 2014), where raw data streams from inertial sensors are whiten by the Secure Hash

Algorithms (SHA). Gait signals collected by inertial sensors can also be used as random sources for

TRNGs (Sun and Lo, 2018c). Wallace et al. (2016) proposed SensoRNG, a TRNG design based

on multiple internal sensors on mobile phones, including microphones, inertial sensors, and radio.
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Inertial sensors based TRNGs have the potential to be used in medical and healthcare devices for data

encryption, but issues such as low entropy when idling and high power consumption for implantable

devices need to be addressed first.

2.2.3.3 Security Schemes for Implantable Medical Devices

Implantable devices typically require surgery to be implanted into the patients. Therefore, security

schemes for implantable devices have strict requirements on power consumption, communication

overhead, attack resilience, and support for emergency situations (Ellouze, Allouche, Ahmed, et al.,

2014). In addition to the aforementioned challenges, security schemes for implantable devices must

comply with strict regulations (Zheng, Shankaran, et al., 2017).

Proxy based protection The concept of proxy based implant security is based on a secondary de-

vice acting as a “proxy” between communications of the implant and external devices. The advantage

of this scheme is that it aims to enhance security of existing implanted devices with the secondary

device. An example of this is the “IMD-Shield” (Gollakota et al., 2011). “Shielding” is carried out

by introducing noise to intercept communication between the implant and any device that attempts

to communicate with it. The decoding of implant signal at the proxy is made possible with the

knowledge of the generated noise. A security scheme is implemented such that only authenticated

communication is relayed to/from the implant. Another proxy based Implantable Medical Device

(IMD) protection is the “IMDGuard” (Xu, Qin, et al., 2011), which is able to share keys between the

IMD and the guardian using the owner’s ECG signals.

Distance bounding Distance bounding, or proximity based access control, limits attack possibil-

ities by restricting the wireless communication distance between an implant and an external device

(Kilinc and Vaudenay, 2017). One example of this is inductive coupling, which often limits effective

wireless transmission range to only a few centimetres. While inductive links inherently operate at

shorter distances and are suitable for use with device charging and programming, for data communi-

cation it lacks the bandwidth required for modern devices. Implant manufacturers have adopted the
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higher bandwidth MICS (Medical Implant Communication System) which runs in the spectral range

of 402-405MHz and signals from the implant are limited to a maximum of 2m. Practically bed-side

systems streaming implant data operate at < 1m. Another example of distance bounding authentica-

tion through physical layer is (Ankaral et al., 2015), which distinguishes legitimate external device

and adversary based on the received signal power. Distance bounded communication schemes alter-

native to RF/inductive such as skin electrodes and ultrasound (Charthad et al., 2015) have also been

proposed.

ECG based encryption Theoretically, ECG signals can be captured by IMDs, therefore, ECG

based data encryption schemes have the potential to be applied for implantable devices. The advan-

tage of using ECG signals as entropy sources for data encryption is that patients are not required to

remember passwords, which remove the risk of being stolen. For example, a one-time-pad encryption

scheme proposed in (Zheng, Fang, Shankaran, and Orgun, 2015), which uses the Inter-pulse Intervals

of the ECG signals to encrypt messages between the IMD and the external device. The disadvantages

of using ECG signals as entropy sources are as follows: firstly, ECG based security schemes typically

require signal collection time, which is not feasible in emergency situations; secondly, distortion and

attenuation can be easily introduced to ECG signals due to patients’ movement or poor contact be-

tween skin and the electrodes of ECG sensors; thirdly, although error collection coding is often used

to reduce bit errors, it is not sufficient to eliminate false rejection rate. Although ECG signals can be

measured very accurately by an external device, the ECG signals captured by the external device are

still different than the ECG signals captured by the IMD at a different location.

IMU based encryption A Inertial Measurement Unit (IMU) sensor typically consist of an ac-

celerometer, a gyroscope, and a magnetometer, and it is used together by micro-controllers to process

collected measurements for on-node human motion tracking and analysis (Tong, 2018). IMU sensors

nowadays have been embedded in the majority of mobile phones and wearable sensors, and IMDs

are likely to equip with inertial sensors in the near future. Therefore, IMU based encryption and

authentication schemes have the potential to be used for securing IMDs. For example, an on-body

authentication scheme BANDANA is proposed in (Schurmann et al., 2017), where binary keys are
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extracted from instantaneous energy variations in motion signals. Similarly, an IPI-based encryption

scheme is proposed in (Sun, Wong, et al., 2017) for securing wireless channels in BSNs. Another

gait-based security scheme was proposed in (Oberoi et al., 2016), in which secret keys are derived

using Hamming window enhanced FFT algorithms. Xu, Javali, et al. (2017) proposed a gait-based

automatic key generation protocol, in which Independent Source Analysis (ICA) is applied to separate

gait signals and arm swing acceleration signals to improve group key similarity. Based on the same

principle, Revadigar, Javali, Xu, Vasilakos, et al. (2017) proposed a fuzzy vault-based group key gen-

eration protocol. The aforementioned IMU based security schemes can also be used to protect proxy

or gateway of the medical and healthcare IoT systems.

Analogue shielding Researchers have shown that implants without adequately robust sensor archi-

tectures are susceptible to “analogue attacks” (Kune et al., 2013). Typically, sensors play a pivotal

role in a closed loop system such as implanted drug pumps. The sensor signal is inherently ana-

logue in nature and can be interfered, resulting in incorrect sensor readings and erroneous implant

operation (Rushanan et al., 2014). The disturbance of analogue signals, often of small amplitude,

from intentional noise injection can be mitigated by following good design practices. These include

using differential signalling (Pinkle, 2016), shielding in the form of co-axial and tri-axial wirings

(Cassiolato, 2011), and keeping physical signal path as short as possible.

Zero power communication This security measure is devised to counter “power drawing” attacks

where deliberate continuous requests to communicate with the implant are used with the intention to

deplete the implant battery. Zero power communication requires all communication from the implant

to be initialised by non-battery sources such as piezoelectric RF harvesters (Halperin et al., 2008),

also improving patient security awareness by signalling during communication initialisation. Zero

power communication can also be achieved by radio frequency energy harvesting. For example, a

powerless mutual authentication protocol proposed in (Ellouze, Allouche, Ben Ahmed, et al., 2013),

which utilises ultra-high frequency energy harvester and dynamic encryption keys extracted from

ECG signals for securing IMDs. In addition, inductive (Kim, Yu, and Kim, 2012) or ultrasound

(Charthad et al., 2015) powered schemes mentioned above have also been proposed as zero power
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communication defence against battery-draining attacks.

Anomaly Detection Resource depletion attacks, which could sufficiently reduce the battery power

of an IMD, can be detected by anomaly detection, by investigating the patterns of communications

between a IMD and legitimate external devices. A Support Vector Machine (SVM) based scheme

proposed in (Hei et al., 2010) detects abnormal access attempts to the IMD based on command types,

GPS locations, and time. The computation of SVMs is performed on patients’ mobile phones, which

reduces computational overheads on the IMDs but it will not work without mobile phones. Another

example of anomaly detection is MedMon (Zhang, Raghunathan, and Jha, 2013), in which a smart

phone examining physical layer characteristics, such as Received Signal Strength Indication (RSSI),

as well as behavioural characteristics, such as value range and frequency, of the signals to and from

IMDs to identify potential malicious communications. A limitation of MedMon is that it only pro-

vides IMD integrity protection, therefore, additional security schemes should be used to protect the

confidentiality and availability of the implantable devices.

2.2.4 Summary

To enable decision support and personalised care, majority of these new generation of healthcare

devices have wireless and network capabilities, and they can be seamlessly connected to smartphone

and tablets to capture user feedback and enable personalised configuration. Although the network

connectivity greatly eases the control and monitoring functions of the devices, it causes vulnerabilities

of the devices. Similar to other IoT devices and systems, IoT medical devices could suffer from

similar security threats and attacks. Given the fact that the medical devices handle highly personal

health data and some of the devices have life supporting actuation functions, security attacks on

connected health devices could have direct and life-threatening impacts on the users.

In the last few years, the number of IoT devices deployed in healthcare systems have grown and ex-

panded rapidly, as a myriad of new wearable and implantable medical devices have been introduced

in recent years for healthcare applications, ranging from glucose sensors, insulin pumps, to ingestible
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core body temperature sensors and drug-eluting stents. These smart devices have facilitated the trans-

formation of healthcare services, enabling personalised and preventative patient care.

Many security schemes developed for IoT devices could potentially be applied for protecting med-

ical devices; however, due to the size and power constraints, wearable and implantable devices are

often built with very limited resources and they may not have sufficient resources to implement those

schemes. Ensuring the safety and security of such devices requires new solutions that span across the

design space of human, cyber and physical elements. Apart from increasing research efforts in the

security and privacy of IoT devices, close collaboration is needed between the academic, industries

and standard agencies to develop new methods, regulations, and standards to ensure the security of

this new generation of medical technologies.
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2.3 Gait Analysis using Body Sensor Network

The reasons that a brief literature review on gait analysis using BSNs is included in the thesis are

twofold. First, gait analysis is often an important part in BSN applications, therefore, an overview of

requirements for potential security implementations can be obtained, by studying the requirements of

different gait analysis systems. Secondly, a review on gait analysis methods can provide insight on

the designs of gait-based biometric systems, which are presented in the following chapters.

2.3.1 Gait Events, Temporal, and Spatial Parameters

A gait cycle means the time interval between the occurrence of a repetitive event of walking and the

occurrence of the next successive repetitive event. There are seven key events in a normal gait cycle,

which divide a gait cycle into seven phases as illustrated in Fig. 2.4:

Figure 2.4: Key events and phases of a normal gait cycle (Whittle, Levine, and Richards, 2012a)

1. Initial contact: often called heel strike or heel contact, it indicates the start of the loading

response phase (0-10%), which is the first phase of the gait cycle

2. Opposite toe off: it means the beginning of the mid-stance phase (10-30%)

3. Heel rise: often called heel-off, which is beginning of the terminal stance phase (30-50%)

4. Opposite initial contact: it occurs in the middle of a symmetrical gait cycle, and it is the begin-

ning of pre-swing phase (50-60%)
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5. Toe off: often called foot-off/terminal contact, which indicates the beginning of the initial swing

phase (60-73%)

6. Feet adjacent: it is the instant when the swinging leg passes the stance phase leg, and it starts

the mid-swing phase (73-87%)

7. Tibia vertical: it occurs when the stance phase leg’s tibia gets vertical, and it indicates the

terminal swing phase (87-100%)

The most commonly measured temporal and spatial gait parameters are cadence, speed and stride

length. Cadence is the average number of steps per minute, which gives a more general description

on the pace of gait. Speed is calculated using cadence with the equation:

speed(m/s) =
stride length(m)× cadence(step/min)

2×60

where stride length is determined by the total travel distance of the walk and the cadence of the person.

In addition, stride time is also called cycle time, which is defined as the average time completing one

gait cycle, which contains two steps. It can be calculated using the equation:

stride time(s) =
2× total time

total step
=

stride length
speed

The total time is multiplied by 2 because there are two steps in each stride (Kirtley, 2006). Velocity

can also be used to describe the speed of gait, if the walking direction is also provided. Stride length

is defined as the average distance covered by the swing foot per stride. If both the speed and cadence

have been calculated, the stride length can be calculated using the equation:

stride length(m) =
2×60× speed

cadence

Gait parameters listed in Table 2.6 are often extracted for assessing patients’ health, evaluating ath-

letes’ performance, and human identification.
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Table 2.6: Gait parameters and applications (Chen, Lach, et al., 2016; Muro-de-la-Herran, Zapirain,
and Zorrilla, 2014)

Gait parameters Definitions
Applications

Clinical Sports
Gait velocity The rate and direction of position changing during gait X X
Gait speed Average gait velocity without direction X X
Step length Distance between two successive foot placements X X
Stride length Distance of the placements of one foot X X
Cadence The average number of steps per minute X X
Step width The side-to-side distance between the line of the two feet X X
Step angle The angle between the foot and the line of the foot X X
Stride time The time completing one gait cycle X X
Swing time The time completing the swing period of one gait cycle X
Stance time The time completing the stance period of one gait cycle X
Traversed distance Distance travelled during gait X X
Gait autonomy The maximum time a person can walk X
Tremors Existence of tremors during gait X
Gait phases The seven phases of one gait cycle X X
Ground reaction forces The force exerted by the ground X
Joint angles The angles of different joints, such as ankle, knee, and hip X X
Muscle force Muscle electrical activity from Electromyography(EMG) X X
Moment Moment of forces involved in gait X X

2.3.2 Gait Analysis Systems

Gait analysis systems reviewed in this chapter can be categorised into vision-based kinematics analy-

sis systems, goniometer systems, force plate, accelerometers and gyroscopes, and combinations.

2.3.2.1 Vision Based Systems

Vision-based systems are often used to measure and quantify the kinematic parameters of gait, which

describes the motion of joints, such as knees, ankles, and toes, in terms of displacements, velocities

and accelerations. The simplest vision-based gait analysis approach is by observation, but it has a few

limitations, such as, no permanent records, no forces and muscle activity, and results are subjective

(Whittle, Levine, and Richards, 2012a). Therefore, camera-based systems have been used in the clin-

ics for gait assessment to provide quantitative measures, such Vicon R© Nexus Plug-in-Gait (Anang

et al., 2016) and optical marker motion capture system (Perry and Burnfield, 2010). In fact, numerous

novel vision-based gait analysis approaches have been proposed in recent years, and the intentions

of these approaches are to replace the intrusive, cumbersome, and expensive optical marker motion
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capture systems. Soda et al. (2009) proposed a Kalman filter based system that provides the kine-

matic information of gait, by tracking motion marker landmarks on subject’s leg in a video stream.

Similarly, Kusakunniran (2016) proposed a new marker-less method to extract gait figures in a 2D

video, using statistical techniques including linear regression, parabolic regression and polynomial

interpolation to extract joint positions in each figure. Furthermore, systems that extract lower joint

positions from subject’s silhouette have been proposed in (Derbel et al., 2014; Prakash, Mittal, et al.,

2015; Shaikh, Saeed, and Chaki, 2014; Wang, Makihara, and Yagi, 2008).

Microsoft Kinect for Windows was released in 2012, which provides image and depth sensors al-

lowing human skeleton and silhouette information to be extracted in real time. Some of the major

Kinect-based gait analysis research were selected and summarised in Table. 2.7. The extracted gait

features and applications are listed in the second and fourth columns respectively, and the third col-

umn shows the testing participants in each research. There are 9 papers researched using Kinect to

study Parkinson’s Disease (PD), which has the most distribution of research efforts among all gait

pathologies (Chen, Lach, et al., 2016).

2.3.2.2 Wearable Sensors

Wearable sensors, such as accelerometers, gyroscopes, and magnetometers, are relatively small, low

cost, low power consumption, and with wireless connectivity, so that they are very suitable for ambient

and pervasive gait analysis in both clinical and free-living settings. In this section, wearable sensors

are categorised by their mounting or worn locations on the subject’s body. The studies where multiple

sensors were used on different positions (Atallah, Lo, King, et al., 2011; Chen, Cunningham, et al.,

2011; Hsu et al., 2014; Yeoh et al., 2008) are categorised by the most important sensor position in

their studies.

Head Head acceleration caused by gait events can be measured by a single 3D accelerometer fixed

onto a subject’s head. Heel strike and toe off events are detected in real time using a low pass filter, a

threshold, and a peak detection algorithm in (Hwang et al., 2016). In this study, foot-ground contact

time and step length were also derived from the detected gait events, then the results were compared
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Table 2.7: Recent Research on Gait Analysis Using Microsoft Kinects

Reference Gait Features Extracted Applications
Gholami et al., 2016 Joint positions and angles Quantify gait abnormalities in MS pa-

tients
Bigy et al., 2015 Standing to sitting, sitting to

standing, falling, and tremor
in FOG detections

Recognition of FOG of PD patients

Cunha et al., 2016 Gait cycles, left and right heel
strikes, velocity, distance be-
tween joints, and joint angles

Motion analysis in neurological dis-
eases

Rocha et al., 2015 Gait cycle, duration, length,
velocity, and cadence

PD assessment in a clinical environ-
ment

Kargar et al., 2014 Number of steps, step dura-
tion, and turning duration

Automatic analysis and classification
of human gait in the Get-Up-and-Go
Test

Cancela, Arredondo, and
Hurtado, 2014

Step length, left and right
stride length, and cadence

Walking movement tracking for gait
rehabilitation for PD patients

Arango Paredes et al.,
2015

Cadence, stride length, and
gait velocity

Motor and spatiotemporal parameters
calculation of PD patients

Staranowicz, Ray, and
Mariottini, 2015

Stride width, and stride length Multiple-view calibration algorithm
for gait monitoring

Kastaniotis et al., 2014 Skeleton data, gait sequences
represented in high dimen-
sion Euler space

Classification between MS patients
and health control subjects

Stone and Skubic, 2012;
Stone, Skubic, and Back,
2014

Walking speed, stride time,
and stride length

In home gait measurement systems in
a senior living facility

Staranowicz, Brown, and
Mariottini, 2013

Stride length, duration, left
and right foot joint angles

Monitoring human gait during normal
daily-life activities and falling predic-
tion

Clark et al., 2015 Step length and foot swing
velocity

Evaluation of the dynamic balance ca-
pacity of people living with stroke

Geerse, Coolen, and
Roerdink, 2015

Gait velocity, direction, and
displacement; step time and
step length

Multi-Kinect v2 system for quantita-
tive gait assessments

Tupa et al., 2015 Stride length and gait velocity PD assessment in a clinical environ-
ment

Motiian et al., 2015 Step, stride, swing, heel
strike, and toe-off time, and
stride and step lengths

Gait assessment in both clinical envi-
ronment and in-home environment

Bonnet et al., 2015 Lower limb joint angles and
stride length

Mobile stride length and FOG detec-
tion systems
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with the ones obtained from foot acceleration signals, showing the high reliability of gait event de-

tection from a single head-worn accelerometer. A series of studies using ear-worn inertial sensor

(Atallah, Wiik, et al., 2014; Atallah, Jones, et al., 2011; Atallah, Lo, Yang, et al., 2009; Aziz et al.,

2006; Jarchi, Lo, Wong, et al., 2016; Jarchi, Wong, et al., 2014; King et al., 2010; Li, Atallah, et al.,

2014; Wong et al., 2012) have been conducted. The ear-worn sensor was first used for monitoring

the recovery of a group of post-abdominal surgery patients (Aziz et al., 2006), presenting potential

of using ear-worn sensor in both clinical and free-living settings. Next, discrete wavelet transform

and margin based feature selection were applied to the source separated head acceleration time se-

ries data in (Atallah, Lo, Yang, et al., 2009), in order to distinguish walking gait impairment from

healthy gait patterns. The results showed the ear-worn sensor could be used to observe the progress

of some diseases that might influence gait. Then, the following studies (Atallah, Wiik, et al., 2014;

King et al., 2010) applied the proposed method to elderly gait asymmetry and fall risk assessment,

and Atallah, Jones, et al. (2011) observed recovery from knee-replacement surgery patients using the

ear-worn sensors, where the changes in patients’ gait could be visualised and represented to clinicians

remotely when the patients are at home. Wong et al. (2012) proposed a new method, combining

the ear-worn sensor with a depth camera equipped mobile robot, to provide more accurate classifi-

cation of abnormal gait. Furthermore, feature extraction techniques, such as signal decomposition

and reconstruction, singular spectrum analysis, and longest common subsequence, were studied with

the head acceleration data collected by the ear-worn sensor in (Li, Atallah, et al., 2014) and (Jarchi,

Wong, et al., 2014); and the proposed algorithm was first validated using parotec foot insoles in post-

operative recovery monitoring on orthopaedic patients gait assessment datasets, and further analysed

and discussed in (Jarchi, Lo, Wong, et al., 2016).

Waist A method has been proposed in (Kose, Cereatti, and Croce, 2011) for estimating stride length

for one side and the displacement using a single waist-mounted accelerometer; then further work

(Kose, Cereatti, Laudani, et al., 2011) and Kose, Cereatti, and Della Croce (2012) extracted spa-

tiotemporal parameters for both left and right sides, where the error rate of step length estimation was

less than 3% and that of traversed distance was less than 2%. Hu, Sun, and Cheng (2013) proposed

a better kinematic model for estimating gait speed using waist accelerations, with a 0.58% absolute
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error mean and 0.72% error deviation. Moreover, Soaz and Diepold (2016) proposed a novel method

step detection using a single waist-mounted accelerometer, and healthy and frail walking gait pat-

terns were classified using K-means clustering with average error less than 0.02s. Abhayasinghe and

Murray (2014) investigated the feasibility of identifying major gait events (initial contact, loading

response, mid-stance, terminal stance, pre-swing and swing period), using a single IMU placed in the

subject’s pocket.

Leg Li, Young, et al. (2009) proposed a method to estimate stride length, walking speed, and slope

in each gait cycle in real time, based on acceleration and angular velocity measured by a shank-

mounted accelerometer. However, the accuracy of estimated slope of this method was low. Trkov et

al. (2015) presented a real time slip detection and prediction system with four IMUs attached to one

leg. The system is able to predict slipping distance with accuracy within a range of a few centimetres.

Foot GaitShoe, a wireless shoe-integrated gait analysis system, with three orthogonal accelerom-

eters, three orthogonal gyroscopes, four force sensors, two bidirectional bend sensors, two dynamic

pressure sensors, as well as electric field height sensors was presented by Bamberg et al. (2008). It

is able to detect heel-strike and toe-off with high accuracy and estimate foot orientation and position.

Systems with only foot-mounted IMUs are also feasible for gait analysis; for example, Patterson and

Caulfield (2011) proposed a system where slow, normal, and fast walking can be distinguished as well

as initial contact and mid-swing gait events, then, normal and stiff ankle walking patterns were clas-

sified (Patterson and Caulfield, 2013). Furthermore, Boutaayamou et al. (2015) proposed a method

identifying durations of gait phases in gait cycles. This method was applied in PD gait assessment to

quantify subtle gait disturbances in PD patients.

2.3.2.3 Goniometers

Electrogoniometer and goniometer can convert angle to a voltage, therefore, they are often used for

joint angle measurements during gait; those measurements are much more accurate and consistent

than the joint angle calculations provided in many marker-less vision-based systems, such as Kinect
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systems, at the cost of increasing intrusiveness of the systems. Reeder (1998) proposed a gait analysis

system that mounts two goniometric sensors onto the thigh and calf of the subject. This system is

capable of providing hyper-extension information about the stance phases of gait cycles and feed-

backs during the gait therapy. Knee movement was also investigated (Micera et al., 2004), where

a wearable bio-mechatronic system, called MEKA, was proposed. MEKA is capable of analysing

knee movements in two degrees of freedom, moreover, it was used to analyse the modifications of

motor performance of elderly and young people during gait using a “dual-task” approach. The results

showed a greater variability of the response in the elderly subjects than in the young subjects. Song

et al. (2006) took a similar approach analysing leg movement, but it also provided an impedance

measurement system. Maranesi et al. (2014) also proposed a method to assess spatiotemporal gait

parameters using only 1-degree-of-freedom goniometers mounted on the hip and knee joints of the

subject.

2.3.2.4 Mobile Force Plates

Large force plate systems have high accuracy but can only be placed in a gait lab for indoor gait

analysis only. Therefore, a mobile force plate system for gait analysis was proposed by Liu, Inoue,

Shibata, Hirota, et al. (2010). It was first used in quantitative evaluation of normal and pathological

gait for measuring the ground reaction forces with an error rate of less than 6.4%; then a stick-chain

model was developed using this system to visualise 3D human gait and joint trajectories (Liu, Inoue,

Shibata, and Shiojima, 2011); finally, it was validated by using a stationary force plate, a high-speed

cameras-based motion capture system and a XSENS motion track system (Liu, Inoue, Shibata, and

Shiojima, 2012). The system is integrated into the bottom of the instrumented shoe, which means it

can only be used in specific types of shoes.

In addition, the pressure produced by the arch of the foot cannot be measured, which may affect gait

abnormality detection, such as gait asymmetry. Park et al. (2016) also proposed a mobile ground reac-

tion force measurement system, but instead of using force sensitivity resistors, it used optoelectronic

force sensors. The overall size of this system is smaller than that of (Liu, Inoue, Shibata, Hirota, et al.,

2010), but it has an additional micro-controller unit mounted on the calf of the subject.
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2.3.3 Methodology

2.3.3.1 Skeleton and silhouette

Skeleton and silhouette can only be extracted from vision-based gait analysis systems. For instance,

Microsoft Kinect can track skeleton and silhouette data over time, therefore, many vision-based gait

analysis systems use Kinects to track the movement and extract gait parameters. Rocha et al. (2015)

proposed a Time-of-Flight-based gait parameter extraction method to calculate velocity, acceleration,

distance, and angle of all the body joints shown in Fig. 2.5, where left body presents the body joints

tracked by Kinect v1, and right body presents the body joints tracked by Kinect v2, which was released

on July 15, 2014 alongside the Kinect for Windows software development kit 2.0.

Figure 2.5: Body joints tracked by Microsoft Kinects v1 (left) and v2 (right) (Rocha et al., 2015)

The velocity and acceleration are calculated using Eq. 2.1 and Eq. 2.2, where v is the velocity, and a

is the acceleration; ∆x, ∆y, and ∆z are the difference among x, y, and z axis respectively between two

successive frames; ∆t) is the time interval between the two successive frames. The distances between

two symmetrical joints in the same frame are calculated using Eq. 2.3, where Ple f t is the joint on the

left side of the body and vice versa. Eq. 2.4 is used to calculate the angle of a joint P1, and P2 and P3

correspond to the adjacent joints.
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2.3.3.2 Inverted Pendulum Model

Inverted Pendulum Model (IPM) has been investigated in (Arevalo et al., 2012; Cerny, Noury, and

Deplorte, 2015; Esser et al., 2011; Hu, Sun, and Cheng, 2013; Shin, Ikemoto, and Hosoda, 2014;

Strozzi, Parisi, and Ferrari, 2016; Tang, Er, and Chien, 2008; Zijlstra and Hof, 2003). Tang, Er,

and Chien (2008) suggested that the model should be divided into four phases: frontal single support

phase, frontal double support phase, sagittal single support phase, and double support phase. Shin,

Ikemoto, and Hosoda (2014) proposed a new human walking model, which improves the IPM with

fixed support leg length. In (Hu, Sun, and Cheng, 2013), gait speed was estimated from acceleration

signals at the centre of the waist, using kinematic equations combined with the IPM and the rolling-

foot behaviour. IPM was also used in (Cerny, Noury, and Deplorte, 2015), estimating stride length

combined with the extremes of vertical centre of mass.

2.3.3.3 Machine learning

Machine learning is essentially the means of using an algorithm or method to extract patterns out of

noisy data (Kirk, 2015), therefore, often applied to classify the normal and abnormal gait patterns
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from data obtained in gait assessments. It involves mainly three steps: pre-processing, feature se-

lection, and classification. Fourier Transform (FT) and Wavelet Transform (WT) are mostly used

in pre-processing phase, in order to extract primary information, reduce data dimension, eliminate

noises, and convert time-domain data into frequency-domain (Khillar, 2018). They both have dis-

crete forms, namely Discrete-FT and Discrete-WT, which are capable of handling discretely sampled

input data. For examples, Tallapragada and Srinivas (2011) proposed a new method for viewpoint

independent marker-less gait analysis using Discrete-FT; and Atallah, Jones, et al. (2011) applied

Discrete-WT to observe variations in both time and frequency domain, in order to quantify patients’

gait impairment level during the recovery of the knee-replacement surgeries. Statistical methods such

as principal component analysis, independent component analysis, and local discriminant analysis,

are often applied to map high-dimensional feature space into relative lower dimensions, thus reduc-

ing features, which are used as inputs for the classification and pattern recognition algorithms in Table

2.8.

K-Nearest Neighbour It is designed for measuring distance-based approximations, because it clas-

sifies new data based on the closest training examples in the feature space. Derlatka and Bogdan

(2015) applied ensemble K-Nearest Neighbour (KNN) classifier on a few sub phases of ground reac-

tion force feature sets, which represent the different support phases of the gait cycle, for human gait

recognition; and the successful recognition rate was more than 97.37%, based on the measurements

of more than 3500 gait cycles from 200 people. Shelke and Deshmukh (2015) also applied KNN

classifier to identify the gender, in order to improve the performance of gait based human identifica-

tion system. KNN is often employed in healthy and pathological gait pattern classification, such as

(Dolatabadi, Taati, and Mihailidis, 2016), which proposed a method to distinguish between healthy

and pathological gait after stroke, using KNN combined with dynamic time warping.

Naive Bayesian It is a simple probabilistic based algorithm, particularly useful when inputs are

conditional independent. Nandy and Chakraborty (2015) used both KNN and Naive Bayesian (NB)

classifiers on human skeleton dataset captured by Kinect for human identification. Manap, Tahir,

and Abdullah (2012) investigated NB classifier for abnormal gait pattern classification in Parkinson’s
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disease, and similarly, Bilgin and Gzeler (2015) applied NB classifier to distinguish three types of

neurodegenerative diseases: amyotrophic lateral sclerosis, Parkinson’s disease, and Huntington’s dis-

ease.

Hidden Markov Model Hidden Markov Model (HMM) is widely used in gait (Aqmar, Shinoda,

and Furui, 2012) and activity (Panahandeh et al., 2013) recognition. Zhang, Wang, and Bhanu (2010)

proposed a new framework for age classification based on human gait using HMMs, and the correct

classification rate of distinguishing the young and the elderly was over 80% when using appropriate

contour features.

2.3.3.4 Support Vector Machine

SVM performs classification by identifying decision boundaries between different classes. Nakano et

al. (2016) applied 4 different types of SVM to identify the rehabilitation patients from the gait data and

achieved the correct classification rate of 98%. Gupta et al. (2015) proposed a SVM and Bayesian

Network combined method to identify people from a distance by gait recognition. Similarly, Das

(2015) combined SVMs with HMMs for human gait identification, which outperformed individual

classifiers.

Artificial Neural Networks ANN provides the means of mapping previous observations through a

functional model in the way human brain works. An ANN-based activity classification method was

proposed in (Parkka et al., 2006), which is capable of classifying daily activities, such as walking,

running, and cycling, which a correct classification rate of 82%. Geman (2013) applied three types

of ANNs, namely radial basis function, multilayer perceptrons, and adaptive neuro-fuzzy classifier

with linguistic hedges, to discriminate between healthy people and PD patients, with the correct

classification rates of 93.44%, 93.34% and 97.67%.

K-Means Clustering Soaz and Diepold (2016) proposed a single 3D accelerometer-based system

using K-means clustering to obtain normal and frail walking step patterns. Ball et al. (2012) applied
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K-means clustering on skeleton data obtained from Kinect for human gait recognition, with a correct

classification rate of 43.6% when clustering gait samples from four subjects. To improve the accuracy

of this work, Kinect V2 should be employed for obtaining more accurate skeleton tracking data.

2.3.4 Summary

Both vision-based and IMU-based gait analysis techniques have been widely adopted in clinical ap-

plications, such as chronic disease diagnosis. With the rise of artificial intelligence, the amount of

applications involves vision-based gait analysis has been grown rapidly in recent years. For instance,

tracking people on the pedestrian, and identifying criminals from the crowd. The techniques used

for gait analysis will be advanced much further by the deep learning technologies and massive data

collected with the cameras all over the world.
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Table 2.8: Commonly Used Machine Learning Methods and Related Applications

Algorithms Ref. Applications

K-Nearest Neighbour
Derlatka and Bogdan, 2015 Gait recognition based on

ground reaction forces
Shelke and Deshmukh, 2015 Gait based gender identifica-

tion
Dolatabadi, Taati, and Mihailidis, 2016 Automated classification of

pathological gait after stroke

Naive Bayesian
Nandy and Chakraborty, 2015 Human gait analysis with

Microsoft Kinect
Manap, Tahir, and Abdullah, 2012 Detection of abnormal gait

pattern in PD.
Bilgin and Gzeler, 2015 Classification of neurode-

generative disease

Hidden Markov Models

Zhang, Wang, and Bhanu, 2010 Age classification
Aqmar, Shinoda, and Furui, 2012 Human identification
Panahandeh et al., 2013 Pedestrian activity classifi-

cation
Yang, Wang, et al., 2014 Automated gait pattern dis-

crimination

Support Vector Machines
Nakano et al., 2016 Rehabilitation patient classi-

fication
Gupta et al., 2015 Human identification
Das, 2015 Human identification

Artificial Neural Networks
Parkka et al., 2006 Activity classification
Geman, 2013 Automatic assessment of

tremor severity

K-Means Clustering
Soaz and Diepold, 2016 Step Detection
Ball et al., 2012 Human identification



Chapter 3

User Identification using EEG Biometrics

This chapter explores the use of EEG biometrics and its potential on user identification applications.

The work presented in this chapter has been published in the journal article (Sun, Lo, and Lo, 2019a).

Although EEG has less availability than gait biometrics, a person’s EEG signal is unique and nearly

impossible to mimic. The reason EEG has not been widely adopted for security systems is due to

the cumbersomeness of the EEG devices. However, the new generation EEG headsets are becoming

smaller and smaller, which makes EEG become more promising to be used in biometric systems.

User identification system is an essential component in all systems, such as IoT/BSN-based healthcare

systems, to verify a user’s identity and to protect privileged data from unauthorised accesses. The

verification process is often between human and machine consists of verifying the credentials of

the user to confirm the user’s identity. Traditionally, passwords or smart cards are used for user

identification (Allison, 2016), but they suffer from many issues, such as the user may have forgotten

the password or the password got stolen.

In recent years, password-based security has gradually been replaced by biometrics. Biometric iden-

tification systems are designed to identify users based on their biometric traits. A biometric system

is often designed to extract features by applying signal processing, machine learning and pattern

recognition techniques on the user’s physiological signals, and compare the features with the users’

profiles/templates stored in the database. Physiological and behavioural biometric traits, such as fin-

gerprint (Isenor and Zaky, 1986), face (Samaria and Harter, 1994), gait (Sun and Lo, 2018a), and

57
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ECG (Zhao, Yang, et al., 2013) have been widely accepted and applied in user identification systems.

Despite the popularity of such biometric systems, there are weaknesses in using fingerprint, iris or

voice for user identification. For instance, features of the fingerprints, irises and voice can be ex-

tracted from high quality photos, videos or audio recordings. In addition, fingerprints can be easily

left on surfaces and obtained by malicious attackers.

Recently, EEG, which captures the neural activities or signals in the brain, has been proposed as a

biometric measurement for user identification applications. EEG biometrics have several advantages

over other traditional biometrics, such as fingerprints. EEG signals highly depend on the person’s

brain structure (Gui et al., 2015) and association with the person’s memory, mood, stress and mental

state (Marcel and Millan, 2007). To capture a user’s EEG signals, a EEG capturing device has to be

attached or worn on the user’s head and the user has to be conscious which greatly hinders the chances

of malicious attacks.

Despite the increasing popularity of EEG-based biometrics, the state-of-the-art EEG identification

approaches still mainly rely on manually designed features and are processed using conventional

classification techniques, such as KNN and Eigenvector (Fraschini et al., 2015). Deep learning ap-

proaches used for EEG-based identification have not been widely studied. Convolutional Neural

Network (CNN) has shown the ability to extract reliable features from images and videos for image

recognition applications, such as (Karpathy et al., 2014; Krizhevsky, Sutskever, and Hinton, 2012);

however, one of issues with CNNs is that they work well with stationary data (such as an image

frame or signal segment), but cannot take into the account for temporal or prior information in the

time-series signals.

To consider both spatial and temporal information in time series classification, researchers have pro-

posed the use of Recurrent Neural Network (RNN) to capture and process the temporal variations

for speech recognition, such as (Graves, Mohamed, and Hinton, 2013; Mikolov et al., 2010). The

order of inputs in RNN can effectively affect the training of the network weights, and thus capture the

information from previous time steps. LSTM is one of the RNN architectures, which has showed out-

standing performance in medical and healthcare applications. For example, Chauhan and Vig (2015)

utilised LSTM to detect arrhythmia in ECG signals, which no prior information about abnormal sig-
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Figure 3.1: Overview of the proposed EEG-based biometric identification system

nals is required. Lo, Li, et al. (2017) proposed using ECG and PPG signals to estimate systolic and

diastolic blood pressure based on LSTM neural network. Similarly, Tan et al. (2018) proposed the use

of both LSTM and CNN for classifying normal and coronary artery disease ECG signals. LSTM has

unique capability of memorising spatial and temporal signal characteristics of physiological signal;

therefore, it is hypothesised that such capability could also be applied and improve EEG-based user

identification as the spatial and temporal signal characteristics are represented in the architecture

In this chapter, a novel 1D-Convolutional LSTM approach is proposed for EEG-based subject identi-

fication. The proposed approach is able to extract both spatial and temporal features from EEG sig-

nals, resulting in higher accuracy than CNN or LSTM only identification approaches. The databases

used by the previous studies contained a relatively small number of subjects and often the data was

recorded when the user was asked to perform a specific task which hinder the generalisation of the ap-

proaches and also insufficient to demonstrate the robustness of the EEG-based identification systems.

In our experiments, the database contains EEG data collected from 109 subjects, and the proposed

approach works on many imaginary and physical activities, instead of only one imaginary or one

physical activity.
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3.1 Related Work

3.1.1 Manually Designed Feature Extraction

Paranjape et al. (2001) proposed the use of auto regression coefficients as features and inputs to a

Discriminant Function Analysis method for subject identification. The algorithm has been tested on a

database with EEG signals of 40 subjects at their resting state and the proposed algorithm has achieved

the recognition accuracy of 85%. Campisi et al. (2011) improved the accuracy to 96.08% when

subjects are in the resting conditions where their eyes are closed. The method was validated using

a database with 48 subjects. Palaniappan and Raveendran (2001) first demonstrated the efficacy of

using Visually Evoked Potential (VEP) based EEG signals, which refers to the EEG signal generated

in response to a specific visual stimulus (different patterns or objects), for subject identification.

The methodology has been further researched by Palaniappan and Mandic (2007), using multiple sig-

nal classification to extract signal features since they assumed that there was only one major sinusoid

in each electrode (61 electrodes in total) on the gamma band of EEG signals elicited by visual stimu-

lus and the VEP spectrum was then be used as the dominant features. The algorithm was tested on a

large public database with EEG signals of 102 subjects. The accuracy of the proposed methods have

achieved an average of 95.85% using KNN. This proposed technique has become the-state-of-art and

outperformed other methodologies which have been tested on a similar size database with non-VEP

based EEG signal. In addition, wavelet transforms have also been proposed by Yang and Deravi

(2013) for feature extraction. Different features including peak amplitude, variance, power spectrum

density, mean, eigenvector centrality, zero crossing and other statistical, temporal, and spectral fea-

tures have also been used in previous studies. Many of the manually designed feature extraction

approaches require subjects to perform certain activities, i.e. eye close, or visual stimulus to induce

brain activities, from which designed features can be extracted. The advantage of such approach

is that when new users are enrolled, their features can be easily stored as profiles/templates in the

database. However, such approaches could lead to risks of biometrics being stolen or system being

reverse engineered to obtain the feature extraction methods by attackers.
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3.1.2 Deep Learning for User Identification

Deep learning has gained much attention due to the its outstanding performance in different artificial

intelligence applications; however, deep learning approach for EEG-based user identification has only

been considered in very few works. Since neural activities are highly dynamic and the EEG pattern

varies largely across different users, standard manually designed feature extraction techniques often

cannot sufficiently abstract or represent the characteristics of the signals.

Mao, Yao, and Huang (2017) have recently demonstrated the potential for deep learning to perform

subject identification, offering a easier training procedure without the need for identifying or design-

ing the EEG features manually. Their group has proposed a biometric identification method based

on a convolution neural network, described in (Cecotti and Graser, 2011), trained and validated using

raw EEG data collected from a brain-computer interface task designed for measuring driving fatigue.

The system achieved 97% accuracy in identifying different individuals under a specific recording

paradigm (sampled from a 5 second time window) but only 90% accuracy from randomly sampled

EEG signals in an hour session. This is due to other brain activities and physical activities in the

whole session that introduce noises and annotation to the EEG signals.

Schons et al. (2017) have also proposed the use of CNNs for EEG-based biometric systems using eyes

open EEG signals for training and 5 eyes close 12s-EEG segments for testing. The proposed CNN

architecture achieved 0.19% EER, however, in practice, collecting 12s EEG signals could be consid-

ered as taking too long for identification purposes. Arnau-Gonzalez et al. (2017) have also proposed

a network architecture named EEG-based Subject Identification (ES1D). This network is a structural

modification of the conventional CNN by implementing a series of CNN layers and an inception

layer. ES1D uses Welch’s power spectral density estimation of EEG signal collected from a public

database DREAMER (Katsigiannis and Ramzan, 2018) with 23 individuals’ EEG data, and achieved

an accuracy of 94% which outperforms previous approaches using manually designed features.

However, the number of subjects participated in the experiments was insufficient to demonstrate the

scalability of the system, and the proposed deep neural networks for subject identification were con-

structed with a relatively simple feed-forward layout, without fully utilised the temporal and spatial
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properties of EEG signal. Our work presents a comprehensive research in examining the performance

of deep neural network methods by implementing a hybrid convolutional and recurrent deep neural

network, and validated using a public database with EEG data of 109 subjects. The literature has yet

to fully exploit the spatiotemporal information in the EEG channels, therefore, a 1D-convolutional

LSTM EEG identification approach is proposed for extracting both spatial and temporal features

of EEG signals, enhancing the performance of the current state-of-the-art deep learning EEG-based

identification approaches, such as CNNs.

3.2 Methodology

3.2.1 System Overview

Fig. 3.1 shows the overview of the proposed EEG-based biometric identification system, which con-

sists of two phases: enrolment phase and identification phase. In this system, all users’ EEG bio-

metrics are learned and stored in a 1D-Convolutional LSTM neural network, trained in the enrolment

phase. The recorded EEG signals, either in enrolment phase or in identification phase, will be pre-

processed including batch normalisation, and segmented into 1-second normalised signal recordings

before being fed into the 1D-convolutional LSTM. The identify of the 1-second EEG signal recording

will be the output of the trained 1D-convolutional LSTM in the identification phase. In the rest of the

methodology section, EEG signal pre-processing, network architecture, EEG dataset, training, and

k-fold cross-validation will be explained in detail.

3.2.2 Signal Pre-processing

The EEG signals with Nchan channels, where Nchan refers to the number of channels, have been used

as the input for training the proposed neural network. The sampling frequency is 160Hz, and the

signals have been pre-processed before entering the convolutional layer. First, EEG signals have been
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normalised over time for each channel as follows:

Ii, j = (Inputi, j−
Nlen

∑
j=1

Inputi, j/Nlen)/σi (3.1)

where i, j, Nlen and σi refer to the the channel, the position in the signal, number of sample sequence

that fed into the input in one batch and the standard deviation of the channel i. Then normalised

signals (Ii, j) are then divided into batches. After pre-processing, the signals will be fed directly to

the convolutional layer. The input to the convolutional layer can be written as a form of matrix

Nchan×Nlen. In our work, Nchan and Nlen have been set to 64 and 160 respectively which represents 1

second.
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Figure 3.2: Architecture of the proposed 1D-Convolutional LSTM identification system

3.2.3 1D-Convolutional LSTM Network Architecture

The network composes of 10 layers with several convolutional layers, LSTM layers and fully con-

nected layers which are combined to form a unified neural network. First, the signals are passed into

the first convolutional layer. In our proposed 1D-Convolutional LSTM network, the kernel used in

the first layer is in the shape of 2× 64 having kernel size equals to 2. As previously mentioned, the

input fed into the first layer is in a matrix form of 160×64. After the convolution, the feature map is

shown as a 160×1 (1D) array if the stride is set to 1. Since 128 kernels have been used in total for the

first layer, the output is shown as 160×128. The feature maps are then fed into the Rectified Linear
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Unit (ReLU) for non-linear activation. For Layer 1 (L1), the mathematical expression is as follows:

σ
1
m( j) = b1( j)+

i≤64

∑
i=1

(Ii, jw1(1,m, i)+ Ii, j+1w2(1,m, i)) (3.2)

where σ l
m( j) refers to the neuron j in the layer l and map m. It also denotes the scalar product between

the input neurons and the weighted values. wk(l,m, i) is the filter used in the neural network. l, m, i

and k represent the layer, the map, the channel/kernel and the position in the kernel respectively. bl( j)

refer to the bias in the l layer for the neuron j.

Layer 2 (L2) takes an input of matrix with size 160×128. The kernel used in the second convolutional

layer is in the shape of 2×128 having kernel size equals to 2. Again, the feature map is shown as a

160×1 (1D) array after the convolution. Since 256 kernels have been used in total for the first layer,

the output is shown as 160× 256. The main function of this layer is to select the best combinations

of abstracted features in the feature map which facilitate the classification. Layer 3 and 4 are both

convolutional layers. Their structures and properties are similar to the previous layer but with 512

and 1024 feature maps respectively. For L2, L3 and L4, the feed-forward processing is formulated as

follows:

σ
l
m( j) = bl( j)+

i≤Nl
kernel

∑
i=1

(Ml−1
i, j w1(l,m, i)+Ml−1

i, j+1w2(l,m, i)) (3.3)

where Nl
kernel is the number of kernel being used in layer l. Ml

i, j refers to the element i, j (neuron j in

kernel i) of the feature maps generated after convolution from the previous layers. The mathematical

expression of the feature maps can be expressed as:

Ml =

[
σ l

1( j),σ l
2( j),σ l

3( j), · · · ,σ l
m( j)

]T

(3.4)

Layer 5 is a fully connected and dropout layer which consists of 192 neurons. The main purpose of

this layer is to reduce the number of feature dimensions before passing to the LSTM layer so that

the outputs of Layer 4 can match Layer 5. Dropout is also applied to reduce over-fitting. The feed
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forward process of this layer is formulated as follows:

σ
5( j) = b5( j)+

i<1024

∑
i=0

k<160

∑
k=0

M4
i,kw(5, i,k, j)) (3.5)

In a LSTM cell, it includes several gates which determine whether the cell forgets, stores or outputs its

state. In this way, the LSTM neural networks are able to remember previous information and preserve

temporal dependencies. Layer 6 and 7 are the LSTM layers with 192 neurons each. The data fed into

the first LSTM layer is in the form of a 192× 1 vector. By iterating the following equations from

t = 1 to T , the output vector yt can be computed as

ht = F(xt ,ct−1,ht−1)

yt = σWyht +by

(3.6)

where xt and yt refer to the input and output in the state t respectively, ct represents the cell vector

and ht refers to the hidden vector. σ is the logistic sigmoid function, W terms denote weight matrices,

the b terms denote bias vectors, F is the operator of the hidden layer. The equations of the LSTM

memory cell F can be generalised as follows

it = σ(Wi · [xt ,ht−1]+bi)

ft = σ(Wf · [xt ,ht−1]+b f )

ot = σ(Wo · [xt ,ht−1]+bo)

c̃t = tanh(Wc · [xt ,ht−1]+bc)

ct = c̃t ∗ it + ct−1 ∗ ft

ht = tanh(ct)∗ot

(3.7)

where it denotes the input gate equation that determines how much input information should be kept,

ft refers to the forget gate equation that determine how much previous information should be removed,

and ot represents the output gate equation which indicates how much information should be output to

the next state. After passing through the LSTM layers, the data is then fed into 2 fully connected (FC)

layers for further classification. A softmax layer has been used at the end for subject identification.
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(b) 16 channels

Cz

11

C4

13

C2

12

C6

14

T8

42

T10

44

T7

41

T9

43

C5

8

C3

9

C1

10

FCz

4

Fz

34

AFz

27

Fpz

23
Fp2

24

Fp1

22

AF4

28

AF8

29
AF3

26

AF7

25

F2

35
F4

36

F6

37

F8

38
F1

33
F3

32

F5

31

F7

30

FC2

5

FC4

6

FC6

7

FT8

40FC1

3

FC3

2

FC5

1

FT7

39

Iz

64

CPz

18

Pz

51

POz

58

Oz

62

CP2

19

CP4

20

CP6

21

TP8

46

CP1

17

CP3

16

CP5

15

TP7

45

P2

52

P4

53
P6

54
P8

55

P1

50

P3

49
P5

48
P7

47
PO4

59
PO8

60

PO3

57
PO7

56

O2

63

O1

61

(c) 32 channels
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(d) 64 channels

Figure 3.3: Electrode positions on scalp and their corresponding channels (red represents empirically
selected channels, and white represents unused channels)
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3.2.4 EEG Dataset

The publicly available Physionet EEG Motor Movement/Imagery Dataset (Goldberger et al., 2000)

was used in our experiments to validate the proposed identification system. The dataset consists

of EEG data of 109 subjects performing different motor/imagery tasks while being recorded with

the BCI2000 system (http://www.bci2000.org) described in (Schalk et al., 2004). In the dataset, 14

experimental runs were conducted per subject with 1-min eye open, 1-min eye close, and three sets

of four tasks, including opening and closing fists and feet both physically and imaginarily. BCI2000

consists of 64 channels and the sampling frequencies were set to 160Hz for all channels. As 1-second

EEG signal segments are used in the experiment, each signal segment has 160× 64 samples. To

evaluate the spatial information resides in the EEG channels, a series of experiments were carried out

with 4, 16, 32, and 64 respectively. The selected channels for these experiments are shown in Fig. 3.3

highlighted in red.

3.2.5 Training

To examine whether the proposed identification system can be used without the need of asking the

user to perform specific mind tasks, all 14 experimental runs of EEG recordings of each subject were

used in all the experiments regardless whether the subjects were performing tasks or not.

There were two experiments: 1) the first experiment is to examine and compare the performance of

the proposed identification approach with CNN, LSTM, and the state-of-the-art deep learning based

identification and classification methods. In the training phase, first 90% of EEG signals in each

experimental run were fed into the network for training/validation, and the rest 10% of data were re-

served for testing in the identification phase. The training and validation data were randomly selected

by a 3:1 ratio. The training dataset was normalised, shuffled, and randomly selected into batches

for each iteration of training of all the networks in the experiments. Each batch contains 80 sets of

160×Nchan EEG samples, depending on the number of the active channels.

The training of a network were stopped when it has reached 1000 epochs or the training and validation

loss were no longer reduced; 2) the second experiment is to examine the effectiveness of the proposed
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approach. In the experiments, a k-fold (k = 3) cross-validation was conducted on 64-channel CNN,

LSTM, and 1D-convolutional LSTM identification systems. In each validation, 4 out of 14 EEG

recordings per subject were reserved for testing, and the training of the networks were stopped when

reaching 200 epochs. For both experiments, weights and biases of filters were initialised randomly

and Adam algorithm (Kingma and Ba, 2015) was used for optimisation.

The dropout rate in the dense layer (layer 6 in Fig. 3.2) and the learning rate L for all the networks

were set to 0.5 and 0.0001 respectively. The performance of the trained networks were evaluated

using Rank-1 accuracy, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Equal Error

Rate (EER). Rank-1 accuracy is used to evaluate the performance in identification scenarios, where

the input is 1-second EEG signals from a user whose identity is not revealed. FAR, FRR, and EER

are used to evaluate the performance of the systems in identification scenarios, where the systems

determines whether a user is who he or she claims to be.

3.3 Experimental results

The performance of the CNN, LSTM, and the proposed 1D-Convolutional LSTM based identification

systems, with different numbers of EEG channels, are listed in Table 3.1. The Rank-1 accuracies in

Table 3.1 are testing accuracies, which are calculated from the EEG recordings that were not fed

into the neural networks for training. As the 1D-Convolutional LSTM network exploits both spatial

and temporal information within the EEG recordings, the methods are tested with EEG recordings

with different number of channels. The symmetrically selected electrode positions on scalp for active

channels in four sets of experiments are depicted in Fig. 3.3.

When evaluating the correlations between the number of channels and the identification performance

of a specific network architecture, it is clear that higher number of channels will lead to better per-

formance in user identification. By using CNN for identification, the performance of the approach

improves as the number of channels increases in the systems, as 16, 32, and 64-channel CNN systems

have Rank-1 accuracies of 98.07%, 98.50%, and 98.87% respectively. LSTM identification systems,

on the other hand, reduce the identification performance from 96.71% to 96.39% when increasing the
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1D-convolutional LSTM identification systems (Exp. 2)
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Table 3.1: Comparison of the performance of CNN, LSTM, and the proposed 1D-Convolutional
LSTM identification systems with 4, 16, 32, and 64 channels EEG signals (positions of the electrodes
are shown in Fig. 3.3) for Exp. 1

Channel Rank-1 FAR FRR EER

CNN

4 0.9434 0.0554 0.0565 0.0559
16 0.9807 0.0190 0.0192 0.0191
32 0.9850 0.0147 0.0150 0.0149
64 0.9887 0.0112 0.0113 0.0112

LSTM

4 0.9036 0.0934 0.0963 0.0948
16 0.9594 0.0395 0.0405 0.0400
32 0.9671 0.0321 0.0328 0.0325
64 0.9639 0.0356 0.0361 0.0359

Proposed

4 0.9428 0.0548 0.0571 0.0560
16 0.9958 0.0041 0.0041 0.0041
32 0.9950 0.0049 0.0050 0.0049
64 0.9958 0.0041 0.0042 0.0041

number of channels from 32 to 64. There is a 0.32% decrease in the identification performance, which

could be caused by the larger amount of iterations required for the 64-channel LSTM identification

system to fully converge.

For a fair comparison, the training of all neural networks stop at 1000 epochs, regardless of whether

the training loss has reached its minimum. Additionally, the LSTM systems only exploit the spatial

information in the EEG channels. Without feature extraction from CNNs, the spatial information

resides in 64 EEG channels is too complex for LSTMs to learn within 1000 epochs of training. The

proposed 1D-Convolutional LSTM identification systems does not benefit from increasing the number

of channels in the systems either, having Rank-1 accuracies of 99.58%, 99.50%, and 99.58% for 16,

32, and 64 channels respectively.

The accuracy of 32-channel 1D-Convolutional LSTM network is 0.08% lower than that of 16-channel

and 64-channel 1D-Convolutional LSTMs, which could be caused by insufficient training iterations

and randomly initialised parameters. However, it is clear that increasing the number of channels

(Nchan ≥ 16) does no effect on the identification performance of the proposed 1D-Convolutional

LSTM systems. Moreover, when increasing the number of channels from 4 to 16, all three types

of networks perform significantly better, with the increments in Rank-1 accuracy of 3.73%, 5.58%,

and 5.30% for CNN, LSTM, and 1D-Convolutional LSTM respectively.
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Both LSTM and 1D-Convolutional LSTM systems have more significant improvement than the CNN

system, as the CNNs in the experiments do not exploit the spatial information resides in the EEG

channels.

Table 3.2: Comparison of the performance of k-fold (k=3) cross-validations on 64-channel CNN,
LSTM, and the proposed 1D-convolutional LSTM identification systems

Rank-1 FAR FRR EER
CNN 0.94±0.05 0.07±0.03 0.07±0.03 0.07±0.03
LSTM 0.79±0.02 0.19±0.01 0.21±0.02 0.20±0.02
Proposed 0.97±0.01 0.03±0.01 0.03±0.01 0.03±0.01

Table 3.3: Tensorflow model loading time (Tgraph) and averaged execution time for batch testing
(Tbatch) for CNN, LSTM, and the proposed 1D-Convolutional LSTM identification systems (Time
Unit: second)

CNN LSTM Proposed
Channel Tmodel Tbatch Tmodel Tbatch Tmodel Tbatch

4 1.400 0.027 17.866 0.040 18.895 0.065
16 1.400 0.027 16.831 0.040 17.852 0.065
32 1.390 0.027 17.547 0.042 17.965 0.065
64 1.965 0.026 18.115 0.047 18.477 0.071

When the number of active EEG channels (Nchan) is reduced to 4, the Rank-1 accuracies of CNN,

LSTM, and 1D-Convolutional LSTM identification systems are 94.34%, 90.36%, and 94.28% re-

spectively. The accuracy of CNN system is 0.06% higher than that of 1D-Convolutional LSTM and is

3.98% higher than that of LSTM, because the spatial information reside in the selected four channels

is not sufficient for the proposed 1D-Convolutional LSTM systems to outperform CNNs.

However, when there are 16 channels, the accuracies of CNN, LSTM, and 1D-Convolutional LSTM

systems are 98.07%, 95.94%, and 99.58% respectively. The proposed 1D-Convolutional LSTM sys-

tem achieved 1.51% higher accuracy, which is a significant improvement considering the accuracy of

CNN system has already achieved more than 98%. This can potentially lead to significant impact in

biometric application when deploying EEG-based identification systems for a large number of users,

providing more unique features to distinguish different subjects.

It worth mention that, comparing with CNN and 1D-Convolutional LSTM systems, the lower ac-

curacy of the LSTM system shows that the feature extraction provided by CNNs could accelerate

the learning speed for LSTM when exploiting spatial information from EEG channels. In addition,
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the 16-channel 1D-Convolutional LSTM system provides 0.71% higher accuracy than that of the 64-

channel CNN system, which also proves that EEG channel spatial information for each individual in

the dataset is unique and can be used to reduce the number of electrodes in the current EEG-based

identification systems.

The differences between FAR and FRR for 4-channel CNN, LSTM, and 1D-Convolutional LSTM

identification systems are -0.21%, -0.29%, and -0.23% respectively, with the LSTM system having the

worst balance between FAR and FRR. The FAR and FRR difference for 16-channel CNN, LSTM, and

1D-Convolutional LSTM systems are -0.02%, -0.10%, and 0 respectively, with the 1D-Convolutional

LSTM system having the best balance between FAR and FRR. For Exp. 2, the results of k-fold

cross-validation of 64-channel CNN, LSTM, and the proposed approach are listed in Table. 3.2. The

average Rank-1 accuracy of the proposed 1D-convolutional LSTM is 97%, which is 3% and 18%

higher than CNN and LSTM respectively. The standard deviation of the accuracies among 3 runs for

1D-convolutional LSTM is 1%, which indicates that the proposed approach is effective and robust.

Moreover, the 1D-convolutional LSTM performs better than CNN and LSTM in terms of FAR, FRR,

and EER, which is the same as the results from Exp. 1. ROC curves shown in Fig. 3.4 are the

averaged results (mean and standard deviation) from class to class ROC of the k-fold cross-validation.

The proposed 1D-convolutional LSTM outperforms the CNN and LSTM identification systems.

3.4 Discussion

3.4.1 Trade-off among performance, cost, and efficiency

As the performance of the proposed 1D-Convolutional LSTM authentication systems is heavily de-

pended on the types and parameters of the networks, the number of channels of the EEG signals,

and the total training time etc., trade-offs can be made to balance and optimise the performance, the

cost, and the efficiency of the system. The three graphs in Fig. 3.5 are the first 106 steps of training,

validation, and testing accuracy and loss of 16-channel CNN, LSTM, and 1D-Convolutional LSTM

authentication systems. Among the three types of neural networks, the CNN system has the fastest
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convergence speed, whereas the LSTM system has the slowest convergence speed.

Although all the systems have reached training accuracy of 100% after 2× 105 steps, the proposed

system has the lowest difference between the training accuracy and testing accuracy as shown in Fig.

3.5c, which means 1D-Convolutional LSTM can provide more unique features to identify users. This

is also proved by the losses against steps as indicated as the red lines on the right y-axis of each

graph. Training losses for all the systems dropped to zero after 5× 105 steps, but the testing loss of

the 1D-Convolutional LSTM system can reach about 0.1 lower than that of CNN and LSTM systems.

In addition, as shown in Fig. 3.5c, the training and validation losses of the 1D-Convolutional LSTM

systems decrease with much less speed than those of CNN and LSTM systems, therefore requiring

longer training time than CNN and LSTM systems, which is one of the disadvantages of the proposed

approach. However, it is not necessary to train these networks extensively if the application does

not require the networks to be fully optimised, and less training can also help to retain the network’s

generation capability. Trade-offs can also be made on increasing the efficiency and the performance

of the identification systems by increasing the number of channels in the EEG signals, or reducing

the cost of the systems by using less number of electrodes of the EEG signal recording devices. In

addition, there is another trade-off can be made to improve the efficiency of the systems by reducing

the limit on the maximum number of steps for training, or increasing the performance of the systems

by increasing the amount of training time.

It is also crucial to evaluate the influences of the network types and the number of channels on the

time needed for establishing and loading a Tensorflow model and the time needed for identifying a

user in practice. Table 3.3 lists all Tensorflow models loading time (tmodel) and the averaged execution

time of batch testing Tbatch for different identification systems. All the time listed in Table 3.3 were

recorded on the same PC, which is equipped with an Intel i7-6850K CPU, a TITAN Xp graphic card

and a TITAN X graphic card. Tmodel was 1.4 seconds for 4, 16, and 32-channel for CNN identification

systems, and it was under 2 seconds for 64 channels.

On the other hand, LSTM and 1D-Convolutional LSTM systems require much longer time for loading

Tensorflow model, both under 20 seconds. Tbatch for 4-channel CNN, LSTM, and 1D-Convolutional

LSTM systems was 0.027 second, 0.040 second, and 0.065 second respectively. The batch size was
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(a) 16-channel CNN authentication system
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(b) 16-channel LSTM authentication system
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(c) 16-channel 1D-Convolutional LSTM authentication system

Figure 3.5: Training, validation, and testing accuracy (left y-axis) and loss (right y-axis) against steps
for 16-channel CNN (a), LSTM (b), and 1D-Convolutional LSTM (c) authentication systems (only
the first 10×105 steps are shown for each system))
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Table 3.4: Comparison with some state-of-the-art EEG-based identification systems

Features Dataset Sampling Rate Channels Subjects Length Rank-1 EER
Fraschini et al., 2015 Eigenvector Physionet 160Hz 64 109 12s 92.60% 4.40%
Arnau-Gonzalez et al., 2017 CNN DREAMER 128Hz 14 23 1s 94.01% -
Schons et al., 2017 CNN Physionet 160Hz 64 109 12s - 0.19%
Mao, Yao, and Huang, 2017 CNN BCIT 64Hz 64 100 1s 97.00% -
Proposed work Proposed Physionet 160Hz 16 109 1s 99.58% 0.41%

set to 8 in these experiments, therefore, the execution time for identifying one EEG recording should

be one eighth of Tbatch. The CNN system on average was 0.002 second and 0.005 second faster

than LSTM and 1D-Convolutional LSTM systems respectively. Although it takes approximately 18

seconds to load the parameters of the models for the proposed approach, once it is loaded, the system

is able to perform identifications instantaneously. Therefore, it would not affect the efficiency of the

system.

3.4.2 Comparison with related works

The results of the proposed 1D-Convolutional LSTM-based identification system are compared with

some of the state-of-the-art EEG-based identification systems in Table 3.4. Fraschini et al. (2015)

proposed the use of eigenvector centrality of EEG signals as features to distinguish different subjects,

and the authors also adopted the Physionet EEG motor Movement/Imagery dataset for evaluating the

performance of the proposed biometric system.

The system achieved rank-1 accuracy of 92.60% and EER of 4.40%, however, it requires 12-second

EEG signals for feature extraction, which would be too long for practical applications in real-time

identification. Similarly, Schons et al. (2017) proposed the use of CNN on 12-second EEG signals and

the system was evaluated using the same EEG dataset (resting brain state only). Although the system

achieved the EER of 0.19%, it could be impractical for users to wait 12 seconds for collecting EEG

signals. In addition, Arnau-Gonzalez et al. (2017) and Mao, Yao, and Huang (2017) also proposed

the use of CNN for user identification, achieved Rank-1 accuracies of 94.01% and 97.00% using

DREAMER and BCIT Experiment Baseline Driving (Lin et al., 2005) EEG datasets respectively.

In our experiment, we applied CNN identification systems to Physionet EEG dataset and the Rank-1

accuracy for 64-channel EEG signals was 98.87% on 109 subjects as listed in Table 3.1. As discussed
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previously in the results section, the proposed 1D-Convolutional LSTM identification system can

exploit spatiotemporal information in the EEG channels, improving the performance and reducing the

number of channels required at the same time. As stated in Table 3.4, the proposed 1D-Convolutional

LSTM identification system outperforms other previous approaches (Mao, Yao, and Huang, 2017) by

2.58% and required only 16 EEG channels. In addition, k-fold cross-validation was performed in our

experiments and results show that our proposed approach is effective and robust.

However, introducing LSTM into the network architecture will inevitably increase the computational

complexity, thus increases the training time required for high identification performance as indicated

in Table 3.3. In addition, the use of deep learning would increase the initial cost of the user identifi-

cation systems as for the moment deep learning requires graphics processing units (GPU) for faster

calculation of complex equations used in the neural networks.

3.5 Conclusions

In this chapter, a novel EEG-based identification system is proposed using 1D-convolutional LSTM

neural network. A comparative experiment was carried out to assess the performance of the proposed

1D-Convolutional LSTM against CNN, and LSTM identification systems, using a public database

with EEG data of 109 subjects. The Rank-1 accuracy and EER of the 16-channel 1D-Convolutional

LSTM identification system is 99.58% and 0.41% respectively, which shows that the proposed ap-

proach outperforms the state-of-the-art EEG-based identification approaches in the literature.

In addition, a k-fold cross-validation was performed, and results illustrate the efficacy and the robust-

ness of the proposed approach. The results from both experiments show that the 1D-Convolutional

LSTM can exploit spatial information resides in the EEG channels, providing additional features for

distinguishing different subjects. In addition, with 1D-Convolutional LSTM, less number of elec-

trodes can be used to achieve similar performance which could significantly reduce the cost of EEG-

based biometric identification systems.

The future work of the proposed 1D-convolutional LSTM network would be to further testing its

scalability by retraining the networks with EEG data from other databases. In addition, studies will
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be extended to determine which EEG channels are the most effective ones for distinguishing different

users, and to develop automatic channel selection algorithms instead of manual channel selection used

in the current experiments.

As for the future work of EEG-based user identification systems, the effect of ageing on the EEG

signals, which could potentially hinder the performance of the systems, has yet to be investigated.

As training a new deep learning network is time consuming, transfer learning technique should be

introduced to reduce time consumption for adding new users in the fully trained deep learning net-

works. In addition, the fusion of EEG with other biometric traits is an interesting topic, as it would

potentially be used to design more secured identification systems.



Chapter 4

Body Sensor Network Security Using Gait

Although EEG-based security systems proposed in the previous chapter perform exceptionally well,

EEG headsets are still very expensive and cumbersome in size. An alternative biometric trait, gait,

is studied in the following chapters. The work presented in this chapter has been published in two

conference papers (Sun, Wong, et al., 2017; Sun, Lo, and Lo, 2019b).

4.1 Secure Key Generation Using Temporal Gait

With the aim of providing pervasive health monitoring, Body Sensor Networks capture and process

sensitive personal information, such as physiological data, life style preferences, etc. Such informa-

tion could be targeted by hackers to cause harm to the users (Lo, Ip, and Yang, 2016). With no user

interface and limited computational power in the sensor node, security solutions for BSN have to be

light weight, energy efficient and autonomous. A widely researched security solution for BSNs is

Biometric Cryptosystem (BCS), which utilises biometrics, such as ECG, PPG, and fingerprints, to

secure the body sensing signals (Guo et al., 2016). The primary advantages of employing biometrics

are twofold. First, biometrics can be easily collected by body worn sensor nodes, which means that

no key pre-deployment is required; second, biometrics are unique and permanent (Campisi, 2013),

which makes it especially suitable for user authentication.

78
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The state-of-the-art BCSs employ Fast Fourier Transform (FFT) (Miao et al., 2009b; Ramli, Ahmad,

and Abdollah, 2013) and Discrete-WT (Garcia-Baleon, Alarcon-Aquino, and Starostenko, 2009) to

extract frequency and spatial coefficients from ECG signals captured by BSN sensor nodes, which

are then used to generate binary sequences to form a common secret key for the secure network

communication. However, as frequency domain analysis is computationally demanding, the proposed

schemes are often too complex for real time processing in miniaturised BSN sensor nodes. Another

approach is to use the variations of IPIs of consecutive ECG pulses; this particular approach has been

investigated in (Bao, Poon, et al., 2008; Zhang, Poon, and Zhang, 2012; Zheng, Fang, Shankaran,

Orgun, and Dutkiewicz, 2014). IPI-based BCS approaches are relatively light weight in comparison

to FFT and Discrete-WT key generation schemes. Although ECG and PPG signals are available

to many wearable devices and mobile phones, the majority of wearable devices are often unable to

obtain correct ECG or PPG measurement without user intervention. The ECG and PPG signals are

also easily affected by motion artifacts. With the aim of developing a security scheme for BSN,

we propose the use of gait biometrics for key generation for BSN. The scheme is based on gait

acceleration signals measured by accelerometers, which are readily available in most wearable devices

and mobile phones. The scheme is capable of generating and distributing secret keys amongst sensor

nodes without complex frequency domain analysis.

Gait signals as a biometric behavioural trait has been proposed for authentication (Cola et al., 2015)

and recognition (Meharia and Agrawal, 2015; Zhang, Pan, et al., 2015); however, the feasibility of

adopting gait in BCSs requires further investigation. An automatic key generation scheme based on

gait was proposed in (Revadigar, Javali, Xu, Hu, et al., 2016; Xu, Revadigar, et al., 2016), in which

Independent Component Analysis is applied to separate accelerations produced from leg motions and

arm swing motions. As previously mentioned, complex frequency domain analysis introduces high

computation overheads to the security system; therefore, the scheme may not be suitable for typical

BSN sensors.

In addition to the design complexity, the key generation scheme in (Xu, Revadigar, et al., 2016)

requires a number of message exchanges during key establishment, which results in more overheads

in the channel. Another device-to-device authentication scheme based on gait was recently proposed

in (Schurmann et al., 2017), where gait fingerprint bits are extracted from energy level difference
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between each gait cycle and the average gait cycle. In a similar work by Hoang and Choi (2014), the

secret key is generated from a set of extracted features in both time and frequency domains from gait

signals. In addition to the high computation overheads of FFT and discrete cosine transform analysis

in this scheme, the error rate of the generated key will rapidly increase if the key size is greater than

40 bits, as the similarity between collected signals and templates is not sufficient enough to extract

too many bits.

To secure wireless communications among BSN sensors, a novel light-weight symmetric key genera-

tion scheme is proposed in the first part of this chapter, which is based on gait events timing (temporal

gait) from acceleration signals.

4.1.1 Methodology

4.1.1.1 System Modelling and Experimental Set-up

As shown in Fig. 4.1, a typical BSN employs the star topology, where sensor nodes only communicate

directly with the network coordinator, which is often a mobile phone. Sensor information is then

aggregated by the coordinator before being forwarded to the server via Wi-Fi or a mobile network.

Our key generation and distribution scheme is focused on securing wireless communication amongst

a network of sensors worn by a user, where gait acceleration signals can be obtained directly from

the sensor node with its embedded accelerometer. Fig. 4.2 illustrates the acceleration signal of an

entire gait cycle on a sensor worn on the back, which consists of a right step and a consecutive left

step, along the superior-inferior axis. There are seven key gait events: right heel contact, left toe off,

heel off, left heel contact, right toe off, feet adjacent, and tibia vertical. The timing of each gait event

varies from cycle to cycle, which is used in the proposed scheme for generating the biometric key. For

the ease of explanation, ECG pulse naming convention is applied to label one gait cycle as indicated

in Fig. 4.2: right or left heel contact in a gait cycle is denoted as P wave; right or left foot flat pulse

is named QRSTU complex, while valley S represents the toe-off event, the pulse in the mid-stance

phase between toe-off and heel off is labelled as T, and finally heel off event is named as U. Gait

events often have a slight variation between each gait cycle, so that they can all be used to generate
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Figure 4.1: Design of a typical BSN system

random binary sequences. Although any of the gait events can be used in the proposed scheme, only

R peaks are used for the explanation in the rest of the chapter.

For data collection, we used two iPhones and an e-AR sensor in our experiments, while acceleration

data was captured and recorded in each device separately. The e-AR sensor is an ear-worn activity

recognition sensor, designed for gait analysis (Jarchi, Lo, Ieong, et al., 2014). The data was then

downloaded onto a computer for processing. The proposed key generation and distribution scheme

was implemented, simulated and evaluated using Matlab R2016b. To evaluate the performance of

the scheme, we have first conducted an experiment with one iPhone placed on the lower back and

another placed on the front of the waist of each subject, and about 300 steps were collected from 5

test subjects. A second experiment was conducted with one iPhone placed on the lower back and the

other iPhone placed on the right upper arm of each subject. Finally, a third experiment was carried

out by placing one iPhone on the lower back and the e-AR sensor on right ear of the test subjects.
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Figure 4.2: Gait acceleration data in the inverted gravity direction

(a) Filtered signals (b) R-peak detection (c) Zoom-in

Figure 4.3: Gait cycle and gait event detection
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4.1.1.2 Signal Pre-processing

Acceleration signals collected by a sensor node are captured in respect of its own orientation and co-

ordinate system; therefore, to extract accurate gait features from body worn sensors, the acceleration

signals have to be projected onto the same coordinate system (Xu, Revadigar, et al., 2016). In the

proposed scheme, rotation matrix R3×3 is multiplied to the 3-axis acceleration signals, denoted as

Accx, Accy, Accz, to project the acceleration signals onto the common world coordinate system:


AccN

AccE

Acc−G

= R


Accx

Accy

Accz

 (4.1)

where AccN , AccE , and Acc−G are acceleration signals along North, East, and inverted gravity di-

rections in the world coordinate system; and rotation matrix R is derived from the quaternion vector

q = [w,x,y,z]T provided by iOS API using

R=


1−2(y2 + z2) 2(xy−wz) 2(xz+wy)

2(xy+wz) 1−2(x2 + z2) 2(yz−wx)

2(xz−wy) 2(yz+wx) 1−2(x2 + y2)

 (4.2)

The quaternion vector q can be calculated from raw gyroscope data as followings: (Mohssen et al.,

2014)
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(4.3)

where α , β , and γ are the raw 3-axis gyroscope signals recorded alongside with acceleration signals.

By projecting the sensor signals onto the same coordinate system, the accuracy of the gait event

detection can be improved significantly, even though, the proposed key generation scheme can work

without projection, as it mainly relies on the timing information.
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In the proposed scheme, only Acc−G is considered due to the fact that gait events can be directly

extracted from the acceleration signal in the −G direction.

4.1.1.3 Gait Cycle and Gait Event Detection

A low pass filter with a cut-off frequency of 10Hz is applied to Acc−G, as indicated in Fig. 5.20a, to

identify and split repetitive gait cycles in Acc−G. 10Hz is chosen as the cut-off frequency because hu-

man motion has no significant effects on frequencies above 10Hz (Schurmann et al., 2017). Assuming

N gait cycles are found, the detected gait cycles

a = [a1, ...,ai, ...,aN ]

are then interpolated or decimated to the same length, T , and the average gait cycle a is obtained.

Then, the desired R peak (t,y) in a can be found. t stands for the average time from the start to the

desired R peak in each gait cycles, and y is the average magnitude of those R peaks. However, in

each gait cycle, the estimated time from the start of a gait cycle to the estimated R peak, t̃i, has to be

adjusted as

t̃i =
Ti

T
t

where i = 1, ...,N. Ti is the interval of a, and T is the interval of a:

T =

⌊
1
N

N

∑
i=1

Ti

⌋

On the other hand, y can be used directly as the estimated magnitude of the R peaks, ỹi = y because

human gait is highly repetitive and gait events are likely to occur at the same positions in every gait

cycle as indicated in Fig. 4.3. To simplify the representation of the estimated R peaks, it is represented

as

p̃i = (̃ti, ỹi)

Next, all R the peaks, p = [p1, ...,pi, ...,pN ], in Acc−G are detected, and pi = [pi1, ..., pim, ..., piM ]

represents the detected peaks in one interval Ti. Only the peaks closest to p̃i are selected as the actual
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Algorithm 1 Pseudo code for binary sequence generation
Require: ACC← Acceleration sample

n← Codeword length
f ← Sampling frequency
q← Bits generated per gait cycle

1: function GENBS(ACC,n,f,q)
2: accT ← PEAK DETECTION(ACC)
3: for i=1 to length(accT )-1 do
4: IPI(i)← accT (i+1)−accT (i)
5: end for
6: IPI← mod(round(IPI/(m×1000/ f )),2q)
7: grayIPI← bin2gray(IPI,′ qam′,2q)
8: R← de2bi(grayIPI,′ left-msb′)
9: [rr,cc]← size(R)

10: reshapeR← reshape(RT , [1 rr× cc])T

11: S← S(1 : n)
12: return S
13: end function

R peaks. The selected R peak corresponds to each interval Ti is represented as:

p̂i = argmin
pim

|pim− p̃i|

Finally, the selected R peaks in the entire signal ACC−G is shown as

p̂ = [p̂1, ..., p̂i, ..., p̂N ]

where p̂i is the final selected peak in the ith gait cycle. During data collection, subjects were instructed

to walk at a normal constant speed. However, even at normal speed, temporal variations still exist

between each gait cycle, which is the source of the randomness in the generated binary sequences. p̂i

will likely drift from the estimated time t̃ and magnitude ỹ as shown in Fig. 5.20b and 4.3c, which are

the two example results of the R peak detection algorithms.

4.1.1.4 Key Generation

Upon receiving the synchronisation signal from the coordinator, all the sensor nodes and the coor-

dinator in the same BSN will start recording 3-axis gait acceleration signals, and the signals will be
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projected onto the world coordinate system using Eq. 4.1. Then, the R peak detection algorithm will

be applied to the acceleration signal Acc−G to find the timing of R peaks accT , and the inter-pulse

interval IPI is calculated. Next, as accT is in milliseconds, IPI is divided by m× 1000
fs

and a round

operation is applied afterwards. Round and modulo operations are also applied to IPI to quantise

it into 2q levels. To improve the bit agreement rate, IPI is mapped onto gray coded grayIPI using

the Matlab function bin2gray, and an integer to binary Matlab function de2bi is applied to grayIPI,

producing a binary matrix Rq×N . Finally, Rq×N is reshaped into reshapeR1×q·N using Matlab function

reshape, and the first n bits are used for generating binary sequence S. n is the codeword length used

in the BCH scheme. The procedures are summarised in Algorithm 1.

Algorithm 2 Pseudo code for the network simulation
Require: k← Key length

n← Codeword length
f ← Sampling frequency
q← Bits generated per gait cycle
ACC← Device 1 acceleration sample

1: S← GENBS(ACC,n, f ,q) . Algorithm 1
2: K← randi([0 1],5,k)
3: Kg f ← g f (K) . Galois field array
4: Kecc← bchenc(Kgf,n,k)
5: for i = 1 to 5 do
6: Ken[i,:] = Kecc[i,:]

⊕
S . Commitment

7: end for
8: ACC′← Device 2 acceleration sample
9: S′← GENBS(ACC′,n, f ,q)

10: for i = 1 to 5 do
11: K’ecc[i,:] = Ken[i,:]

⊕
S’ . Decommitment

12: end for
13: [K′,numerr]← bchdec(K′ecc,n,k)
14: e← 0
15: for i = 1 to 5 do
16: for j = 1 to k do
17: if K′[i, j] 6= K[i, j] then e← e+1
18: end if
19: end for
20: end for
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4.1.1.5 Key Distribution And Network Simulation

The fuzzy commitment (Juels and Wattenberg, 1999) was widely adopted in BCSs (Hoang and Choi,

2014; Zheng, Fang, Shankaran, Orgun, and Dutkiewicz, 2014); in comparison to the fuzzy vault

scheme, it is less complex and computationally demanding in terms of key concealing and revealing

while yielding a superior FAR performance (Zheng, Fang, Orgun, et al., 2015). Therefore, the fuzzy

commitment scheme with Bose-Chaudhuri-Hocquenghem (BCH) codes is adopted in the proposed

scheme. The network simulation is described in Algorithm 2, illustrating how the key is encoded

and decoded by the transmitter and the receiver, respectively. On the transmitter, the secret K5×k is

a randomly generated binary matrix, and it is encoded by BCH codes with the parameters of (n,k, t),

where n is the codeword length, k is the length of K, and t is the maximum error correction capability

of a valid BCH pair [n,k]. A codeword length long binary sequence S is generated by the proposed key

generation scheme, and an XOR operation is performed between each row of Kecc and S to encrypt

the secret K into cipher-text Ken. On the receiver, an XOR operation is applied to each row of Ken and

S′ to obtain K′ecc, which is then decoded by the BCH decoder, producing K′. Finally, the bit difference

e is calculated by comparing K′ and K.

Table 4.1: Theoretical maximum security of the generated binary sequences in different sampling
frequencies and settings

fs

(Hz)
maximum
secure bits

gait cycles required gray
coding31-bit BS 127-bit BS

50 2 16 64 Y
100 4 8 32 Y
250 16 2 4 Y
500 20 2 7 N

4.1.2 Results

Table. 4.1 presents the summary of the settings for achieving theoretical maximum security of the

generated binary sequences in different sampling frequencies. The theoretical maximum secure bits

generated per gait cycle is calculated as
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maximum secure bits =

⌊
bσc

m× 1000
fs

⌋
(4.4)

where the average standard deviation σ of IPI in three experiment is 40.8, m is set to 1, and the

sampling frequency fs is 100. Gray code mapping is only available when 1000
fs

can be divided by 2q

with no remainder.

Table 4.2: Bit Agreement Rate (BAR) of the generated binary sequences in terms of different m and
q settings

settings Bit agreement rate (%)
m q Exp. I Exp. II Exp. III Inter-class

1
4 64.2 65.2 58.4 51.4
5 66.6 69.7 65.0 52.0

2
3 65.8 64.3 59.6 51.8
4 68.0 73.9 65.2 52.6

3
3 67.3 74.3 63.2 53.2
4 79.1 79.7 67.8 54.2

5
3 73.6 78.6 70.9 53.3
4 79.8 87.9 78.4 66.1

10
3 83.6 88.7 84.4 69.5
4 85.9 91.5 86.1 67.7

The results from three experiments are summarised in Table. 4.2. In Experiment I, one iPhone was

placed on the lower back while the other one on the front of the waist of 5 test subjects walking in

normal speed, and the sampling frequency was 100Hz. In Experiment II, one iPhone was placed

on the lower back while the other one was attached to the right upper arm of the subjects with the

same settings in Exp. I. In Experiment 3, only one iPhone was placed on the lower back while the

e-AR sensor was placed on the right ear of the subjects, and the sampling frequency of 100Hz was

used on both devices. The experimental results suggest that scheme with m=3 and q=4 is the best

configuration for the proposed scheme. The bit agreement rates in Exp. III are lower than Exp. I and

Exp. II, which is mainly due to the measurement errors introduced by Bluetooth wireless transmission

delays, unstable sampling rates, and noise due to head movements. When m=10, the system is not

able distinguish intra-class keys and inter-class keys.
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4.1.3 Conclusions

In the first part of this chapter, a novel light-weight symmetric key generation scheme based on the

timing information of gait is proposed. The proposed scheme was designed and simulated using

Matlab R2016b and analysed the average bit agreement rates between the keys generated during

the experiments. With the setting of m=3 and q=4, the BAR is about 79% (except for Exp. III),

which means the encrypted secret K can be corrected by BCH codes (n=127, k=15, t=27). Although

the BAR between intra-class keys is high enough for BCH codes to correct, the randomness of the

generated keys were not considered in this chapter. When m is set to equal to or greater than 5, the

keys generated by the proposed schemes are not sufficiently random to be used for cryptographic

operations. In the next chapter, a new scheme is proposed which takes randomness of the keys into

full consideration. The future work for the proposed scheme in this chapter can be to expand the

database, increase the number of sensor nodes on the subjects, conduct a detailed security analysis,

test randomness of the generated keys, and investigate other binary sequence extraction techniques

that could utilise all 3-axis acceleration signals.
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4.2 Gender and Age Recognition using gait signals

Physical biometric traits, such as fingerprint and iris, will not change due to ageing (Villazon, 2018),

whereas behavioural biometric traits can often change throughout a person’s life (Basaraba, 2019).

For instance, a person’s voice is often matured and its tune is changed during adolescence. The second

part of this chapter explores the effect of gender and ageing on inertial sensor-based gait biometrics.

It is not feasible to collect one person’s gait biometrics started from young age to old age, therefore, a

whole-generation inertial gait database, which consists of more than 700 subjects, is adopted for this

study.

In recent years, biometrics has been widely adopted in security applications such as mobile phone

authentication. These applications are often focused on the uniqueness of hard biometrics - typi-

cal physiological traits, such as face and fingerprint, and behavioural traits, such as gait and voice

(Mahfouz, Mahmoud, and Eldin, 2017). Although hard biometrics are the core metrics for biometric

systems, much research has shown that soft biometrics, such as age, skin colour, and gender, can also

improve the performance of biometric systems (Abreu and Fairhurst, 2011; Dantcheva et al., 2011;

Zewail et al., 2004). Soft biometrics, especially gender and age, can also provide personal specific

information which could benefit in business, healthcare, robotic, and gaming applications. The state-

of-the-art human gender and age recognition methods are often based on the static facial features

(Eidinger, Enbar, and Hassner, 2014) or whole body images (Perlin and Lopes, 2015), and dynamic

features from voice (Sedaaghi, 2009) and gait (Hediyeh, Sayed, and Zaki, 2013). Gait, the walking

pattern of a person, can be captured by a camera from a distance, or captured by inertial sensors at-

tached to the person (Sun, Wong, et al., 2017). Similar to face and iris, a gait pattern of a person is

unique because bones, joints and muscles used for walking are very different from person to person.

Gender and age recognition using gait sequences captured by a camera has gained more popularity in

the past few years. For example, Li, Maybank, et al. (2008) proposed a vision-based gender recog-

nition method using different components of human walking silhouettes, and Makihara et al. (2011)

proposed a vision-based age estimation method also using human walking silhouettes. Vision-based

gender and age recognition is robust and effective in a controlled environment, such as a situation

where a person walking in front of a camera at a fixed location. It is difficult to extract gait silhouettes
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Figure 4.4: Illustration of the proposed inertial sensor-based gender and age recognition approach

if the target subject is occluded by another person or objects. These problems can be solved by using

inertial sensors to capture gait biometrics. Although inertial sensors have to be attached to or carried

by the person, they can be used in uncontrolled environments, such as a group of people walking

closely together in a pedestrian area, a situation where vision-based approaches could not be applied.

Although inertial sensor-based gait biometrics is widely used for authentication, it has not been fully

exploited for gender and age recognition. Riaz et al. (2015) studied the estimation of gender, age and

height using a trained random forest classifiers with hand-crafted features of single-step inertial signal

recordings. The dataset collected by the authors consisted of only 26 subjects with a balanced gender

ratio and an averaged age of 48.1±12.7 years. The authors have demonstrated the feasibility of gender

and age recognition using inertial sensors on a small population using 10-fold cross validation. But

the hand-crafted feature extraction technique used by the authors suffered significant performance

drop (from over 85% to around 65%) when using inter-subject cross validation for age estimation,

failing to show the robustness of the proposed approach.

Furthermore, Jain and Kanhangad (2018) studied gender classification using a built-in inertial sensors

of smartphones when users are walking at different speeds. The authors also used hand-crafted fea-

tures in the proposed approach, and tested it on two datasets containing 46 and 63 subjects separately.

The subjects in these datasets are mostly adults and age from 19 to 36 years, and people younger than
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19 years or older than 36 years were not considered in the experiments. Another related work carried

out by Bales et al. (2016) also based on inertial sensors, however, the sensors were installed beneath

the floor of a building instead of attaching to the body. The authors proposed a machine learning

based gender classification approach using data collected from only fifteen subjects.

In the second part of the chapter, a deep learning approach is proposed for gender and age recognition

using a single inertial sensor attached to the lower back of the subjects. Deep learning approaches

are widely exploited in vision-based gender recognition, but to the best of our knowledge, it has not

been used for inertial sensor-based gender and age recognition. The proposed approach was evaluated

on the largest inertial sensor-based gait database available (Ngo et al., 2014), which has inertial data

collected from 744 subjects. 640 out of 744 subjects (whose gender information is provided) with

a gender ratio of 1:1 and age range from 2 to 79 years, were used in the experiments. 10 trials of

inter-subject Monte-Carlo cross validation were carried out for all the experiments to demonstrate the

robustness and effectiveness of the proposed approach.

4.2.1 Methodology

As shown in Fig. 4.4, the proposed deep learning-based age and gender recognition approach requires

only a single inertial sensor attached to the lower back of the subject. The deep learning approach

consists of three blocks as shown in Fig. 4.5: a signal pre-processing block, a convolutional feature

extraction block, and a fully connected classifier. In the signal pre-processing block, a sliding window

is applied to the accelerometer and gyroscope signals collected from the inertial sensor. Then, the

partitioned signal data is fed into the convolutional feature extraction block to extract features inside

each sliding window. At last, a 2-class fully connected classifier will then classify either teen or adult,

or male or female.

4.2.1.1 Convolutional Feature Extraction

The partitioned signal data fed into the first layer is in a 3D matrix form of (B×W ×N), in which

batch size B = 10, sliding window size W = 100 (which is 1 second), and the number of channels
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Figure 4.5: Network architecture of the proposed deep learning approach

N = 6 (i.e. 3-axis accelerometer and 3-axis gyroscope data). In the first 1D convolutional layer, there

are 200 filters/kernels with kernel size set to 5 and stride set to 2. The output feature map of the first

convolutional layer has a shape of 25× 50× 200, and it is fed into a max pooling layer whose pool

size is set to 2 and stride is set to 3. The dimension of feature map is reduced based on the maximum

value of each pool, and its shape is reduced to (25×17×200). The same feature extraction procedure

is repeated 3 more times as indicated in Fig. 4.5. The mathematical expression of the output feature

maps of lth (l = [1,2,3,4]) 1D convolutional layer is

θ
l =

[
γ l

1( j),γ l
2( j),γ l

3( j), · · · ,γ l
m( j)

]
(4.5)

and feed forwarding process for each neuron is

γ
l
m( j) = β

l( j)+
i≤Kl

∑
i=1

(θ l−1
i, j w1(l,m, i)+θ

l−1
i, j+1w2(l,m, i)) (4.6)

where γ l
m( j) is the jth neuron in the mth kernel of the lth 1D convolutional layer, and wk(l,m, i) refers

to the weights of the l,m, ith filter used in the neural network. β l( j) is the bias of the jth neuron in the

lth 1D convolutional layer. Kl is the number of kernel being used in the lth 1D convolutional layer, and

θ l
i, j is the i, jth element of the output feature maps from the max pooling layer following the (l−1)th

1D convolutional layer. The output of the final max pooling layer is flatten to a shape of (25×1200),

and it passes through a dropout layer with a keep probability of 0.95 to prevent overfitting. Then, the
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Figure 4.6: Distributions of gender and age of the selected subjects from the OU-ISIR gait database

final feature map is fed into a classifier with two fully connected layers to produce the final output,

which is the probabilities of the two classes (teen/adult or male/female). The softmax layer at the end

calculates the loss, which is used for optimising the neurons of the network in the training phase.

4.2.1.2 Database

To evaluate the proposed gender and age recognition approach on the whole generation, the largest

available inertial sensor-based OU-ISIR gait database (Ngo et al., 2014) was used in the experiments.

To ensure a balanced gender ratio in all age groups, we followed protocol 5.6, in which 640 subjects

are selected. The distributions of gender and age of the selected subjects as shown in Fig. 4.6. The

subplot on the left side shows the number of subjects of teens and adults respectively, and the subplot

on the right side shows the number of subjects for 6 age groups. Each subject has two sequences of

level walking inertial sensor recordings, which contains about 7 to 12 steps.

4.2.1.3 Training and Testing

To demonstrate the robustness and effectiveness of the proposed approach, inter-subject Monte-Carlo

cross validation was carried out 10 times, and the means and standard deviations of the results across

10 trials are presented in the experimental results section for both gender and age recognition. For
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age recognition, there were two classes: teen (age<20) and adult (age≥20). In each trial, 70% of the

subjects in each class were randomly selected for training, and the rest was reserved for testing. For

gender recognition, two experiments were carried out: 1) in the first experiment, all the subjects, either

teens or adults, were trained in the same network; 2) in the second experiment, gender recognition for

teens and adults was carried out using two separate networks (i.e. a subject who is below 20 will not

be considered at all in the network for recognising gender for adults).

In addition, the data of the selected testing subjects were not used for training the network, which

eliminates the possibilities of over-fitting the network for better testing results. It can be also proven

that the proposed approach is capable of recognising gender and age of subjects from other dataset

with high accuracy. As shown in Fig. 4.5, a sliding window is applied to partition the sequences of

inertial sensor recordings into slices of data with shape 100×6. Then, a batch of 25 slices is fed into

the network together in each iteration. The initial learning rate of the network is set to 0.001, and

it decays by 4% after every 10 thousand iterations. The weights and biases in the convolutional and

fully connected layers are randomly initialised and optimised using ADAM optimisation algorithm

(Kingma and Ba, 2014), and the training process is stopped when reaching 5 epochs.

4.2.2 Experimental Results

In this section, the performance of the proposed approach is presented, using evaluation matrices for

typical biometric systems, including confusion matrices and ROC curves. The recognition perfor-

mance per sliding window and per recording was reported using accuracy, sensitivity, specificity, and

F1-score, which are averaged across 10 trials. In addition, the proposed approach was also compared

with conditional machine learning approaches using hand-crafted features, which are listed in Table

4.7. Five classic machine learning classifiers were selected for comparative studies: Fine Tree, Linear

SVM, Quadratic SVM, Fine KNN, and Boosted Tree.
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(a) Confusion matrix for adults (b) Confusion matrix for teens

(c) ROC curves for female (d) ROC curves for male

Figure 4.7: Experimental results for gender recognition: (a) and (b) show confusion matrices (sum up
for 10 trials) for adult-only and teen-only respectively. (c) and (d) show ROC curves for female class
and male class separately, with point-wise confidence bounds calculated for 10 trials
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Table 4.3: Gender recognition results (averaged for 10 trials)

Accuracy Sensitivity Specificity F1-score

per
recording

Teen 0.739±0.028 0.766±0.092 0.713±0.066 0.744±0.043
Adult 0.886±0.025 0.878±0.053 0.893±0.058 0.885±0.026
All 0.828±0.028 0.822±0.040 0.833±0.042 0.827±0.029

per
sliding
window

Teen 0.702±0.017 0.728±0.074 0.676±0.058 0.706±0.033
Adult 0.836±0.016 0.821±0.055 0.853±0.052 0.837±0.019
All 0.787±0.015 0.788±0.036 0.787±0.028 0.790±0.019

4.2.2.1 Gender Recognition

As aforementioned, there are two experiments conducted for gender recognition using the proposed

approach: the first one using the entire dataset and the second one splits the dataset into teen group

and adult group for separate training. This is to investigate how the age of the subject affects the

performance of the proposed approach on gender recognition. Fig. 4.7(a) and (b) show confusion

matrices for gender recognition using adult-only dataset and teen-only dataset respectively. The pro-

posed approach can distinguish gender for adults (age≥20) with an averaged accuracy of 88.56%

across 10 trials, whereas it performs poorly, with only an averaged accuracy of 73.94% for teens.

This is expected because the muscle and bones of teens are still growing, which makes their gait less

predictive.

In addition, female is more recognisable then male for adults, and male is more recognisable than

female for teens. Fig. 4.7(c) and (d) show the ROC curves for the proposed approach for gender

recognition, and they also indicate that gender is more distinctive for adults than teens. More details

for the gender recognition performance are listed in Table 4.3, where accuracy, sensitivity, specificity,

and F1-score for teen-only, adult-only, and all age group across 10 trials are presented. The results for

each inertial data recording, which contains about 5 to 10 steps, are aggregated from the recognition

results from each sliding window. Therefore, accuracy per recording is better than that of per sliding

window.



98 Chapter 4. Body Sensor Network Security Using Gait

Table 4.4: Age recognition results (averaged for 10 trials)

Accuracy Sensitivity Specificity F1-score

per
recording

Female 0.843±0.028 0.785±0.033 0.896±0.054 0.827±0.028
Male 0.887±0.026 0.913±0.029 0.864±0.037 0.885±0.026
All 0.866±0.024 0.849±0.025 0.880±0.042 0.857±0.023

per
sliding
window

Female 0.775±0.025 0.728±0.050 0.814±0.052 0.743±0.027
Male 0.830±0.019 0.867±0.026 0.798±0.033 0.827±0.019
All 0.802±0.019 0.798±0.031 0.806±0.040 0.787±0.018

4.2.2.2 Age Recognition

The proposed approach is capable of distinguishing two age groups: teen and adult. The confusion

matrix in Fig. 4.8(a) show that the average accuracies for teens and adults are 85.50% and 86.57%

respectively. It indicates that proposed approach has no bias towards either age group. Fig. 4.8(c)

shows the ROC curves of the age recognition for all the subjects, female subjects, and male subjects.

The proposed approach performs better for age recognition on male subjects than female subjects.

This is also shown in Table 4.4, where the age recognition accuracy of male subjects per recording

is 88.7%, 4.4% higher than that of female subjects. Moreover, age recognition using the proposed

approach for male subjects has higher sensitivity but less specificity than female subjects.

Another experiment was conducted on age recognition using proposed approach with 6 classes: <10,

10 to 19, 20 to 29, 30 to 39, 40 to 49, and ≥50. The confusion matrix is shown in Fig. 4.8(b), where

the averaged accuracy for all classes is 45.88%. The misclassification mostly happens between the

two teen classes, and among four adult classes. A possible explanation is that once a person has

reached adulthood, his or her gait remains mostly unchanged if healthy. But there are changes in

gait with age as the proposed approach can distinguish gaits with higher accuracy when the age gap

between two groups is larger. Fig. 4.8(d) shows the ROC curves for different classes. It can be seen

that the two teen classes have much better performance than the other four adult classes.

4.2.2.3 Comparative Study

To test the effectiveness of the proposed approach, comparative studies against traditional machine

learning approaches were conducted, and the hand-crafted features selected for the comparison are
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(a) Confusion matrix (b) Confusion matrix

(c) ROC curves (d) ROC curves

Figure 4.8: (a) and (b) show the confusion matrices of 10 trials for 2-class and 6-class age recognition.
(c) shows the ROC curves for all, female-only and male-only respectively for 2-class age recognition,
whereas (d) shows the ROC curves for 6-class age recognition (all subjects) results, with point-wise
confidence bounds calculated across 10 trials
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Table 4.5: Comparative studies on gender recognition per sliding window on subjects of all age using
the proposed approach and five machine learning classifiers with hand-crafted features listed in Table
4.7.

Accuracy Sensitivity Specificity F1-score
Fine Tree 0.570±0.018 0.658±0.040 0.478±0.041 0.607±0.022
Linear SVM 0.652±0.012 0.659±0.008 0.646±0.020 0.658±0.011
Quadratic SVM 0.627±0.012 0.640±0.017 0.614±0.013 0.635±0.014
Fine kNN 0.544±0.009 0.567±0.013 0.512±0.011 0.557±0.011
Boosted Tree 0.614±0.016 0.649±0.022 0.579±0.024 0.630±0.016
Proposed 0.787±0.015 0.788±0.036 0.787±0.028 0.790±0.019

Table 4.6: Comparative studies on age recognition (two classes: teen and adult) per sliding window on
all the subjects using the proposed approach and five machine learning classifiers with hand-crafted
features.

Accuracy Sensitivity Specificity F1-score
Fine Tree 0.653±0.019 0.605±0.061 0.694±0.058 0.614±0.028
Linear SVM 0.714±0.023 0.631±0.038 0.785±0.041 0.669±0.025
Quadratic SVM 0.717±0.016 0.688±0.029 0.743±0.033 0.690±0.017
Fine kNN 0.635±0.011 0.626±0.025 0.642±0.027 0.611±0.013
Boosted Tree 0.693±0.022 0.619±0.047 0.755±0.043 0.648±0.027
Proposed 0.802±0.019 0.798±0.031 0.806±0.040 0.787±0.018

listed in Table 4.7. These features were also used in (Riaz et al., 2015), in which hand-crafted features

were extracted per step. In the proposed approach, gait cycle detection is not required, therefore, the

feature extraction process was applied per sliding window with a window size of W = 100 and a stride

of S = 5. For example, as inertial signals in a sliding window has a shape of (100×6), the calculations

of features will be applied to each of the 6 channels individually, results in a total of 7×6 features per

sliding window.

Table 4.5 presents the accuracy, sensitivity, specificity, and F1-score of the five classic machine learn-

ing classifiers and the proposed deep learning approach on gender recognition for subjects of all

age. Linear SVM has the best performance out of five classifiers, having a averaged accuracy of

65.2%±1.2%, which is 13.6% lower than that of the proposed approach. Table 4.6 presents the age

recognition results for distinguishing teens and adults, and Quadratic SVM has the best accuracy at

71.7%±1.6% out of the five classifiers, whereas the proposed approach has 8.5% higher accuracy.

Both comparative studies on gender and age recognition show that the proposed deep learning ap-

proach performs much better than classic machine learning approaches with hand-crafted features.
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Table 4.7: Hand-crafted features for each of the 3 axes of the acceleration signal and 3 axes of the
gyroscope signal for each sliding window

Feature Name Mathematical Equation Total
Mean x = 1

N (∑
N
i=1 xi) 6

Standard Deviation s =
√

∑
N
i=1(xi−x)2

N−1
6

Minimum min(xi) 6
Maximum max(xi) 6

Root Mean Square xrms =
√

1
N (∑

N
i=1 x2

i ) 6

Shannon Entropy E =−∑
N
i=1 x2

i log(x2
i ) 6

Signal Energy δ = ∑
N
i=1 x2

i 6

4.2.3 Conclusion

The proposed deep learning approach on gender and age recognition using a single inertial sensor

demonstrated that a person’s gait is unlikely to change once becoming an adult. Also, gender infor-

mation can be very useful to the biometric security systems for better recognition performance. The

results from 10 trials of inter-subject Monte-Carlo cross validation show that the proposed approach is

robust and effective. The proposed approach is capable of recognising either teen or adult with an av-

eraged accuracy of 86.6%±2.4%, and recognising gender with averaged accuracies of 88.6%±2.5%

and 73.9%±2.8% for adults and teens separately.

4.3 Summary

In this chapter, gait biometrics has been studied in two ways: to generate secret keys for data encryp-

tion, and to extract gender and age information of users for user authentication. The symmetric key

generation scheme presented in the first part of this chapter is a light weighted approach, which can

be used on low-power sensor nodes. Whereas the deep learning based gender and age recognition

approach proposed in the second part of this chapter cannot be used directly on the sensor nodes. It

is designed to be used on smart phones or cloud servers for user authentication purposes.



Chapter 5

Improved Body Sensor Network Security

using Gait and ANN Frameworks

The gait timing based light-weight symmetric cryptosystem proposed in previous chapter still suffers

issues like low intra-class key matching rates and long key generation time. To improve the proposed

gait-based symmetric cryptosystem, this chapter focus on developing an ANN framework to increase

the correlations among gait signals from different body positions. The proposed ANN framework is

first designed and developed to estimate lower limb motion using foot mounted inertial sensor signals

in the first part of this chapter, and then the ANN framework is added in the proposed gait-based

cryptosystem as a signal processing block to improve the performance of the system. The work

presented in this chapter has been published in (Sun and Lo, 2018b; Sun, Yang, and Lo, 2018).

5.1 Gait Signal Estimation using Minimal Inertial Sensors

To tackle the challenge of insufficient correlation among gait signals from different body positions,

this chapter is focused on solutions based on artificial intelligence. First of all, a method of estimating

on-body sensor signals (motion signals) at one body position from another sensor at different body

position is required to improve the correlation of signals captured by sensors on different locations.

With this objective, the first part of this chapter explores sensor reduction technique for lower limb

102
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motion signal estimations.

Lower limb kinematics play an important role in gait analysis. Conventionally, lower limb motion

tracking has been carried out by marker-based optical motion capture systems, such as Vicon (Vicon,

2017), where subjects are required to wear reflective markers which can be detected and tracked

by infrared cameras. Alternatively, markerless motion capture systems, such as Microsoft Kinects

(Patrizi, Pennestri, and Valentini, 2016), provide a low-cost and less cumbersome solution but with

more noise and less accurate. Although both marker-based and markerless systems can track lower

limb motion in real-time, they can only be performed in an indoor controlled environment (i.e. no

infrared reflective materials) and the subjects have to stay within the range of the cameras.

With the continuous development of micro-electro-mechanical systems, Inertial Measurement Units

have been miniaturised and are able to be worn by the users to measure acceleration and angular

velocity signals directly (Li, Liu, et al., 2014; Tadano, Takeda, and Miyagawa, 2013; Wang and Ji,

2015).

With such miniaturised wearable IMUs, lower limb motion tracking and gait analysis can be per-

formed in free living environments. Much research has proposed the use of IMU-based motion track-

ing systems for lower limb motion capture and gait analysis. For example, Tadano, Takeda, and

Miyagawa (2013) proposed a low-cost IMU-based system that requires 7 IMUs to be attached to sub-

jects’ shins, thighs, feet, and waist, to obtain the entire lower limb kinematics. Similarly, a magnetic

and inertial sensor based system was proposed in (Agostini et al., 2015), where ankle, knee and hip

kinematic parameters can be measured using 7 IMUs on the predefined positions. Furthermore, Ah-

madi et al. (2016) proposed a 3D gait reconstruction method using 7 wireless IMUs with kinematic

model adjustment. It was further indicated that, with customised kinematic models, the entire body

motion can be reconstructed using only IMU-based systems.

However, the aforementioned IMU-based systems are still cumbersome due to the required number

of wearable IMUs. Typically, at least one IMU is attached to each body segment for calculating the

relative position and orientation of two adjacent body segments (Seel, Schauer, and Raisch, 2012).

Many studies have shown the feasibility of reducing the number of IMUs required for obtaining lower

limb kinematics. For instance, Hu and Soh (2014) proposed a 2D gait model with inverse kinematics
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to estimate planar gait kinematics using only four IMUs attached to the pelvis and heels. In this model,

knee joint gait parameters, which are not directly measured, can be estimated using acceleration and

angular velocity signals measured by the IMUs at the pelvis and heels.

In the first part of this chapter, a novel sensor reduction method is proposed for estimating lower limb

motion signals and real-time gait analysis with an artificial neural network (ANN) framework. After

training the ANNs, the method can estimate the shin, thigh, and waist motion signals from only two

IMUs attached to the feet or ankles, thus reducing the number of IMUs required for the estimation of

lower limb motion signals for gait analysis applications.
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Figure 5.1: Training and application phases

5.1.1 Methodology

In this section, the experimental setup, ANN-based gait signal estimation, and gait parameter esti-

mation are presented in detail. As illustrated in Fig. 5.1, there are two phases, namely a training

phase and an application phase, in the proposed method. In the training phase, the ANNs are trained

using the gait signals recorded by the IMUs attached to the shoes to estimate gait signals of sensors

positioned at other locations, including left and right shin, thigh, and the centre of the waist. In the
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Figure 5.2: Illustration of estimating shin, thigh, and waist gait signals from foot gait signals using
the ANN framework

application phase, the proposed method uses the trained ANNs to estimate gait signals of the lower

limbs using only the IMU signals on both feet in real-time.

5.1.1.1 ANN-Based Gait Signal Estimation

In the experiment, 1 multiple outputs or 6 single output feed-forward ANNs with 10 hidden nodes

were used for each target position, as depicted in Fig. 5.2, to demonstrate the feasibility of the

proposed method. Training data are obtained from the output of the N Degree-of-Freedom (DoF)

IMUs attached onto the feet, which can be represented as mi,∀i ∈ {1,2, ...,N}. For instance, if a

6DoF IMU is applied, where N = 6, m1, m2, and m3 will represent accelerometer output on X, Y,

and Z axes, and m4, m5, and m6 will represent gyroscope output on X, Y, and Z axes. In terms of

the format of the training inputs and training target, for each time instant t, a sliding window, which
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is denoted as w(t), is applied to each IMU output mi at the foot positions, and the size of the sliding

window is W . On the other hand, training target can be either single target IMU output, y(t), or

multiple target IMU outputs, yu(t),u = 1,2, ...,N, at the time instant t. The single-output-neural-net

(SONN) and multiple-output-neural-net (MONN) are both implemented and compared in the results

section. Target IMUs refer to the IMUs placed at other positions, including left and right shin, thigh,

and the centre of the waist. In Fig. 5.2, the red dash-line rectangle indicates the sliding window w(t)

at the time instant t, given by

mi(w(t)),w(t) ∈ [t−W −1
2

, t +
W −1

2
] (5.1)

where i = 1,2, ...,N, and the red circle indicates the target IMU reading at the instant t in single target

IMU output setting. Then, the training input, denoted as x(t), at the time instant t is the concatenation

of all the mi(w(t))

x(t) = [m1(w(t)),m2(w(t)), ...,mN(w(t))]T (5.2)

where t = 1,2, ...,M and M is the number of time instant in the recording. The entire training input

set can be expressed as

X= [x(1),x(2), ...,x(M)] (5.3)

whereas the training target set is

Y = [y(1),y(2), ...,y(M)] (5.4)

5.1.1.2 Experimental Setup

The proposed method was implemented and evaluated in Matlab R2017b on a PC, and the data for

training and testing the method was from two publicly available gait databases: HuGaDB (Chereshnev

and Kertesz-Farkas, 2017) and MAREA (Khandelwal and Wickstrom, 2017). HuGaDB gait database,

collected by Chereshnev and Kertesz-Farkas (2017), consists of many human activity recordings.

In our experiment, only the walking dataset, which has 192 minutes gait signals collected from 18

subjects with 6 IMUs (placed on the right and left thighs, shins, and feet) during walking on a flat

surface, was used. As each subject has multiple recording sessions, we used the first session of each
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subject for training of the ANNs and used the remaining sessions of each subject for evaluation.

MAREA gait database comprises of gait signal recordings from 20 subjects with 4 IMUs (placed

on the right and left ankles, waist, and wrist) in various activities, including treadmill, indoor flat

space, and outdoor streets. There is only one section for each subject, thus, the three quarters of the

section was used for training and the rest of the section was used for evaluation. The reason why we

used MAREA gait database is to evaluate the proposed method in estimating gait signals on the waist

(centre of mass) position from the gait signals on the ankle positions.

5.1.1.3 Gait Parameter Estimation

In this section, the algorithms for calculating gait parameters, namely angle, velocity, and displace-

ment, are presented. For the ease of explanation, the notations of the gait signals and gait parameters

are listed in Table. 5.1. To reduce the drift effect, acceleration and angular velocity is reset to zero at

the beginning of each gait cycle for all IMUs.

Table 5.1: Notation

Gait signal Notation Gait parameter Notation
Acceleration a Angle θ

Angular velocity ω Velocity v
Magnetic field B Displacement d

Gait Cycle Detection The gait cycle detection algorithm is adopted from (Sun, Wong, et al., 2017),

where a low pass filter is applied to the gait signals as shown in Fig. 5.3. The blue signal is the

z-axis gyroscope signal ωz at the left foot position, the black dash signal is the filtered ωz, and the red

vertical lines are the boundaries between gait cycles.

Angle, Velocity, and Displacement Estimation The estimated angle θ̂(t) is the integral of the

estimated angular velocity ω̂(t) of an IMU, given by

θ̂(t) =
∫ t

0
ω̂(τ)dτ + ω̂(0) (5.5)
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Figure 5.3: Gait cycle detection

Table 5.2: CC for the estimated gait signals and gait parameters using SONN and W=19, averaged
over 10 iterations (sl: left shin, sr: right shin, tl: left thigh, tr: right thigh, w: waist with a 12Hz
low-pass filter)

â ω̂ θ̂ v̂ d̂
CCsl 0.91±0.07 0.95±0.06 0.97±0.05 0.97±0.05 0.98±0.03
CCsr 0.89±0.08 0.94±0.07 0.97±0.05 0.95±0.08 0.98±0.04
CCtl 0.89±0.07 0.91±0.06 0.95±0.03 0.94±0.06 0.97±0.03
CCtr 0.88±0.07 0.90±0.06 0.94±0.03 0.94±0.08 0.96±0.05
CCw 0.67+0.13 - - 0.93±0.08 0.97±0.03

where ω̂(0) is an offset determined by the value of local minima of
∫ T

0 ω̂(τ)dτ over a gait cycle period

T . Similarly the estimated velocity v̂(t) is the integral of the estimated acceleration â(t) of an IMU,

given by

v̂(t) =
∫ t

0
â(τ)dτ + â(0) (5.6)

where â(0) is an offset determined by the value of local minima of
∫ T

0 â(τ)dτ over a gait cycle period

T . Then the estimated displacement d̂(t) is the integral of the estimated velocity v̂(t), given by

d̂(t) =
∫ t

0
v̂(τ)dτ (5.7)

5.1.2 Results

In this section, the performance of the proposed method is evaluated using Pearson Correlation Co-

efficient (CC). CC is often used as a measure of the difference between an estimator and its ground

truth value. As aforementioned, the ANNs can have either single output, SONN or multiple outputs,

MONN. In general, one MONN or N SONNs are required for the estimation of a complete set of gait

signals, including a 3-axis accelerometer (N = 3), a 3-axis gyroscope (N = 6), and potentially a 3-axis



5.1. Gait Signal Estimation using Minimal Inertial Sensors 109

5 7 11 15 19

0.4

0.6

0.8

1

C
C

(a) CC for â (MONN)
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magnetometer (N = 9), of an IMU. In the experiment, the sliding window size W was set from 5 to

19 for both SONN and MONN, and all experiments were repeated 10 times and averaged to reduce

the randomness of the results. In addition, the results in Fig. 5.4 and Table 5.2 were averaged over X,

Y, and Z axis of any gait signals or gait parameters, except those in Fig. 5.4e.

Fig. 5.4a and Fig. 5.4b are the averaged CC against sliding window size W for the estimated accel-

eration â at shin, thigh, and waist positions, using MONN and SONN respectively. Fig. 5.4c and

Fig. 5.4d are the averaged CC against W for the estimated angular velocity ω̂ at only shin and thigh

positions, as the MAREA dataset does not provide gyroscope recordings. As shown in Table 5.2 and

Fig. 5.4, the accuracy of â and ω̂ at the shin and thigh, when W=19, are higher than 88%, which

demonstrated the feasibility and accuracy of the proposed method in estimating the lower limb sensor

signals. Also, it can be observed that the performance of SONN is better than that of MONN. How-

ever, the CC for the estimation of â at the waist position is only around 67%, which is much lower

than the ones for the shin and thigh. It maybe caused by the insufficient training sample data and less

correlation between the target and input gait signals. As shown in Fig. 5.4e, a larger training size for

the ANNs produces better CC results on all 3 axes of the accelerometer at the waist position, where W

was fixed to 19 (samples). W also influences the performance of the proposed method, but it saturates

at around 15 in most cases. Furthermore, Fig. 5.4f shows the averaged CC for gait parameters, θ̂ ,

v̂, and d̂, of the IMUs at the shin and thigh positions, against W . The high CC results prove that the

proposed method can be used for lower limb motion tracking and real-time gait analysis.

5.1.3 Conclusions

The results show that the proposed ANN-based method can accurately (with average accuracy higher

that 88%) estimate gait signals at the shin and thigh positions by using only the inertial sensors

on the feet. However, when estimating gait signals at the waist position, the performance of the

proposed method was not as accurate as expected (with the averaged CC of 67%), which may due to

insufficient training sample size in the artificial neural network training phase. There are a few future

works for this project. First, we will investigate the use of other types of ANNs, such as recurrent

neural network, to further improve the performance of the proposed method. Second, the estimation
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of the joint angles, such as the ankle angle and knee angle, will be investigated in the future. Third,

we will evaluate the impact of the hardware synchronisation and stochastic noise on the proposed

method. Finally, the proposed method can be further extended to estimate the upper limb motion

signals, including torso movement, arm swing, and head movement.

5.2 An Improved ANN Framework for Gait Biometrics

The second part of this chapter presents the investigation on the use of the ANN framework proposed

in the first part of this chapter for gait biometrics. As correlations among different gait signals at

different body positions can be increased, the projected gait signals are now highly correlated and can

be used as the common entropy source for improving the symmetric cryptosystem proposed in the

previous chapter.

Recent wireless communication technology advancements have facilitated the development of light-

weight, low-energy, miniaturised sensor nodes to be worn on human body or implanted in the body,

thus, forming a network of body worn sensors (i.e. Body Sensor Networks), and associated wireless

networking technology which is known as the Wireless Body Area Network defined by the IEEE

standard 802.15.6 (IEEE, 2012). Operating mainly in ISM (Industrial, Scientific and Medical) bands,

wireless channels in WBANs are opened to anyone with matched radio interface configurations, and

thus attackers can eavesdrop or even participate within the wireless communication amongst WBAN

sensor nodes (Mainanwal, Gupta, and Upadhayay, 2015). As a result, a high level data protection is a

necessity for BSNs, whereby the protection of patients’ data from unauthorised access is of paramount

importance. However, due to the very limited computational power, the lack of an user interface, and

the low battery power design of BSN sensors, security solutions for wearable and implantable sensors

are required to be light-weight and robust.

Physiological signals, such as ECG, PPG, and behavioural characteristics, such as voice (Khitrov,

2013), and gait (Derawi et al., 2010), can be captured by BSN sensors, thus, providing opportunities

for Biometric Cryptosystems to be applied as channel encryption, device authentication, and key

distribution methods for securing WBANs. The state-of-the-art BCSs are mainly designed based on
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extracting binary keys from ECG signals (Bao, Poon, et al., 2008; Chan et al., 2008) for WBAN

channel encryption and authentication. However, ECG sensors are expensive and cumbersome to use,

as they require two or more electrodes to be directly attached onto the body and have to be with at

least a few centimetres apart to measure the potential differences generated by the cardiac cycle. Long

term use of such electrodes could cause irritation and poor contacts result in inaccurate ECG readings.

In addition, most ECG-based BCSs require high sampling frequencies to capture the fiducial points

in ECG waveforms, which could drain the battery power of the BSN sensors.

Alternatively, gait signals can also be used as the common source for generating secret keys for sym-

metric BCSs. Gait refers to the walking pattern of a person and it has been shown that gait signature

is a reliable biometric for security applications (Hoang, Choi, and Nguyen, 2015; Nickel, Wirtl, and

Busch, 2012; Zhang, Pan, et al., 2015). Gait signals can be captured by using Inertial Measurement

Units (IMUs), which are less expensive and much smaller than ECG sensors, and many wearable and

implantable devices are already embedded with an IMU or inertial sensor. The challenge of using

gait signals as the common entropy sources for generating secret binary keys for BSN applications

is that the IMU signals collected from sensors located at different positions are less correlated, com-

pared to ECG signals. As initially discovered by Cornelius and Kotz (2012), a good correlation exists

between gait signals collected from different body positions, including hands and legs, however, it is

not sufficient to extract high similarity random numbers. Without applying any method to increase

the correlations between the IMU signals at different positions, only a fraction of common features

from the different IMU signals can be used to extract secret keys for securing the on-body wireless

channels, which will significantly hinder the reliability of gait based biometric. For example, a gait-

based authentication scheme BANDANA (Schurmann et al., 2017) can only extract 4 bits per gait

cycle from the IMU signals. Another gait-based authentication scheme (Oberoi et al., 2016) using

FFT can only extract one bit per second on average (around 1.2 bits per gait cycle) from IMU sig-

nals. Our proposed security scheme is capable of generating 13 bits per gait cycle, outperforming the

state-of-the-art gait-based key generation and authentication schemes.

Therefore, as presented in the first part of this chapter, the ANN framework is used to estimate IMU

signals on the chest from IMU signals from other body positions, to increase the correlations among

the IMU signals at different body positions, such as head, wrist, and thigh. Using the correlated IMU
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signals estimated by the ANN, sensors located at different body positions are capable of extracting

secret keys with high similarity for symmetric encryption of wireless channels among them. ANN is

used in the proposed security scheme due to its flexibility (can be easily retrained) and light-weight

(compared to deep learning approaches). The ANN framework only has 1 hidden layer with 10

hidden nodes, which can be easily implemented in the iOS (Kerimbaev, 2016) or Android (Matney,

2017) based wearable devices. Xu, Javali, et al. (2017) have also proposed a gait-based automatic key

generation protocol, in which an Independent Component Analysis approach is applied to separate

acceleration signals produced by torso movement and arm swing motions. Xu’s work only considered

placing the coordinator on the chest position, but in practice, coordinators, such as mobile phones,

are often placed in the pockets (thigh positions). Our proposed ANN framework is more flexible in

terms of where the network coordinator can be placed on the body. In the experiment, the proposed

biometric security scheme was tested on 7 different body positions, namely head, upperarm, chest,

waist, wrist, thigh, and shin. The coordinator can be placed at any of the aforementioned major body

positions. Majority of the gait-based biometric security schemes require fixed network coordinator

positions (Hoang, Choi, and Nguyen, 2015; Nickel, Wirtl, and Busch, 2012; Revadigar, Javali, Xu,

Vasilakos, et al., 2017; Xu, Javali, et al., 2017; Zhang, Pan, et al., 2015), whereas the proposed

security scheme can be applied on the wearable devices located at any body positions. The proposed

security scheme can generate encryption keys with high level of uniqueness, freshness, robustness,

and efficiency, compared with the state-of-the-art gait-based approaches.

5.2.1 Methodology

5.2.1.1 System Modelling

Fig. 5.5 illustrates a typical 3-tier BSN-based healthcare system (Miao et al., 2009c), where the sensor

data, such as skin temperature and blood pressure readings, collected from patients are forwarded to

medical servers by gateway devices or personal servers, which is often an on-body coordinator, such

as a smart-phone. The wireless communications between the personal servers to the medical servers

are often secured by computer network security measures, such as the secure sockets layer. However,

there is very limited protection for the wireless communications among the sensors and the personal
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Figure 5.5: A typical 3-tier BSN-based healthcare system

servers. Our proposed security scheme is designed to symmetrically encrypt the wireless channels

among sensors and the on-body coordinator with the secret keys extracted from the estimated IMU

signals. As sensors and the coordinator are placed on the same body, they can simultaneously capture

the gait IMU signals when the user is walking. Then the ANN framework can be applied to increase

the correlations, and improve the reliability of the security scheme. Gait is defined as the walking pat-

tern of a person, and gait signals in this chapter refer to the acceleration and angular velocity captured

by the IMU sensors during the walking motion. Gait signals can also be recognised as a behaviour

biometric trait, with both time-domain features, such as instantaneous signal energy variation, and

frequency-domain features, such as FFT coefficients. An advantage of using behavioural biometric

traits, including gait, rather than using physical biometric traits, such as fingerprints, is that the binary
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keys generated at different time intervals will be sufficiently different, thus providing freshness and

randomness to the security scheme. As such, our proposed scheme uses gait signals as the common

source for the on-body or implantable sensors to generate secret keys for the symmetric BCS.

However, the main challenge of using gait signals as the common source for key generation is that the

gait signals captured by the sensors positioned at different locations on the body will have different

patterns as shown in Fig. 5.6. The discrepancies between the sensor signals are often introduced by

body movements such as arm and leg swings. As stated in (Xu, Javali, et al., 2017), the frequency

of acceleration introduced by arm swing overlaps with the frequency of the torso movement, so they

cannot be separated simply by applying filters. To solve this problem, we propose the use of ANN-

based gait signal estimation (Sun, Yang, and Lo, 2018) to project the gait signals acquired from body

worn sensors onto the chest, to minimise the gait signal differences among sensors and improve the

performance of the security scheme. The estimated gait signals will have similar signal patterns and

energy variations, from which similar binary keys can be extracted for the symmetric BCS approach.

This is illustrated in Fig. 5.7, where an overview of the proposed security scheme is presented.

As presented in the bottom of Fig. 5.7, the scheme requires a training phase, where ANNs on the

sensors and the coordinator are trained using the ground truth gait signals captured by the sensors

attached to the chests. The ANNs will require reinforcement training if the sensor is moved to a

new position. Such training can be conducted in the set up phase of a BSN system, and the trained

scheme can then be applied as most of the wearable and implantable devices are worn or fixed to

the targeted positions; for instance, a smart watch will always be worn on the wrist. Moreover,

complex tasks like the training of ANNs can be carried out by a high performance cloud server and

the trained model can then be transferred onto the sensors for on-node processing, therefore, the

power consumption can be minimised while maintaining a sufficient level of security. The proposed

security scheme consists of four main functional blocks: a signal recording block, an ANN-based gait

signal estimation block, a binary key generation block, and a fuzzy key exchange block. For secured

communications, sensors and the coordinator will perform the functions of these blocks sequentially

to establish an encrypted channel for data exchange. Meta information including gait cycles and

reliability vectors (from which the secret keys cannot be guessed) will be exchanged in the binary

key generation block, and individual secret keys will be corrected in the fuzzy key exchange block as



116 Chapter 5. Improved Body Sensor Network Security using Gait and ANN Frameworks

300 400 500 600 700

Samples

-10

0

10

20
X

Y

Z

300 400 500 600 700

Samples

-50

0

50
X

Y

Z

300 400 500 600 700

Samples

-50

0

50
X

Y

Z

(a) IMU outputs at the chest

300 400 500 600 700

Samples

-10

0

10

20
X

Y

Z

300 400 500 600 700

Samples

-50

0

50
X

Y

Z

300 400 500 600 700

Samples

-50

0

50
X

Y

Z

(b) IMU outputs at the shin

Figure 5.6: IMU outputs at the chest and shin positions, a=acceleration, ω=angular velocity, and
B=magnetic field
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indicated using the gray double-headed arrows in Fig. 5.7.

5.2.1.2 ANN-Based Gait Signal Estimation

The ANN-based gait signal estimation block consists of a pre-processing layer, an input layer, a

hidden layer with 10 hidden nodes, and an output layer. In the training phase, the acceleration in the

inverted gravity direction, a−G,chest, captured by the sensors on the chest are set as the training targets.

Although the accelerometer has 3 axes and the orientation of the sensors are often not aligned with

the anatomical plans of the users, the inverted gravity direction can be easily detected by choosing the

axis which has the largest mean value, as gravity is mostly capture on that axis of the accelerometer.

In the proposed security scheme, only the acceleration in the inverted gravity direction is used to

demonstrate the feasibility of the scheme, and a−G will be referred as the gait signal in the rest of the

chapter. The gait signals, a−G,input, captured by the coordinator and the sensors except the ones on the

chests are set as the training inputs. The training dataset consists of the training inputs and the training

target that collected on the same subject and at the same time. Assuming there are N samples in the

training target, each sample in the training dataset, represents features extracted from sliding window

with size W in the training inputs, as illustrated in Fig. 5.8. Thus, there are W
2 +N+ W

2 features in the

training inputs for N samples in the training dataset.

Assuming the red circle in the training target in the output layer represents the nth sample, and the red

dash rectangle on the training inputs is the associated sliding window, w(n). The training input for

the nth sample is given by

x(n) = [a−G,input(w(n))]T (5.8)

where w(n) ∈ [n− W−1
2 ,n+ W−1

2 ]. The training inputs for the entire training set can be expressed as

X= [x(1),x(2), ...,x(n), ...,x(N)] (5.9)

whereas the training target set is

Y = [y(1),y(2), ...,y(n), ...,y(N)] (5.10)
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where y(n) is the nth sample in the training targets.

An ANN has to be trained for each sensor other than those worn on the chest. In the application

phase, the inputs follows the same format as the training inputs X, whereby the outputs of the ANNs

are the estimated gait signals projected on the chest, denoted as â−G,chest. By estimating chest gait

signals on both the coordinator and the sensors, they would obtain much similar gait signals as the

common source, as shown in Fig. 5.14, from which binary keys with high similarity can be generated

using the algorithms presented previously.

5.2.1.3 Binary Key Generation

Since the binary key generation block is performed on the coordinator and the sensors, its algorithms

have to be light-weight. The algorithm only contains three modules: a gait cycle detection module, a

binary sequence extraction module, and a reliability bit extraction module.

Gait cycle detection the gait cycle detection module is adopted from (Sun, Wong, et al., 2017), in

which a low pass filter is applied to â−G,input . The cut-off frequency of the low pass filter is set to 3
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Hz, because the average gait frequency is between 1.7 and 2.7 Hz (Revadigar, Javali, Xu, Vasilakos,

et al., 2017). Every two consecutive valley is considered as the boundary between two adjacent gait

cycles, as indicated with the red vertical lines in Fig. 5.9b, where two gait cycles are presented for

illustration. After the gait cycle detection module, the original gait signal â−G,input is filtered by a 10

Hz low-pass filter which is shown as the blue dash line in Fig. 5.9c, to remove any noise. Assuming

J gait cycles are found, the detected gait cycles are then interpolated or decimated to the same length,

T , which is the averaged number of samples in all gait cycles for each subject. The normalised gait

cycles are denoted as

c = [c1,c2, ...,c j, ...,cJ] (5.11)

where c j = [â1, â2, ..., ât , ..., âT ]
T and ât represents the tth sample in â−G,chest .

Binary Sequence Extraction to calculate signal energy variations, c is divided into U groups, and

each group contains L gait cycles. The gait cycle group is represented as

C = [C1,C2, ...,Cµ , ...,CU ] (5.12)

where Cµ = [cµ ,cµ+1, ...,cµ+l, ...,cµ+L]. Then, all the averaged gait cycle, α , for C is represented as

α = [α1,α2, ...,αµ , ...,αU ] (5.13)

where αµ = 1
L ∑

L
l=1 cµ+l .

The signal energy difference, δ , between c and α can be calculated using

δ µl = cµ+l−αµ (5.14)

as a gait cycle c contains T samples, the signal energy difference for the tth individual sample in the

lth gait cycle of the µ th gait cycle group is δµlt , which can be used for generating a bit, bµlt ∈ {0,1},
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using

bµlt =

1, δµlt ≥ 0

0, otherwise
(5.15)

Finally, the µ th binary key, bµ , containing (L · T ) bits, is formed using the bits generated from the

µ th gait cycle group Cµ . The process is illustrated in Fig. 5.9c, where 1 is extracted from the red

circles which are the samples whose signal energy is higher or equal to that of the averaged gait cycle,

and 0 otherwise. The binary sequence extraction itself cannot generate highly randomised keys with

respect to the corresponding binary sequences generated on other sensors. To address the problem,

the extracted bits are re-indexed by the associated reliability vectors.

Reliable Bit Extraction The calculation of the reliability is adopted from (Schurmann et al., 2017),

where a reliability vector is defined as the descending index vector of the absolute values of the signal

energy differences. The absolute values of the signal energy difference for the µ th gait cycle group

Cµ can be represented as

∆µ = [|δµ1|, |δµ2|, ..., |δµη |, ..., |δµ(L·T )|] (5.16)

and it is rearranged in a descending order to produce the associated reliability vector

rµ = [rµ1,rµ2, ...,rµη , ...,rµ(L·T )] (5.17)

where rµη ≥ rµη+1. The generated binary keys are re-indexed using the reliability vectors as illus-

trated in Fig. 5.9d and Fig. 5.9e. Bits generated from higher signal energy differences are more

reliable, as they have higher chances to be identical to the corresponding bits on different sensors

(ibid.). The final binary keys are the top n reliable bits in each gait cycle group, and n matches the

codeword length in the Bose-Chaudhuri-Hocquenghem (BCH) error correction codes in the fuzzy key

exchange block.
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Figure 5.9: Illustration of the binary key generation block. (a) Gait signal â−G,chest (m/s2). (b)
â−G,chest (m/s2) filtered by the 3 Hz low-pass filter. (c) Bit extraction by comparing â−G,chest fil-
tered by the 10 Hz low pass filter and the averaged â−G,chest . (d) Energy difference, δ , between
â−G,chest,LP=10Hz and â−G,chest,avg (e) Re-indexed binary keys using the associated reliability vectors.
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Figure 5.10: Flowcharts of the fuzzy key exchange block

5.2.1.4 Fuzzy Key Exchange

In the fuzzy key exchange block, we adopt the fuzzy commitment scheme (Juels and Wattenberg,

1999), which has been used in biometric-based security systems (Hoang, Choi, and Nguyen, 2015).

To correct the bit errors introduced by the dissimilarity of the intra-class keys, BCH error correction

codes (Peterson and Weldon, 1972) is adopted in the fuzzy key exchange block. The codeword length,

n, and the minimum distance, dmin, of the binary t-error-correcting BCH codes can be defined by two

positive integers m (m≥ 3) and t (t < 2m−1) satisfying

n = 2m−1 and dmin ≥ 2t +1 (5.18)

where t is the maximum number of bit errors that is correctable by the corresponding BCH codes.

The second parameter k in a BCH pair (n,k,t) is the message length that satisfies

n− k ≤ mt (5.19)

subsequently the length of the parity bits is p = n− k. A Galois field array GF(2) is created from

the k-bit secret message K, which is then encoded by the BCH encoder on the sender to create a

codeword c. A codeword length long binary key b is generated by the binary key generation block,

and an XOR operation is performed between c and b to encrypt the codeword c into cipher-text ccommit .

The data requester receives ccommit , which is then decrypted by an XOR operation with b′, which is
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the binary key generated on the requester, to obtain c′. c′ is then decoded by the BCH decoder,

producing K′ and bit error e. Finally, if e≤ t, the decoding process on the requester is a success, thus,

an acknowledgement is sent back to the sender to establish a secure channel, and messages will be

directly decrypted by the BCH-corrected key. On the other hand, if e > t, the requester requests a

new key for the commitment and the process will be repeated until it meets e≤ t. The process of the

fuzzy key exchange block is illustrated using flowcharts in Fig. 5.10.

5.2.2 Experiments and Results

5.2.2.1 Experimental Set-up and Dataset

To assess the performance of the proposed security scheme, we evaluated the scheme with a series

of experiments, using a walking dataset containing recordings of 15 subjects (age 31.9±12.4, height

173.1±6.9cm, weight 74.1±13.8kg, 8 males and 7 females) from the Real World Human Activity

Recognition (HAR) dataset (Sztyler, Stuckenschmidt, and Wolfgang, 2017). The HAR dataset is

designed for activity recognition research, and therefore it has activity recordings such as walking,

sitting, and running. In our experiments, only the walking dataset was used.

In this walking dataset, 7 sensors were worn by the subjects at different body locations, namely the

head, upperarm, chest, wrist, waist, thigh, and shin, as illustrated in Fig. 5.11. As there is only one

recording at one sensor position for each subject in the HAR walking dataset, we divided each sensor’s

recording into three equal-length subsets, and employed a k-fold cross validation method (with k=3):

to train the ANNs, one subset of data is used and the other two subsets are used to test the proposed

scheme. Instead of listing independent accuracy of each validation, the mean and standard deviation

of accuracy from the k-fold cross validation are provided, as box charts, to show the robustness of

the approach. As there are only marginal differences between the validations, the results from the

validations are grouped together as box charts.

In the HAR walking dataset, the sensors on each subject capture gait signals independently according

to their own software clocks, therefore, the gait signal recordings were not synchronised and have

different lengths of samples. To solve this issue, we re-sampled the 7 gait recordings to the same
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Figure 5.11: HAR walking dataset

length for each subject using two timestamps of the subject’s sensor on the chest. One timestamp was

selected at the beginning of each recording when the subject has not started walking, and the other

one was selected at the end of each recording when the subject has stopped walking.

As aforementioned, only the acceleration in the inverted gravity direction was used as the gait signals

in our experiments.

5.2.2.2 Group Similarity Evaluation

Number of Gait Cycles as there are 60 samples in each gait cycle on average, to generate one 128-

bit key in the binary key generation block, a minimum number of 3 gait cycles, Ngc = 3, is required.

However, to reliably generate 128-bit keys with high similarity within the intra-class group, at least

8 gait cycles are required, as shown in Fig. 5.12. Intra-class keys refer to the keys generated on the

same subject from two different sensors at the same time interval, whereby inter-class keys refer to

the keys generated either on different subjects, or on the same subject but at different time intervals.

In the experiment, Ngc = 10 was chosen to be used to generate each 128-bit key, as it can provide

sufficient intra-class similarity while maintain a high key generation rate at the same time.
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Figure 5.12: Averaged similarity between 128-bit binary keys generated simultaneously from two
sensors on different sensor positions of the same subject (intra-class group)

Key Length the similarity of the intra-class keys decreases with the increase of the key length, as

shown in Fig. 5.13, where the box charts of the intra-class similarity of the 32, 64, 128, 256, and

512-bit reliable keys, generated when Ngc = 10, are shown. Reliable keys refer to the keys re-indexed

with the associated reliability vectors. 128 was chosen as the key length used in the experiment as it

provides larger number of possible keys to prevent brute force attacker from exhausting it in a short

time, meanwhile, providing sufficient intra-class similarity and high inter-class distinctiveness.

ANN-Based Gait Signal Estimation as aforementioned, the challenge of using gait signals as the

common source for generating secret keys for symmetric-BCSs is that the gait signals captured by

different sensors at different locations on the body have different patterns, as shown in Fig. 5.6 and

Fig. 5.14a. In our proposed security scheme, an ANN is designed to project and estimate the gait

signals (captured by sensors positioned at different body positions) onto the chest. Therefore, the

estimated signals, â−G, on each position would be similar to each other as shown in Fig. 5.14b. The

results of using the ANN-based gait signal estimation block is illustrated in Fig. 5.15, where corre-

lation coefficients between raw gait signals at various positions and chest gait signals are represented

as blue boxes, and CCs between estimated gait signals at various positions and chest gait signals are

represented as red boxes. CC, also known as Pearson’s correlation coefficient, is a method of assess-
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Figure 5.13: Averaged similarity between intra-class keys at different key lengths. The keys were
generated by reordering binary sequences using reliability vectors and cutting off at the key lengths

ing linear relationship between two continuous variables (Altman, 1990), and CC has often been used

for measuring how close an estimator, such as joint angles over time, is to the ground truth measured

in gait analysis research (Tadano, Takeda, and Miyagawa, 2013). According to Hinkle, Wiersma, and

Jurs (2002), a value of CC in the range of 0.5 to 0.7 indicates a moderate correlation, in the range of

0.7 to 0.9 indicates a high correlation, and in the range of 0.9 to 1 indicates a very high correlation. As

shown in Fig. 5.15, the ANN-based gait signal estimation block improves the correlation between gait

signals from chest and other positions from moderate correlations to high or very high correlations

(where the averaged CCs for six sensor positions are all above 0.7), leading to improvements on the

intra-class similarity results. There are 4 CC results in the estimated signals which are below 0.2 (no

correlation) and would lead to low intra-class similarity. Hence, the keys generated from these gait

signals, 4 out of 90, were excluded from the final results. The ANN-based estimation block fails to

improve the CC results because the raw signals do not have any correlation (below 0.2) to the chest

gait signals.

The impact of the ANN-based gait signal estimation is further illustrated in Fig. 5.16, where blue

boxes are the intra-class similarity between one sensor position to the rests without the ANN-based

gait signal estimation block and red boxes are the ones with the ANN-based gait signal estimation

block. It is clear that the intra-class similarity improves at every sensor position in Fig. 5.16, espe-
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(a) Raw gait acceleration signals (a−G)
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(b) Estimated gait acceleration signals (â−G)

Figure 5.14: Illustration of the ANN-based signal estimation

cially for those on the wrist, shin, and thigh positions. As aforementioned in section III-E, the binary

BCH error correction coding scheme is adopted in the proposed security scheme for correcting bit er-

rors between intra-class keys. BCH encoder only allows its code word length to be equal to n= 2m−1

for any integer m between 3 and 16 (Peterson and Weldon, 1972). When m = 7, n = 27−1 = 127 is

the closet codeword length as the keys have a key length of 128. A number of valid BCH pairs (n,k, t),

which could be used in the fuzzy key exchange block, are listed in Table 5.3. Therefore, the minimum

similarity between the encryption key and the decryption key required by BCH decoder to success-

fully decode the encrypted messages is 75.6%. The probabilities of successful fuzzy key exchanges

with or without the ANN-based gait signal estimation block on various sensor positions are listed in

Table 5.4. Without the ANN-based gait signal estimation block, the probabilities of the keys gener-

ated on the shin and thigh positions to be accepted by other sensors are 8.07% and 18.27% for the

BCH pair (127,8,31), which is very inefficient. With the ANN-based estimation, their probabilities

reach to 57.75% and 61.46% respectively, which are sufficiently improved.
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Figure 5.15: CCs between the raw gait signals at other positions and chest gait signals (blue boxes),
and CCs between estimated gait signals, using trained ANNs, at other positions and the chest gait
signals (red boxes)

Table 5.3: Potential Binary BCH (n,k,t) pairs

n k t Min similarity
127 29 21 83.46%
127 22 23 81.89%
127 15 27 78.74%
127 8 31 75.60%

Assuming a successful fuzzy key exchange in a series of attempts is an independent event, the proba-

bility of a successful fuzzy key exchange after the nth attempt is calculated as

Pn =
n

∑
i=1

Psuccess× (1−Psuccess)
n−1 (5.20)

where Psuccess is the probability of a successful fuzzy key exchange for an individual attempt. Using

Eq. 5.20, the probabilities of success against the number of attempts for the BCH pair (127,8,31) are

calculated and shown in Fig. 5.17. At all 7 positions, a successful fuzzy key change occur on the

second, third, and fourth attempt reach 80%, 90%, and 95% respectively, with the ANN-based gait

signal estimation. As Ngc = 10, each attempt requires 10 gait cycles, and the proposed method can

provide at least 95% successful rates for all sensor positions using 40 gait cycles. However, multiple

attempts of key exchanges can only be supported if a secured communication channel has already
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Figure 5.16: Similarity of the keys generated at various positions against the keys generated at the
rest of the positions

Table 5.4: Probability (in percentage) of messages encrypted by intra-class keys generated on one
position to be successfully decoded by four BCH decoder pairs (n,k,t) on the rest of the sensor po-
sitions (ANN=with the ANN-based gait signal estimation block, raw=without the ANN-based gait
signal estimation block)

(127,29,21) (127,22,23) (127,25,27) (127,8,31)
raw ANN raw ANN raw ANN raw ANN

chest 34.38 65.98 37.95 69.34 46.42 76.18 53.95 81.60
wrist 25.37 41.76 29.45 46.39 36.59 55.16 44.65 63.53
head 22.76 52.21 26.94 56.39 36.11 65.23 45.35 71.57
shin 1.31 30.96 2.16 36.30 4.38 47.37 8.07 57.75
thigh 4.77 36.35 6.59 41.45 11.54 52.11 18.27 61.46
upperarm 43.98 60.41 48.16 64.15 55.89 71.29 62.43 77.83
waist 26.02 60.20 30.06 64.00 39.35 72.28 47.23 78.29

been established and new keys are required to replace the old ones.

A detailed comparison amongst position-to-position intra-class similarity, averaged for all the subjects

in the HAR walking dataset, is presented in Table 5.5. The averaged similarity between wrist and shin

and between wrist and thigh are 72% and 73% respectively, which are the lowest similarity values in

the position-to-position comparison. This can also be seen in Fig. 5.16. It is due to the fact that shin

and thigh gait signals are less correlated with chest gait signals, as shown in Fig. 5.15.
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Figure 5.17: Probability of successful fuzzy key exchanges on various positions to the rest of positions
in different number of attempts

Table 5.5: Detailed averaged position-to-position intra-class similarity of 128-bit keys generated from
15 subjects

chest wrist head shin thigh
upper

waist
arm

chest 1.00 0.85 0.87 0.79 0.81 0.90 0.93
wrist 0.83 1.00 0.77 0.71 0.73 0.85 0.81
head 0.86 0.77 1.00 0.74 0.80 0.85 0.84
shin 0.79 0.72 0.75 1.00 0.77 0.75 0.78
thigh 0.80 0.73 0.80 0.76 1.00 0.82 0.80
upperarm 0.90 0.86 0.86 0.74 0.82 1.00 0.86
waist 0.93 0.82 0.84 0.78 0.81 0.86 1.00

Reliability the impact of reordering keys using associated reliability vectors has also been inves-

tigated and the results are shown in Fig. 5.18, where the left two boxes are the similarity for the

intra-class and inter-class unreliable keys, and the right two boxes are the similarity for the intra-class

and inter-class reliable keys. It is clear that reliable keys produce higher similarity for intra-class keys

and better distinctiveness for inter-class keys, which means the inter-class similarity distribution is

less dispersed. In addition, although we chose 128-bit reliable keys in the experiments to demonstrate

the feasibility of our proposed security scheme, longer key length can also be adopted as presented in

Fig. 5.13. The mean intra-class similarity for 256-bit keys is 78.13%, when Ngc = 10, indicating that

256-bit keys can be used but with less efficiency (requires more attempts to achieve high probabilities
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of successful key exchanges). Longer key length can provide better distinctiveness between inter-

class keys due to its further concentrated normal distribution of inter-class similarity, and provide

more secure bits in each key. For example, using the BCH pair (255,9,63) in the fuzzy key exchange

block would provide 192 secure bits, whereas using the BCH pair (127,8,31) would provide 96 secure

bits.

5.2.2.3 Uniqueness and Freshness of Generated Keys

Uniqueness and freshness can be interpreted as the distinctiveness between inter-class keys, which

are generated from either different subjects, same subject but sensors are worn at different positions,

or same person wearing the same sensors but at different time. The purpose of this analysis is to

quantify how distinctive the inter-class keys are, and it is achieved by analysing the distribution of

the Hamming Distance (HD) for the inter-class keys and vitalising the generated binary keys. A HD

between two binary keys, ba and bb, of the same length, is equal to the number of bits in which

the two binary keys differ from one another (Encyclopedia, 2017). HD=0 means two binary keys

are identical, while HD=1 means two binary keys are completely different from one another (Altop,

Levi, and Tuzcu, 2015). For sufficiently long binary keys, the distribution of HD should be a normal

distribution with a mean close to 50% (Zheng, Fang, Shankaran, Orgun, Zhou, et al., 2017). As

shown in Fig. 5.20, the probability of HD of the inter-class keys generated in the experiments follows

a normal distribution with the mean of 49.96%, which is very close to 50%. Moreover, the lower

bound of the HD distribution is around 0.3, which indicates that no key will be falsely accepted. This

result demonstrates the robustness of the proposed biometrics against brute force attacks.

5.2.2.4 Randomness Evaluation

To protect the proposed security scheme from brute-force attacks, it is vital that the generated keys

process high randomness. Therefore, we evaluated the randomness of the keys generated in the ex-

periments using the entropy analysis, the NIST randomness test, and the Dieharder battery test.
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Figure 5.18: Similarity of intra-class group and inter-class group. Unreliable keys are the 128-bit
keys generated without reordering by their reliability vectors, while reliable keys are the reordered
unreliable keys using their associate reliability vectors
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Figure 5.19: Shannon entropy of 128-bit keys for 15 subjects in the HAR walking dataset (Ngc = 10)
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Figure 5.20: Probability distribution of hamming distance of (a) any two inter-class 128-bit keys
generated from all 15 subjects, with the mean distance of 49.96%, and (b) random numbers generated
by Matlab built-in function randi()

1: birthdays

2: operm5

3: rank_32x32

4: rank_6x8

5: bitstream

1-19

6: opso

7: oqso

8: dna

9: count_1s_str

10: count_1s_byt 

11: parking_lot

12: 2dsphere

13: 3dsphere

14: squeeze

15: sums

16-17: runs

18-19: craps

20-21: marsaglia_tsang_gcd

22: sts_monobit

23-53: sts_serial

54-65: rgb_bitdist

66-69: rgb_minimum_distance

70-73: rgb_permutations

74-106: rgb_lagged_sum

107: rgb_kstest_test

108: dab_bytedistrib

109: dab_dct

110-111: dab_filltree

112-113: dab_filltree2

114: dab_monobit2

23-53 54-73 74-114

Figure 5.21: Distribution of p-values in the Dieharder statistical test results

Entropy Analysis the generated keys in the experiments were tested with the entropy analysis.

Shannon entropy is a measure of uncertainty of binary sequences (Moosavi et al., 2017). The uncer-

tainty refers to the possibilities of the next event being any mutually exclusive events are equal. The

entropy of the binary keys, which contains two mutually exclusive events {0,1}, can be calculated

using (Shannon, 1948)

H({0,1}) =−P(0)log2P(0)−P(1)log2P(1) (5.21)

where P(0) is the probability of 0s and P(1) is the probability of 1s. The results of the entropy analysis

for 128-bit keys generated from all the subjects in the HAR walking dataset are shown in Fig. 5.19.

Although the entropy varies from subject to subject, a large majority of the keys have entropy above

0.99, which indicates that no pattern of 0s and 1s dominates in the keys generated from any subjects.
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Table 5.6: NIST Statistical Test Results

Statistical test P-value Proportion Pass/Fail
Frequency 0.595549 99% Pass
Block Frequency 0.739918 98% Pass
Cumulative Sums+ (2) 0.282961 98% Pass
Runs 0.224821 100% Pass
Longest Run 0.867692 99% Pass
FFT 0.554420 100% Pass
Approximate Entropy 0.851383 98% Pass
Non-Overlapping Template+ (148) 0.136742 97% Pass
Serial+ (2) 0.457748 99% Pass
Linear Complexity 0.137282 96% Pass

NIST Randomness Test the National Institute of Standards and Technology (NIST) randomness

test suite has also been used widely by researchers (Xu, Javali, et al., 2017; Yin et al., 2017; Zheng,

Fang, Shankaran, Orgun, Zhou, et al., 2017) to detect deviations of a binary sequence from ran-

domness (Rukhin et al., 2010). We tested all the 600-bit (60×10) keys, re-indexed using associated

reliability vectors, generated in the experiments when Ngc = 10 using NIST tests, and the results

are listed in the Table 5.6. The minimum pass rate for each statistical test is approximately 96%,

therefore, all tests have passed the tests. The P-values in Table 5.6 are from the uniformity tests for

these statistical tests, and P>0.0001 indicates the p-values from the corresponding statistical test are

uniformly distributed on the interval [0,1) (Sys et al., 2015).

Dieharder Test all the keys generated in the experiments were also run through a series of Dieharder

statistical tests (Brown, 2004), and the p-value distributions of 21 runs of the Dieharder tests are shown

in Fig. 5.21. If a p-value from a Dieharder statistical test is below 0.001, it can be considered as it

fails the test, however, p-values are expected equals or below 0.05 (weak) 5% of the time. The results

in Fig. 5.21 shows no incident of failure in any tests and a few incidents where p≤ 0.05 as expected.

Furthermore, the p-values of all the tests are well distributed over the interval [0,1), indicating the

keys have passed all the Dieharder statistical tests.

One of the common concerns for biometric security is the uniqueness of the biometrics for different

users (inter-class) and for different access request attempts, which are considered as intra-class for

most biometric approaches, but they are considered as inter-class in the proposed security scheme.
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Only the keys generated on the same user and at the same time are considered as intra-class keys.

This approach gives the proposed security scheme freshness and robustness against attacks using the

correlations between two attempts, which traditional biometric schemes do not provide.

5.2.3 Discussion

5.2.3.1 Brute Force Attacks

A brute force attack is a trial-and-error attack used to exhaust the space of possible keys, which means

to try out all possible keys to decode the messages that the attacker have intercepted. As the BCH

error correcting code with the pair (127,8,31), which can correct up to 31-bit errors in the keys, is

used in the fuzzy key exchange block, there are 127-31=96 secure bits, resulting in the number of all

possible keys to be F96
2 . Therefore, it is recommended to renegotiate a new key as quickly as possible

to prevent the secured channel from being exposed. If the attacker successfully obtained one of the

keys using brute force attacks, only the messages encrypted by that key are exposed. As all the keys

possess the property of high distinctiveness, the attacker cannot use the exposed key to predict any

other keys.

5.2.3.2 Dictionary Attacks

Besides brute force attacks, dictionary attacks are also very popular methods used by among hackers

in recent years (Millman, 2018). Therefore, it is a requirement for any biometric cryptosystems to be

resilient to dictionary attacks. Although they have not been tested using no user-specific dictionaries,

the keys generated in our experiments produced uniform distributions of p-values in the majority of

the Dieharder statistical tests, which includes many commonly used dictionaries, such as birthdays

and DNA. Thus, the proposed security scheme is resilient to common dictionary attacks.
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5.2.3.3 Attaching Device

The attacker can also attach a malicious device to the victims to try to obtain the secured keys. How-

ever, the malicious device requires a fully-trained ANN, specifically to the position it attached to, in

order to extract binary keys acceptable to other legitimate BSN devices. If the attacker intends to train

ANNs for the malicious device, at least two malicious devices must be attached to the target posi-

tion and another one on the chest at the same time. This process is difficult for attackers to execute

successfully without being noticed by the victims.

5.2.3.4 Impersonation Attacks

Impersonation attacks in gait biometrics have been studied extensively in the literature (Gafurov,

Snekkenes, and Bours, 2007; Hadid et al., 2012; Muaaz and Mayrhofer, 2017). Muaaz and Mayrhofer

(2017) demonstrated that a zero effort or a mimicry impersonation attack on gait biometric is unlikely

be able to compromise the IMU-based gait authentication systems. Furthermore, previous studies

have shown that during impersonation attacks, impersonators could lose regularity between steps,

increasing the difficulty of the impersonation. Fig. 5.22 shows that when using victims’ neural

networks, the zero-effort impersonation does not increase the CC results nor improve chances of the

impersonation.

5.2.3.5 Freshness

Another big concern when adopting fuzzy commitment or fuzzy vault scheme into the any biometric-

based security schemes would be “with the unavoidable information leak, is it resilient to the at-

tacks targeting the correlations or correspondence between two or multiple keys generated from the

same biometric instance”. Previous studies (Rathgeb and Uhl, 2012; Tams, 2014) have demonstrated

that fuzzy commitment or fuzzy vault schemes are vulnerable against many attacks (i.e. Decod-

ability (Tams, 2014), record multiplicity, surreptitious key-inversion, and novel blended substitution

(Scheirer and Boult, 2007)). In general, such vulnerability comes from the fact that the dependency of

binary features has been neglected in many research, resulting in overestimation in the security levels
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of such schemes (X. Zhou et al., 2011). For instance, if the keys are extracted using frequency domain

features, such as FFT, from the same face or fingerprint, they are likely to contain similar patterns of

1s and 0s. In our proposed scheme, temporal gait features are used for generating encryption keys

with a high level of freshness. Because temporal features are time-variant, producing distinctive keys

even in a short period of time. As shown in Fig. 5.18 and 5.20, the keys generated using proposed

security scheme process high distinctiveness and a good probability distribution of hamming distance,

meeting the strict condition for fuzzy commitment scheme to be used safely.

5.2.3.6 Efficiency

The number of the gait cycles required for generating one 128-bit key is sufficiently reduced compared

with our previous work (Sun, Wong, et al., 2017), in which 32 gait cycles are required for one 128-

bit key, and BANDANA, in which 48 gait cycles are required. The proposed security scheme only

requires 10 gait cycles for one 128-bit key, which is 68.75% and 79.17% more efficient than our

previous work and BANDANA respectively. The averaged number of samples in one gait cycle after

re-sampled to 50Hz in the HAR walking dataset is 60, thus, the averaged time for one gait cycle is

60× 1
50 = 1.2s. When Ngc = 10, the averaged time required for generating one 128-bit key is 12s,

and the averaged output rate of the binary key generation block is 128× 1
12=10.7bps. The proposed

security scheme is based on gait biometric, it will only generate new keys when the user is walking.

Hence, the same key will be used if the user is performing other activities.

5.2.3.7 Authentication

The proposed security scheme can be used as traditional biometric device-to-device authentication

with different thresholds instead of fixing it to the constant t. Fig. 5.23a and Fig. 5.23b present the

performance of such authentication usage using FAR, FRR, and ROC curves. EER is 5.5% when

the threshold is set to 0.57. However, the generated keys cannot be used for channel encryption, as

the fuzzy commitment scheme is not applicable at the EER point. After authentication, a new set of

encryption keys must be used based on the mutual agreement between the sender and the receiver.
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5.2.4 Conclusion

An improved gait-based security scheme with ANNs is proposed for securing wireless communica-

tions for wearable and implantable healthcare devices. The use of ANN-based gait signal estimation

block for estimating gait signals on the chest from those captured by sensors worn on the other body

positions has been proposed and significant improvement on the performance of the proposed secu-

rity scheme has been shown from the experimental results. The probability of a successful intra-class

fuzzy key exchange using the BCH pair (127,8,31) within 4 attempts for all sensor positions reach

95%, and inter-class keys possess the property of high distinctiveness, with a mean Hamming Dis-

tance of 49.96% for all 15 subjects in the HAR walking dataset. The experimental results have demon-

strated the feasibility and the robustness of our proposed security scheme and its resilience against

common attacks. With its low computational power design and the use of gait signals from IMUs,

the proposed scheme could provide the needed for secured communications for wireless pervasive

healthcare systems.

5.3 Summary

In this chapter, an ANN framework based method is proposed to estimate on-body sensor signals

(motion signals) at one body position from another sensor at different body position. In the first part

of this chapter, the proposed ANN framework is applied to estimate lower limb motion using foot

mounted inertial sensor signals. Next, the ANN framework is added in the previously proposed gait-

based cryptosystem as a signal processing block. The performance of the security scheme has been

improved in terms of binary key output rates and intra-class key matching rates.



Chapter 6

Random Number Generation Using Gait

Random numbers are fundamental to almost all the cryptographic algorithms and secure computer

systems (Graham, 2013). The research on the use of gait biometrics for securing BSNs in the previous

chapters also reveals that the freshness of gait signals can be used to generate random numbers by

removing the low frequency periodical components in the signals. Therefore, in this chapter, the use

of gait signals for generating random numbers is investigated, and the work presented in this chapter

has been published in (Sun and Lo, 2018c).

On potential low-cost solution to address the inadequate resources of the current healthcare systems

is the Internet of Things, which brings seamless connections for on-body BSN sensors. This enables

sensors and coordinators, such as mobile phones, to send real-time data to the server, creating new

possibilities for long-term patient monitoring, disease diagnosis, and emergency responses. This

chapter presents the research on the potential use of gait biometrics in securing those on-body IoT

devices. The Internet of Things can be described as a network of uniquely identifiable devices, usually

are embedded computing devices with a variety of sensors, connected to the internet. By 2020,

approximately 26 billion devices will be connected to the internet, and a large number of them will

be wearable and implantable devices (Arias et al., 2015; Middleton, Kjeldsen, and Tully, 2013).

Wearable and implantable sensing for health is considered as one of the most vital IoT applications,

because its potentials in transforming the way we live (Meola, 2016). CCS Insight predicted that the

wearable technology market will reach 411 million units, which would potentially worth 34 billion

140
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dollars, in 2020 (Lamkin, 2016).

As the purpose of wearable and implantable IoT devices is to capture and monitor user’s physiological

state, strong security and privacy is essential in such applications (Cai et al., 2017). The lack of

security protection in IoT systems will not only endanger user’s privacy, but it could also threaten the

user’s life; for example, a pacemaker without any security protection can be hijacked. For example,

former vice present of United State Dick Cheney asked his doctors to disable the wireless capabilities

of his pacemaker to prevent against possible assassination attempts on his life (Kloeffler and Shaw,

2013).

To provide a strong security for wearable and implantable IoT applications, a good random number

generator is essential. RNG is a critical component in any cryptographic systems, producing random

numbers to be used for both asymmetric and symmetric key generation (Sun, Wong, et al., 2017),

block cipher initialisation vectors (Kumar, Lee, and Lee, 2010), one-time padding (Tobin et al., 2017),

digital signatures (Buchmann, Dahmen, and Szydlo, 2009), and password storage.

There are two basic types of RNGs: true random number generators, which generate unpredictable

random numbers from physical processes; and pseudo random number generators, which are often

based on deterministic algorithms that generate reproducible pseudo-random numbers. As PRNGs

can easily generate not truly random numbers at high speeds, they are widely used in cryptographic

systems. However, as PRNGs only expand short seeds into longer deterministic pseudo-random num-

bers (Goldreich, 2007), PRNGs are vulnerable to brute-force attacks if the seed selection is faulty. For

instance, using timestamps as the seeds for PRNG, which is a common practice for many websites

including Hackernews (Dfranke, 2009), can produce weak random numbers to be guessed by exter-

nal attackers. Therefore, to reduce the vulnerability introduced by PRNGs, TRNGs or PRNGs with

seeds generated from TRNGs are used in state-of-the-art cryptographic systems for IoT applications

to produce truly random numbers with high entropy.

Many hardware-based TRNGs have been proposed for securing wearable and implantable IoT de-

vices (Bucci et al., 2003; Mathew et al., 2016; Yang, Lin, Fu, et al., 2017), however, they required

special integrated circuits to be embedded onto the devices. Alternatively, sensors on the wearable

and implantable devices can measure physical phenomena of the users, including acceleration, angu-
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lar velocity, and magnetic field, and such entropy can be harvested to generate truly random numbers

(Loutfi et al., 2014). Other researchers have studied the use of sensor-based TRNGs to generate

random numbers for mobile, wearable and implantable devices (Hong and Liu, 2015; Marghescu,

Teseleanu, and Svasta, 2014; Sathya, Premalatha, and Rajasekar, 2015; Suciu, Lebu, and Marton,

2011; Wallace et al., 2016).

However, there are a few issues that have not been fully addressed. First, the raw sensor data col-

lected during daily activities, such as walking (Dinca and Hancke, 2017), is periodic and predictable,

thus, the random numbers generated from the raw sensor data are not truly random. Second, studies

in (Hennebert, Hossayni, and Lauradoux, 2013; Hong and Liu, 2015; Sathya, Premalatha, and Ra-

jasekar, 2015) show entropy of a single sensor data is too low to be used as an entropy source for

random number generation. Third, most of the studies only include one randomness test, NIST sta-

tistical test. It has certain risks to assume a random number sequence is truly random based on only

one statistical test suite, as it may be weak to detect certain biases. These issues can be tackled using

correct post-processing, conditioning, or whitening methods, such as in (Wallace et al., 2016), where

data from multiple sensors are mixed by aggregation, folding, and reduction.

In this chapter, a light-weight mean-removal stochastic energy variation based random number gener-

ation method is proposed, which uses accelerometer and gyroscope signals captured during walking

for mobile, wearable, and implantable IoT devices.

6.1 IMU-Based Random Number Generation

An IMU consists of an accelerometer, a gyroscope, and possibly a magnetometer. As the proposed

method is designed for on-body IoT devices and since some wearable and implantable devices may

not have magnetometers, the magnetometer data is excluded from this method. Fig. 6.1 shows an

example 6-axis IMU signals (i.e 3-axis accelerometer and 3-axis gyroscope signals) captured during

normal walking, where clear patterns can be observed. The proposed method generate truly random

numbers during walking motion, by executing the following post-processing modules: IMU signal

recording, gait cycle detection, mean-removal, bit sequence re-indexing and mixing, and a XOR
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operation, as shown in both Fig. 6.2 and 6.3. The purpose of these post-processing modules is to

remove the periodic and predictable components of the IMU signals during walking, and to use only

the stochastic signal energy variations to generate truly random numbers.
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Figure 6.1: Example of 6-axis IMU signals
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Figure 6.2: Simplified structure of the IMU-based random number generation algorithm

6.1.1 Gait Cycle Detection

A gait cycle, as defined in (Whittle, Levine, and Richards, 2012b), is the interval of the time between

the occurrence of a repetitive event of walking and the occurrence of the next successive repetitive

event, such as heel-strike or toe-off events. In this paper, we use the IMU signals in the time interval

of a gait cycle from heel-strike to heel-strike. The algorithm in the gait cycle detection module is

modified from (Sun, Wong, et al., 2017), where a low-pass filter is applied to one axis of the IMU

signals. The filter’s cut-off frequency is 3 Hz, as the average human walking frequency is between
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Figure 6.3: Illustration of the IMU-based random number generation algorithm. (a) Gait cycle detec-
tion using the 3Hz low-pass filter. (b) Stochastic signal energy variation extraction and bit generation.
(c) Raw values of the signal energy differences δ . (d) Absolute values of the signal energy differ-
ences |δ |. (e) Re-indexing the generated bits using the descending order γ of the absolute values of
the signal energy differences |δ |

1.7 and 2.7 Hz (Revadigar, Javali, Xu, Vasilakos, et al., 2017). This is shown in Fig. 6.3 (a), where

every two adjacent hill-shape patterns on the filtered signal alow−pass are considered as a gait cycle,

and the boundaries between adjacent gait cycles are indicated using red vertical lines.

The purpose of the gait cycle detection is to obtain the time intervals of the gait cycles for calculating

the averaged gait cycle (mean) as aavg in Fig. 6.3 (a). aavg will be the same for all the gait cycles in

the same gait cycle group. As only rough time intervals of the gait cycles are required in the proposed

method, we use only the y-axis of the accelerometer signals, where the gravity resides, for the gait

cycle detection, and apply the detected gait cycle information to the other axes of the IMU signals

afterwards. As the x,y and z of the IMU may not be directly aligned with the anatomical axes and the

orientation of the IMU may vary; therefore, the y-axis of the accelerometer is selected by choosing

the axis which has the largest mean value among the three axes.
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6.1.2 Mean-Removal

The purpose of the mean-removal module is to subtract the averaged gait cycle from each gait cycle

individually to obtain the stochastic signal energy variations, and it is illustrated in Fig. 6.3 (b) and

(c). Assuming a total number of M gait cycles are found in the gait cycle detection module for a

IMU signal recording, all the gait cycles are then normalised to the same length, L = 60, which is the

averaged number of samples in one gait cycle. The normalised gait cycles can be represented as

g = [g1,g2, ...,gm, ...,gM] (6.1)

where gm = [ fm1, fm2, ..., fml, ..., fmL]
T and fml represents the l-th sample in the m-th gait cycle. To

calculate the averaged gait cycle (mean), g is divided into N groups, each of which contains C gait

cycles. The grouped gait cycles, G can be expressed as

G = [G1,G2, ...,Gn, ...,GN ] (6.2)

where Gn = [gn,gn+1, ...,gn+c, ...,gn+C] and N×C≤M. The remained gait cycles that are not enough

to form a gait cycle group are discarded. Then, the averaged gait cycle (mean) for the n-th group is

αn =
1
C

C

∑
c=1

gn+c (6.3)

The stochastic signal energy variation for the m-th gait cycle, δm, is the signal difference between gm

and αn, where gm belongs to the n-th gait cycle group, and it can be expressed using

δ m = gm−αn and gm ∈ Gn (6.4)

A (C×L)-bit binary sequence will be generated from δ m. In other words, the stochastic signal energy

variation for the l-th individual sample in the c-th gait cycle of the n-th group is δncl , from which the
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l-th bit in the m-th binary sequence, bncl ∈ {0,1}, is generated using

bncl =

1, δncl ≥ 0

0, otherwise
(6.5)

Finally, there are (C×L×N) bits generated from M gait cycles for each axis of the IMU signals. This

process is illustrated in Fig. 6.3 (b), where 1s, indicated as red circles, are generated from the samples

who have values higher or equal to the values of the averaged gait cycle (mean), and 0s, indicated

as blue circles, otherwise. Fig. 6.3 (c) shows the raw values of the signal energy differences. 1s are

generated from the red and positive ones, and 0s are generated from the blue and negative ones.

6.1.3 Re-Indexing and Mixing

To purpose of the re-indexing module is to further randomise the generated binary sequences using

naturally random features (Veen et al., 2006), which are the orders of the absolute values of the

energy energy differences in a gait cycle group, as shown in Fig. 6.3 (d). The n-th binary sequences

are re-indexed using the descending indexes γn of the energy variations in Gn as

γn = [rn1,rn2, ...,rnµ , ...,rn(C×L)] (6.6)

where rnµ ≥ rnµ+1, and rnµ represents the µ-th index of the n-th binary sequence in descending order.

The re-indexing module, which is illustrated in Fig. 6.3 (e), is applied to every axis of the IMU

signals, thus, producing 6 binary sequences. The illustration of the mixing modules in Fig. 6.3 is

inspired by (Revadigar, Javali, Xu, Vasilakos, et al., 2017). Then, a mixing process is applied to the

binary sequences generated from accelerometer signals and gyroscope signals separately as indicated

in Fig. 6.3. The binary sequences generated from the X, Y, and Z axes of the accelerometer signals

are sequentially placed in one row following the rule

[X1,Y1,Z1,X2,Y2,Z2, ...,Xµ ,Yµ ,Zµ , ...,XC×L,YC×L,ZC×L] (6.7)
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(a) (b) (c)

Figure 6.4: (a) Screenshot of data collecting user interface. (b) Screenshot of the local file manage-
ment user interface. (c) Screenshot of the cloudkit-based online database

The same rule is also applied to gyroscope signals, resulting two mixed binary sequences for each gait

cycle group. Finally, the two binary sequences are bitwise-XOR operated, as combining two entropy

sources can improve randomness (Dinca and Hancke, 2017), to produce the final (3×C× L)-bit

random binary sequence, which can be used as it is or be converted into decimals (random numbers)

depending on the requirements of the applications.

6.2 Experimental Set-up

The proposed method was evaluated by conducting a series of experiments, using a Real World Hu-

man Activity Recognition (HAR) dataset from (Sztyler, Stuckenschmidt, and Wolfgang, 2017), which

contains averaged 10 to 12 minutes IMU recordings from 15 subjects and our walking dataset which

contains averaged 3.17 hours IMU recordings from 6 subjects. There are 7 sensors placed on each

subject in the HAR dataset, and we selected the IMU recordings from right thigh positions to be tested

in the experiments. When collecting the data in our walking dataset, subjects were instructed to place

the mobile phone in the right trouser pockets, and walk freely in the streets or parks.

To assure the real-world scenario, the use of mobile phones, such as making phone calls, were al-

lowed. An iOS application, as shown in Fig. 6.4 (a) and (b), was created for the purpose of collecting

and uploading IMU data to a cloudkit-based database, as shown in Fig. 6.4 (c). The sensor data files
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were then downloaded to a computer running 64-bit Windows 10 Enterprise version 1703, and the

proposed method was implemented in Matlab R2017a.

All the generated random numbers were stored in an ASCII file for NIST and Dieharder tests, and a

binary file for ENT and RaBiGeTe tests. All the tests were performed on the same computer but in

virtual machines. In detail, NIST STS-2.1.2, Dieharder 2.24.1, and ENT (28/01/2008) were installed

and used in Ubuntu 16.04 virtual environment, and RaBiGeTe 32-bit version 2.0.0 with graphical

user interfaces was installed and used in 32-bit Windows 7 Home basic N SP1 build 7601 virtual

environment.

6.3 Randomness Tests

We tested the random numbers generated from both our dataset and the HAR walking dataset using

four randomness tests, which are explained in this section. All the test results will be presented and

evaluated in the results section.

NIST-STS has been adopted by most researchers for testing the randomness of binary sequences. Our

experiments were carried out by following the instructions provided by the official documentation

NIST SP 800-22 (Rukhin et al., 2010) and an explanatory journal article on the interpretation of the

NIST-STS results (Sys et al., 2015). The latest NIST-STS version 2.1.2 includes 15 tests, each of

which is designed to test a pre-defined null hypothesis (the tested sequence is random, notated as H0)

and also produces a probability value (p-value) in the range of the interval [0,1). When evaluating

the results from a test, the p-value produced by the test is compared with a constant α , which is

the significance level that can be set by the user. If the p-value is larger than α , its H0 is accepted,

otherwise rejected. Moreover, two types of errors , Type I, where H0 is rejected but the tested sequence

is actually from a good RNG and Type II, where H0 is accepted but the sequence is not random, are

defined. The probability of Type II error occurring is denoted as β , which is related to α and in

practice calculated by the NIST-STS.

ENT is a pseudo-random number sequence test program, which evaluates PRNGs for applications

such as encryption and compression (Walker, 2008). The ENT consists of the following tests:
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1. Entropy: it is the information density of the test random number sequences, expressed as a

number of bits per byte. The percentage of the sequence, which can be reduced by optimum

compression, is also calculated

2. Chi-square Distribution: it indicates how often a value, which is calculated based on the stream

of bytes, is exceeded

3. Arithmetic Mean: it is the sum of all the bytes in the test sequence, dividing by the sequence

length

4. Monte Carlo Value for π: every six bytes of the test sequence are converted into rectangular

coordinates within a square, and a hit is made if a random point is less than the radius of a

circle inscribed within the square. The percentage of hits is the Monte Carlo Value for π , which

should be close to the value of π for random sequences

5. Serial Correlation Coefficient: it measures the correlations between every successive bytes in

the test sequences, which should be close to 0 for random sequences

Dieharder consists of tests from Diehard and many improved tests from NIST-STS. Some of the

unique tests that Dieharder provides are listed as followings (Brown, 2004):

1. Birthday: to test whether the spacings of random intervals from the test sequences follows a

Poisson distribution

2. Bitstream: to test the sequences by considering them as streams of bits or overlapping ‘words’

3. OPSO: Overlapping Pairs Sparse Occupancy test converts the test sequences into 2-letter words

and determines whether the number of missing words follows a normal distribution

4. OQSO: Overlapping Quadruples Sparse Occupancy test uses 4-letter words instead of 2-letter

words

5. DNA: to test whether the number of missing 10-letter words, which consists of 4 letters, C, G,

A, and T, follows a normal distribution

6. Parking Lot: to test whether the number of successful attempts to randomly park a 12 car on a

1002 parking lot follows a normal distribution
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7. Craps: to test whether the number of wins when plays 200,000 games of craps using the test

sequences follows the excepted normal distribution

8. Marsaglia and Tsang GCD: to test whether the test sequences can pass the greatest common

divisor test developed by (Marsaglia, Tsang, et al., 2002)

9. RGB Kolmogorov-Smirnov: to test the uniformity by applying an Anderson-Darling or Kuiper

KS test to a vector of uniform deviates from the test sequences (Brown, 2004)

RaBiGeTe is a multi-threaded highly configurable windows-based RNG tester (Cristiano, 2011) that

includes some of the tests in the NIST-STS and Dieharder. Therefore, only the tests that are unique

in RaBiGeTe are listed as followings:

1. AMLS: it is based on the bits generated using Mitzenmacher’s advanced multi-level strategy

(Mitzenmacher, 2008), where Von Neumann’s rule are applied to the test sequences in pre-

defined orders

2. Coupon Collector’s test: to test whether the distribution of the lengths of successive ‘full sets’

of digits from 0 to d−1, of the test sequences, are as expected (Greenwood, 1955)

3. Maurer: to test any major deviations of the statistics of the test sequences from the statistics of

a truly random binary source, proposed by Maurer (1992)

4. Permutation: to obtain the permutation distribution of the test sequences under the null hypoth-

esis by re-sampling the test sequences (Rice and Lumley, 2008)

5. Windowed Autocorrelation: to test the correlations between the bits in the test sequences

6.4 Results

6.4.1 NIST

The NIST results for the random numbers generated from our dataset and the HAR walking dataset are

listed in Table 6.1. The lengths of the test sequences for our datasets, the HAR walking dataset, and
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Blum-Blum-Shub (BBS) referencing PRNG provided by the NIST-STS program were set to 100,000,

except the ones for the Universal test, which were set to 1,000,000. However, the HAR dataset was

not tested using the Universal test, as it requires at least 1,000,000 samples in each test sequence. The

p-values listed in Table 6.1 are from the uniformity test, which indicates how uniform the p-values

(of individual statistical tests) are distributed in the interval [0,1), which should be larger than 0.0001

for good RNGs. The minimum pass rate (with the exception of the Random Excursion, Random

Excursion Variant, and Universal tests) for our dataset and BBS is approximately 96% (96/100), and

the minimum pass rates for the Random Excursion (Variant) tests and the Universal test are 88.8%

(8/9) and 80% (8/10) respectively. On the other hand, the minimum pass rate (with the exception of

the Random Excursion (Variant) tests) for the HAR dataset is approximately 85.7% (12/14). As there

are multiple Non-Overlapping Template, Random Excursions, and Random Excursions Variant tests,

the p-values from each group of the same tests are averaged (as indicated using ∗), and the proportions

that have passed the tests are accumulated (as indicated using +). The individual proportions for these

tests, which are all greater than the corresponding minimum pass rates, are not shown in Table 6.1.

To summarise, the random numbers generated from both datasets passed all the NIST tests with very

high efficiency.

Table 6.1: NIST-STS results for the random numbers generated from our dataset, HAR dataset, and
BLum-Blum-Shub referencing PRNG provided in the NIST-STS program (∗: averaged value; +:
accumulated value)

Our dataset HAR dataset Blum-Blum-Shub
Statistical tests p-value Proportion p-value Proportion p-value Proportion
Frequency 0.017912 96/100 0.035174 14/14 0.816537 98/100
Block Frequency 0.304126 96/100 0.350485 14/14 0.366918 100/100
Cumulative Sums (Forward) 0.883171 97/100 0.122325 14/14 0.955835 98/100
Cumulative Sums (Reverse) 0.657933 97/100 0.534146 14/14 0.401199 99/100
Runs 0.202268 100/100 0.213309 14/14 0.090936 99/100
Longest Run 0.779188 97/100 0.066882 14/14 0.202268 99/100
Rank 0.883171 100/100 0.008879 14/14 0.202268 98/100
FFT 0.115387 96/100 0.739918 14/14 0.275709 100/100
Non Overlapping Template (148) 0.535721∗ 14638/14800+ 0.228108∗ 2042/2072+ 0.518429∗ 14655/14800+

Overlapping Template 0.851383 100/100 0.213309 14/14 0.455937 99/100
Universal 0.739918 10/10 - - 0.017912 10/10
Approximate Entropy 0.419021 99/100 0.008879 13/14 0.971699 99/100
Random Excursions (8) - 72/72+ - 8/8+ 0.571206∗ 80/80+

Random Excursions Variant (18) - 156/162+ - 18/18+ 0.548565∗ 180/180+

Serial (Forward) 0.455937 99/100 0.213309 14/14 0.739918 99/100
Serial (Reverse) 0.897763 98/100 0.122325 14/14 0.037566 98/100
Linear Complexity 0.383827 100/100 0.350485 14/14 0.145326 100/100
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Table 6.2: ENT results for the random numbers generated from our dataset and HAR dataset

Our dataset HAR Completely random
Entropy 7.999848 bits/byte 7.998900 bits/byte 8 bits/byte
Optimum compression 0% 0% 0%
Chi square distribution 282.32 (p=11.54%) 282.80 (p=11.15%) 1% <p <99%
Arithmetic mean 127.5753 127.7763 127.5
Monte Carlo value 3.140367341 (e=0.04%) 3.130744557 (e=0.35%) 3.141592654 (e=0.00%)
Serial correlation coefficient 0.001383 -0.003812 0

6.4.2 ENT

The ENT test results for our dataset and the HAR walking dataset are listed in Table 6.2. The last

column in Table 6.2 lists the expected values for completely random sequences. All the ENT results

indicate good randomness for the random numbers generated from both our dataset and the HAR

dataset. Additionally, the random numbers generated from our dataset perform slightly better (closer

to the expected values) than the ones from the HAR dataset, which is possibly due to the larger size

of our dataset.

6.4.3 Dieharder

The p-value distributions, the number of weak p-values, and the number of failure p-values of the

Dieharder tests for the random numbers generated from both our dataset and the HAR walking dataset

are presented in Fig. 6.5. It is important to note that the null hypothesis in Dieharder test differs from

the ones used in the NIST-STS tests. Weak p-values (p<0.5% or p>99.5%) is expected 5% on average

from any Dieharder tests for a good RNG, meanwhile failure p-values (p<0.05% or p>99.95%)

should rarely occur. Furthermore, the distribution of p-values for a Dieharder test should in turn be

uniformly distributed between the interval [0,1) (Brown, 2004; SysTutorials, n.d.). The distributions

for 100 runs of the Dieharder tests for both datasets are evenly distributed in [0,1), except for the

sums tests (No. 15), where a bias towards 0 can be observed. Although it is not uniformly distributed,

the weak p-values of sums tests are less than 5%, thus it is not too weak for attackers to exploit.

Additionally, the number of weak p-values for all the Dieharder tests are equal or less than 6%, and

the number of failure p-values for all the tests are equal or less than 3%. It is safe to conclude that the

random numbers generated from both datasets passed the Dieharder tests.
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Figure 6.5: Dieharder test results

6.4.4 RaBiGeTe

Table 6.3 lists the overall Kolmogorov-Smirnov (KS) p-values and Anderson-Darling (AD) p-values

for some statistical tests applied in RaBiGeTe. KS and AD p-values indicate whether the tested

random numbers are randomly distributed, and any p-values less than 0.00001 or greater than 0.99999

is considered a failure to the corresponding statistical test. As listed in Table 6.3, no KS or AD p-value

exceeds the range of 0.00001 to 0.99999, thus both our dataset and the HAR walking dataset passed

all the RaBiGeTe tests. Furthermore, Fig. 6.6a and Fig. 6.6b are the Straight Line (SL) test results,

where the distributions of the ascending ordered KS and AD p-values obtained from 132 sub-tests

in RaBiGeTe default settings for both datasets. The blue straight line is the ideal positions of the

p-values. The closer the p-values are to the line, the more uniformly distributed they are. As shown

in Fig. 6.6, both datasets passed the SL tests.
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Figure 6.6: RaBiGeTe Straight Line (SL) test results

6.5 Discussion

The use of inertial sensors for generating random numbers has been proposed by other previous re-

search. For instance, Voris, Saxena, and Halevi (2011) discussed the feasibility of using an accelerom-

eter as the entropy source for RNGs on ubiquitous devices, and implemented an accelerometer-based

RNG on a RFID tag. The authors demonstrated the resilience of accelerometer-based RNGs against

adversaries and environmental variations via comparative analysis with adversarial modelling. How-

ever, Hennebert, Hossayni, and Lauradoux (2013) observed far less entropy than expected in their

experiments on entropy harvesting from physical sensors, and argued that the amount of min-entropy

reported in (Voris, Saxena, and Halevi, 2011) was overestimated.

Moreover, Dinca and Hancke (2017) studied using smart-phone sensors as entropy sources for random

number generation during human gait, and concluded that the raw data collected from smart-phone

sensors on the subjects during randomly walking on the city streets is highly predictable. The authors

also argued that using data from any combination of two sensors can only slightly improve random-

ness. To ensure the randomness of the numbers generated, in our proposed method, a mean-removal

algorithm is proposed to remove regular patterns of the IMU signals during walking and use only the

stochastic signal energy variation for random number generation.
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Table 6.3: RaBiGeTe statistical test results (KS: Kolmogorov-Smirnov, AD: Anderson-Darling, SL:
straight line, CM: Cramer-von Mises, SW: Shapiro-Wilk, CC: Pearson’s correlation coefficient, AV:
absolute value correlation coefficient)

Our dataset HAR dataset
KS AD KS AD

KS 0.36137 0.83739 0.07815 0.47745
AD 0.75118 0.87342 0.06660 0.58350
SL 0.67879 0.90847 0.08402 0.59756
CM 0.60727 0.89412 0.06246 0.49069
SW 0.38089 0.28437 0.30779 0.71776
CC 0.44210 0.92092 0.05401 0.71767
AV 0.43196 0.92605 0.05629 0.62781

Many methods have been proposed on how to increase the randomness of the bits generated directly

from raw sensor data in a post-processing manner. Suciu, Lebu, and Marton (2011) proposed a

mobile sensors based RNG, where z, based on the user’s selection, least significant bits of a GPS, an

accelerometer, a magnetometer, and an orientation sensor are combined and concatenated. Similarly,

A. Marghescu and G. Teseleanu proposed a sensor-based RNG using four types of Von Neumann

randomness extractors to increase the quality and the throughput of the RNG. Loutfi et al. (2014)

presented a smart-phone sensor based RNG design, where the NIST Secure Hash Algorithms (SHA)

hashing family is used to whiten the bit sequences generated from raw 32-bit sensor data streams.

Hong and Liu (2015) and Sathya, Premalatha, and Rajasekar (2015) both applied Wash-Rinse-Spin

method on raw sensor data to increase randomness. Wash is designed to remove drifting patterns,

Rinse is implemented to remove data points that process less entropy, and Spin is developed to use

sensor data as PRNG seeds to produce larger and longer sequences of pseudo-random numbers (Hong

and Liu, 2015). However, these methods only whitens the raw sensor data or uses the raw sensor data

as PRNG seeds, which, as aforementioned, are vulnerable to brute-force attacks if the randomness of

the seed selection is week.

In a similar work, Wallace et al. (2016) proposed an experimental framework called SensoRNG,

where only the bits, from various smart-phone sensors, with sufficient randomness are selected, ag-

gregated, and mixed to produce random numbers. When testing against NIST-STS, SensoRNG has



156 Chapter 6. Random Number Generation Using Gait

weak p-values in the runs test and rank test, and no Non Overlapping Template, Overlapping Tem-

plate, Universal, Random Excursions, and Random Excursions Variant test results are reported in the

paper. Whereas our proposed method passed all NIST-STS tests with high efficiency.

6.6 Conclusions

In this chapter, a random number generation method using IMU signals and stochastic signal energy

variation is proposed for securing on-body IoT devices. The use of a mean-removal algorithm has

been proposed to reduce patterns and to enhance randomness. The proposed method was tested with

our dataset and the HAR walking dataset, and the generated random numbers passed all the tests

in four randomness test suites, namely NIST-STS, ENT, Dieharder, and RaBiGeTe. Therefore, we

demonstrated the feasibility and the robustness of our proposed IMU-based random number genera-

tion method for on-body IoT devices.

The designs and test results for proposed gait-based RNG are still preliminary, but they present great

potentials of gait-based RNGs for IoT healthcare systems in many ways, such as for generating tempo-

rary identities for newly registered devices. Moreover, the random numbers generated from proposed

gait-based RNG can also be used as seeds for traditional PRNGs to generate pseudo random num-

bers. This will increase the output bit rate of the generator while maintaining randomness. As inertial

measurement units are very small and not power hungry, the proposed gait-based RNG can be imple-

mented in a system-on-a-chip fashion, which can be used in cryptographic devices and applications,

such as key cards.
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Conclusion

This thesis presents novel methods regarding EEG and gait biometrics for securing wireless commu-

nications among BSN sensors and coordinators, as well as BSN/IoT-based healthcare systems. In

the following sections, a summary of the achievements and contributions of the thesis is presented.

Then a discussion of future research directions and works of the EEG and gait biometrics for securing

healthcare applications is presented in the final section of this thesis.

Chapters on gait biometrics indicate that the correlations of gait signals from different body positions

are sufficient to be used for on-body device authentication and data encryption. However, one of

the limitations of using IMU-based gait biometrics is that it can only be used for on-body wireless

communications, such as wearable device pairing; or for mobile device authentication, where the po-

sition of the mobile device has to be fixed to maintain authentication performance. The trend of gait

biometric research is on camera-based gait recognition in the wild, which can be used for identify-

ing criminals and detecting pedestrians. In addition, the fusion of IMU-based gait biometrics with

other wearable sensors, such as multiple IMU sensors at different body positions, Electromyography

(EMG) sensors, and on-body cameras, is also a promising future research direction.

157
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7.1 Summary of Thesis Achievements

The main technical achievements of the work presented in this thesis include:

• Introduced a light-weight symmetric key generation scheme based on gait event timing (tem-

poral gait) from inertial signals;

• Proposed a deep learning approach for gender and age recognition using a single inertial sensor;

• Designed and developed an Artificial Neural Network framework for lower limb motion signal

estimation;

• Presented an improved key generation scheme based on ANN-based gait signal estimation and

fuzzy key exchange;

• Developed of a random number generation method using gait signals and stochastic signal

energy variation for on-body IoT devices;

• Derived a 1D-convolutional LSTM approach for EEG-based user identification for securing

IoT-based healthcare systems.

The thesis started with an introduction of the challenges and issues of the security measures of the

current healthcare systems in the first two chapters. By reviewing state-of-the-art methodologies,

many new perspectives on how to tackle the challenges of applying EEG and gait biometrics in BSN

security were found and presented.

A novel EEG-based user identification system was proposed in Chapter 3, where 1D-convolutional

LSTM approach was presented in detail. The system extracts spatiotemporal features resided in the

EEG signals with better performance than state-of-the-art deep learning approaches, and it can be

used to reduce the number of EEG channels required by the systems, subsequently reducing the costs

of the systems.

As EEG headsets are still cumbersome in size and not suitable for low-power BSN sensors. In Chapter

4, a novel light-weight symmetric key generation scheme was presented, where gait event timing as
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the common entropy source for cryptography. Moreover, the influence of gender and age for gait

biometrics was also investigated in the second part of the chapter. Through assessing the gender and

age recognition using only inertial sensors, it can be concluded that a person’s gait is unlikely to

change once he/she reaches adulthood.

To improve intra-class key matching rates of the gait-based symmetric cryptosystem, Chapter 5 fo-

cused on improving the symmetric key generation scheme by applying Artificial Neural Network to

increase the correlations among gait signals from sensors located at different body positions. The

first part of the chapter presented a novel lower limb motion estimation method using two inertial

sensors attached to the ankles, and the second part extended the proposed method to generate higher

correlations among gait signals collected from different positions, which can be used as the common

entropy source for cryptography.

To explore the possibility of using gait signals to generate random numbers, Chapter 6 presented a

novel random number generation method for securing on-body IoT devices based on temporal signal

variations of gait signals. The method was rigorously tested and passed using four widely adopted

randomness test suites.

7.2 Future Research Directions

The work presented in this thesis can be categorised into three directions: using EEG signals for user

identification applications, using inertial gait signals for secure key generation, and using inertial gait

signals for random number generation.

First of all, the future research directions of the proposed schemes in Chapter 3 would be to further

testing its scalability by retraining the networks with EEG data from other databases. Further investi-

gation on which EEG channels are the most effective ones for distinguishing different users are useful

for reducing costs of the security systems. In addition, development of an automatic channel selection

algorithms instead of manual channel selection is also an interesting future research direction. with

respect of deep learning on EEG biometrics, as training a new deep learning network is time con-

suming, transfer learning technique should be introduced to reduce time consumption for adding new
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users in the fully trained deep learning networks. In addition, the fusion of EEG with other biomet-

ric traits is an interesting topic as it would potentially be used to design more secured identification

systems.

Next, for using inertial gait signals for secure key generation of symmetric cryptosystems, the future

research directions are follows: first, investigate other fuzzy systems for binary sequence correcting,

such as fuzzy vault. The fuzzy commitment scheme used in the proposed key generation scheme is

light-weight but can only recover keys that have sufficient identical bits to the original keys, whereas

fuzzy vault can distinguish keys that have even less identical bits but with higher computational com-

plexity. With recent advancement in the miniaturised on-body devices in terms of on-node resource

and power consumption, such intense computations can be achieved without compromising the per-

formance of other parts of the systems.

Then, for the proposed method in Chapter 5 uses an ANN framework for estimating gait signals at

other body positions. The future work can be exploring more advanced machine learning techniques,

such as deep learning. In addition, other periodical sensor signals captured by BSN sensors can also

be estimated or predicted. Such approach can significantly reduce the number of the sensors needed

for healthcare applications that does not require high accuracy sensor data. The predicted sensor data

can also be used for validating of real sensor data, preventing malicious man-in-the-middle attacks.

Finally, for using inertial gait signals for random number generation for securing on-body IoT devices,

the future research directions are as follows. First, the proposed gait-based RNG could be extended

for many applications, such as for generating temporary identities for newly registered devices. Sec-

ond, the random numbers generated from proposed gait-based RNG can also be used as seeds for

traditional PRNGs to generate pseudo random numbers. This will increase the output bit rate of the

generator while maintaining randomness. Third, as inertial measurement units are very small and low

power, the proposed gait-based RNG can be implemented in a system-on-a-chip approach, which can

be used in cryptographic devices and applications, such as key cards. These applications are practical

therefore can be further developed into patients or commercialised services.
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