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Introduction
Reliability modeling and analysis of telecom networks and
systems is a broad subject and includes many techniques,
ranging from reliability block diagrams and other combi-
natorial methods at one end to Markov models, Petri nets,
Stochastic Activity Networks (SANs), etc., for more com-
plex models. Both analytical and numerical methods are
used. In this paper our goal is to provide a characteriza-
tion of telecom systems with respect to reliability and to
present a few case studies to illustrate the types of mathe-
matical modeling and analyses that are done in an indus-
trial setting in the process of building a reliable telecom
system. The analyses are presented in terms of the types of
models that are developed in different phases of the prod-
uct realization process. We discuss telecommunications
reliability modeling from a systems perspective to include
both hardware and software components.

As telecommunications systems are considered a critical
infrastructure they have stringent requirements, typically
an availability of 99.999%, often referred to as 5-Nines. In
this context, reliability modeling is an important part of
the development process, starting from the design of the
architecture where models are used to evaluate alternative
architectures to predicting the expected field reliability at
the end of the testing phase based on the lab testing results.

Very broadly, a telecommunications network system is
an arrangement of computing and telecommunications
assets—a group of nodes and links—that is capable of car-
rying audio, visual, and data communications. The main
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function of such a network is to provide for the efficient
transmission of information from a point of origin to a
point of termination. Figure 1 shows a high-level telecom
network reference architecture where CDN refers to Con-
tent Distribution Network.
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Figure 1. Telecom network example reference architecture.

In the following section we present an overview of the
different types of reliability models developed in the tele-
com domain followed by a few selected example case stud-
ies.

Reliability Modeling
In an industrial setting, the type of reliability model devel-
oped depends on the phase of the product realization pro-
cess for which themodel is used, namely: concept/explore;
architecture/design; post-development, pre-testing; test-
ing; and operational phase. Figure 2 illustrates the differ-
ent types of models that can be developed in the various
phases of the product realization process.

In the concept and explore phases, the results from sim-
ple reliability models can be used to compare architecture
alternatives. In the architecture and design phases, the
models are used to predict system reliability and perform
sensitivity analysis with respect to model parameters (the
model on clustered systems in the next section is an ex-
ample). The model can also be used, if given a system
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Figure 2. Reliability modeling in the product realization process.

reliability objective, to determine the values of parameters
such as error detection and recovery time, which can then
be used as design goals. As the system is developed, model
parameters can be measured and the reliability model can
be updated with these values. After field deployment, the
model can be validated with field failure data, which can
also be used for modeling future releases of the product
and for modeling the reliability of similar products. The
example on availability in the next section discusses how
field outage data can be interpreted, and used to compare
the outage characteristics against the design specs. With
the emergence of sensor networks and advances in network
telemetry, large volumes of data are available, often in near
real-time, during the operational phase. Using machine
learning (ML) approaches (discussed in the next section),
this data can be used for anomaly detection and prediction
to proactively mitigate reliability issues. When problems
do occur, ML approaches can be applied for log analysis
to determine root cause as well as create failure signatures.

The basic inputs for a reliability model are the follow-
ing: hardware failure rate, software failure rate, fault recov-
ery coverage factor, and error detection and error recovery
duration. Of these inputs, the most difficult to predict
is the software failure rate, and it is the focus of much
of the work in software reliability modeling. The mod-
eling techniques appropriate for 5-Nines telecommunica-
tion systems are availability models for repairable systems
with the following assumptions: constant failure rate; the
availability of each component is independent; and redun-
dant structures are designed for online repair where the re-
pair of a failed unit does not impact the operation of the
working units.

The exponential distribution is most commonly used
in reliability models to represent the failure rate. For hard-
ware systems, the failure rate 𝜆 is usually assumed to be a
constant greater than zero, though, strictly speaking, it is a
function of time, as shown in the bathtub-shaped curve [21]
in Figure 3.

The failure rate is high during early life and is re-
ferred to as infant mortality due to the failure of weaker
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Figure 3. Bathtub curve for hardware failure rate.

components typically introduced in the manufacturing
process. Once these defects are eliminated the failure rate
is approximately constant and typically represents the sta-
ble operational phase of the system. Most systems spend
the major part of their lifetimes operating in this flat
portion of the bathtub curve. The failure rate starts in-
creasing at the end of the operational life as the system
enters the wear-out phase; this occurs as materials wear
out and degradation failures occur at an ever increasing
rate. Telecommunication systems are usually deployed
only during the stable phase, and, therefore, in reliability
modeling a constant failure rate assumption is made. If a
time-varying failure rate assumption is made, the Wiebull
distribution is commonly used to represent the failure rate
where the shape factor of the distribution directly influ-
ences the failure rate [21].

Several reliability modeling techniques are used for
telecommunication systems depending on the project
phase, and also on the inputs available for the models. We
classify the modeling techniques in three broad categories,
namely:

• Classic (and simpler) techniques such as reliabil-
ity block diagrams, fault trees, and Markov mod-
els, typically assuming exponential failure and re-
pair rates.

• Advanced (and some newer) techniques such as
nonexponential models, stochastic Petri nets, and
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Bayesian belief networks.
• Machine learning (ML)-based techniques used

when there is a large volume of data available such
as from automated testing, or from telemetry data
and log data for deployed systems.

In the early phases, for evaluation of alternatives, sim-
pler models may be adequate, as typically the model in-
puts are less precise in this phase—the focus ismore on the
comparison of alternatives rather than the absolute model
results. Markov models are a good choice for architecture-
based reliability models, the results from which can pro-
vide insights into system failure and recovery behavior.
The advanced techniques can be applied in the later phases
of the project whenmore detailed inputs (architecture, fail-
ure and recovery behavior, parameter values based on lab
measurements) are available. ML techniques can be ap-
plied to testing data as well to field data for deployed sys-
tems.

There are no books that are specific to telecommunica-
tions system reliability modeling; however, there are some
classic books that are essential for reliability modeling.
The book by Trivedi [21] is a classic text for system reli-
ability modeling and provides a comprehensive guide to
the analysis, modeling, and evaluation of the reliability of
computer and communication systems along with the the-
oretical concepts of probability, stochastic processes, and
statistics required for the analysis. The more recent book
by Trivedi et al. [20] covers the advanced and newer tech-
niques as well as evaluating the various approaches for re-
liability modeling. The survey article by Ahmad et al. [2]
provides a detailed survey of the application of various re-
liability modeling and analysis techniques for telecommu-
nications networks.

Hardware reliability modeling is a well-established dis-
cipline, and many textbooks, for example Tobias et al.
[19], provide a good introduction to the subject. Software
reliability modeling, on the other hand, is a (relatively)
newer field and, to some extent, is more art than science.
The text by Musa et al. [15] is a classic text for software
reliability modeling. The handbook by Lyu [12] is a com-
prehensive collection of articles on various aspects of soft-
ware reliability modeling. Software reliability models de-
veloped in the architecture and design phase are used for
prediction and to identify software modules that are likely
to be error-prone. The survey paper by Rathore et al. [18]
provides an extensive survey of the software fault predic-
tion techniques aimed at identifying fault-prone modules.
Models developed in the testing phase, namely, software
reliability growth (SRG) models, are based on the parame-
ters estimated from system test data and are used to predict
the residual faults in the system and to determine when to

stop testing. The models on software reliability in the next
section are examples of models used in the testing phase.

Modeling Examples: Case Studies
A few selected example case studies are presented in this
section.
Availability. Availability is the commonly used measure
and requirement in the telecommunications industry.
Consequently, the models developed typically predict the
expected availability or, equivalently, the expected down-
time in minutes per year. When a system is said to have a
reliability of 5-Nines what is meant is that the availability
of the system is 0.99999. What does 0.99999 availability
mean? Mathematically it means that, on average, a sys-
tem is down for less than 5 minutes per year. For systems
in the field, the average downtime per year is calculated
as the cumulative downtime of all the deployed systems
over a year divided by the number of deployed systems.
The average value is skewed by the large duration outages,
since very few systems fail at all in any given year for a
high-availability system. The few systems that do fail are
typically down for the duration of the time to repair. The
Mean-Time-To-Repair (MTTR), for modeling purposes, is
generally assumed to be two to four hours; however, in
practice, it can vary significantly based on the outage event.

Figure 4. Pareto plot of field outage data.

For this reason, the Pareto plot [1] is a useful method to
track a product’s field availability performance over time.
The cumulative distribution function (𝑐𝑑𝑓), 𝐹(𝑑) of the
outage duration 𝑑 can be defined as

𝐹(𝑑) = 𝑃𝑟(𝐷 ≤ 𝑑)
where 𝐷 is a random variable of 𝑑. Using data from
a widely deployed telecom product, normalized to have
𝜆 = 100 outage events per year and unitless time dimen-
sion, we compute the empirical 𝑐𝑑𝑓, 𝜆(1 − ̂𝐹(𝑑)), which is
plotted against 𝑑 to obtain the plot shown in Figure 4 [9],
where the x-axis is in a log scale. From the graph we see
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that one can expect ten events greater than 100 time units
annually and one annual event greater than 300 time units.
On the original scale, the area under the curve is approx-
imately proportional to the product’s availability. How-
ever, unlike themeasured availability, which can be greatly
influenced by a single large outage event, this graph gives a
view of the true availability experienced over time. Further,
we find that the graphs are very stable over time in the sense
that the duration 𝑐𝑑𝑓 is fairly unchanging once the product
is designed, and improvements in availability are achieved
via reduced frequency of outages modulo extreme outage
duration events. Note that systems with lower successful
recovery rates will have duration 𝑐𝑑𝑓 plots similar to Fig-
ure 4 that are more spread out, that is, involve more long
outage events. The designer can estimate this graph based
on an understanding of the recovery mechanisms imple-
mented and their expected parameters.
Clustered systems reliability modeling. A cluster is a col-
lection of processing nodes in which any member of the
cluster is capable of supporting the processing functions of
any other member configured in a redundant 𝑛+𝑘 config-
uration, where 𝑛 processing nodes are actively processing
the application and 𝑘 processing nodes are in a standby
state, serving as spares for the 𝑛 active nodes. In the event
of a failure of an active node, the application that was run-
ning on the previously active node is failed over to one of
the standby nodes. The simplest redundant configuration
is active/standby, in which one node is actively processing
the application and the other node is in a standby state.
In a configuration with 𝑛 active nodes, the applications
which were running on a failed processing node are redis-
tributed among the other active nodes. The clustered sys-
tem is modeled as an irreducible Markov chain with work-
ing and failed states and intermediate recovery states [14];
see Figure 5.

Figure 5. Cluster failure model.

The state transitions represent processor failures repre-
sented by failure rate 𝜆, recovery and repair rates repre-
sented by 𝜇, and the probabilities of state transitions rep-
resented by the fault recovery coverage factor 𝑐, where 𝜇
and 𝑐 take on different values depending on the type of

recovery and repair. The coverage factor is the condi-
tional probability, given that an error has occurred, that
the system recovers automatically within the designed re-
covery interval. From a practical perspective, the cover-
age factor may be computed as a product of the terms
Prob(successful error detection) and Prob(successful error recov-
ery). The key point to note here is that coverage is never
perfect; it is always less than one. For a high reliability 5-
Nines system, most errors that do occur are recovered with
the lowest level of recovery, for example, task restart. It is
difficult and costly to test for coverage. Furthermore, for re-
dundant systems the coverage factor is the single most im-
portant factor impacting the availability of the system. The
example on testing later in this section describes a model
for estimating the number of tests required to achieve a
specified coverage level.

The model in Figure 5 includes only two working states:
𝑁𝑤𝑜𝑟𝑘𝑖𝑛𝑔 and (𝑁 − 1)𝑤𝑜𝑟𝑘𝑖𝑛𝑔. Several other working
states such as (𝑁−2)𝑤𝑜𝑟𝑘𝑖𝑛𝑔, (𝑁−3)𝑤𝑜𝑟𝑘𝑖𝑛𝑔, etc., could be
included in the model. However, given the high processor
recovery and repair rates relative to the processor failure
rates, the probability of the system entering these states is
small, and the exclusion of these states has minimal im-
pact on the model results. Since the goal here is to model
the failure and recovery behavior of a processor, the failure
rate 𝜆 represents the hardware and software failures for a
single processor. The system failure rate is 𝑁𝜆, where 𝑁 is
the number of processors.

When an error is detected in the processor, typically
the software is programmed to try a sequence of recovery
actions—from least severe, such as process restart, to most
severe, such as processor restart after data reload from
disk—until recovery is successful. The general principle is
to try the lowest-level recovery first to minimize service im-
pact and continue escalation to the next higher-level (more
severe) recovery if the lower-level recovery does not work,
and models of this type are often referred to as escalating
recovery models. The recovery sequence specified in the
model shown in Figure 5 is hardware switchover and, if
that is not successful, then processor restart. The model is
run with representative values for the input parameters—𝜆,
𝜇, and 𝑐—to obtain the expected frequency and duration
of recoveries and outages for a single processor in the clus-
ter and for the entire clustered system.

In field operation, there is considerable variation in the
duration of outages for such systems, and the distribution
of downtime duration, therefore, provides a good char-
acterization of the failure behavior of the system. This
was also illustrated above in the discussion of the avail-
ability example and the related figure (Figure 4). Figure
6, based on model results, shows a plot of the normal-
ized frequency versus outage duration distributions for the
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processor where both axes are in a log scale. The plots in
the figure are interpreted as follows. If the fault recovery
coverage factor is 0.90—𝑐1 = 0.90, 𝑐2 = 0.90, 𝑐3 = 0.90—
then 10% of the outages are expected to be greater than 5
minutes and 90% are less than 5 minutes; 1% of the out-
ages are greater than 20 minutes and 99% are less than 20
minutes; and so forth. 𝑐1, 𝑐2, and 𝑐3 are the probabilities
of successful recoveries from the states switchover, processor
restart, and processor restart with reload, respectively, in Fig-
ure 5. The plots for coverage factor values of 0.99, 0.75,
and 0.50 can be interpreted similarly. Note that as the
fault recovery coverage factor is decreased from 0.99 to 0.5
the plot flattens out—the slope decreases. This means that
more of the recoveries escalate to longer duration recov-
eries. A steep slope of the plot represents a system where
most of the outages are very short and even the recoveries
that escalate to higher levels are of short duration; it is the
preferred system behavior. Results from the model can be
used in various ways—the single processor view provides
the information necessary for evaluatingwhether the archi-
tecture provides the required reliability for particular appli-
cations; the cluster view provides the reliability predictions
for the system. And, given an availability requirement, the
designer can evaluate the sensitivity to various parameters
to gain insights into the design changes needed to meet
the given requirement.

Figure 6. Processor outage duration distribution.

Software reliability modeling.
Learning from software failure data. Failure detection

and fault correction are vital to ensure high-quality soft-
ware. During the development and deployment phases
detected failures are commonly classified by severity and
tracked to meet quality and reliability requirements. Be-
sides tracking failures, this data can be analyzed and used

to qualify the software and to control the development and
maintenance process. This example is focused on failure
data collected during the development phase, in particular
during the testing phase, and explores what we can learn
by analyzing this data [4].

Change management systems log the failures detected
during testing and the code fixes made to correct the un-
derlying software defects. By applying software reliability
models and statistical techniques to this defect data, we
can address questions such as the following.

• Is themaintenance process increasing the software
reliability?

• Is the maintenance process under control?
• How many failures are expected to occur in the

field?
• What is the expected time remaining to meet the

reliability requirement?

The methodology is based on trend analysis, control
charts, and software reliability growth models. A time pe-
riod for failure analysis is defined and trend analysis ap-
plied to detect reliability growth or decay. When reliabil-
ity decay is observed, standard control chart techniques are
used to detect the occurrence of assignable causes of pro-
cess shifts to take necessary corrective actions. In the case
of reliability growth, software reliability growthmodels are
applied to predict the number of residual failures and the
failure intensity. The following tools and techniques are
used:

• For quality process control—control charts (u
chart) and reliability growth trend analysis
(Laplace trend).

• For reliability modeling and forecasting—reliabil-
ity growth models (exponential and S-shaped
models).

Control charts. A process displays variation when mea-
sured over time or over a set of items. Control charts quan-
titatively categorize the sources of variation into two cat-
egories: variation due to phenomena that are natural to
the process and out-of-control variations that have assign-
able causes that could be prevented. The goal is to iden-
tify critical periods representing out-of-control variations
in the number of software defects detected. Let 𝑛(𝑖) be the
number of defects detected in day 𝑖 with system utilization
measure 𝜌(𝑖), and the average number of defects is 𝑛(𝑖)/𝜌(𝑖).
Consider that 𝑛(𝑖) is a Poisson variable. The parameters of
the control chart are

𝑈𝐶𝐿𝑖(𝐿𝐶𝐿𝑖) = 𝜇 ± 3
√

𝜇
𝜌(𝑖) ,

𝐶𝐿𝑖 = 𝜇 = Σ𝑛(𝑖)
Σ𝜌(𝑖) ,
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where 𝐶𝐿 is the center line, and 𝑈𝐶𝐿 and 𝐿𝐶𝐿 are the up-
per and lower control limits, respectively.

The observations 𝑛(𝑖)/𝜌(𝑖) are plotted on a timeline
against the control limits, and observations that are out-
side the limits are considered to be out of control. If the
process is in control the center line value can be used as an
estimate of the failure intensity (an estimate of the long-
term process mean). The 𝜇 chart is appropriate to deal
with rate measures like the daily failure intensity, consid-
ering that generally the system utilization is not uniform.
When the system utilization is uniform, 𝜌(𝑖) = 1, 𝑖 =
1, ..., 𝑚. In Figure 7, based on real data, the time periods
19 to 37 and 185 are considered out of control, and would
be flagged for further investigation to determine the cause
of the problem.
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Figure 7. Control chart: Daily failure rate.

Laplace trend test. If the failure detection and fault cor-
rection process is not under control it is not possible to
forecast the number of remaining defects in the software.
The Laplace trend test [6] is a powerful statistical tool to
monitor the reliability growth trend both over specific in-
tervals (local trend) and over the total period of interest.
The following trend regions, which correspond to a confi-
dence level of 95%, are used: [−2, +2] suggests no particu-
lar trend; [> 2] suggests a reliability decay in the observed
time period; and [< –2] suggests reliability growth in the
observed time period. The identification of local trends
is important, as they correspond to inflection points in
the cumulative number of failures. The chart in Figure 8,
based on real data, shows a system where, after a period of
no local trend, the system exhibits a local reliability growth
trend by period 22 and a clear reliability growth trend after
period 34.

Software reliability growth (SRG) models. Since the
test and deployment phases have strict schedules and qual-
ity goals there is a need to predict reliability metrics such
as faults remaining and the failure intensity. The basic ap-
proach is to calibrate an SRG model using the failure data
collected during the testing phase. The calibrated model is
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Figure 8. Laplace trend test showing reliability growth.

then used to predict the future reliability of the software,
and to determine when to stop testing. SRG models can
be used once the system exhibits reliability growth. These
models typically assume that software failures display the
behavior of a nonhomogeneous Poisson process (NHPP)
where the instantaneous failure intensity of the software is
time dependent.

The system represented in Figure 8, based on real data,
starts exhibiting local reliability growth by period 22, so
the failure data collected up to this period can be used for
prediction. Figure 9 shows the predicted cumulative soft-
ware failures based on an S-shaped nonhomogeneous Pois-
son process (NHPP) model [15] given by𝐻(𝑡) = 𝑎[1−(1+
𝑏𝑡)𝑒−𝑏𝑡], where𝐻(𝑡) is the cumulative number of faults de-
tected by time 𝑡, 𝑎 is the random variable representing the
initial number of faults in the software, and 𝑏 is the fault
rate (failure occurrence rate per fault or the rate at which
the individual faultsmanifest themselves as failures during
testing). The model has two parameters, 𝑎 and 𝑏, which
are estimated from the test failure data. The supposition
underlying the models is that the fault rate tends asymp-
totically to a constant value 𝑏. The objective of the model
is to predict failure intensity for each new system release
with the expectation that the software failure intensity de-
creases with time as faults are discovered (through testing)
and repaired.

For comparison, Figure 9 also shows the prediction us-
ing the failure data up to period 14, when the system does
not exhibit reliability growth; note that the prediction de-
viates significantly from the observed data. The prediction
using data up to period 22 fits quite well with the observed
failures. Here, trend analysis to detect the period of local
reliability growth was sufficient to provide a good estimate
of the prediction period. However, this is not always the
case, and discussions with developers and testers can help
with determining if the observed trend is sustainable to
properly select the detection period.
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This methodology provides a well-structured qual-
ity/reliability framework to analyze software failure data,
and can be used to certify the system in its capability to
fulfill the reliability requirements.
Testing for high reliability. It can be difficult to deter-
mine whether a system meets its reliability requirements
after some level of successful lab testing. In fact, the valida-
tion of ultra-high reliability in systems relying on complex
software is often not possible, because the dependability
requirements may lie near the limit of the current state of
the art, or beyond, in terms not only of the ability to satisfy
them, but also, and more often, of the ability to demon-
strate that they are satisfied in the individual operational
products (validation) [11].

As the model for clustered systems described above
showed, the coverage factor is an important factor in deter-
mining system availability. Consequently, based on mod-
eling, there are requirements on the minimum value of
the coverage factor to meet the system availability require-
ments. Fault injection testing can be used to obtain esti-
mates of the coverage factor. In this section we present an
approach based on hypothesis testing that allows us to esti-
mate the reliability of a system with a specified confidence
level based on the number of tests run successfully.

Given a requirement that the coverage factor 𝑐 ≥ 𝐶, the
obvious question is the following: how can we determine
in the lab if the system has the specified coverage factor?
The approach used is to run a series of random tests. If
a test fails, that is, the fault recovery was ineffective, the
error is fixed and random testing is started again. The test-
ing should continue until the data collected is sufficient
to show that the coverage factor is above the minimum
requirement. Since only a small fraction of the possible
tests can be actually executed, we cannot be absolutely cer-
tain that the coverage factor is adequate. What can be cal-
culated, however, is the probability that a system without

the minimum required coverage factor would have passed
the proposed system test. If 𝑁 randomly selected tests are
conducted, the probability that there will be no failure en-
countered in the testing is given by 𝑃𝑛𝑓 = 𝐶𝑁 , where 𝐶
is the system coverage factor or the probability of success-
ful automatic recovery on a test and 𝑁 is the number of
randomly selected tests. The tests are chosen, with replace-
ment, from a distribution that is representative of the ac-
tual usage of the program. Therefore, if the coverage factor
is required to be at least equal to 𝐶, and 𝑁 tests were run
without failure, then the probability that an unacceptable
product would pass the test is no higher than 𝑃𝑛𝑓. The
objective is to continue testing, without failure, until 𝑁 is
large enough to make 𝑃𝑛𝑓 acceptably low. As an illustra-
tion, a plot of 𝑃𝑛𝑓 = 𝐶𝑁 versus 𝑁, ranging from 0 to 1, for
three values of 𝐶 is shown in Figure 10.

Figure 10. Probability of automatic recovery for N tests.

From Figure 10, we observe, for example, that if the cov-
erage factor requirement is≥ 0.994, running 700 randomly
selected tests without failure indicates that the probability
of an unacceptable product passing the test is about 1.5%,
and for 400 tests the corresponding value is 9%. If the
coverage factor objective is ≥ 0.99, a less stringent require-
ment, then only 400 tests are required so that the probabil-
ity of an unacceptable product passing the test is less than
2%, while for a coverage factor requirement of ≥ 0.999, a
very stringent requirement, the number of tests needed is
4,000 for a comparable confidence level. This methodol-
ogy provides a framework for testing as well as guidelines
for the number of tests that should be run for a required
level of confidence in the results. For example, given 𝑐 and
𝑃𝑛𝑓, the number of test runs required can be calculated.

The procedure begins with a fully operational, non-
faulty machine. Testing is continued repeatedly until the
required number of tests has been run and tests have
passed consecutively, where the objective is to continue

JUNE/JULY 2020 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY 873



testing, without failure, until𝑁 is large enough tomake 𝑃𝑛𝑓
acceptably low. It is emphasized that the validity of this ap-
proach depends strictly on the distribution of the test set
being representative of the distribution of the events that
will be encountered in the field.
Machine learning approaches. Data-centric approaches
for reliability modeling are gaining traction given the in-
creasing volume and diversity of data availability from sen-
sors, telemetry, and system log data. This topic spans wide
areas of machine learning, and there is a large volume of
work in this area; it is beyond the scope of this paper to
cover the area comprehensively. To this end, in this sec-
tion, we provide a few examples and links to survey pa-
pers for readers wishing to get more information on work
in this area. We believe that the greatest potential for using
ML approaches for reliability modeling are in the testing
and operational phases.

Some of the early work on applying ML methods in re-
liability modeling focused primarily on the testing phase.
Examples include the paper by Gokhale et al. [7], where
the authors apply regression tree models to predict the
number of faults by software module based on the soft-
ware complexity metrics. Also, Ma et al. [13] present a
methodology for predicting fault-prone modules using a
modified random forest algorithm. These types of models
are developed prior to the testing phase, and the outputs
are used to direct testing efforts to modules that are pre-
dicted to be more error prone; such models are especially
valuable for testing of large-scale systems. Durelli et al. [5]
review the state-of-the-art of how ML has been applied to
automate and streamline software testing. Their results
highlight that ML algorithms have been used mainly for
test case generation, refinement, and evaluation where the
issues were formulated and solved as supervised or semi-
supervised learning problems.

In the operational phase, the application of ML tech-
niques for reliability modeling most commonly includes:

• anomaly detection—find undesired patterns in
the data;

• root cause analysis—investigate what caused the
anomalous behavior;

• failure prediction—monitor metrics to predict
failures based on knowledge of abnormal patterns
and their causes; and

• preventive maintenance—prevent failures before
they occur based on predictions.

The specific techniques used can depend on the types of
data available. System logs provide a rich source of data for
anomaly detection and prediction and root cause analysis
where supervised, unsupervised, and reinforcement learn-
ing methods are used. Increasingly, data from automated

smart sensors is used for preventive maintenance and, cou-
pled with log data, can be used for root cause analysis. It
is pertinent to note that since telecommunication systems
are designed for high reliability, failures are infrequent and
often may be subtle rather than catastrophic. And, as the
systems are characteristically complex, detecting and diag-
nosing anomalous behavior can be challenging.

In recent work Kim et al. [10] developed an anomaly
detection algorithm using log data from a 4G telecommu-
nications network. The techniques usedwere: multivariate
unsupervised learning with Principal Component Analysis
(PCA) for anomaly detection, and finite state machines for
root cause analyses. PCA was used for dimensionality re-
duction, as the feature space was large. PCA was applied
on the normal data to find the subspace where the varia-
tion of the normal data was small. By characterizing the
variation of the normal data in the subspace, they derived
a boundary of the normal data, and developed an anomaly
detection model based on it. After detecting an anomaly,
the message patterns of the anomaly data were compared
to those of the normal data to determine where and why
the problems were occurring. Root cause analysis, which is
application specific, typically relies on correlating informa-
tion from different types of log sources—for example, cor-
relating log data with resource consumption data or data
from IoT sensors. In this work the error codes related to
the anomalousmessages provided additional detail for the
root cause analysis.

Using log data He et al. [8] evaluated six different algo-
rithms (three supervised and three unsupervised machine
learningmethods) for anomaly detection. They found that
supervised anomaly detection methods present higher ac-
curacy when compared to unsupervised methods; that the
use of sliding windows (instead of a fixed window) can in-
crease the accuracy of themethods; and thatmethods scale
linearly with the log size. In practice, the data available
for analysis is often unlabeled or weakly labeled, thereby
precluding the use of supervised learning techniques. The
paper by Candido et al. [3] presents a good survey of the
different log analysis techniques using machine learning
for anomaly detection and prediction and root cause analy-
sis. The tutorial paper by Rafique and Velasco [17] includes
an example of applying ML for preventive maintenance in
an optical network. The tutorial paper by Musumeci et al.
[16] presents an overview of ML approaches for network
failure management by introducing automated methods
for failure detection and prediction, and localization and
identification (root cause analysis).

Summary
In this paper we provided a characterization of telecom
systems with respect to reliability, and presented examples
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to illustrate the types of mathematical modeling and anal-
yses that are done in an industrial setting in the process
of building a reliable telecom system. The models were
presented in terms of the different phases of the product
realization process. As telecommunications systems have
stringent reliability requirements, modeling is an impor-
tant part of the development process, starting with mod-
els to evaluate alternative architectures, to predicting the
expected field reliability at the end of the testing phase. A
range of techniques is used, ranging from classic (and sim-
pler) techniques, such as reliability block diagrams, fault
trees, and Markov models, to more complex approaches,
such as stochastic Petri nets and Bayesian belief networks.
An overview of ML-based approaches was presented which
can be used when there is a large volume of data available,
such as from automated testing or from telemetry data and
log data for deployed systems.
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