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Chapter 17
Integrating Biodiversity, Remote Sensing, 
and Auxiliary Information for the Study 
of Ecosystem Functioning 
and Conservation at Large Spatial Scales

Franziska Schrodt, Betsabe de la Barreda Bautista, Christopher Williams, 
Doreen S. Boyd, Gabriela Schaepman-Strub, and Maria J. Santos

17.1  Introduction

In the face to accelerated environmental change, being able to assess different 
aspects of plant biodiversity, such as those related to, e.g., the productivity or health 
of an ecosystem, repeatedly at large spatial scales, is increasingly important. The 
recent decade has seen an explosion of in-situ databases necessary to assess such 
patterns and processes, often cover large parts of the Earth (e.g., plant functional 
traits, phenology (PhenoCam networks)), and integrating this data with remotely 
sensed products enables assessment at critical scales which would otherwise be 
impossible or extremely costly to do.

However, RS data comes with limitation of their own, and despite of the many 
opportunities offered by RS data, certain aspects and scales of biodiversity are 
currently not measurable using RS technology alone. Thus, the combination of RS, 
in-situ and other auxiliary data, provides the most powerful approach to assessing 
ecosystem functioning and conservation at large spatial scales.
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The means and uses of RS to link biodiversity with other relevant ecosystem 
metrics are manifold, and some are covered in detail in other chapters within this 
book. A compilation of some of the major RS data types and sensors used for veg-
etation analyses at the landscape scale are provided in Fig. 17.1. Here, we discuss 
strengths, weaknesses, and caveats of linking RS with in-situ data to address the 
themes of ecosystem functioning and conservation of biodiversity.

Fig. 17.1 Non-exhaustive compilation of some of the major RS data types and sensors used for 
vegetation analyses at the landscape scale, revisit times (line style and symbols), spatial resolution 
(from low resolution at the top to high resolution at the bottom), sensor types (colors), and years 
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Fig. 17.1 (continued) active (x-axis). For airborne data, it was assumed that theoretically, data 
can be available for the past although these data will be very sparse and not easily accessible. In all 
cases, highest possible spatial and temporal resolutions are shown. This might not be the case for 
all bands covered by these sensors. Where satellites are currently active or proposed, they are pre-
sented here as being active into the future; this is subject to change and should be reviewed fre-
quently. Codes after sensor names: “not continuous, ∗∗ ATSR-1/2 also contained a Microwave 
(MW) sensor, ∗^ 16-day revisit with one satellite, 8 days if using data from both, ∗^∗ 2 satellites 
proposed—details specific to Biosphere observations, ∗∗∗ Film and digital. Green and red boxes 
refer to the examples given in the text, enclosing MODIS and ALOS PALSAR sensors. Other than 
Kite, UAV, and declared airborne methods, all instruments are either satellites or sensors carried by 
a satellite. Many satellites have a payload of a range of instruments; where this is the case, hyper-
spectral or multispectral units have been presented. Many satellites also carry panchromatic sen-
sors, which are not represented in this figure. (For more information, see Toth and Jóźków et al. 
(2016) and Khorram et al. (2016))

17.2  Ecosystem Functioning

Pettorelli et al.’s (2017) framework for monitoring ecosystem functions at all scales 
lends itself well to the flexibilities and strengths provided by RS. We consider eco-
system functions as those attributes related to the performance of an ecosystem that 
are the consequence of one or more ecosystem processes (Lovett et al. 2005). With 
respect to plant diversity, the attributes underpinning functions that benefit plant 
species (and indirectly fauna and humans) are crucial. Such functions include pol-
lination, water regulation, disturbance regulation, supporting habitats, and biologi-
cal control. The measurement and monitoring of these ecosystem functions often 
relies on a remotely sensed proxy. For example, the ecosystem function of green-
house gas regulation could be monitored with RS-based measurements of emissions 
from fires, as provided by Moderate Resolution Imaging Spectroradiometer 
(MODIS) and expected from missions such as Environmental Mapping and Analysis 
Program (EnMap) and the Surface Biology and Geology imaging spectrometer 
(currently under planning to replace the cancelled HyspIRI mission). The advantage 
of such sensors is their moderate to high spatial and temporal resolution that creates 
dense time series. Analyzing ecosystem functions over large scales can provide 
information on drivers of species diversity and abundance change, as well as aspects 
that affect human well-being such as those related to ecosystem services (ES). 
Ecosystems provide regulating, provisioning, and cultural and supporting services 
to society, such as nutrient regulation, the provision of food, and waste treatment 
(De Groot et  al. 2002; Ma 2005). Detailed techniques for mapping ES at large 
scales (Englund et al. 2017) and rapid assessments (Meyer et al. 2015; Cerreta and 
Poli 2017) are discussed elsewhere. Although ES functions and processes are 
closely related, “services” implies inherent contributions to humans and an attached 
monetary or cultural value (De Groot et al. 2002). All ESs are under increasing 
threat due to pollution, overexploitation, land use change, and climate change, with 
concerns of overstepping the “safe operating space for humanity” (Rockström 
et al. 2009).

We choose to focus on a few contrasting ecosystem functions in this chapter, 
with particular focus on those that plants provide or require for survival and fitness; 
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further details on other ecosystem functions can be obtained in Pettorelli et  al. 
(2017). The narrative below focuses on satellite RS measurements because they are 
widely accessible and offer a relatively inexpensive and verifiable means of deriving 
data with complete spatial coverage in a consistent manner over large areas with 
(near) appropriate temporal resolutions, thus offering great potential for tracking 
change in ecosystem functions (Cabello et al. 2012; Nagendra et al. 2013). However, 
these satellite measurements can (and should) be integrated with a host of other data 
sources that are remotely acquired; these are also discussed where appropriate.

17.2.1  Pollination

The transport of pollen between plants is crucial for reproduction. Different pollina-
tion types exist with varying distributions in space and time. The ecosystem func-
tion of pollination is under varying threats especially with declines in abundance 
and the loss of the organisms providing the service (e.g., bees) (Vanbergen et al. 
2013; IPBES 2016). Thus, up-to-date information on pollination is extremely 
important.

Two distinct RS approaches can be used to study this function: (i) direct RS of 
different pollination types and (ii) remotely sensed indicators of pollination (i.e., 
vegetation phenology or biomass as an indicator). The former is challenging because 
many pollination traits cannot be directly measured with RS sensors due to the sig-
nal contribution of some pollination traits (nectar content, flower structure, etc.) 
being too low relative to other surface components. Alternatively, Feilhauer et al. 
(2016) posited that different pollination types might be inferred from leaf and can-
opy optical traits (leaf area index, leaf tilt angle, mean canopy height, cover, specific 
leaf area, leaf dry matter content, leaf dry mass; see also Olinger 2011), allowing for 
an indirect classification of plant pollination types. Using data acquired by an air-
borne hyperspectral sensor, pollination types were related to canopy reflectance in a 
way that allows their discrimination, opening the potential to expand this approach 
to other ecosystems and different phenological stages. Such an approach should 
benefit from upcoming satellite missions equipped with hyperspectral sensors, for 
example, the German EnMAP and the Chinese GF-5 Hyperspectral Imager 
(Fig. 17.1). Further, pollination traits such as floral display size may have too little 
of a signal to be discernible from other surface components with RS, although sev-
eral studies have been able to detect flowers with hyperspectral airborne sensors 
and use the information to, for example, detect invasive species (see Bolch et al., 
Chap. 12, in this book).

Plant phenology is another ecosystem function directly linked to pollination, 
since any change in the phenological cycle may affect interactions such as 
 competition between plant species and mutualism with pollinators (Buitenwerf 
et al. 2015). Any direct alteration in functional or taxonomic plant diversity as a 
result of change in vegetation phenology is further compounded by both short- and 
long-term climatic changes. RS has demonstrated capacity for measuring and 
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monitoring vegetation phenology (Cleland et al. 2007) and thus indirectly detecting 
pollination (Neil and Wu 2006). In the next section, we describe how RS can be 
used to measure phenology.

17.2.2  Phenology

Recent climate change has shifted phenology and associated species distributions 
globally. This has in turn increased the risk of extinction for affected species through 
the alteration of development rates of species or by altering the timing of environ-
mental cues that affect a species’ presence in the community (Yang and Rudolf 
2009). Ongoing climatic and phenological changes are expected to further increase 
this risk. Moreover, the extent to which changes in vegetation phenology will feed 
back into the climate system by modifying albedo and hence cloud formation is a 
major source of uncertainty in climate change projections (Zhao et al. 2013). Recent 
work on land surface phenology has focused on assessing changes in phenology 
globally (rather than regionally) over long time periods as is now afforded by the 
Earth Observation (EO) archive (Ganguly et al. 2010). Buitenwerf et al. (2015) used 
phenomes (83 phenologically similar zones) in their global study of 32  years 
(1980–2012) and showed via metrics extracted from the normalized difference veg-
etation index (NDVI) record that most of Earth’s land surface has undergone some 
form of change in the seasonal pattern of vegetation activity. Other studies used 
alternative indices, such as the MERIS Global Vegetation Index (MGVI) and 
Terrestrial Chlorophyll Index (MTCI), from the now defunct Envisat platform and 
MODIS Enhanced Vegetation Index (EVI). Indeed, comparison between these indi-
ces for a temperate deciduous forest showed that MTCI corresponded more closely 
with vegetation phenology from ground observations and climatic proxies than any 
of the other indices (Boyd and Foody 2011). This finding suggests that the Envisat 
MTCI is best suited for monitoring vegetation phenology, advocated by its sensitiv-
ity to canopy chlorophyll content, a proxy for the canopy’s physical and chemical 
alterations occurring during phenological cycles (Boyd et al. 2012). These studies 
also point to the value of increasing both the temporal and spatial sampling of veg-
etation phenology. Limitations to spatial resolution mean that satellite-derived data 
represent land surface phenology rather than direct vegetation phenology and are 
therefore too coarse to detect critical individual, species, or community-level 
responses. Further improving the temporal sampling means that those challenges to 
using satellite data, including high sensitivity to effects of clouds and atmospheric 
conditions, could be overcome. With the recent launch of the ESA Sentinel-2 and 
Sentinel-3, this improvement in data characteristics is assured to go forward.

Key to applying data from these or any satellite for the derivation and study of 
phenology, however, are accurate calibration and atmospheric correction to obtain 
surface reflectance data. National Oceanic and Atmospheric Administration (NOAA) 
satellite sensors have legacy calibrated data. For the Landsat and Terra/Aqua sat-
ellites, calibrated top-of-atmosphere radiance and surface reflectance products are 
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delivered directly to the users. While Sentinel satellites are calibrated, users are pro-
vided with top-of-atmosphere reflectance and have to perform the atmospheric cor-
rection (using plug-ins such as sen2cor (http://step.esa.int/main/third-party-plugins-2/
sen2cor/)). That said, Vuolo et al. (2016) have demonstrated very good agreement 
between calibrated Sentinel-2 and Landsat-8 data for six test sites. A Harmonized 
Landsat and Sentinel-2 land surface reflectance data set is now readily available 
(Claverie et al. 2018).

The requirement for high-temporal-resolution RS data has, since 1982, been 
provided by the NOAA Advanced Very High Resolution Radiometer (AVHRR) 
sensor and its successors, with much regional scale analyses undertaken using 
NDVI (Reed et  al. 2009). Capturing the seasonal pattern of photosynthetically 
active radiation absorbed by the land surface, using repeated measures of vegeta-
tion indices such as NDVI throughout the year for an area of interest, allows depict-
ing the cycle of events that drive the seasonal progression of vegetation through 
stages of dormancy, active growth, and senescence. Several phenological metrics 
can be extracted from the temporal sequence, relating to leaf-on and leaf-off, 
length of growing season, peak of growing season, trough, and measures of sea-
sonal amplitude (integral, trough), and their patterns over time and space. Specially 
written and customizable open-source software, such as TIMESAT (Eklundh and 
Jonsson 2015) and QPhenoMetrics (Duarte et al. 2018), afford some robustness to 
the study of phenology.

With this emphasis on using satellite RS of land surface phenology to assess 
changes in vegetation, validation of extracted metrics is imperative. Three principal 
approaches are suitable, all of which use observations taken at ground level. The 
first relies on collaboration between experts to ensure suitable spatial and temporal 
coverage. The PEP725 ground phenology database generated as a result of the Pan 
European Phenology (PEP) project (a European infrastructure to promote and facil-
itate phenological research, education, and environmental monitoring) is one exam-
ple (Templ et al. 2018). The second approach is an extension of the first and uses 
citizen science projects where the public exploits Web 2.0 technologies and contrib-
utes ground-based observations (Kosmala et al. 2016). The idea of citizens as sen-
sors is not new, but full use of their input still requires effort. This is the focus of a 
current European Union (EU) Horizon 2020 project, LandSense (https://landsense.
eu/). The third approach uses proximal sensing (often automated systems) to pro-
vide detailed information at particular locations (e.g., traffic cameras, Morris et al. 
2013; archived TV video footage, De Frenne et al. 2018; and webcams, e.g., the 
PhenoCam project, Richardson et al. 2018). However, as Brown et al. (2016) pointed 
out, these technological advances present challenges with respect to data standards. 
These authors suggest that continental-scale ecological research networks, such as 
the US National Ecological Observatory Network (NEON) and the EU’s Integrated 
Carbon Observation System (ICOS), can serve as templates for developing rigorous 
data standards and extending the utility of PhenoCam data through standardized 
protocols for ground-truthing.
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17.2.3  Carbon Storage

Biomass estimates are fundamental to estimate carbon fluxes and stocks and link 
them to carbon credit initiatives. Active RS such as laser scanning provides funda-
mental data on canopy structure useful to include in allometric equations to estimate 
biomass (Chave et al. 2014). For example, the analysis of first returns from laser 
scanning is used to estimate canopy height (Bouvet et al. 2017). Recent Terrestrial 
Laser Scanning (TLS) technology shows promising advances in more accurate esti-
mates of biomass because it allows for a first-order estimate of diameter at breast 
height. Further, TLS analysis is able to provide more precise representation of tree 
structure, allowing for moving beyond the assumed cylindrical shape of a tree trunk 
used for many biomass estimates. Novel methods also make it possible to fit geo-
metric shapes along not only the trunk but also the branches and stems, giving a 
more precise estimate of the woody component of trees and producing more reliable 
estimates of biomass.

Another area of active research in carbon storage and credits is the estimation of 
tree cover and the number of trees per pixel, because even if the biomass per tree is 
correctly estimated, it is scaled to regional or global estimates by a multiplier of tree 
density. MODIS offers a tree cover product (as a layer within the Vegetation 
Continuous Fields product) systematically and repeatedly at a global scale, but this 
product makes some assumptions on the minimum cover of trees needed to be 
detected by the MODIS sensors. In addition, it is important to estimate the contribu-
tion of non-tree functional types such as shrubs and grasslands to the carbon storage 
and credits calculations. Current assessments of the performance of reducing emis-
sions from deforestation and forest degradation (REDD+) programs have shown 
varied success; most are linked to the quality of the biomass estimates, which are 
fundamental to calculate the carbon potential of a given ecosystem as a fraction 
(often assumed around 1/2) of its biomass.

17.2.4  Challenges

Although there is a clear role for RS for monitoring ecosystem functions (see 
Serbin and Townsend, Chap. 3; Martin, Chap. 5), there are still many challenges to 
be overcome to ensure its full potential is realized. Many acknowledge the lack of 
an acceptable framework that brings together the many proxies for ecosystem 
functioning that can be directly remotely sensed (e.g., Asner and Olinger 2009; De 
Araujo Barbosa et al. 2015). But fundamentally there is a need to improve the RS 
estimates of the many proxies that are used to infer the ecosystem functions of 
interest. Developments in methodologies for processing, analyzing, and interpret-
ing RS data will serve to improve the mapping accuracy and monitoring opportuni-
ties. However, those developments cannot exist in isolation; a dialogue between 
computational scientists and those concerned with ecosystem functions must occur 
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for the full potential of RS to be realized (Cabello et al. 2012; Paganini et al. 2016). 
Coupled with this is the need for advances in sensor technologies that will enable 
accurate, timely data with the right thematic, i.e., where interpretation of the sen-
sor’s raw data can provide the information necessary for applications in ecosystem 
function and biodiversity. Further, data should be open access, maintained, and 
interoperable (Pettorelli et  al. 2017), particularly given the plethora of existing 
local to regional scale data capture initiatives by airborne methods based on drones 
or airplanes (Cord et al. 2017). Finally, RS proxies will often need to be combined 
with field measurements to accurately represent the desired ecosystem function 
(e.g., Tong et al. 2004). Indeed, joint analyses of satellite data with in-situ measure-
ments or process measurements in the lab may be essential steps to the refinement 
and increased capacity and utility of satellite-based indicators for ecosystem func-
tion monitoring (see also Meireles et al., Chap. 7, in this book). This is likely to be 
a nontrivial task, particularly in highly dynamic situations.

17.3  Conservation

Global environmental change has led to major losses, changes, and erosion of bio-
diversity and ecosystem function and counteracted to some extent by conservation 
action. Conservation science focuses on understanding the distribution of organ-
isms, their rarity status, the viability of populations, drivers and disturbances, and 
current and future restoration need. RS has been increasingly used to answer con-
servation science questions and applications (Rose et  al. 2015), namely, species 
mapping (see Chaps. 9, 10, and 11 in this book by Record et al.; Paz et al.; Pinto- 
Ledezma), biodiversity monitoring (Feret and Asner 2014; Rocchini et al. 2017), 
detecting invasive alien species (see Bolch et al., Chap. 12, in this book), assessing 
vegetation condition, monitoring carbon storage and credits, and assessing habitat 
extent and condition (see Record et  al., Chap. 10, in this book), among others 
(Bustamante et al. 2016; Lawley et al. 2016; Niphadkar and Nagendra 2016; Reddy 
et al. 2017). Here, we focus on aspects of conservation related to the abovemen-
tioned measures of ecosystem function at large scales.

17.3.1  Biodiversity Monitoring

RS has long been recognized as useful for biodiversity measurement (Stoms and 
Estes 1993; Turner et  al. 2003; Turner 2014), and more recently it has emerged 
prominently in biodiversity monitoring, through essential biodiversity variables 
(Pereira et al. 2013; Skidmore et al. 2015; Pereira et al. 2015). Rose et al. (2015) 
identified the top ten applications of RS in conservation, namely, for species distri-
bution and abundance, movement and life stages, ecosystem processes, climate 
change, rapid response, protected areas, ecosystem services, conservation effective-
ness, changes in land use/cover, and degradation and disturbance regimes.
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Beyond land cover classification, one of the most extensive uses of RS data is to 
produce distribution maps of species, communities, and ecosystems (Kerr and 
Ostrovsky 2003). Most RS studies of biodiversity focused on mapping species using 
all kinds of information from optical, radar, and Light Detection and Ranging 
(LiDAR) data. Nagendra (2001) reviewed the potential of RS data for assessing 
biodiversity, namely, species mapping and species diversity and habitat mapping, 
and concluded that at the time the most feasible application of RS would be to map 
species distributions and habitat, the former at smaller spatial scales and the latter at 
larger scales. RS data such as those from Landsat and other multispectral sensors 
have been widely used to map species and vegetation communities (Xie et al. 2008). 
There is now a growing literature on identifying species in many case studies. 
However, use of imaging spectroscopy for species identification needs to be under-
stood at a more fundamental level—especially the development of generalized 
methodologies and rules for detection and mapping, which is an area of active 
research today. Conceptually, we have yet to resolve how to identify unique spectral 
signatures for the estimated 400,000 extant plant species or groups of species (i.e., 
functional types or optical types; Ustin and Gamon 2010). In contrast to geologic 
minerals, which are often spectrally distinct, all land plants share a common basic 
metabolism and biochemistry. This fundamental similarity makes identification of 
plant species difficult. The interactions of a spectral signal with environmental con-
ditions and shifts in spectral signatures through phenological stages contribute to 
spectral variation, in addition to the characteristic properties of individual species 
(Ustin and Jacquemoud, Chap. 14). In recent years, with the advent of hyperspectral 
sensors and the fusion of these data sets with other auxiliary data, novel avenues to 
map and monitor biodiversity have emerged. These new data sets make it possible 
to directly discriminate species in terrestrial and freshwater ecosystems (Jones and 
Vaughan 2010; Turak et al. 2017; Choa et al. 2012; Fassnacht et al. 2016) and assess 
relationships between the diversity of spectra and the diversity of species and the 
fundamentals of the spectral diversity hypothesis (i.e., that the diversity of spectral 
profiles generally predicts diversity of species, Nagendra 2001), which are pre-
sented in other chapters of this book (see especially Schweiger, Chap. 15; Cavender- 
Bares et al., Chap. 2). A recent study highlights the relation of spectral diversity to 
functional and phylogenetic components of biodiversity (Schweiger et  al. 2018), 
and this topic is covered in more detail in Meireles et al. (Chap. 7).

Another avenue in which RS can contribute to biodiversity monitoring is through 
its use in species distribution models (SDMs) (see Pinto-Ledézma and Cavender- 
Bares, Chap. 9; Paz et al., Chap. 11). SDMs are empirical statistical approaches that 
predict the spatial distribution of species (Guisan and Zimmermann 2000), and the 
choice of environmental predictors is fundamental for SDM. RS measurements of 
vegetation condition (Turner et al. 2003), ecosystem productivity (Running et al. 
2004), and seasonality (Reed et al. 1994), among others, are now available over time 
series (e.g., Landsat time series; Kennedy et al. 2014) and might be used in SDMs 
(Bradley and Fleishman 2008; He et al. 2015) making it possible to predict species 
distributions over time. Although the use of RS in SDMs is widely advocated and 
applied, it has yet to be scaled to most species, especially non-plant taxa. Promising 
progress toward the inclusion of RS products in SDMs includes responses to 
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nutritional value (Sheppard et al. 2007), food resources (Coops et al. 2009), sea-
sonal variation (Bischof et al. 2012), and combined effects of climate and land use 
changes (Santos et al. 2017). Upcoming sensors are expected to provide even better 
and more diverse measurements of ecosystem processes and other information that 
might be relevant to map species distributions at finer spatial, temporal, and spectral 
resolutions (e.g., Sentinel satellites; Berger and Aschbacher 2012). Further, through 
SDMs we can expand our capacity to monitor taxonomic groups beyond plants, 
providing a broader understanding of the dynamics and dimensions of biodiversity, 
its feedbacks and interactions, and its change.

Yet another way in which RS can be useful in biodiversity monitoring is to detect 
animals using unmanned aerial vehicles with visible and thermal sensors and 
LiDAR data. Nagendra et al. (2013) concluded that despite the potential for RS in 
monitoring habitat, the integration has not happened yet because of technical chal-
lenges of conducting and accurately interpreting image analyses, insufficient inte-
gration between in-situ data and expert knowledge RS data, and lack of funding and 
platforms that provide such services and capacity in an accessible way globally. 
However, progress in this domain includes the provision of environmental data lay-
ers from RS sources in Movebank, a major animal movement data repository. 
Environmental data are directly extracted at the recorded locations and interpolated 
to the date and time of each GPS fix (Dodge et al. 2013). This allows animal move-
ment ecologists to easily extract environmental variables co-registered in space and 
time with their animal location data.

Current RS capabilities allow for improving species mapping and monitoring 
such as the local species pool (i.e., alpha diversity, Feret and Asner 2014) as well as 
to move beyond species (Jetz et al. 2016) to measure and monitor other components 
of diversity such as compositional turnover (i.e., beta diversity, Leitão et al. 2015; 
Schwieder et al. 2016; Rocchini et al. 2017). There were a few attempts to map spe-
cies richness using Landsat TM multispectral data to calculate NDVI as a proxy for 
species richness with limited success (Gould 2000). The spectral resolution of 
imaging spectrometer data today is sufficiently fine to implement and test the spec-
tral diversity hypothesis (Feret and Asner 2014) because plant species exhibit a set 
of traits that respond to light at different wavelengths (plant optical types, Ustin and 
Gamon 2010). Novel findings, however, show some limitations to the application of 
the spectral diversity principles at larger spatial resolutions (Schmidtlein and 
Fassnacht 2017), and more studies are needed to identify challenges and opportuni-
ties of this approach to mapping and monitoring biodiversity.

17.3.2  Vegetation Condition

There have been many efforts to move beyond species assessments toward functional 
aspects, which include vegetation condition. The current wealth of time series data 
from sensors like NOAA AVHRR, MODIS, or Landsat allows measurements of eco-
system phenology, seasonality, and changes in onset of seasons and assessment of 
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ecosystem condition. Vegetation condition is the measurement of the vegetation 
response to stress (Liu and Kogan 1994). High or good condition corresponds to 
green, photosynthetically active vegetation, while stress such as water and nutrient 
limitations, pest outbreaks, and fire results in low or poor condition, after accounting 
for seasonal changes.

Physiologically, plants respond to stress by reducing chlorophyll activity and 
subsequently expressing other pigments. Plants also respond to stress by closing 
their stomata and reducing gas and water exchanges, which results in cells becom-
ing turgid under water stress. These responses can be measured in the RS signal in 
both the visible and near infrared (NIR). In the visible the signal switches from a 
weak to a stronger reflectance signal due to chlorophyll absorption of red and blue 
wavelengths. Water stress can be measured in the NIR because as cells become 
turgid, they increase scattering of NIR radiation and therefore change the measured 
signal. One advance toward systematic measurements of vegetation condition is the 
Australian BioCondition (Lawley et al. 2016). This approach provides a framework 
to systematically assess terrestrial biodiversity condition—“[t]he similarity in key 
features of the regional ecosystem being assessed with those of the same regional 
ecosystem in its reference state”—using attributes like fraction of large trees, tree 
canopy height, recruitment of canopy species, native plant richness, size of patch, 
and connectivity. Thus, such in-situ measurements of vegetation condition can be 
linked to RS estimates to better provide an assessment of an ecosystem’s stress level 
and ability to function and to provide services like habitat provisioning. In the next 
section, we will cover the later issue.

17.3.3  Habitat Intactness and Critical Transitions

Habitat intactness may be defined temporally or spatially as either (i) the degree to 
which the condition of the vegetation that forms habitat has not changed beyond 
what is expected from natural processes such as phenology and other dynamics or 
(ii) the spatial pattern of a given habitat, its degree of connectivity or fragmentation, 
and its edge extent. An active area of research on the potential of RS for  conservation 
is the assessment of habitat intactness. Nagendra et al. (2013) employed RS to esti-
mate how habitat has been changing in several regions of the Western Ghats in 
India. Coops et al. (2008, 2009) developed a dynamic habitat index using time series 
satellite data and showed its potential to monitor habitat condition in Canada. Later 
the approach was expanded to other regions, and dynamic habitat indices have been 
used as predictors of the richness of other taxa (Hobi et  al. 2017). Coops et  al. 
(2018) have now expanded it globally and have shown how these data sets mimic 
global biodiversity patterns. These data sets are currently available at http://silvis.
forest.wisc.edu/data/DHIs-clusters/ and can be very useful to monitor protected 
area performance.

RS data are increasingly applied across large spatial scales to study stable state 
conditions of habitats and assess early warning signals for catastrophic shifts. 
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For example, the relationship between stable ecosystem states and rainfall can be 
inferred from the global probability density of forests extracted from remotely 
sensed forest cover and its relation to rainfall (Verbesselt et  al. 2016). Temporal 
autocorrelation of NDVI time series and vegetation optical depth from radar over 
tropical forests indicated a reduced rate of recovery (critical slowing down) when 
tall canopy trees of intact forests under decreasing rainfall approached a tipping 
point, inducing high mortality. The rainfall threshold was at a similar level as the 
one indicated for stable state transitions from the spatial analysis. Similar to the 
temporal warning signals, the patch size distribution of spatially patterned ecosys-
tems, such as arid ecosystems, showed a meltdown when approaching extinction 
(Dakos et al. 2011). High-resolution RS data across large spatial scales and patch 
size analysis can therefore be used to assess the extinction risk of these vulnerable 
ecosystems under decreasing rainfall conditions.

17.3.4  Protected Area Monitoring

RS plays an essential role in monitoring natural ecosystems, especially in protected 
areas. Human pressure over these areas has changed dramatically over the last 
decades (Geldmann et al. 2014), justifying a need for monitoring. Perhaps the two 
most influential papers that first demonstrated the usefulness of RS to monitor bio-
diversity in protected areas were Liu et al. (2001), which showed ecological degra-
dation in protected areas designed to protect giant pandas (Ailuropoda melanoleuca), 
and Asner et al. (2005), which mapped deforestation in the Amazon with Landsat 
data and showed large rates of deforestation within legally designated protected 
areas. In 2007, the journal Remote Sensing of Environment published a special issue 
on monitoring protected areas in which a series of papers provided a framework for 
establishing monitoring programs, presented techniques and methods to make oper-
ational the use of remotely sensed data in protected area monitoring, and showcased 
a few examples linking remotely sensed data to models used to inform ecological 
assessments (Gross et al. 2008). RS can aid monitoring of many aspects of biodiver-
sity (Cavender-Bares et  al., Chap. 2; Gamon et  al., Chap. 16) and ecosystem 
 functioning within protected areas, including forest extent, land use/land cover 
change, local species pool and turnover, invasions (Bolch et al., Chap. 12), and car-
bon dynamics. The technical aspects of how RS can address some of these issues 
are presented in other chapters; here we review a few selected examples.

One of the major uses of RS in monitoring protected areas involves assessing 
land cover change and dynamics, for example, due to anthropogenic or natural dis-
turbance. Liu et al. (2001) used Landsat data to estimate changes in forest cover and 
giant panda habitat before and after a reserve was created and showed how the 
Wolong Nature Reserve was becoming progressively more fragmented and how this 
resulted in crucial loss of habitat for the giant panda. Koltunov et al. (2009) showed 
how selective logging in the Amazon region led to different forest dynamics and to 
land cover change. Asner et al.’s (2005) seminal work was followed by global maps 
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of deforestation and was also produced using the Landsat archive (Hansen et al. 
2013), which have been used to track deforestation dynamics and development 
frontiers (Potapov et al. 2017). These data sets are now freely available for initia-
tives such as the Global Forest Watch (https://www.globalforestwatch.org/), in 
which the dynamics of deforestation can be monitored within and outside protected 
areas. These initiatives are fundamental to downscale global biodiversity goals to 
local scale action (Geijzendorffer et al. 2018). The quality of the forest classification 
in the Hansen et al. (2013) product is, however, limiting. In this data set, any pixel 
with >25% tree cover is considered a forest, and there is no distinction between 
naturally occurring forests and planted forests (e.g., eucalyptus or oil palm planta-
tions) or forests planted for REDD+ programs. While these readily available prod-
ucts are fundamental to monitoring protected areas, they still rely on careful 
interpretation of their results on the ground. Asner and Tupayachi (2017) showed 
the extent of mining in the Amazon, and within this system, road development has 
long been shown to lead to deforestation and land cover changes within and outside 
protected areas. For example, Gude et  al. (2007) showed how land use change 
around Yellowstone National Park could increase the risk to biodiversity inside the 
park. Svancara et al. (2009) showed areas surrounding US national parks are more 
protected and natural than areas farther away but had higher human population den-
sity and subsequently higher conversion risk for the parks’ ecosystems and natural 
processes.

Such changes in land cover might result in changes in habitat availability and 
quality both outside and within protected areas. For example, Taubert et al. (2018) 
showed global patterns of tropical forest fragmentation follow a power-law distribu-
tion, which suggests that tropical forest fragmentation is close to a critical point. 
Santos et al. (2017) showed how the extent of habitat for small mammals in Yosemite 
National Park has changed in the last 100 years and that these habitat changes might 
in some cases counteract negative effects of climate change on species persistence. 
Platforms such as the Global Forest Watch (mentioned above) and the Global 
Surface Water Explorer from the EU Joint Research Centre show ways by which 
this integration may be achieved. Novel satellite configurations also show unex-
pected potential to monitor ecosystems and their responses to disturbance, provid-
ing potential new avenues for further integration at conservation-relevant scales.

17.3.5  Challenges

Two main challenges are more immediate in the conservation applications of 
RS. The first is that it is important to move beyond considering biodiversity as only 
number of species, and novel approaches looking at the four dimensions of biodi-
versity (genetic, species, function, and ecosystem structure) are necessary. Jetz et al. 
(2016) provide a framework for such an approach, and several chapters in this book 
(see Record et al., Chap. 10, in this book) already show the state of the art of the RS 
potential in these areas.
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The second is that there is a growing need that conservation moves beyond pro-
tected areas to protected landscapes, which include livelihoods. Remotely sensed 
supporting services include habitat, nutrient cycling, terrestrial and aquatic primary 
production, soil formation, and provision of biological refugia, but there is an acute 
lack of RS applications in the study of cultural ES with the exception of cultural 
heritage and recreation (Andrew et al. 2014; de Araujo Barbosa et al. 2015; Cord 
et  al. 2017). Similar to the concept of essential biodiversity variables, indicators 
have been developed to allow fast and efficient assessment of ES across large spatial 
scales. One of these indicators is the recently proposed Rapid Ecosystem Function 
Assessment (REFA, Meyer et al. 2015). REFA builds on a suite of core variables 
such as aboveground primary productivity, soil fertility, decomposition, and polli-
nation. While many of these could theoretically be assessed using RS technology, 
the concept was developed for in-situ measured data. On the other hand, Cerreta and 
Poli (2017) propose a GIS-based framework with scalable and transferable method-
ology to rapidly assess multiple ecosystem functional features of a landscape using 
a multi-criteria spatial decision support system. While none of these approaches has 
been implemented for the use of RS technology at large spatial extents, there is 
potential for setting up near-real-time systems of fast ES assessment. One issue with 
extending temporal coverage and amount of ESs covered, despite increasing 
amounts and quality of remotely sensed data products, is the lack of ground data 
necessary to validate satellite outputs (Jones and Vaughan 2010). Alternatives to 
traditional validation approaches based on comparison with ground data are new 
methods such as the application of process models to test the consistency of time 
series of more complex satellite data products (Loew et al. 2017).

17.4  Data Availability and Issues

Large amounts of auxiliary data from RS and other sources are now freely available, 
together with the models and technology necessary to process disparate data in 
geospatial frameworks. To take advantage of the full range of aspects covered, 
increase the reliability of different data sets, and account for data uncertainty as 
much as possible, auxiliary data sources are often used in tandem with RS data. For 
example, satellite and census land use data can be integrated to scale 
 administrative- level information to the globe (Ellis et al. 2013), and vegetation indi-
ces from satellites can be combined with local ecological knowledge to improve 
assessments of ecosystem degradation (Eddy et al. 2017). We provide an overview 
of the most frequently and widely integrated remotely sensed and auxiliary data 
products using approaches discussed at the end of this chapter. We focus on data 
sources that are useful in assessing plant diversity-related aspects at the landscape 
scale. In a recent review, Englund et al. (2017) found RS-related publications to use 
the term landscape rather loosely as describing studies at anything between 24 and 
122 million ha. Here, we define landscape as referring to studies going beyond 
local, plot-level scales and generally not past country-level scales, although many 
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methods and data products will be applicable to continental and global scales, too. 
Where the RS data products are described in other chapters, we only report on non-
remotely sensed products; otherwise, references to both are given. Details of data, 
spatial, and temporal resolution as well as the formats available are given in 
Table 17.1.

17.4.1  In-Situ Biodiversity-Related Data

Decades of field work by dedicated researchers, their assistants, and students have 
resulted in collection of large amounts of biodiversity data, including plant species 
records on geographical location and abundance, traits of individual species, tax-
onomy, and phylogenetic data, as well as information on associated parameters such 
as pollination or dispersal and growth. This plethora of information is often scat-
tered, hidden in scientific publications and a range of online (and offline) databases, 
herbaria, and agency reports. One means of retrieving relevant data semiautomati-
cally from online sources is web scraping. Tools have been developed that make this 
a viable option for people who are not experts in languages routinely used for creat-
ing web pages and applications. These include several R packages (e.g., rvest, xml2, 
httr, TR8), Python libraries (e.g., Beautiful Soup), online tools (e.g., Nokogiri), and 
software assisting with identifying relevant CSS selectors on websites (e.g., Selector 
Gadget).

Recent efforts to cover this step and make dissemination of data more traceable, 
convenient, and standardized have resulted in large databases covering all the aspects 
discussed above. For example, large global databases exist for plant functional traits 
(e.g., TRY, Kattge et al. 2011), plant community data (species co- occurrences; sPlot, 
Dengler and sPlot Core Team 2014), plant phylogeny (e.g., TreeBASE, Smith and 
Brown 2018; Open Tree of Life), species distributions (e.g., Global Biodiversity 
Information Facility (GBIF), and botanical description and identification tools 
(e.g., JSTOR’s Global Plants) to name just a few.

Some issues with using such large databases, however, are unavoidable. 
Regarding plant phylogeny data, one needs to be aware of the lack of molecular data 
associated with most species of plants resulting in many phylogenetic placements 
being based on data at the genus or even family level (Smith and Brown 2018). 
Where genetic data are available at the species level, large uncertainties with regard 
to the placement of many taxa remain (Smith and Brown 2018), and, increasingly, 
genetic sequences have not yet been linked to species names (so-called dark taxa). 
Species distribution data, on the other hand, are known to have an inherently large 
spatial sampling bias (see, e.g., Fig. 17.2) and generally lack absence data, which 
can inflate the effect of sampling bias even further (Barbet-Massin et  al. 2012; 
Kramer-Schadt et al. 2013; Beck et al. 2014; Maldonado et al. 2015).

On the other hand, in the case of trait data, for example, TRY—a global database 
of plant functional traits—has been shown to be biased toward more extreme trait 
values, that is, frequently measured species consistently have higher or lower trait 
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values than species missing in TRY (Sandel et al. 2015). Although plant functional 
traits are conventionally measured at the peak of the growing season and in full light 
conditions (top of canopy) (Pérez-Harguindeguy et al. 2013), one of the most com-
monly measured traits, specific leaf area (SLA) has been shown to have values in 
TRY that are typical of partial canopy shading (Keenan and Niinemets 2016). Due 
to the extremely diverse nature of studies contributing data to the TRY database, 
most entries have on average only three traits measured simultaneously, which 
makes multivariate analyses at the individual plant level extremely challenging 
(Schrodt et al. 2015).

These issues are mainly due to studies represented within these databases not 
necessarily following standardized protocols (e.g., Pérez-Harguindeguy et al. 2013), 
studies having different foci, data from opportunistic sampling (Maes et al. 2015) 
being mixed with data from directed approaches, and rare species, from a purely 
statistical viewpoint, being less likely to be measured. As such, avoiding them at the 
database level, especially where such a large number of data entries are managed in 
open access databases (e.g., Version 4 of TRY contained almost seven million trait 
records), is currently virtually impossible. An additional challenge when using trait 
data in tandem with RS is the lack of geo-referenced measurements within trait data-
bases. For example, only about 60% of all data points within TRY are geo- referenced 
with variable levels of precision.

Fig. 17.2 Number of species distribution databases reporting the presence of two tree species: 
Abies alba (right) and Corylus avellana (left) across Europe. Color shows 0.5° raster including 
geo-references of A. alba or C. avellana presence, ordered from red (only one database reports 
presence of the species in this pixel) to dark blue (all seven examined databases report presence of 
the species in this pixel). Note the strong country border-related pattern for C. avellana. The num-
ber of pixels as a percentage of the total number of “presence pixel” where all seven databases 
agree is indicated in the plot (3.65% and 5.32%). Seven species distribution databases covering 
Europe were analyzed, including the Atlas Florae Europaeae, GBIF (status Nov. 2017), European 
Vegetation Archive, EUFORGEN (EU Forestry Commission), data from Brus et al. (2012), data 
collated by colleagues from the University of Leipzig (DE), and the FunDivEUROPE project 
(Baeten et al. 2013)
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This leaves it to the data user to work around and with the data issues. Means of 
dealing with some of the aforementioned challenges regarding data availability and 
quality are (i) gap filling of missing trait data (Swenson 2014; Schrodt et al. 2015) 
and (ii) spatial extrapolation of plant traits (Butler et al. 2017), accounting for “dark 
diversity,” i.e., the portion of species absent from species distribution data such as 
biodiversity maps (Ronk et al. 2015). Care must be taken to avoid circularity (e.g., 
using phylogeny to gap fill trait data when including an aspect of taxonomy or phy-
logeny in subsequent analyses). In addition, a possible lack of representativeness 
throughout analyses should be considering, as well as the fact that different 
approaches might require different data collection protocols (e.g., statistical versus 
process models).

17.4.2  In-Situ Abiotic Factors

Much abiotic information, including data from the lithosphere, atmosphere, hydro-
sphere, and cryosphere, can be assessed remotely (see Record et al., Chap. 10, in 
this book for a thorough discussion, including access to climatological data). 
However, many important aspects are only accessible from in-situ sources. These 
include, for example, soil chemical and physical characteristics, geomorphology, 
and subsurface hydrology (see Table 17.1). Many are available at static temporal but 
relatively high spatial resolutions with high associated uncertainties in geolocation, 
bias due to different sampling efforts depending on the location, etc. For example, 
Generalized Linear Interactive Modelling (GLIM), a lithology and mineralogy data 
source, has been shown to be highly biased by country boundaries—an issue that is 
perpetuated in other products using GLIM, such as the SoilGrids database (Hengl 
et  al. 2017), resulting in error propagation to higher-level agglomerate analyses. 
Other challenges include breakdown of concepts and assumptions related to up- and 
downscaling of composite products (e.g., inter-cell redistribution of soil water at 
fine spatial resolution, which can be ignored at coarser resolutions) and a lack of 
knowledge about parameters and processes acting at different resolutions (Bierkens 
et al. 2015).

17.4.3  Socioeconomic Factors and Land Use

Socioeconomic aspects are often ignored in assessments of plant biodiversity at the 
landscape scale, despite the obvious imprint humans have left on most of the globe. 
For example, Abelleira Martínez et al. (2016) found that studies linking local plant 
trait measurements to environmental gradients without accounting for anthropo-
genic effects on these traits render them of limited use due to the multivariate nature 
of the processes governing observed patterns. The same applies to studies integrat-
ing in-situ plant trait variability with land cover types, e.g., for ES assessments 
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without explicitly taking into account human modification of the landscape through 
management, engineered novel communities, land use history, and heterogeneous 
landscapes (Abelleira Martínez et  al. 2016). Anthropogenic aspects that can be 
assessed easily and incorporated into landscape scale analyses include data on pop-
ulation density, socioeconomics, and pollution (see Table 17.1).

Land use is another important anthropogenic aspect but less easily assessed at 
the landscape scale using RS techniques alone. This is mainly due to the same land 
cover (which refers to the physical characteristics of a landscape) having the poten-
tial of belonging to different land use categories (referring to the human use of this 
landscape). For example, the land cover class forest could be within the land use 
category natural primary forest or heavily managed degraded forest. Consequently, 
large-scale land use mapping depends on auxiliary data such as that coming from 
open access crowdsourced land cover and land use data to improve ground-truthing 
and validation (Fritz et al. 2017) and a combination of RS data sources, such as 
fusion of spaceborne optical data with radar data (Joshi et al. 2016).

At the other end of the spectrum of land uses are the human modified, urbanized, 
and infrastructure types such as cities and roads. RS has demonstrated a great poten-
tial to map impervious surface and more limited success in detecting roads. There 
has been a growing interest in urban ecology because more than half of the global 
population now lives in cities, and there is a growing interest to increase healthy 
urban living that combines well-being and biodiversity (Botzat et al. 2016). The first 
step to reach this goal is to create urban green belts (Hostetler et al. 2011), which are 
expected to bring about increasing numbers of native species and increased con-
nectivity (Aronson et al. 2017). However, urban areas are also linked to high rich-
ness (Gavier-Pizarro et al. 2010) and spread of invasive species (Hui et al. 2017), 
and small urban centers are sources of invasive plants into natural areas (McLean 
et al. 2017).

RS of urban (invasive) plant species is covered in another chapter in this book 
(see Bolch et  al., Chap. 12). Roads are more difficult to retrieve with RS alone, 
although the fishbone patterns in the Brazilian Amazon are evident in Landsat data 
(Alves and Skole 1996). Initiatives like OpenStreetMap can provide auxiliary data 
to improve the accuracy of RS-only estimates. These data are fundamental to assess 
global roadless areas and fundamental for maintaining biodiversity processes and 
avoiding deleterious effects of fragmentation.

17.4.4  Land Cover

Among the most traditional applications of RS are those related to the estimation of 
biophysical variables (e.g., tree density, vegetation health). AVHRR, Landsat, 
Sentinel-2, and MODIS are the most widely used sensors for this purpose, but integra-
tion of optical RS with LiDAR technology significantly improves the estimation and 
assessment of vegetation structure due to added horizontal and vertical information 
of vegetation properties (e.g., canopy height) (Lim et al. 2003). Studies combining 
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optical, LiDAR, and radar RS have been applied to study interactions between biotic 
(i.e., vegetation) and abiotic (i.e., soil, geomorphology) elements at landscape scales 
and to quantify the carbon cycle and biomass.

Land cover is another commonly analyzed measure (in their recent review, Ma 
et  al. (2017) analyzed 254 experimental cases and 173 scientific papers on the 
 subject) that has been shown to be highly sensitive to the classification method 
applied, with the optimal approach depending to a large extent on spatial resolution, 
differences between land cover types, and training set size. Land cover maps are 
often used to derive landscape structural features such as patch size, isolation, and 
perimeter- to-area ratio.

Such landscape metrics can be assessed using patch matrix models (PMM), 
which are most suitable for high-hemeroby (low naturalness and high anthropo-
genic pressure, e.g., urban) landscapes due to reduced spatiotemporal heterogeneity, 
while gradient models (GM) are recommended for low-hemeroby landscapes (e.g., 
undisturbed forest) (Lausch et  al. 2015). While PMMs are relatively well estab-
lished and easy to use, disadvantages include that heterogeneity information might 
be lost, patches tend to have sharp boundaries, and results are highly sensitive to 
misclassifications of land cover and use metrics (Lausch et al. 2015). GMs, on the 
other hand, are more complex to use and require more computing capacity and RS 
expertise while being less susceptible to loss of heterogeneity information and arti-
ficially sharp boundaries (Lausch et al. 2015). Both models use a variety of data as 
inputs, including hyperspectral and LiDAR RS as well as in-situ data, thereby tak-
ing full advantage of opportunities offered by each methodology.

17.5  Methods to Integrate Remotely Sensed Measures 
of Plant Biodiversity with In-Situ Plant Diversity, 
Abiotic, and Socioeconomic Data

Studies of plant diversity at the landscape level frequently require a mix of data 
sources from various sensors as well as in-situ data (Table 17.1, Fig. 17.3). There 
are thus three main reasons for integrating measures of biodiversity-related vari-
ables across different data sources: (i) combining data from different sensors to 
make use of different vegetation aspects measured (e.g., MODIS vs. Advanced 
Land Observation Satellite Phased Array type L-band Synthetic Aperture Radar 
(ALOS PALSAR)); (ii) combining different sensors to simulate higher spatiotem-
poral and spectral resolutions to save financial resources or account for gaps in 
available RS data (e.g., Zeng et al. 2017); and (iii) combining in-situ with RS data 
for upscaling and validation.

The process of integrating, combining, and correlating data from different sen-
sors and data types of different temporal and spatial scales is not straightforward. 
Challenges are numerous and include sensor calibration, the propagation of uncer-
tainties from individual data sets with inherent and variable uncertainty and impre-
ciseness, outliers and spurious data, bias due to spatial autocorrelation, differences 
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Fig. 17.3 Example work flow to correlate biomass (k) with human population density (f). Raw 
data from a variety of sources needs to be integrated, including Sentinel-2 (a), Landsat (b), and 
LiDAR (c) from RS as well as modeled land cover (d, INEGI 2013), plot level in-situ biomass 
measurements (e), and raw population density data (f, GPWv4 2016). After general data checking 
and cleaning (which is advisable for any data source), atmospheric and geometric corrections are 
performed on the remotely sensed data using software such as ENVI or SNAP, followed by trans-
formation of the bands—in this case, calculation of the NDVI vegetation index (g). Radar data are 
classified into ground and nonground points using LAStools software, followed by application of 
a digital terrain and height canopy model to derive a canopy height map (h). Aboveground biomass 
(AGB, k) is calculated using the NDVI, canopy height, and (to validate the model) ground data and 
vegetation map (i). (j) Rasterized population density map, (m) pixelwise regression between (k) 
and (l). Please note no visible difference between (j) and (l) due to resampling, resulting in only 
small changes in pixel size
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in geospatial data registration and alignment, and different processing frameworks 
(see Quattrochi et al. 2017 for a thorough discussion).

Figure 17.3 presents an example workflow that depicts the steps required to 
assess if there is a correlation between biomass and human population density in a 
coastal area of Mexico. In this case, since biomass cannot be inferred directly from 
RS sources (as described elsewhere in this book), several preprocessing and pro-
cessing steps are required. Preprocessing steps include data preparation (data clean-
ing, atmospheric and geometric corrections), data transformation (e.g., from tabular 
into rasterized data) and fusion, running of auxiliary methods such as classification 
methods, and application of digital terrain models and height canopy models. 
Processing steps incorporate the use of allometric equations using in-situ plot level 
measurements of plant biomass in that area, which are also used as training and vali-
dation data to formulate the final aboveground biomass model fusing RS with in-situ 
data. Here, we present examples of techniques dealing with some of the abovemen-
tioned challenges in aligning different sensors, fusing data from these different sources 
across space and time, training fusion methods, and validating results.

17.5.1  Fusion

Data fusion is an invaluable tool to assess patterns and processes of biodiversity at 
large spatial scales and integrate data across different aspects of remotely sensed 
plant diversity, abiotic, and socioeconomic factors. Data fusion allows integration of 
data from different sensors and of diverging spatial, spectral, and temporal extent to 
produce outputs of increased fidelity and usefulness. Fusion is often performed to 
account for limitation in one data source, e.g., where single data rather than time 
series data are available in the sensor of interest (Carreiras et al. 2017) or to resa-
mple low-resolution data from one spaceborne RS channel using data from another, 
high-resolution channel on the same sensor.

In the example mentioned above (Fig. 17.3), the authors chose to use optical data 
from MODIS and radar data from ALOS PALSAR, and for their successful fusion, 
it is important to consider the different spatial resolutions, temporal data availabil-
ity, and sensor characteristics (Fig. 17.1). This kind of constellation is frequently 
used to map a range of land cover and land use characteristics, including change, 
conversion, and modification where detailed information on both broad land cover 
classes from optical data and detailed surface roughness and moisture information 
from radar images are required (Pereira et al. 2013; Dusseux et al. 2014; Stefanski 
et al. 2014).

Different fusion techniques are applied to spaceborne or airborne sensors. For 
example, Sankey et al. (2018) described an approach to fuse unmanned aerial vehi-
cle (UAV) LiDAR with hyperspectral data using a decision tree classification tech-
nique and found the combined use of these sensors provided more accurate 
assessments of 3D analyses of plant characteristics and plant species identification 
at submeter spatial resolutions.
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A common application of fusion is an increase of spatial or spectral resolution, 
either accounting for limitations in the available data or imitating high-cost systems 
using low-cost alternatives, e.g., in precision agriculture. For example, Zeng et al. 
(2017) developed a system imitating very high spatial resolution hyperspectral 
 measurements such as those required for the calculation of some vegetation indices 
(VI) using low-cost UAV-mounted sensors and fusing multispectral imagery with 
spectrometer data using Bayesian imputation and principal component analysis. 
Data fusion can also be applied when linking RS data to in-situ data. In their recent 
review, Lesiv et al. (2016) compared different algorithms fusing RS with crowd-
sourced data for forest cover mapping, including geographically weighted logistic 
regression (GWR), naïve Bayes, nearest neighbor, logistic regression, and classifi-
cation and regression trees (CART), finding GWR to perform slightly better where 
input data were disparate.

In its simplest form, fusion can be a basic overlay of high- (spectral/spatial/tem-
poral) resolution data over low-resolution data. However, as Lesiv et al. (2016) and 
others have shown, it is worth comparing different fusion techniques. Several stud-
ies have performed such comparisons but mainly with respect to land cover classi-
fication and specific to certain sensors and spatiotemporal scales (e.g., Caruana and 
Niculescu-Mizil 2006, Clinton et al. 2015). Consequently, Liu et al. (2017) recom-
mend routine use of statistical comparisons between different fusion techniques 
(e.g., a Wilcoxon signed-ranks test for two algorithms or a Friedman test with Iman 
and Davenport extension if more than five algorithms are compared) to detect the 
optimal solution for a given application.

17.5.2  Assimilation

In essence, data assimilation is an extension of data fusion, linking noisy RS mea-
surements with the outputs from imperfect numerical models to optimize estimates 
of measures that are not directly observable from RS [e.g., for detailed, high spatio-
temporal drought monitoring (Ahmadalipour et al. 2017) or, in the example given in 
Fig. 17.3, to derive biomass estimates using a combination of canopy height, digital 
terrain, and aboveground biomass (AGB) modeling]. Advantages of data assimila-
tion include enhanced quality control, the ability to take into account errors and 
uncertainties in data and models simultaneously, gap filling in data-poor locations 
and where insufficient temporal information is available, and improved parameter 
estimation in models.

However, data assimilation can also result in circular and inconsistent analyses. 
The end user needs to be aware that many remotely sensed variables [e.g., leaf area 
index (LAI)] are based on models incorporating ancillary information and are thus 
not independently retrieved. In our example, land cover might already be used as an 
information layer to tune the RS LAI retrieval within the data assimilation step. 
Thus, using LAI as biodiversity variable and adding land cover as an explanatory 
variable could be problematic (inconsistent if from different sources or circular). 
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This illustrates the importance of carefully considering all input variables at different 
steps of the data fusion and assimilation process before using a RS product for 
further analyses.

A range of data assimilation techniques is available, from univariate (scalar) and 
multivariate (vector) 3D and 4D Kalman filter to ensemble methods that are particu-
larly suitable where large sets of parameters are required and models are complex 
(for details see, e.g., Bouttier and Courtier 2002; Evensen 2002).

17.5.3  Validation

Like any other source of data, spaceborne remotely sensed products have errors and 
uncertainties associated with them. Validation is thus an ongoing challenge, although 
a number of guidelines and recommendations for best practice exist. For example, 
the NASA Land Product Validation Subgroup has published a framework for prod-
uct validation and inter-comparison, as well as a “guide to the expression of uncer-
tainty in measurement” (Schaepman-Strub et  al. 2014). In the case of remotely 
sensed LAI, the list of auxiliary parameters with associated uncertainties that should 
be considered when validating LAI measures is long. It includes input data [land 
cover, radiometric calibration error, geometry, aerosol optical depth at 550 nm, can-
opy condition (chlorophyll, dry matter, and moisture content), understory reflec-
tance and geolocation (sensitivity to terrain slope), sensor noise (especially for dark 
targets such as dense vegetation), clear sky top-of-atmosphere radiance, bidirec-
tional reflectance distribution function (BRDF) modeling uncertainty, canopy and 
understory modeling uncertainty, and geometric considerations (where products are 
gridded in map projection systems of varying shape and area, Fernandes et al. 2014). 
A detailed overview of validation techniques used across different levels of RS data 
is given in Zeng et al. (2015), and guidelines on terminology, unified satellite valida-
tion metrics, and strategies, as well as explicit examples of RS validation tech-
niques, including their mathematical basis, are provided in Loew et  al. (2017). 
Luckily for the end user, many of these validation steps are performed by the respec-
tive satellite agencies (e.g., the European Space Agency (Dorigo et al. 2017) and 
NASA (Justice et al. 2013). However, being aware of the complexity of this endeavor 
and the importance of considering both the target variable (e.g., LAI) and its associ-
ated quality measure (e.g., uncertainty) as provided by the space agencies is of 
utmost importance to ensure appropriate use of RS products.

Apart from validating spaceborne RS data, validation techniques are also used to 
evaluate the quality of modeled secondary indices, as well as to assess uncertainty 
propagation after data fusion [e.g., accounting for uncertainty due to variable data 
quality of in-situ or crowdsourced data (see, e.g., Comber et al. 2016) or to validate 
downscaled RS products and airborne RS products]. For instance, crowdsourced 
data have been used to validate a high-resolution global land cover map (Fritz et al. 
2017), and in-situ measurements of LAI collected simultaneously with airborne 
hyperspectral images were used to validate canopy radiative transfer models in 
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agricultural landscapes (Haboudane et al. 2003). In its simplest form, validation is 
a pixelwise comparison of presumably high accuracy (often in-situ) data with the 
remotely sensed or modeled data, using an x-fold validation approach (splitting the 
in-situ data into training and validation data) if some of the in-situ data are needed 
for model development or downscaling. For an overview of more complex tech-
niques see, for example, Montesano et al. (2016) for Landsat-derived tree cover, 
Lesiv et al. (2016) for crowdsourced forest cover, Joshi et al. (2016) for optical- and 
radar-derived land use, and Sun et al. (2017) for in-situ validated land cover.

With the rapidly growing availability of RS and auxiliary data, validation can 
become a time-consuming and complex task. Thus, increasingly, web-based valida-
tion systems are being developed that integrate big data access and storage, adjust-
ment, and different intercomparison and validation techniques simultaneously (e.g. 
Sun et al. 2017).

One of the potential issues with the data fusion and assimilation methods described 
above is that they are often applied globally without testing whether variables and 
correlations remain stable in space and time (Comber et al. 2012). This is a recognized 
problem, and solutions have been proposed for over a decade (e.g., geographically 
distributed correspondence matrices, Foody 2005) with new approaches being con-
tinually proposed. Often these are specific for certain applications, such as net primary 
production (Wang et al. 2005), epidemiology (Khormi and Kumar 2011), biomass 
(Propastin 2012) or population segregation (Yu and Wu 2013). One recently proposed 
more generic approach is that of locally geographically weighted correspondence 
matrices, which combine categorical difference measures (Pontius and Milones 2011, 
Pontius and Santacruz 2014) with spatially distributed kappa coefficient, user, and 
producer accuracy estimates—with code to run these tests in R being available, e.g., 
see packages gwxtab, differ and RSLcode (available on github (https://github.com/
lexcomber/RSLcode)) (Comber et al. 2017). All of these draw attention to the fact 
that, even after performing data cleaning, fusion, assimilation, and validation steps, 
local approaches, data, and techniques cannot necessarily be directly transferred from 
one location and spatiotemporal resolution to another.

17.6  Conclusions

We are living in an increasingly data-rich world, in which not only more but also 
more accurate and reliable data are available on many aspects related to plant biodi-
versity, both from remotely sensed as well as in-situ measurements. Increasingly, 
limitations and potential circularities inherent to these data are acknowledged, often 
aided by the provision of associated estimates of uncertainties and dedicated inter-
comparison studies. Techniques are being developed that enable even nonexperts to 
account for and learn from these. Even in the case of data limitations, however, our 
ability to map all aspects of biodiversity over large spatial and temporal scales has 
increased exponentially over the last decade, and monitoring and understanding 
ecosystem functions is easier than ever before. Nevertheless, significant challenges 
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remain, including scaling mismatches, misuse of data and techniques, insufficiently 
high spatiotemporal resolution of RS data, biases in in-situ data, and many more. It 
is imperative that we acknowledge and work with these challenges to devise even 
more accurate and suitable approaches to assessing biodiversity for the study of 
ecosystem function, conservation, and other applications at large spatial scales.
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