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Abstract: Considering the untrusted server, differential privacy and local differential privacy has been used for privacy-

preserving in data aggregation. Through our analysis, differential privacy and local differential privacy cannot achieve Nash 

equilibrium between privacy and utility for mobile service based multiuser collaboration, which is multiuser negotiating a 

desired privacy budget in a collaborative manner for privacy-preserving. To this end, we proposed a Privacy-Preserving Data 

Aggregation Framework (PPDAF) that reached Nash equilibrium between privacy and utility. Firstly, we presented an 

adaptive Gaussian mechanism satisfying Nash equilibrium between privacy and utility by multiplying expected utility factor 

with conditional filtering noise under expected privacy budget. Secondly, we constructed PPDAF using adaptive Gaussian 

mechanism based on negotiating privacy budget with heuristic obfuscation. Finally, our theoretical analysis and experimental 

evaluation showed that the PPDAF could achieve Nash equilibrium between privacy and utility. Furthermore, this framework 

can be extended to engineering instances in a data aggregation setting.  
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1. Introduction 

Nowadays, the development and applications of 

mobile devices generate massive data. Third server 

needs to aggregate these data to provide service to 

mobile users. But this could lead to privacy concerns 

for users, because untrusted third party server analyzes 

data or sells data for benefit. Privacy is one of the most 

important properties of an information system must 

satisfy to share information among different untrusted 

entities, and the protection of sensible information 

plays an important role [8]. On the assumption that the 

server is reliable, so Dwork et al. [5] proposed 

differential privacy. In real world, using differential 

privacy may lead to sensitive information leakage of 

centralized data because the third server is not reliable 

by analyzing or abusing users’ data. Thus, differential 

privacy has used to privacy-preserving by user adding 

noise to own data in data aggregation setting. 

Exponential mechanism can protect the data privacy 

of participants to untrusted third party and encourage 

players to honestly report information [18]. Moreover, 

local differential privacy [12] has been provided for 

privacy-preserving in a local setting. Local differential 

privacy can be achieved by using randomized response 

[26] technology with providing plausible deniability 

for users responding to sensitive surveys. However, 

differential privacy and local differential privacy 

cannot ensure Nash equilibrium between privacy and 

utility to mobile service based multiuser collaboration.  

Multiuser collaboration is multiuser negotiating a 

desired privacy budget in a collaborative manner to 

send noise data to a server in data aggregation setting. 

Therefore, we present an adaptive Gaussian 

mechanism maintaining Nash equilibrium between 

privacy and utility, and apply it to PPDAF. We show 

that our framework achieves Nash equilibrium between 

privacy and utility. Moreover, our framework is easy to 

extend to engineering implementation for a data 

aggregation setting. The contribution of this paper can 

be summarized as follows. 

 We analyzed differential privacy and local 

differential privacy no satisfying Nash equilibrium 

between privacy and utility for mobile service based 

multiuser collaboration in a data aggregation setting. 

 We gave adaptive Gaussian mechanism ensuring 

Nash equilibrium between privacy and utility by 

multiplying expected utility factor with conditional 

filtering noise under expected privacy budget. 

 We constructed PPDAF using adaptive Gaussian 

mechanism based on negotiating privacy budget 

with heuristic obfuscation, which kept Nash 

equilibrium between privacy and utility. 

The rest of this paper is organized as follows. Section 2 

introduces related work. Section 3 introduces the 

preliminaries. Section 4 gives equilibrium analysis of 

differential privacy and local differential privacy for 

mobile service based multiuser collaboration. Section 5 

presents adaptive Gaussian mechanism. Section 6 
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details PPDAF. Section 7 conducts experimental and 

comparison analysis. Section 8 concludes this paper. 

2. Related Work 

To secure against malicious participants, Dwork et al. 

[6] provided efficient distributed protocols for 

generating shares of random noise by using verifiable 

secret sharing. To prevent the privacy leakage of 

participants to untrusted third party and encourage 

players to honestly report information, McSherry and 

Talwar [18] proposed exponential mechanism. Secure 

function evaluation is a natural paradigm for 

distributed differential privacy analysis [1]. 

In distributed data aggregation, differential privacy 

had been applied to continual monitoring of heavy 

hitters from distributed streams against an untrusted 

aggregator [2] and data collection for untrusted mobile 

crowdsensing [20]. For multi-party computation, 

McGregor et al. [15] studied differential privacy 

computation for which the two parties would like to 

perform analysis of their joint data while preserving 

privacy of both datasets. The recommendation service 

with collective user behaviour using differential 

privacy was studied [17]. Feild et al. [9] described an 

approach to distributed search log collection, storage, 

and mining, with the dual goals of preserving privacy 

and making the mined information broadly available. 

Since privacy leakage of data releasing for multi-party 

environment, Mohammed et al. [19] presented a two-

party protocol for the exponential mechanism. Su et al. 

[25] studied the problem of publishing high-

dimensional data in a distributed multi-party 

environment using differential privacy. For big data 

analytics in the distributed setting, Li et al. [13] 

developed a privacy-preserving distributed online 

learning framework by introducing the notion of 

differential privacy on the data collected from 

distributed data sources. Shokri and Shmatikov [23] 

proposed a practical system based on differential 

privacy that enabled multiple parties to jointly learn an 

accurate neural-network model for a given objective 

without sharing their input datasets. Differential 

privacy also had applied to collaborative search log 

[10] and crowdsourced spectrum sensing [11] to 

prevent an untrusted third party from learning user’s 

privacy information.  

Kasiviswanathan et al. [12] first formalized the 

local privacy model. Duchi et al. [4] proposed local 

differential privacy in which data remains privacy even 

from the statistician or learner. Since local differential 

privacy algorithms were highly interactive, Smith et al. 

[24] provided new algorithms which were either 

noninteractive or use relatively few rounds of 

interaction.  

Local differential privacy had got more applications, 

such as local privacy hypothesis testing [21]. Also, 

Cormode et al. [3] introduced the key technical 

underpinnings of deployed systems using local 

differential privacy of Google, Apple and Microsoft. 

In summary, differential privacy and local 

differential privacy have been used for data 

aggregation environment. But differential privacy and 

local differential privacy cannot ensure Nash 

equilibrium between privacy and utility. Therefore, we 

proposed an adaptive Gaussian mechanism and applied 

it to a data aggregation environment.  

3. Preliminaries 

We introduce the preliminaries to Nash equilibrium 

and differential privacy. 

3.1. Nash Equilibrium 

Nash equilibrium [22] is a stable solution concept, 

which all players can achieve expected utility using 

best strategy response. 

 Definition 1 (Nash Equilibrium): In a game, a 

strategy profile s=(s1,…,sn) is a Nash equilibrium, 

when the utility function ),(),( *
iiiiii ssussu    of 

any strategy ii Ss *  of every player i . 

Here, s-i=(s1,…,si-1,si+1,…sn) denotes a strategy profile 

s without player i’s strategy. 

3.2. Differential Privacy 

We present differential privacy and it corresponds to 

mechanisms [7]. Two datasets D1 and D2 are adjacent 

datasets, when Hamming distance d(D1,D2) is 1. 

 Definition 2 ( ),(  -Differential Privacy): Given 

0 , a randomized algorithm M is ),(  -

differential privacy, if for adjacent datasets D1  and 

D2 and for any outputs )(MRangeS   of M, then 

   ])(Pr[])(Pr[ SDMeSDM   

Where the algorithm M  is  -differential privacy with 

probability at least  . If 0 , M is )0,( -

differential privacy algorithm. 

Differential privacy has the property of parallel 

composition [16]. 

 Theorem 1 (Parallel Composition). Each random 

mechanism Mi provides ),(  i -differential privacy. 

The Di be arbitrary disjoint subsets of the input 

dataset D. The parallel composition of Mi is 

)},(max{  i -differential privacy. 

For any query function kRDf :  of a dataset D, the 

sensitivity of f  is  

1211),( ||)()(||max
21

DfDff DDd     

for all adjacent datasets D1 and D2. R is the set of all 

real numbers. 

(1) 

(2) 
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 Definition 3 (Gaussian Mechanism): Given any 

query function kRDf : , the Gaussian 

mechanism is defined as GM(D)=f(D)+Y, where 

Y={Y1,…,Yk} is independent identical distribution 

random noise drawn from Gaussian distribution 

),0( 2N  and  )).ln((  f . 

Considering two input values of individuals, the 

definition of local differential privacy [12] is as 

follows. 

 Definition 4 (Local Differential Privacy): Given 

0 , a randomized algorithm M is  -local 

differential privacy, if for any input b1 and b2  and 

for any output },{  vvv , then 

]|Pr[]|Pr[   bvebv   

4. Equilibrium Analysis of Differential 

Privacy and Local Differential Privacy 

 Theorem 2. Differential privacy cannot achieve 

Nash equilibrium between privacy and utility for 

mobile service based multiuser collaboration. 

 Proof: A single user can achieve expected privacy 

budget   by adding nose to own data, but the utility 

of aggregated data is destroyed. If the server wants 

the utility of aggregated data to be U , then the user 

cannot obtain expected privacy budget. Thus, user 

and server cannot reach Nash equilibrium between 

expected privacy budget and expected aggregated 

data utility for mobile service based single user. 

Next, there are n users (every user },,1{ ni  ) and 

every user gets expected privacy budget i  by adding 

noise to own data. Firstly, if n  users negotiate a 

privacy budget 0  and i 0  for every user i, then all 

users obtain desired privacy budget in a distributed 

setting. However, this leads utility disaster of 

aggregating data for the server. Secondly, if the 

expected aggregated data utility of server is U , then 

some users cannot achieve expected privacy-

preserving for their own data. Thus, users and the 

server cannot achieve Nash equilibrium between 

expected privacy budget and expected aggregated data 

utility for mobile service based multiuser 

collaboration.  

 Theorem 3. Local differential privacy cannot 

achieve Nash equilibrium between privacy and 

utility for mobile service based multiuser 

collaboration. 

 Proof: When use local differential privacy, we use 

the expectation as utility. When the probabilities of 

output v1 and v2 are )1(  ee   and )1(1 e  on 

input value b1, respectively. The probabilities of 

output v1 and v2 are )1(1 e  and )1(  ee   on 

input b2, respectively. And the probabilities of input 

values b1 and b2 are p and 1-p. Given p and 1-p, the 

expectation of output values v1 and v2 is 

)()))(()((  eveppvppe   . This 

proof is similar to the proof of Theorem 3. Thus, we 

can prove that local differential privacy cannot 

achieve Nash equilibrium between privacy and 

utility for mobile service based multiuser 

collaboration. 

To sum up, differential privacy and local differential 

privacy cannot achieve Nash equilibrium between 

privacy and utility for mobile service based multiuser 

collaboration. Thus, we need an adaptive differential 

privacy framework ensuring Nash equilibrium between 

privacy and utility in a local setting of mobile service 

based multiuser collaboration. 

5. Adaptive Gaussian Mechanism 

In the section, we present the adaptive Gaussian 

mechanism [14] and analyze its Nash equilibrium. 

For any numeric query function f:D→R
k
, differential 

privacy mechanisms generate noise directly added to 

query outcomes. But the noise may be very large that 

leads data is not available, or too small to preserve 

individual’s sensitive information. So we construct 

adaptive differential privacy maintaining Nash 

equilibrium between privacy and utility. To present 

adaptive Gaussian mechanism, we give definition of 

conditional filtering noise. 

 Definition 5 (Conditional Filtering Noise): The 

conditional filtering noise kXY   satisfies 

)5.1,5.0(|| Y , and noise X is generated by Gaussian 

mechanism. 

Note that σ is the scale parameter of Gaussian 

distribution. Assuming )(u  is distribution function of 

)1,0(~ Nu . The probability of a standard normal 

variable uU   is obtained by querying the standard 

normal distribution function table. 

 Theorem 4. Probability of conditional filtering noise 

)5.1,5.0(|| Y  is 
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 Proof: Since conditional filtering noise Y=X-kσ 

satisfies )5.1,5.0(|| Y , expectation of Y is - kσ. The 

standard normal variable is U=(Y+kσ )/σ. We can 

get Pr[U]=Pr[Y]. Because U is subjected to N(0,1), 

the probability of U  is (4). 

Next, we define the expected data utility according to 

the absolute value of relative error xxx )'(  , where 

'x  is the approximate value of x .  

 Definition 6 (Expected Data Utility): f(D)+u is the 

approximate value of f(D), where u>0 is called as 

(3) 
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utility factor to achieve expected data utility. The 

expected data utility to be |)(|)|)((| DfuDfU   

if the absolute value ]1,0[E  of relative error is 

|)(| DfuE  . 

According to Definition 6, we can achieve expected 

data utility, but this is not satisfying differential 

privacy if we regard the utility factor u  as noise. So 

we get noise Z=uY by multiplying the conditional 

filtering noise Y with the utility factor u of the expected 

data utility. Then we add noise Z to query outcome. 

Probability distribution of noise Z corresponding to the 

probability distribution of the noise X satisfies 

differential privacy. Like this can achieve approximate 

expected data utility, while satisfying differential 

privacy. 

To define approximate expected data utility, based 

on a suitable real number ]2,0[k , expected data 

utility, and expected estimation error, we give the 

definition of expected privacy budget. That is to say, 

how much expected privacy budget is needed to 

achieve the expected estimation error under expected 

data utility. The Expected Estimation Error (EEE) as 

privacy metric is 

  ||)(||)()'(||)( 1 YYpDfDfYpEEE  

Here, YDfDf  )()'( , and Y  is noise generated by 

Gaussian mechanism. 

 Definition 7 (Expected Privacy Budget): In 

differential privacy, for a dataset D , the expected 

privacy budget function REEEUk :  maps 

]2,0[k , expected data utility, and expected 

estimation error to the expected privacy budget. 

Here, ]2,0[k is required to ensure privacy-preserving 

monotonicity of adaptive differential privacy. Privacy-

preserving monotonicity refers to a privacy metric 

decreasing with privacy budget increasing. 

Based on conditional filtering noise, the utility 

factor of expected data utility, and the expected 

privacy budget, definition of approximate expected 

data utility is as follows. Note that all approximate 

values are obtained by rounding in this paper. 

 Definition 8 (Approximate Expected Data Utility): If 

conditional filtering noise Y=X-kσ of Gaussian 

mechanism under expected privacy budget satisfied 

)5.1,5.0(|| Y  and expected data utility is U=1-E, 

then the approximate expected data utility AU is 

|)(||)||)((| DfZDfAU   

Thus, we have the following definition of adaptive 

Gaussian mechanism based on Definition 6 and 

Definition 7. 

 Definition 9 (Adaptive Gaussian Mechanism): For 

utility factor u  of the expected data utility and 

conditional filtering noise Y under expected privacy 

budget. For any numeric query function f:D→R
k
, the 

adaptive Gaussian mechanism is defined as 

AGM(D)=f(D)+Z, where uYZ   ))5.1,5.0(|(| Y , 

Y=X-kσ, and X generated by Gaussian mechanism 

with scale parameter   under the expected privacy 

budget. 

Next, we analyze adaptive Gaussian mechanism. 

Similarly the properties of differential privacy [7], 

adaptive differential privacy satisfies the properties 

including group privacy, post processing, serial 

composition. Adaptive Gaussian mechanism also 

satisfies parallel composition [16]. Moreover, adaptive 

Gaussian mechanism has the following properties. 

 Theorem 5. Adaptive Gaussian mechanism is 

),(  -differential privacy. 

 Proof: Since the Gaussian mechanism M is ),(  -

differential privacy, then 










|

))2()(exp(

))2(exp(
ln|

22
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x  

In adaptive Gaussian mechanism, conditional filtering 

noise Y=X-kσ  ))5.1,5.0(|(| Y  and X generated by 

Gaussian mechanism under expected privacy budget. 

Thus, the probability of YYi   is corresponding to the 

probability of XX i  . So the probability of ZZi   is 

also corresponding to the probability distribution of 

XX i  . Since the probability density function of 

random variable X  is  2))2(exp( 22x , the 

probability density function of random variable 

ukuXuYZ   is 

 2))2()(exp( 22 ukuz  . Thus, we have 
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Thus, adaptive Gaussian mechanism is ),(  -

differential privacy. 

 Theorem 6. When expected data utility of adaptive 

Gaussian mechanism is U=1-E to absolute value E 

of relative error, approximate expected data utility 

AU of adaptive Gaussian mechanism is 

approximately equal to expected data utility U. 

 Proof: In adaptive Gaussian mechanism, we have 

|)(||)||)((| DfYuDfAU   based on the 

definition of approximate expected data utility 

|)(||)||)((| DfZDfAU  . Since conditional 

(5) 

(6) 

(7) 

(8) 
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filtering noise ).,.(|| Y  and |)(| DfuE  , the 

rounding value of ||Y  is 1 and UAU  .  

We give Theorem 8 of adaptive Gaussian mechanism 

maintaining Nash equilibrium between approximate 

expected data utility and expected privacy budget. 

 Theorem 7. Adaptive differential privacy maintains 

Nash equilibrium between approximate expected 

data utility AU  and expected privacy budget  . 

 Proof: Since conditional filtering noise satisfying 

)5.1,5.0(|| Y  under any expected privacy budget. 

Under an expected privacy budget  , adaptive 

Gaussian mechanism can achieve expected privacy-

preserving level. Since uYu || and UAU  , the 

approximate expected data utility is approximately 

equal to expected data utility U of adaptive 

Gaussian mechanism. Therefore, adaptive Gaussian 

mechanism maintains Nash equilibrium between the 

approximate expected data utility AU  and the 

expected privacy budget  , and the strategy profile 

),( AU  is a Nash equilibrium solution. 

According to the definition of adaptive Gaussian 

mechanism, our scheme not only gains UAU  , but 

also achieves expected privacy budget  , which 

ensures expected privacy level of sensitive information. 

Thus, adaptive Gaussian mechanism can maintain 

Nash equilibrium between approximate expected data 

utility AU and expected privacy budget  . 

6. Applications Framework Using Adaptive 

Gaussian Mechanism 

We present the PPDAF using adaptive Gaussian 

mechanism for mobile service based multiuser 

collaboration and analyze its Nash equilibrium 

between privacy and utility. 

6.1. Privacy-Preserving Data Aggregation 

Framework 

For mobile service based multiuser collaboration, we 

construct a PPDAF in Figure 1. Firstly, server sends 

expected data utility U of aggregating data to all users. 

Secondly, users send noise data to the server using 

adaptive Gaussian mechanism. Before sending noise 

data, all users need to negotiate a minimum expected 

privacy budget 0  in a cooperative manner to 

guarantee every user’s expected privacy budget. We 

call 0  as negotiating privacy budget. This framework 

ensures expected data utility and achieves expected 

privacy-preserving level of users. 

 Definition 10 (PPDAF): PPDAF is a tuple 

),,,,( AGMUDPPPDAF  , where  

1. P is a set of mobile service based users Pi and server 

S. 

2. D is a set of all users’ dataset Di and aggregated 

dataset Ds of server. 

3.   is a set of users’ privacy budget i . 

4. U  is expected data utility. 

5. ),( iiDAGM   is adaptive Gaussian mechanism for 

dataset Di  and privacy budget i  of user i. 

 

Figure 1. PPDAF using adaptive Gaussian mechanism for mobile 

service based multiuser collaboration. 

Next, we present the principle of negotiating privacy 

budget 0 . Since differential privacy guarantees 

privacy of individuals by adding random noise, the 

publication of privacy budget does not leak privacy 

information of individuals. Thus, we construct a 

heuristic obfuscation of enhancing privacy-preserving 

for negotiating privacy budget. The process of 

negotiating privacy budget based on heuristic 

obfuscation is shown in the Figure 2. 

 

Figure 2. Process of negotiating privacy budget based on heuristic 

obfuscation for mobile service based multiuser collaboration. 

In PPDAF, combining server with users, the process 

of negotiating privacy budget with heuristic 

obfuscation is as follows. 

 Step 1: Server S sets a group {P1,…,Pn} of a mobile 

service based users of participating data 

aggregation. 

 Step 2: Server requires all users negotiating privacy 

budget 0  according to the order of P1,…,Pn based 

on heuristic obfuscation. User P1 sends privacy 

budget 1  to user P2. P2 compares 1  and 2 . If 

21   , P2 sends 2  to P3. If 21   , P2 sends 1  

to P3. To reach better privacy-preserving, P1 

inspired P2 sending smaller privacy budget to P3. 

 Step 3: By repeating the step 2, Pn-1 and Pn negotiate 

a privacy budget 0  in a heuristic manner. Pn 

broadcasts the negotiating privacy budget 0  

( i 0  for all users) to all users. 
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Under negotiating privacy budget 0 , all users can 

obfuscate their own data by adding random noise. Thus, 

this process is called as heuristic obfuscation. Since the 

minimum privacy budget 0  is obtained by negotiating 

with all users, heuristic obfuscation can enhance 

privacy-preserving. 

We give the algorithm 1 of negotiating privacy budget 

based on heuristic obfuscation. 

Algorithm 1: Negotiating privacy budget based on heuristic 

obfuscation for mobile service based multiuser collaboration. 

Input: Initializing privacy budget i  for every user iP  

Output: Negotiating privacy budget 0  

 Step 1: 1epsilon  

 Step 2: for ni :1  

 Step 3: if )( epsiloni   

 Step 4: iepsilon   

 Step 5: end if 

 Step 6: end for 

 Step 7: epsilon0  

6.2. Framework Analysis 

Now, we analyze the PPDAF. Since users add noise to 

their own data, server cannot obtain sensitive 

information of users by analyzing users’ data or 

correlated data. Through negotiating, every user’s 

expected privacy budget is at most negotiating privacy 

budget 0 . Thus, the PPDAF guarantees every user’s 

expected privacy budget, which is expected privacy-

preserving level. According to server’s expected data 

utility, all users add noise to their own data ensuring 

expected data utility. In a word, the PPDAF can 

achieve Nash equilibrium between privacy and utility. 

 Theorem 8 (Nash Equilibrium of PPDAF). PPDAF 

maintains Nash equilibrium between expected data 

utility and negotiating privacy budget. 

 Proof: Every user’s expected privacy budget i  is at 

most 0  after completing the negotiating privacy 

budget based on heuristic obfuscation in PPDAF. 

Thus, every user Pi can achieve the negotiating 

privacy budget 0  at most. Every user Pi ensures 

privacy budget 0}max{  i  based on Theorem 1, 

so every user Pi obtains expected privacy-preserving 

level. Since every user can get own noise dataset 

using adaptive Gaussian mechanism, approximate 

expected data utility AU  is approximately equal to 

expected data utility U  under conditional filtering 

noise )5.1,5.0(|| Y . Thus, server can obtain 

approximate expected data utility AU of aggregation 

data and UAU  . So PPDAF maintains Nash 

equilibrium between approximate expected data 

utility U and negotiating privacy budget 0 . Thus, 

),( 0 AU  is a Nash equilibrium solution. 

7. Experimental Evaluation 

We make a comparative analysis by experimental 

evaluation in PPDAF. In all experimental evaluations, 

we initialize probability value  .  and sensitivity 

1f . All experiments are repeated 30 times for the 

validity of the results. We conduct these numerical 

experiments by implementing them with MATLAB 

(R2013b) and run our experiments on a desktop 

computer with Intel i5-2400 3.10 GHz processor, 4GB 

RAM, and Window 7 platform. 

7.1. Dataset 

We use T-Drive taxi trajectory dataset [27] to evaluate 

utility and privacy of PPDAF. This is a sample of T-

Drive taxi trajectory dataset, which was generated by 

over 10,000 taxis in a period of one week in Beijing. 

We chose two datasets of Taxi ID 8 and Taxi ID 43 to 

conduct privacy and utility analysis. We evaluate the 

performance of PPDAF by using synthetic datasets of 

Taxi ID 568 and Taxi ID 569, Taxi ID 569 and Taxi ID 

695, and Taxi ID 569 and Taxi ID 36. Every dataset is 

perturbed by using Gaussian mechanism, local 

differential privacy and adaptive Gaussian mechanism 

in all experiments. Then, we analyze privacy and 

utility of these perturbation datasets for PPDAF and 

evaluate the performance of PPDAF. 

7.2. Privacy Analysis 

We analyze the privacy-preserving level according to 

the expected estimation error. Because of directly 

perturbing data, the privacy metric is 

  ||)(||'|)( 1 YYpDDYpEEE  

where YDD ' . Since the trajectory data consist of 

latitude and longitude, the privacy metric is 

 ||||)()( 2121 YYYpYpEEE  

Where noise Y1 and Y2 added to the latitude and 

longitude, respectively. 

From Figure 3, the expected estimation error curve 

using Gaussian mechanism decreases as privacy 

budget increasing to PPDAF. We can conclude that 

Gaussian mechanism may lead to utility disaster when 

privacy is very tiny. In PPDAF, when we use local 

differential privacy to achieve privacy preserving, we 

assume that the locations of trajectory data are true and 

code them as 1. Then, we achieve privacy preserving 

of trajectory datasets using local differential privacy 

with randomized response. The value of latitude of 

false response is generated randomly between the 

maximum latitude value and minimum latitude value 

in the all experimental trajectory datasets. Also, the 

value of longitude of false response is generated 

randomly between the maximum longitude value and 

minimum longitude value in the all experimental 

(9) 

(10) 
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trajectory datasets. We can also observe that the 

expected estimated error decreases as privacy budget 

increases from Figure 4 and the expected estimated 

error is smaller. Thus, we can conclude that local 

differential privacy using randomized response leads to 

privacy leakage. Figure 5 shows that the expected 

estimation error curve using adaptive Gaussian 

mechanism also decreases as privacy budget increasing. 

The expected estimation error of PPDAF increases as 

the expected data utility decreases under the same 

privacy budget. The results show that PPDAF satisfies 

privacy-preserving monotonicity of differential privacy 

for different expected data utility. Thus, PPDAF 

achieves the expected privacy preserving under any 

expected data utility.  

 

Figure 3. Expected estimation error curve using Gaussian 

mechanism (GM) for PPDAF. 

 

Figure 4. Expected estimation error curve using local differential 

privacy (LDP) for PPDAF. 

 

Figure 5. Expected estimation error curve using adaptive Gaussian 

mechanism (AGM) for PPDAF. 

7.3. Utility Analysis 

Now, we analyze the data utility of Gaussian 

mechanism and local differential privacy using 

randomized response based on utility metric 

|||'|1 xxx  to the absolute value of relative error 

xxx )'(  , where 'x  is the random perturbed value of 

x. Also, we analyze the expected data utility of 

adaptive Gaussian mechanism for PPDAF according to 

the Definition 6 of expected data utility metric. 

Table 1. Data utility using Gaussian mechanism for PPDAF. 

Trajectory 

Datasets 

Data Utility of Latitude and Longitude 

 .    

Taxi ID 8 

(0.8507, 0.5349) (0.9846, 0.9328) 

(0.8426, 0.4216) (0.9855, 0.9408) 

(0.8501, 0.5326) (0.9869, 0.9516) 

(0.8375, 0.5605) (0.9860, 0.9536) 

(0.8591, 0.4744) (0.9867, 0.9618) 

Taxi ID 43 

(0.8191, 0.5468) (0.9792, 0.9601) 

(0.8636, 0.6256) (0.9872, 0.9551) 

(0.8113, 0.4624) (0.9855, 0.9656) 

(0.8069, 0.7240) (0.9803, 0.9618) 

(0.8463, 0.5055) (0.9897, 0.9565) 

Table 2. Data utility using local differential privacy for PPDAF. 

Trajectory 

Datasets 

Data Utility of Latitude and Longitude 

 .    

Taxi ID 8 

(0.9613, 0.8908) (0.9725, 0.9504) 

(0.9664, 0.9361) (0.9694, 0.9194) 

(0.9755, 0.9291) (0.9668, 0.9121) 

(0.9572, 0.9302) (0.9560, 0.9167) 

(0.9589, 0.9368) (0.9472, 0.8990) 

Taxi ID 43 

(0.9717, 0.9344) (0.9637, 0.9518) 

(0.9654, 0.9537) (0.9834, 0.9556) 

(0.9809, 0.9524) (0.9823, 0.9618) 

(0.9739, 0.9299) (0.9840, 0.9578) 

(0.9583, 0.9148) (0.9649, 0.8912) 

We observe data utility increases as privacy budget 

increases from Table 1 for PPDAF using Gaussian 

mechanism. When privacy budget is very small, the 

data utility of PPDAF using Gaussian mechanism is 

very bad result. For PPDAF using local differential 

privacy with randomized response, Table 2 shows that 

data utility is approximately equal to 1. Thus, local 

differential privacy using randomized response can 

achieve good data utility, but it could lead to privacy 

leakage and it cannot achieve expected data utility 

under any privacy budget. In Table 3, we observe that 

all approximate expected data utility approaches to 

expected data utility U=0.4 by using adaptive Gaussian 

mechanism for PPDAF. All approximate expected data 

utility approaches to expected data utility U=0.8 for 

PPDAF from Table 4. Thus, we can conclude that the 

approximate expected data utility is closer to the 

expected data utility as the absolute value E  of 

relative error decreases. This result is consistent with 

Theorem 7. Thus, adaptive Gaussian mechanism can 

achieve approximate expected data utility under any 

expected privacy budget for PPDAF. We can conclude 

that adaptive Gaussian mechanism ensures Nash 

equilibrium between expected privacy budget and 

approximate expected data utility for PPDAF. 

Furthermore, we compare the properties of Gaussian 

mechanism, local differential privacy, and adaptive 

Gaussian mechanism. In the Table 5, we observe that 

the adaptive Gaussian mechanism has better properties 
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than Gaussian mechanism and local differential 

privacy. It not only satisfies differential privacy for any 

size dataset, but also maintains Nash equilibrium 

between privacy and utility. It can also prevent the 

third party making privacy attack of a distributed 

environment. 

Table 3. Approximate expected data utility using adaptive Gaussian mechanism when expected data utility U=0.4 of PPDAF. 

Trajectory 

Datasets 

Approximate Expected Data Utility of Latitude and Longitude 

).,(  k  ),(  k  ).,(  k  ),(  k  ).,(  k  ),(  k  

Taxi ID 8 

(0.3885, 0.4192) (0.3956, 0.4416) (0.3941, 0.3655) (0.4289, 0.3855) (0.4217, 0.3877) (0.3689, 0.4528) 

(0.3502, 0.4343) (0.4158, 0.4227) (0.4018, 0.3591) (0.4046, 0.4102) (0.4240, 0.3915) (0.4485, 0.3803) 

(0.4340, 0.4266) (0.3456, 0.4066) (0.4045, 0.3893) (0.4154, 0.3665) (0.4124, 0.4022) (0.3905, 0.3504) 

(0.3815, 0.3763) (0.3854, 0.4431) (0.4441, 0.4224) (0.4152, 0.4231) (0.3988, 0.3835) (0.3311, 0.3786) 

(0.3606, 0.3940) (0.3376, 0.4217) (0.4185, 0.4198) (0.3911, 0.3540) (0.4585, 0.3509) (0.4118, 0.4082) 

Taxi ID 43 

(0.4157, 0.3931) (0.4673, 0.4327) (0.4222, 0.4000) (0.3881, 0.3675) (0.3680, 0.4229) (0.3705, 0.3841) 

(0.4024, 0.4054) (0.3796, 0.3989) (0.3512, 0.4275) (0.4621, 0.3996) (0.4348, 0.3211) (0.3862, 0.3927) 

(0.4628, 0.4156) (0.4053, 0.4333) (0.4020, 0.3884) (0.4114, 0.4034) (0.3580, 0.4435) (0.3727, 0.3991) 

(0.4393, 0.3506) (0.4375, 0.3698) (0.4297, 0.4058) (0.3879, 0.3802) (0.4043, 0.3720) (0.3801, 0.3595) 

(0.3838, 0.3744) (0.3300, 0.4323) (0.4534, 0.3929) (0.4161, 0.4002) (0.4020, 0.4169) (0.3674, 0.3246) 

Table 4. Approximate expected data utility using adaptive Gaussian mechanism when expected data utility U=0.8 of PPDAF. 

Trajectory 

Datasets 

Approximate Expected Data Utility of Latitude and Longitude 

).,(  k  ),(  k  ).,(  k  ),(  k  ).,(  k  ),(  k  

Taxi ID 8 

(0.8014, 0.8170) (0.8111, 0.8008) (0.7994, 0.8068) (0.8002, 0.7971) (0.8132, 0.7883) (0.7641, 0.7938) 

(0.7952, 0.8022) (0.8073, 0.8063) (0.8116, 0.8001) (0.7974, 0.8036) (0.7790, 0.7972) (0.8043, 0.7995) 

(0.7927, 0.7954) (0.7949, 0.8035) (0.7815, 0.8018) (0.7978, 0.8040) (0.8109, 0.8101) (0.7973, 0.7918) 

(0.7975, 0.8104) (0.8001, 0.7977) (0.8033, 0.7861) (0.7856, 0.8120) (0.7802, 0.8060) (0.7890, 0.7859) 

(0.8076, 0.7820) (0.7873, 0.7928) (0.7888, 0.7955) (0.8156, 0.8021) (0.8014, 0.7990) (0.7939, 0.8038) 

Taxi ID 43 

(0.8068, 0.7948) (0.7972, 0.7962) (0.8149, 0.8172) (0.7954, 0.7974) (0.7869, 0.8008) (0.8006, 0.7749) 

(0.8074, 0.7985) (0.8041, 0.8106) (0.7900, 0.7983) (0.7897, 0.7907) (0.8004, 0.8157) (0.7936, 0.7956) 

(0.8029, 0.8052) (0.7921, 0.8075) (0.8177, 0.7881) (0.7934, 0.7928) (0.8043, 0.7993) (0.7955, 0.7926) 

(0.7895, 0.7879) (0.8118, 0.8078) (0.7869, 0.8048) (0.7993, 0.8006) (0.7914, 0.8140) (0.7878, 0.7876) 

(0.7955, 0.7771) (0.7812, 0.8088) (0.8072, 0.7964) (0.8100, 0.7942) (0.7947, 0.8030) (0.7915, 0.7937) 

Table 5. Comparison between Gaussian mechanism, local differential privacy and adaptive Gaussian mechanism. 

Mechanisms Dataset Size 
Satisfying 

Differential Privacy 

Maintaining 

Nash Equilibrium 

Preventing Third 

Party from Privacy Attack 

Gaussian Mechanism Any Yes No Yes 

Local Differential Privacy Any Yes No Yes 

Adaptive Gaussian Mechanism Any Yes Yes Yes 

7.4. Performance Analysis 

We only consider the average running time cost of 

random perturbation to different trajectory datasets for 

performance evaluation of PPDAF using three 

differential privacy mechanisms. In Table 6, Table 7 

and Table 8, the PPDAF using Gaussian mechanism, 

local differential privacy and adaptive Gaussian 

mechanism keeps almost the same average running 

time cost under the same privacy budget and synthetic 

dataset size, respectively. But we can obtain that the 

average running time cost almost increases as privacy 

budget increases from Tables 6, 7 and 8. In Table 7  

and Table 8, we can conclude that the average running 

time cost is not affected by the expected data utility 

under the same privacy budget. Tables 6, 7 and 8 show 

that the average running time cost of PPDAF using 

adaptive Gaussian mechanism is the biggest. Since 

PPDAF using adaptive Gaussian mechanism can 

achieve expected data utility, this leads to need more 

time cost. Also, the average running time cost of 

PPDAF using adaptive Gaussian mechanism is almost 

decreases as ],[ k  increases. Thus, PPDAF using 

adaptive Gaussian mechanism provides a tradeoff 

among expected privacy preserving, expected data 

utility and running time cost. 

Table 6. Average running time cost of PPDAF using Gaussian mechanism and local differential privacy. 

Synthetic Datasets Dataset Size 

Running Time (ms) 
 .    

GM LDP GM LDP 

Taxi ID 568 and Taxi ID 569 362 0.1333 0.0110 0.1000 0.0110 

Taxi ID 569 and Taxi ID 695 516 0.0667 0.0116 0.1333 0.0116 

Taxi ID 569 and Taxi ID 36 675 0.0333 0.0119 0.1333 0.0119 

Table 7. Average running time cost of PPDAF using adaptive Gaussian mechanism. 

Synthetic Datasets Dataset Size 

Running Time (ms) 

AGM, 1.0 ,  .U  AGM, 1.0 ,  .U  

0k  1k  2k  0k  1k  2k  

Taxi ID 568 and Taxi ID 569 362 144.7667 145.8667 139.2333 145.2333 147.2667 140.6333 

Taxi ID 569 and Taxi ID 695 516 144.3333 146.0000 139.5667 145.4000 147.1667 140.6000 

Taxi ID 569 and Taxi ID 36 675 145.5667 146.0667 139.3667 145.4000 147.1333 140.5000 
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Table 8. Average running time cost of PPDAF using adaptive Gaussian mechanism. 

Synthetic Datasets Dataset Size 

Running Time (ms) 

AGM, 1 ,  .U  AGM, 1 ,  .U  

0k  1k  2k  0k  1k  2k  

Taxi ID 568 and Taxi ID 569 362 232.7000 208.7000 159.6667 233.2000 208.7000 159.7333 

Taxi ID 569 and Taxi ID 695 516 233.2667 208.7000 160.0667 233.4333 208.7333 159.7333 

Taxi ID 569 and Taxi ID 36 675 233.6000 208.8333 160.1000 233.2667 208.5000 159.7333 

8. Conclusions 

Through our analysis, differential privacy and local 

differential privacy cannot satisfy Nash equilibrium 

between privacy and utility for mobile service based 

multiuser collaboration. Thus, we presented an 

adaptive Gaussian mechanism maintaining Nash 

equilibrium between privacy and utility. Then, we 

proposed PPDAF using adaptive Gaussian mechanism 

in a data aggregation environment. Also, we provide a 

method of negotiating privacy budget with heuristic 

obfuscation for PPDAF. Through theoretical analysis 

and experimental evaluation, the PPDAF can maintain 

Nash equilibrium between expected data utility and 

negotiating privacy budget. In adaptive Gaussian 

mechanism, the probability of satisfying conditional 

filtering noise is relatively small according to Theorem 

5. Thus, the PPDAF using adaptive Gaussian 

mechanism requires high time cost for large scale 

dataset. Furthermore, the PPDAF using adaptive 

Gaussian mechanism is easy to extend to engineering 

implementation for a data aggregation environment. 
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