
Imperial College London

Department of Electrical and Electronic Engineering

Fundamental Limits of Robust Interference

Management: From Content-Oblivious to

Content-Aware Wireless Networks

Enrico Piovano

2019

Supervised by Dr. Bruno Clerckx

Submitted in part fulfilment of the requirements for the degree of

Doctor of Philosophy in Electrical and Electronic Engineering of Imperial College London

and the Diploma of Imperial College London





Statement of Originality

I declare that this thesis is the result of my own work. Information and ideas derived from the work

of others has been acknowledged in the text and a list of references is given in the bibliography.

The material of this thesis has not been and will not be submitted for another degree at any other

university or institution.

3



Copyright Declaration

The copyright of this thesis rests with the author and is made available under a Creative Commons

Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or

transmit the thesis on the condition that they attribute it, that they do not use it for commercial

purposes and that they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work.

4



In loving memory of my dear father Elio Piovano, you will forever remain

in my heart.

5



Abstract

In this thesis we progress towards the understanding of the fundamental limits of wireless networks

with partial instantaneous channel state information at the transmitter (CSIT). We first consider

classical content-oblivious networks, where the edge-nodes are unaware of the kind of requested

content. We study the K-user multiple-input-single-output (MISO) broadcast channel (BC), where

a K-antenna transmitter serves K single-antenna users, and we characterize the optimal degrees-

of-freedom (DoF) region under arbitrary CSIT levels for the users. We then study the overloaded

MISO BC with two groups of CSIT qualities. We propose a transmission scheme where no CSIT

codewords are superimposed on top of spatially-multiplexed codewords. We show that the devel-

oped strategy outperforms the existing schemes and achieves the entire DoF region.

Next, we move from content-oblivious networks to content-aware networks, where the edge-

nodes can predict the most popular content. We first consider the K-user cache-aided MISO

BC, where users are equipped with a cache memory. For a symmetric setting, in terms of chan-

nel strength levels, partial channel knowledge levels and cache sizes, we characterize the sum-

generalized-degrees-of-freedom (sum-GDoF) up to a constant multiplicative factor of 12. We fur-

ther show that the characterized order-optimal sum-GDoF is also attained in a decentralized set-

ting, where no coordination is required for content placement in the caches. We then study the

cache-aided interference channel, where an arbitrary number of cache-equipped transmitters serve

an arbitrary number of cache-equipped receivers. Transmitters communicate with receivers over

two heterogenous parallel subchannels: one with perfect CSIT, and the other with no CSIT. Under

the assumptions of uncoded placement and separable one-shot linear delivery over the two sub-

channels, we characterize the optimal sum-DoF to within a constant multiplicative factor of 2. We

extend the result to decentralized setting, and we characterize the optimal one-shot linear sum-DoF

to within a factor of 3.
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1. Introduction

Wireless communications have completely revolutionized our lives and our society. Laptops, smart-

phones and tablets have become an integrated part of our daily routine and no one can imagine a

world without them anymore. However, while the world has been already completely penetrated

by the advent of communication technologies, the wireless revolution is just at the beginning. In

fact, the fifth generation (5G) of mobile communication systems, in addition to supporting the traf-

fic generated by mobile communications, has been envisioned to further enable the connection of

billions of devices coming from the most different applications: Internet of things (IoT), sensor

networks, smart grids, etc. In particular, a 1000-fold data traffic increase has been predicted by

2020 [1–4]. Nonetheless, supporting all these devices is very challenging as the limited bandwidth

resources of the current networks alone cannot accommodate all the generated data traffic. In order

to overcome the bandwidth problem, academic and industrial studies have focused their research

and development on the design of new technologies in order to accommodate all the data traffic and

reduce the interference due to so many devices connected simultaneously [4].

Multiantenna Wireless Communication Systems

One of the most developed and powerful technology in order to combat interference is the multi-

antenna technology, where a transmitter, equipped with multiple antennas, can serve multiple users

simultaneously. This technology, which is already standardized and implemented in the current

generation of wireless communication systems, has become even further an inevitable necessity to

meet the requirements of future wireless networks [5–7]. In fact, multiantenna systems exploit the

spatial dimensions of the wireless channel through multiuser-multiantenna techniques in order to

increase the capacity of wireless networks, as multiple antennas can help to deliver multiple streams

of data simultaneously. Such property is captured by the so-called spatial multiplexing gain, which

can be roughly defined as the number of streams which can be simultaneously multiplexed over the

channel. The spatial multiplexing gain is re-branded as Degrees of Freedom (DoF) when the signal-

to-noise-ratio (SNR) is let go to infinity and the system becomes interference-limited. Among the

many references on spatial multiplexing, we recall [5, 7–17] and references therein.

It is well established that achieving such spatial-multiplexing gains is highly dependent on the

availability of accurate channel state information at the transmitter (CSIT) [18–21]. Since highly

accurate CSIT is not always guaranteed, initial studies and deployments strived to apply multi-

antenna schemes that assume perfect CSIT to scenarios with imperfect CSIT [5]. However, recent

breakthroughs in the study of the DoF unveiled that such approach is fundamentally flawed as it

fails to achieve the information-theoretic limits of the channels [13,22]. On the other hand, insights
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drawn from such fundamental works have proved to be very promising for the design of future

wireless networks [23]. In fact, the DoF framework has provided important insights towards the

characterization of the capacity of wireless networks with different kinds of CSIT deficiencies. In

particular, as the DoF analysis is performed in the interference-limited regime, deriving the DoF

limits is intimately related to the problem of characterizing the fundamental limits of robust in-

terference management, i.e. designing optimal robust interference management strategies, where

robustness is intended with respect to the partial CSIT.

From Content-Oblivious to Content-Aware Networks

While the use of multiple antennas can tremendously increase the performance of wireless commu-

nication networks and it has been one of driving factor behind the success of the fourth generation

of wireless networks (4G), it is well understood that additional solutions are needed in order to

satisfy the massive demand of content expected for the 5G networks. One of the most promising

directions to solve this problem is given by caching, which is the possibility to store a fraction of

the most popular content across the edge-nodes of the network in order to reduce both the backhaul

cost and the data traffic over the access channel [24–29]. The applicability of caching is mostly

driven by three important factors: 1) the nature of content-oriented traffic, as video-on-demand

services, which is largery predictable, and 2) the ubiquity of memories and data storage devices, 3)

the temporal variability of the traffic which allows the edge-nodes to store the most popular content

during the off-peak times in order to reduce the traffic of the network during the peak times.

While caching has been originally developed in the context of networking systems, a significant

effort has been recently made to integrate the caching setup in wireless networks [25,28,30–33]. In

particular, by assuming that a content library of most popular files could be predicted and that each

edge-node (base station or user) could be equipped with a cache memory able to store a fraction of

the library, a great deal of research has focused on characterizing the performance limits of these

cache-aided networks. As wireless networks are intrinsically affected by CSIT inaccuracies, it is

natural that many works have taken CSIT imperfections into account and studied the fundamental

limits of robust cache-aided interference management [25, 27, 30–32, 34–39].

In this manuscript we make progress towards the understanding of the fundamental limits of

robust interference management for different kinds of wireless networks with imperfect CSIT. In

particular, as we will see in the next section, we consider a specific type of imperfect CSIT which

is the partial instantaneous channel state information, where the transmitter(s) has corrupted in-

stantaneous estimates of the channels of the users. We will start by considering content-oblivious

networks in Chapter 2 and 3, where no popular content can be stored in advance by the edge-nodes

of the network (so, no caching is taken into consideration). Then, we will move to content-aware

networks in Chapter 4 and Chapter 5, where caching is taken into consideration and the edge-nodes

are equipped with memories where they can store a fraction of the content library.

14



1.1. Robust Interference Management for Content-Oblivious

Networks

As aforementioned, in Chapters 2 and 3 we study classical content-oblivious wireless networks

with imperfect CSIT, where no caching is taken into consideration. Note that many forms of CSIT

inaccuracies have been considered in the literature, such as perfect delayed CSIT starting from the

seminal work in [40], partial instantaneous CSIT [14,15,17,22,41–46] or hybrid settings with both

delayed and corrupted instantaneous CSIT [13,47,48]. In this work we focus on the case where the

transmitter has a partial knowledge of the instantaneous channel of the users.

In the current generation of wireless networks, such as Long Term Evolution (LTE), there are

two different ways the transmitter can acquire the channel state information (CSI) of the users. In

the the first and most used way, called Frequency Division Duplexing (FDD), the users estimate

their CSI using pilot symbols, and the estimated CSI are then quantized and reported to the trans-

mitter over a standardized number of bits. In the second way, denoted as Time Division Duplexing

(TDD), CSI is measured in the uplink by the transmitter and used in downlink by assuming uplink-

downlink reciprocity. It is clear that in both cases, and in particular in the mostly used FDD case,

the transmitter can only get an approximate knowledge of the CSI. Note that the difference between

the estimate and the real value of the channel is denoted as channel estimation error.

The partial instantaneous CSIT has been widely studied in the information-theoretic literature

[15, 17, 22, 41–46]. While studying the capacity limits of wireless network with partial instanta-

neous CSIT is often intractable with the known information-theoretic techniques, many works have

made significant contribution towards the characterization of the fundamental limits of these net-

works in interference-limited frameworks such as the DoF or the Generalized Degrees of Freedom

framework (GDoF) frameworks. We focus here on the multiple-input-single-output (MISO) broad-

cast channel (BC), where a multiantenna transmitter communicates with multiple single-antenna

users (or receivers). Note that the transmit antennas in the considered setup are not necessarily

physically co-located, and may generally represents radio heads (or remote antennas) connected

through a strong fronthaul. This setting is also denoted as full transmitter cooperation.

It is well known that zero-forcing can achieve full DoF for the perfect CSIT case. While consid-

ering zero-forcing precoding scheme and partial instantaneous CSIT, important results were found

in [19]. It was shown in [19] that full multiplexing gain can still be maintained if the variance of

the channel estimation error at the transmitter scales as O(SNR−1) as the SNR grows infinitely

large [19, 21]. On the other hand, it was shown in [19] that if the number of feedback bits scales

less than the logarithm of the SNR, which corresponds to the case where the variance of the channel

estimation error scales asO(1) with the SNR, for instance in case of a constant number of feedback

bits, the achievable rate saturates at high SNR and this corresponds to zero DoF.

By considering more general schemes than zero-forcing, a great deal of research has made effort

towards characterizing robust information-theoretic sum-DoF upper-bounds, while assuming the

variance of the channel estimation error of the users to scale in general as O(SNR−β) for some

β ∈ [0, 1]. In particular a problem proposed in [49], which remained open for nearly one decade,
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conjectured the total collapse of the sum-DoF to 1 under finite precision CSIT for all users, i.e.

β = 0 for all users. This conjecture was only recently proved correct by the seminal work of

Davoodi and Jafar in [22]. This in turn implies that final precision CSIT is as (un)useful as no CSIT

from a DoF perspective. On the other hand, it was shown that a CSIT quality β ∈ (0, 1) helps to

save some of the spatial multiplexing gains and to achieve a sum-DoF greater than 1.

While zero-forcing is in fact sub-optimal for β < 1, a scheme which has been proved to better

tackle the interference originated by partial instantaneous CSIT is rate-splitting, where a common

codeword decoded by all the users is delivered on top of private codewords intended for the specific

users only [13, 15, 44–46]. Rate-splitting finds its roots in a fundamental technique in the informa-

tion theoretic literature called superposition coding [9]. In the next paragraph we will first start by

describing the historical context behind superposition coding. On the basis of this explaination, we

will then introduce rate-splitting and the main intuition behind its application to the MISO BC with

partial CSIT.

1.1.1. Superposition Coding and Rate-Splitting

As known, the broadcast channel refers to the setup where a single transmitter sends independent

information to uncoordinated receivers through a shared medium. From an information-theoretic

perspective, the first definition of broadcast channel was given in the seminal work by Thomas

Cover in [50]. This opened the door of one of the most important area of research in Infor-

mation Theory which was then followed-up by many researchers. Among the main works, we

recall [9, 10, 12, 50–57]. One of the main problems related to the broadcast channel is the charac-

terization of the (information-theoretic optimal) sum-rate or, even more importantly, the capacity

region. We recall that the capacity region is the set of all simultaneously achievable user rates.

In the context of a single-antenna transmitter, i.e. the single-input single-output broadcast channel

(SISO BC), the sum-rate is achieved by serving the strongest user only. However, while considering

the capacity region, techniques which allow to serve all users have to be taken into consideration.

Among them there is time-division multiplexing, also called as TDMA, which is a technique where

different users are served in different slots, and in each slot a single user only is served. Another

important technique was formally introduced by Thomas Cover in [50] and referred as superpo-

sition coding [58]. In superposition coding, differently from time-division multiplexing, users are

simultaneously served by superimposing their codewords in the power domain. Each user decodes

all the codewords from the one transmitted with the highest power to its own, where the decoding

is performed at decreasing order of power level.

One the main results in [50] was the proof that superposition coding outperforms time-division

multiplexing. Moreover, by considering a degraded channel, where degraded means that the users

can be ordered from the strongest to the weakest, as the SISO BC where the users can be ordered

from the strongest to the weakest on the basis of their channel strengths, superposition coding

achieves the entire capacity region [58]. This is obtained by superimposing the codewords for

different users from the strongest to the weakest with increasing power levels, i.e. the codeword of a

weaker user is on top of the codeword of a stronger user. Each user decodes then all the codewords,
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starting from the codeword intended for the weakest user until its own codeword. Hence, the

weakest user only decodes its own codeword while the strongest user decodes all the codewords.

With this technique is in fact possible to achieve the entire capacity region of the SISO BC, while

time-division multiplexing can in fact only achieve a fraction of it. Moving from the SISO BC to

the MISO BC with perfect CSIT adds extra challenges to the problem as the latter is a non-degraded

broadcast channel. For the MISO BC with perfect CSIT the sum-DoF and the capacity region have

only been recently characterized [10,51–53] by utilizing a technique called dirty paper coding [59],

a different scheme from superposition coding where the interference from other users are pre-

cancelled at the transmitter. Afterward, dirty paper coding has also been shown to achieve the

capacity region of the multiple-input multiple-output broadcast channel (MIMO BC) with perfect

CSIT [12].

From Superposition Coding to Rate-Splitting

Moving from the broadcast channel, another very important setup studied in the information-

theoretic literature is the interference channel (IC). In the interference channel, multiple transmitters

aim to deliver their separate messages to multiple of receivers through a common channel, and each

transmitters aims to send its message to a specific receiver. As in the interference channel there is

no cooperation between transmitters and receivers, the codeword sent by each transmitter to its

corresponding receiver generates interference to the other receivers (see, for instance, [60–65] and

references therein).

The idea of rate-splitting dates back the studies of the interference channel by Carleial in [60] and

by Han and Kobayashi in [61]. Let us consider the work in [61]. In their paper, Han and Kobayashi

considered the two-user single-input single-output interference channel (SISO IC). Each transmitter

splits its message into a common and private part. Each receiver jointly decodes the two common

messages and its intended private message. The main idea behind this scheme is the fact that

decoding part of the interference (in the form of common message) can enhance the performance.

We can now see how this scheme finds its roots in superposition coding. With a proper power

allocation for the private and common codewords, the Han and Kobayashi scheme leads to an

achievable region which is to within 1 bit to the capacity region, and this is the best achievable rate

region to date [66].

Now, let us consider the MISO BC with partial instantaneous CSIT. For simplicity, we consider

the setup of the two-user case and zero-forcing transmission strategy. In case of perfect CSIT,

the transmitter can deliver the codeword to the intended receiver by removing interference to the

unintended receiver by simply choosing a precoding vector for the codeword which is orthogonal

to the channel vector of the unintended receiver. However, in case of partial instantaneous CSIT,

the transmitter only knows an estimate of the channel of the users. Hence, it is not provided with

enough information to design a precoding vector which is perfectly orthogonal to the channel of

the unintended receiver. It follows that the codeword intended for a specific receiver generates

interference at the unintended receiver, as in the IC. We can then see the similarity between the

two-user MISO BC with partial CSIT and the two-user IC. This motivates the application of rate-
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splitting, i.e. the idea of decoding part of the interference in the form of common message, to the

MISO BC with partial CSIT.

As already mentioned earlier, the characterization of the capacity limits of wireless networks un-

der partial CSIT seems beyond the capabilities of the known information-theoretic techniques. This

motivates the use of capacity approximations such as the DoF. Rate-splitting was first introduced in

the DoF framework in the context of the MISO BC with imperfect CSIT in the work in [13]. Note

that, before [13], the idea of a layered transmission for the broadcast channel to deal with imperfect

CSIT was described in [67–70], where the transmitter performs multi-layered coding, which is the

essence of the broadcast approach [67]. Coming back to the work in [13], the achievable sum-DoF

by rate-splitting for the two-user case was characterized. In [45, 46] the result was generalized for

the K-user case. These achievable sum-DoF were then proved to be the optimal ones thanks to the

sum-DoF upper-bound derived in [22]. A main result was found in [16], where it was shown that

rate-splitting achieves the optimal DoF region of the K-user MISO BC with partial CSIT. This will

be the topic of Chapter 2. Note that many other works have considered rate-splitting for the MISO

BC with partial CSIT, for instance we recall [14, 15, 17, 23, 44–46, 71] and references therein.

In the next section, we introduce the system model and the DoF definition for the MISO BC with

partial instaneous CSIT which will be utilized in Chapters 2 and 3. The system model will be then

specialized for the specific settings considered in each chapter.

1.1.2. MISO BC with Partial CSIT

In the general MISO BC a transmitter equipped with KT antennas communicates with KR single-

antenna users (or receivers). The users are indexed by the set KR = {1, . . . ,KR}. Often KT is

assumed equal to KR and in this case the setup is simply referred as the K-users MISO BC, where

a K-antenna transmitter serves K single-antenna users (the subscripts referring to the transmitter

or receivers are omitted). The communication between the transmitter and the receivers lasts for T

channel uses, where T can grow infinitely large. The input-output relationship at the t-th use of the

physical channel, also denoted as t-th channel-use, t ∈ [T ], is modeled by

Yi(t) =

KT∑

j=1

Gij(t)Xj(t) + Zi(t) (1.1)

where Yi(t) ∈ C is the signal received by the i-th receiver, Xj(t) ∈ C is the signal transmitted

from antenna j, Gij(t) is the time-varying fading channel coefficient between transmit antenna j

and receiver i and Zi(t) ∼ NC(0, 1) is the normalized additive white Gaussian noise (AWGN),

which is i.i.d. across all dimensions. All the signals and channel coefficients are complex. We

denote the transmitted signal across all transmitting antennas at the t-th channel use as X(t) ,

[X1(t) · · ·XK(t)]T. The transmitter is then subject to the power constraint 1
T

∑T
t=1 |X(t)|2 ≤ P .

To avoid degenerate situations, we assume that the instantaneous value |Gij(t)| is bounded away

from zero and infinity for all i, j ∈ [KR]× [KT], and t ∈ [T ].

As we will see later, the DoF metric is defined by considering the ergodic-rate. Hence, as we
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consider the ergodic-rate, we assume that the channel varies over time. In particular, the channel

can vary over each channel use or in blocks, where each block spans over a finite number of channel

uses where the channel is constant [45, 46].

Partial Instantaneous Channel Knowledge

As already mentioned earlier, acquiring an accurate partial instantaneous CSIT is very challenging

in practical systems. For instance, in the current wireless networks, the users estimate their CSI

using pilot symbols, and the estimated CSI are then quantized and reported to the transmitter over

a standardized number of bits. It is clear that this leads to a knowledge of the channel by the

transmitter which is not perfect. We model the partial instantaneous CSIT by following the classical

assumption made in [13–16,22,46,72,73]. In particular, by denoting asGij(t) the channel between

the j-th transmitting antenna and the i-th receiver, we assume that the variance of the channel

estimation error scales as O(SNR−βi), where βi is the CSIT quality level of user i, as already

explained earlier. Hence, we can write Gij(t) = Ĝij(t) +
√

SNR−βiG̃ij(t), where G̃ij(t) is the

estimation error term.

Note that this definition can be linked to the number of feedback bits as described in [19], where

it was assumed that each user performs vector quantization on its channel realization using random

quantization codebooks, also called as random vector quantization [74,75]. In particular, following

[19], a variance of the channel estimation error which scales as O(SNR−βi) corresponds to the

case where the number of feedback bits for user i scales linearly with the logarithm of 2 of the

SNR at rate βi(KT − 1) log2 SNR, where KT is the number of transmitting antennas. Hence, by

considering the case βi = 0, it is clear that if the number of feedback bits is kept constant, the

variance of the channel estimation error scales with the SNR as O(1). As shown in [19] for the

zero-forcing case and generalized later in [22] for any transmission scheme, βi = 0 corresponds

to no CSIT from a DoF sense. Hence, as shown in [19], if βi = 0 for all users, considering a

zero-forcing transmission strategy the sum-rate is bounded as the SNR goes to infinity. On the

other hand, the case βi = 1 corresponds to the case where the number of feedback bits scales with

the logarithm 2 of the SNR at rate (KT − 1) log2 SNR. As already mentioned aboved and shown

in [19] by considering zero-forcing, this corresponds to perfect CSIT in a DoF sense.

We can mathematically formalize what just explained in the following. Let G ,
{
Gij(t) : i, j ∈

[KR] × [KT], t ∈ [T ]
}

be the set of all channel coefficient variables. Under partial CSIT, and

considering that the SNR is equal to P given the assumption on the unitary variance of the noise,

the channel coefficients are modeled as

Gij(t) = Ĝij(t) +
√
P−βiG̃ij(t) (1.2)

where Ĝ ,
{
Ĝij(t) : i, j ∈ [KR] × [KT], t ∈ [T ]

}
are channel estimates, G̃ ,

{
G̃ij(t) : i, j ∈

[KR] × [KT], t ∈ [T ]
}

are estimation error terms and βi ∈ R is a parameter capturing the CSIT

quality level for receiver i. The channel knowledge available to the transmitters includes the CSIT

quality levels βi and the estimates in Ĝ, but does not include the error terms in G̃.
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All variables in Ĝ and G̃ are subject to the bounded density assumption as explained in [22,

41]. The difference between Ĝ and G̃, as pointed out earlier, is that the former is revealed to the

transmitters while the latter is not. Hence, given the estimates Ĝ, the variance of each channel

coefficient of receiver i in G behaves as ∼ P−βi and the peak of the probability density function

behaves as ∼
√
P βi . As already mentioned, we assume that βi ∈ [0, 1]. In particular, βi = 0

and βi = 1 capture the two extremes where channel knowledge at the transmitters is absent and

perfectly available, respectively, in a DoF sense. Please keep in mind that βi = 0 is also denoted as

finite precision CSIT. On the other hand, note that βi > 1 would not lead any benefit compared to

βi = 1. Before we proceed, it is worth highlighting that channel state information at the receivers

(CSIR) is always assumed here to be perfect.

Degrees of Freedom (DoF) Metric

The transmitter aims to send the independent messages W1,W2, ...,WKR
to the corresponding

users. The messages {Wi}KR
i=1 are jointly encoded over n channel uses, at the respective rates

of {Ri}KR
i=1, into a codebook matrix over the input alphabet, where the codebook matrix has size

2nR1+···+nRKR × n. We denote the codebook matrix as Co(P, {Ri}KR
i=1, n), where P indicates the

power constraint at the transmitter. For a given power constraintP , the rate vector (R1, R2, . . . , RKR
)

is denoted as achievable if there exists a sequence of codebooks Co(P, {Ri}KR
i=1, n), indexed by n,

such that the probability of all the messages being successfully decoded by the respective receivers

goes to 1 as n approaches infinity. Note that, as the transmitter only has a partial knowledge of

the CSI, we consider here the ergodic-rate as we mentioned earlier. Hence, as explained earlier,

we assume the channel to vary in each channel use or in blocks, where each block spans over a

finite number of channel uses and in each block the channel is constant. As n approaches infinity,

coding is performed across different blocks, where the number of blocks goes to infinity with n.

The closure of all the achievable rate vectors (R1, R2, . . . , RKR
) is called capacity region C.

The per-user DoF of user i is defined as the following asymptotic ratio with respect the SNR P ,

where the notation Ri(P ) is used to indicate the dependency of the rate of user i on the SNR P

di , lim
P→∞

Ri(P )

log(P )
. (1.3)

The DoF tuple (d1, d2, . . . , dKR
) is said to be achievable if there exists a rate tuple which is given

by (R1(P ), R2(P ), · · · , RKR
(P )) ∈ C(P ) such that di , limP→∞

Ri(P )
log(P ) for i = 1, 2, . . . ,KR,

where P is used to highlight the dependency on the SNR P . The closure of all achievable DoF

tuples (d1, d2, . . . , dKR
) is called the DoF region, which we indicate as D∗ and we define as follows.

D∗ =

{
(d1, d2, . . . , dKR

)|∃ (R1(P ), R2(P ), . . . , RKR
(P )) ∈ C(P ), s.t. ∀i = 1, . . . ,KR, di = lim

P→∞

Ri(P )

log(P )

}
.

The sum-DoF dΣ is defined as

dΣ = max
(d1,d2,...,dKR

)∈D∗
d1 + · · ·+ dKR

. (1.4)
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Practical Implications of the DoF Studies

The study of the DoF allows to characterize the optimal number of signalling dimensions, or spatial

multiplexing, of wireless networks in the asymptotically high SNR regime. This in turn has allowed

to make progress in the characterization of the fundamental limits of wireless networks for which

capacity studies seem unfeasible with the known information-theoretic techniques. From a more

practical perspective, while the DoF studies can allow to roughly approximate the behaviour of

wireless networks in the high SNR regime, caution has to be taken while directly translating DoF

results into practical insights. For instance, in order to achieve many DoF results, trivial choices of

the precoders such as zero-forcing are indeeded sufficient. Unfortunately, this does not hold true

when translating the results to a finite SNR regime scenario, where for instance the kind of precoder

can significantly influence the performance of the system.

However, the DoF metric can be very useful to inspire new results, by showing that such results

hold in the asymptotically large high SNR regime. New techniques can be then developed to

see how these results translate in the finite SNR regime. An example of this is the following.

It was shown that in the DoF regime a rate-splitting scheme with private and common messages

can strictly outperform in many cases zero-forcing, where only private messages are considered.

However, the question was whether this gain translates in something meaningful in the finite SNR

regime. The works in [45,46] have shown that, by considering precoder optimization, the DoF gain

translates in a significant sum-rate gain at finite SNR regime. This is a DoF inspired result, as the

result was first noticed in the DoF regime and then translated in the finite SNR regime.

1.1.3. Main Results of Our Work for Content-Oblivious Networks

DoF Region of the K-user MISO BC with Partial CSIT

In Section 2 we address the problem of characterizing the optimal DoF region of the K-user MISO

BC with arbitrary CSIT levels of the users, i.e. each user i has a CSIT quality βi ∈ [0, 1]. While

the optimal sum-DoF was established based on the seminal work by Davoodi and Jafar in [22], no

attempt has been made to characterize the entire DoF region. Indeed the main result of Chapter

2 is the characterization of the optimal DoF region. To derive this result, we employ a two-steps

approach: we first derive a polyhedral outer-bound of the optimal DoF region and we then prove

the achievability of this outer-bound. The outer-bound is obtained by applying the sum-DoF upper-

bound in [22] to each subset of users. The achievability of the outer-bound turns out to be more

challenging and it can be obtained by employing a rate-splitting strategy [13–15,44–46]. Note that

rate-splitting was already shown to be able to achieve the optimal sum-DoF.

Conventional methods to show the achievability of a DoF region rely on characterizing and show-

ing the achievability of the corner points, as the achievability of any other point is then obtained by

time-sharing over the corner points [76]. However, this method fails to succeed in the considered

setup as the number of corner points scales exponentially with the number of users K. In order to

overcome this problem, we introduce a novel approach. Instead of characterizing the corner points,

we characterize the facets of the polyhedral region. Surprisingly, utilizing mathematical tricks, it is
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possible to rewrite each facet of the polyhedral region as a set of inequalities which bound the per-

user DoF of each individual user. Such characterization is then suitable to show the achievability

by rate-splitting [16]. The result in this chapter has been published in:

• E.Piovano, B. Clerckx “Optimal DoF region of the K-User MISO BC with Partial CSIT”,

IEEE Communication Letters, 2017.

DoF Behavior of the Overloaded MISO BC

In Chapter 3 we extend the DoF analysis of Chapter 2 and we make progress towards the under-

standing of the fundamental limits of the overloaded MISO BC, where the number of users KR is

larger than the number of antennas at the transmitter KT. We consider a setup where a group of

users with size KT has partial CSIT and the remaining users have no CSIT. The most natural way

to serve these users is to utilize an orthogonal time partitioning approach, where the two groups of

users are served in two different phases. The group of users with partial CSIT is served utilizing a

rate-splitting transmission strategy, while the group of users with no CSIT is served utilizing a no

CSIT transmission layer due to the collapse to 1 of the DoF [22]. We propose a non-orthogonal

transmission scheme based on power partitioning where the signals carrying the messages for the

users with and without CSIT are superimposed and separated in the power domain [17]. Users

with no CSIT decode their own codeword first by treating the codewords of the users with partial

CSIT as noise. Users with partial CSIT decode the codewords intended for the users with no CSIT

first, they remove them and then they finally decode their own codewords. First, we show that such

strategy achieves a strict DoF gain over time partitioning. Second, we show that a generalized ver-

sion of this power partitioning strategy achieves in fact the optimal DoF region for the considered

overloaded MISO BC. The result in this chapter has been published in:

• E.Piovano, H. Joudeh, B. Clerckx, “Overloaded MU-MISO transmission with imperfect

CSIT”, Asilomar Conference on Signals, Systems, and Computers, Asilomar, 2016.

1.2. Robust Cache-Aided Interference Management for

Content-Aware Networks

While in Chapter 2 and Chapter 3 we deal with content-oblivious networks, the focus of the chap-

ters 4 and 5 is on content-aware networks, where caching is taken into the picture. As the study of

content-aware networks, in particular of caching, has been one of the main topics in the information-

theoretic literature over the last few years, we start by revisiting the main works and the main con-

sequences. The idea of caching the popular content has been mostly driven by the massive increase

in the expected content traffic in the next generation of wireless networks. In particular, thanks to

the predictable nature of content-oriented traffic, alongside the temporal variability, nodes across

the network can cache popular content in their cache memories during off-peak times, in which

network resources are under-utilized, and then use this cached content (sometimes in surprisingly
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novel ways) to alleviate the traffic load of the network during congested peak times, when users are

actively requesting content and competing for wireless spectrum [77]. This scheme can lead to a

dramatic alleviation in the network load both in the access channel (wireless) and in the backhaul

network (wired) [78].

Caching has been extensively deployed in wired networks since late 90s, via the so-called Con-

tent Distribution Networks (CDNs) and the utilization of web-caching. These replicate content

across different locations of the network, which in turn allows to place popular content close to the

users and avoid multiple request of the same data at the content distribution server. Moreover, it

also reduces the distance between the users and the location of the content which in turn reduces

the latency of the communication. CDNs are, in general, efficient solutions when the local commu-

nication link is not the bottleneck of the performance, as for the case of wired networks. However,

this limits the direct applicability of CDNs in wireless networks, where the bottleneck is given by

the wireless access channel between the access nodes of the communication network (base station,

femtocell, WiFi access point, etc.) and the users.

In order to also utilize caching at the edge-nodes of a wireless network, the properties of the

wireless access channel have to be taken into consideration to efficiently design and combine stor-

age and transmission strategies. In particular, the broadcast nature of the wireless channel allows

to simultaneously deliver useful information for multiple users with a single transmission. On the

other hand, access nodes can be equipped with multiple antennas, which in turn allow to lever-

age the fading nature of the wireles channel to create spatial multiplexing opportunities. Wireless

networks which integrate caching are often denoted as cache-aided wireless networks.

1.2.1. Information Theoretic Limits of Caching

While this manuscript is mostly related to the application of caching in wireless communication

networks, the information-theoretic limits of caching were first established, by the seminal work

in [24], in the context of a broadcast network in which one transmitter (server) communicates with

multiple users, each of these users equipped with cache memories, over a shared noiseless link. In

this section we will revisit the main results and insights from the work in [24].

Placement and Delivery Phases

Traffic over communication networks is highly variable and significantly fluctuates over different

times of the day. This leads to an asymmetric utilization of the network resources and, in particular,

resources are often underutilized during off-peak times, for instance over night hours, and over-

loaded during the the peak times, for instance over day hours. This disparity can be exploited by

storing the popular content in the memories distributed across the networks (users, base stations,

servers, routers, etc.) during the off-peak hours, when the resurces of the network are abundant, in

order to reduce the load of the network during the peak hours, when users are actively requesting

for content. Caching shifts then a portion of the traffic from the peak hours to the off-peak hours,

which in turn allows to reduce the traffic variability over time.
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Starting from the above discussion, the work in [24] formulates the caching problem as the

succession of two distinct phases: the placement phase and the delivery phase. The placement

phase takes place during the off-peak times, when the memories across the networks are filled

with the predicted most popular content. The delivery phase takes place during the peak hours,

when users reveal their demand and actively request for content. The main objective of caching, as

presented in [24], is to jointly optimize the placement and delivery phase in order to maximize the

performance of the network. Different metric of performance can be used. In the original papers

in [24], the utilized metric of performance was the overall amount of information needed to be

delivered to the users during the delivery phase. While this metric is common for wired networks,

in wireless settings it is more customary to use the delivery time or the DoF, as we will see in the

next sections.

Coded-Caching

In single-user systems, the caching gain comes from making part of the content locally available to

the user. Such local caching gain scales with the cache memory size, and extends to networked sys-

tems with no interference, i.e. where each user enjoys a dedicated and isolated communication link.

The picture, however, is very different when users share communication links. As aforementioned,

this was taken up by Maddah-Ali and Niesen in [24], in the context of a broadcast network setting

where a transmitter communicates with multiple users through a shared noiseless link. In addition

to the oblivious local caching gains, Maddah-Ali and Niesen revealed a (hidden) global caching

gain which scales with the aggregate size of user cache memories, despite the lack of cooperation

amongst users during transmissions. Such global caching gain is exploited through careful place-

ment of content during the placement phase, creating (coded) multicasting opportunities during

the delivery phase, that would not naturally occur otherwise. This in turn allows serving multiple

distinct user demands using fewer transmissions.

To formally explain the local and global caching gains and the result in [24], let us consider

the mentioned above broadcast network where a transmitter (server) has access to a library of N

files, each of size F bits, and communicates with K cache-equipped receivers through a shared,

noiseless link. Let us assume that N ≥ K, i.e. each user can choose a different file. Note that,

in [24], also the case N < K was discussed. However, we will not explain this latter case here

as, throughput our work, we will always assume N ≥ K. The cache of each user can store up to

M files. The fraction µ = M
N denotes the normalized cache size, which represents the fraction of

the library which each user can store in its cache memory. During the placement phase, the caches

of the users are filled as a function of the library. During the delivery phase, each user requests a

single file from the library. It is assumed that the requests are independent across users and that

each user selects one of the files in a uniform manner. It is readily seen that, as each user can store a

fraction µ of each file and by assuming the worst-case scenario where each user chooses a different

file, a conventional uncoded scheme leads to a normalized load of the shared link given by

K · (1− µ) (1.5)
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where the normalization is with respect the file size F . The factor 1− µ is the local caching gain1

explained earlier, where the name comes from the fact that it only scales with the size of the local

cache of each users.

Surprisingly, it was shown in [24] that there exists another (hidden) gain which scales with the

aggregate cache memory of all the users. Such gain is obtained by carefully designing the place-

ment of the content at the caches of the users, in order to create coded multicasting opportunities

where multiple demands can be simultaneously satisfied with a single transmission. Such frame-

work is often indicated as coded-caching and the derived gain as coded-caching gain or global

caching gain. The application of coded-caching leads to normalized load of the shared link given

by

K · (1− µ) · 1

1 +Kµ
. (1.6)

From Eq. (1.6) it is readily seen that, in addition to the local caching gain already described in Eq.

(1.5), coded-caching achieves a surprising further reduction of the load by a factor 1 + Kµ. The

term global caching gain comes from the fact that this gain, as already anticipated earlier, scales

with overall cache memory of all the users, despite the lack of cooperation amongst users. Note that

the idea of coded-caching has been inspired by the fundamentals of network coding, specifically

index coding with side information [24].

The placement and delivery strategies designed to obtain the result in (1.6) will be revisited in

Section 4.6 in Chapter 4 and Section 5.6 in Chapter 5, as they are essential building blocks of our

work.

Information-Theoretic Outer-Bound

While the result in Eq. (1.6) provides an upper-bound of the information-theoretic optimal load of

the shared link, an outer-bound has to be established to evaluate how far this upper-bound is from

the optimal performance. A lower-bound on the information-theoretic normalized optimal load of

the shared link was then also established in [24] and it is given by

max
s∈{1,2,...,K}

(
s− sM⌊

N
s

⌋
)+

. (1.7)

Moreover, in [24] it was shown that the ratio between the upper-bound in (1.6) and the lower-

bound in (1.7) cannot exceed a constant factor for all system parameters, in this case a factor of

12, which in turn guarantees that the result in (1.6) is information-theoretic order-optimal. As

a consequence, coded-caching not only dramatically improves the performance compared to an

uncoded scheme, but it also attains order-optimal performance. Moreover, it also follows that local

caching gain and global caching gain are the two fundamental gains for the considered setting

in [24], i.e. there are no other gains which scale with the system parameters.

1Note that the term gain here indicates the reduction in the load of the shared link.
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Centralized vs Decentralized Placement

The coded-caching framework in [24] was introduced by assuming that the transmitter could design

the placement of content in the user caches to create coded multicasting opportunities during the

delivery phase. However, this requires the transmitter to know the number and the identity of

the users already during the placement phase, setting which is commonly named as centralized

placement. This setting, while helpful to establish the coded-caching technique, has very limited

applications. In fact, in practical networks and more specifically in wireless networks, users enjoy

an high-degree of mobility which makes impossible to know the identity of the users already during

the off-peak times.

To overcome this problem, a decentralized version of coded-caching was developed in [79],

where placement is randomized and hence independent of the identity and number of active users

during the delivery phase. This is commonly named as decentralized placement. In particular, it

was shown that, by letting the users cache a fraction µ of the bits of each file during the placement

phase, where such bits have to be chosen uniformly at random, still creates coded multicasting

opportunities during the delivery phase. This in turn allows to achieve very close performance to

the centralized setting, which limits the loss due to decentralization and makes coded-caching more

practical. Moreover, even more surprisingly, in [79] it was shown that decentralized placement still

achieves order-optimal performance, hence to within a constant multiplicative gap from the upper-

bound in (1.7). To summarize, not only coded-caching applied to decentralized placement comes

at low price, but it also still attains order-optimal performance.

In our work, as we are considering wireless networks where an high-degree of mobility of the

users has to be taken into account, we will establish the results for centralized placement first and

then we will extend to decentralized placement. Hence, more details regarding the decentralized

settings will be given in Section 4.7 in Chapter 4 and in Section 5.7 in Chapter 5.

Extensions

The results in [24] have been improved and extended in a number of directions. From a more

fundamental perspective, effort has been made in order to design better achievable schemes [80–84]

and/or characterize tighter lower-bounds [85–89]. For instance, among the many works which have

improved the existing lower-bounds, we recall the one in [89], which has tightened the order-

optimal result in [24] from a factor 12 to a factor 2 for all system parameters. On the other hand,

the work in [88] has shown that the achievable scheme in [79] is indeed optimal for decentralized

and uncoded placement.

Another line of research has instead focused on extending the work in [24] to more general

settings and scenarios, while still maintaining the setup of a broadcast network with error-free

links. For instance, the works in [90–93] have considered non-uniform popularity of the files,

the work in [94] has considered caches of the users with different size and the works in [95, 96]

has considered the case where each user requests for multiple files. Other extensions of coded-

caching in more general settings include hierarchical coded-caching [97–99], multi-library coded
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caching [82] and multi-server wired (noiseless) networks [100].

Moving beyond broadcast networks with error-free links, a great deal of research has also aimed

to extend the caching framework by taking into consideration the impairments of the channel and

the noise of the links. In particular, we recall the extension of caching in the context of noisy broad-

cast networks [101–105] and wireless networks. Regarding wireless networks, this fundamental

approach to caching was extended in a number of scenarios: wireless device-to-device (D2D) net-

works [27], wireless interference networks with caches at the transmitters only or at both ends

[25,30,31,34,106–109], multi-antenna wireless networks under a variety of assumptions regarding

the availability of transmitter channel state information (CSIT) [32, 36–39, 72, 110, 111, 111–114],

and fog radio access networks (F-RANs), in which a cloud processor connects to edge nodes

through front-haul links, under different assumptions and settings [109, 115–120]. Some of the

progresses in the coded-caching framework above have been surveyed in [26], in which challenges

and open problems are also discussed.

1.2.2. Cache-Aided Interference Management

The capacity of wireless networks is one of the longest standing open problems in network infor-

mation theory. The intractability of the problem, in its generality, motivated the use of capacity

approximations, e.g. the DoF metric as already explained in Section 1.1.2. A more general metric

also utilized for capacity approximation is given by the Generalized Degrees of Freedom (GDoF),

which extends the DoF by taking into consideration the difference in the link strengths. However,

most of the results about the GDoF are known for symmetric settings for the link strengths to avoid

an explosion in the system parameters, which is the main reason why the GDoF is not utilized in

Chapters 2 and 3. The introduction of such metrics allowed significant progress in capacity studies.

Since incorporating caches adds an extra layer of complexity to the network, it is not surprising to

see that the utilization of the above approximations is inherited by works studying cache-aided wire-

less networks. Examples of such studies in different scenarios are given in [25, 27, 30–32, 34–39].

Another metric commonly used in cache-aided wireless networks is the so-called normalized

delivery time (NDT), which is defined as the amount of time needed to conclude the delivery phase

for any user demand [106, 110, 115, 116]. Note that the NDT and the DoF metrics are intimately

related and the DoF is usually defined as the reciprocal of the NDT (based on the definition, the

local caching may need to be included in the expression).

Amongst the main insights derived from the above studies of cache-aided networks in the DoF

framework is that caching at the transmitters creates interference alignment and zero-forcing oppor-

tunities, enabled through partial and full transmitter cooperation. For example, interference chan-

nels start resembling X channels and eventually turn into multi-antenna broadcast channels [25,30,

31, 34, 106–109]. On the other hand, caching at receivers creates coded-multicasting opportuni-

ties, which are particularly useful in scenarios where spatial degrees of freedom cannot sufficiently

create parallel interference free links. For example, coded-multicasting gains are pronounced in

multi-antenna broadcast channels with more receivers than transmitting antennas [31, 113] and/or

where channel state information at the transmitter (CSIT) is imperfect [32, 36, 37, 110].
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From Cache-Aided to Robust Cache-Aided Interference Management

As seen in the previous sections, the study of the fundamental limits of interference management

for classical networks has been pushed as far as characterizing entire DoF or GDoF regions, or even

capacity regions for specific cases. However, given the extra challenges arising by further introduc-

ing caching into the picture, the studies of the fundamental limits of interference management for

cache-aided wireless networks have mostly focused on characterizing (order) optimal sum-DoF or

sum-GDoF.

Over the recent years, a significant progress has been made in the study of cache-aided interfer-

ence management strategies for different kind of networks and setups. By considering perfect CSIT

at the transmitters, order-optimal results have been derived for a plethora of network settings. For

theK-user cache-aided MISO, the optimal NDT was derived in [110]. For cache-aided wireless in-

terference networks, where multiple transmitters serve multiple users and each transmitter can store

a fraction of the library (while the receivers have no caches), order-optimal NDT for different net-

work configurations were derived in [107,115,121]. For cache-aided wireless interference networks

with both caches at the transmitters and receivers, an order-optimal DoF was first established by

restricting to one-shot linear delivery schemes with uncoded placement in [31]. The order-optimal

information-theoretic DoF was instead then characterized by the works in [34, 106, 107, 109]. An-

other interesting line of research has focused on characterizing optimal interference management

strategies for F-RAN networks [109, 115–120]. The following paper provides an overview and

new results on the topic [122]. For instance, while considering single-antenna transmitters, an

order-optimal NDT was obtained in [115]. The case where each transmitter is equipped with mul-

tiple antennas has then been considered in [118] where, under the assumption of one-shot lin-

ear strategies and uncoded placement, an order-optimal NDT has been derived. While all these

works have assumed centralized placement, extensions to decentralized setting have been made

in [107–109, 119, 120].

The assumption of perfect CSIT has helped to derive optimal cache-aided interference manage-

ment strategies for all the aforementioned setups, however more challenges arise in the design of

robust interference management which takes into consideration imperfect or partial CSIT. The work

in [110] was among the first to consider the combination of coded-caching and robust interference

management for partial CSIT, in the context of the K-user cache-aided MISO BC. As a main re-

sult it was shown that, thanks to benefits of coded-caching, the same NDT as perfect CSIT can be

obtained by a relaxed instantaneous CSIT quality β up to a certain threshold.

The fundamental limits of robust cache-aided interference management were first established by

assuming partial instantaneous CSIT, modelled by a CSIT quality β ∈ [0, 1], as well as (perfectly

accurate) delayed CSIT. In particular, for the K-user cache-aided MISO BC with perfect delayed

and partial instantaneous CSIT, optimal robust interference management strategies were established

in [32], where an order-optimal sum-DoF (up to 4 factor from the optimal one) was obtained.

While [32] assumed the collective cache memory of all users be able to store the entire library,

this condition was then relaxed in the follow-up work in [123]. Note that the further assumption

of delayed CSIT in [32, 123], in addition to partial instantaneous CSIT, was crucial to obtain the
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converse, as it allowed to leverage the proofs and the results in [124] to obtain a lower-bound on

the optimal NDT. More details will be given in Section 4.5.

The K-user cache-aided MISO BC with partial instantaneous CSIT only was instead first stud-

ied in the works in [36, 37], where achievable schemes where proposed without any guarantee of

optimality. The fundamental limits of robust interference management for the K-user cache-aided

MISO BC with partial instantaneous CSIT were finally obtained in [72], where a robust outer-bound

and in turn an order-optimal sum-GDoF were derived. The converse required a novel adaption of

the aligned image set (AIS) technique developed in [22] in the context of cache-aided settings, and

the details are referred to Section 4.5. The work in [72] will be the main content of Chapter 4.

Extending from the cache-aided MISO BC to cache-aided wireless interference networks, the

work in [36] provided achievable GDoF for the no CSIT case. The partial CSIT case was instead

considered in the work in [38]. However in this work, differently from all the aforementioned

cases, the partial CSIT has been modelled by considering that the transmitters have perfect CSIT

over a fraction of the bandwidth and no CSIT in the remaining fraction. By focusing on separable

one-shot linear delivery strategies with uncoded placement, the work in [38] has established the

order-optimal sum-DoF of this network. Note that the work in [38] will be the main content of

Chapter 5.

While order-optimal results are usually obtained by assuming centralized placement, the works

[38, 72] have shown, for the considered settings, that decentralized placement still attains order-

optimal performance which in turn extends the insights in [79] to cache-aided wireless networks

with partial instantaneous CSIT. The details, which include the decentralized achievable schemes

as well the order-optimality proofs, will be given in Chapters 4 and 5. To conclude, we want

point out that imperfect CSIT, in particular delayed CSIT, has also been considered for F-RAN

networks [117].

1.2.3. Main Results of Our Work for Content-Aware Networks

As already anticipated earlier, in Chapters 4 and 5 we make further progress towards the under-

standing of the fundamental limits of robust cache-aided interference management strategies for

cache-aided wireless networks with partial CSIT.

Fundamental Limits of Robust Cache-Aided Interference Management Under Full

Transmitter Cooperation

We first consider in Chapter 4 the K-user cache-aided MISO BC, where a K-antenna transmitter

serves K single antennas users. The transmitter has a partial instantaneous CSIT of the users. Each

of users is equipped with a cache memory where it can pre-store part of the content. The transmitter

has access to the entire library and each user requests a specific file in the library during the delivery

phase. We assume a symmetric setup where all the cross-links (and the direct-links) have the same

strengths. Given the symmetric setup, we utilize as a metric the Generalized Degrees of Freedom

(GDoF) framework, which generalizes DoF framework to take into consideration the differences in
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path-loss between the cross-links and the direct-links, as it will be described in Section 4. Note that

in Chapter 2 and 3 we utilizes the DoF framework since, as we will see next, the GDoF analysis

for asymmetric setups becomes much more challenging and often intractable given the explosion

in the number of system parameters.

In this setup, we first characterize the optimal sum-GDoF up to a constant multiplicative factor,

which is independent of all system parameters. This order-optimal sum-GDoF characterization is

derived while considering centralized placement. We then show that an order-optimal sum-GDoF is

also attained in decentralized setting where no coordination during the placement phase is allowed

[72]. These results settle down the problem of (order) optimal robust interference management for

cache-aided wireless networks with partial instantaneous CSIT only. The result in this chapter has

been published in:

• E. Piovano, H. Joudeh, B. Clerckx, “Generalized Degrees of Freedom of the Symmetric

Cache-Aided MISO Broadcast Channel with Partial CSIT”, IEEE Transactions on Informa-

tion Theory, 2019.

Robust Interference Management for Cache-Aided Wireless Interference Networks

In Chapter 5 we extend our analysis to a more general setup, by considering a cache-aided wireless

interference network where an arbitrary number of single-antenna transmitters serve an arbitrary

number of single-antenna receivers. Each transmitter and each receiver is equipped with a cache

memory where it can prestore a fraction of the library (hence transmitters cannot access the entire

library but only the content in their memories).

In the considered setup, we consider that the communication during the delivery phase takes

place over two heterogeneous parallel subchannels: one for which transmitters have access to the

instantaneous channel coefficients (i.e. perfect CSIT), and another for which the transmitters have

no knowledge of the instantaneous channel coefficients (i.e. no CSIT). This setup models scenarios

in which channel state feedback is available only for a fraction of sub-carriers in an OFDMA

system. In this context, the partial CSIT can be then interpreted as the fraction of the bandwidth

corresponding to the perfect CSIT. We focus here on uncoded placement and on separable one-

shot linear delivery schemes where the spreading of channel symbols over time or frequency (i.e.

subchannels) is not allowed. Such linear schemes are appealing due to their practicality and their

suitability for making theoretical progress on otherwise difficult or intractable information-theoretic

problems, like in the considered case.

For the considered setup, we first characterize the optimal one-shot linear sum-DoF up to con-

stant multiplicative factor of 2 for all system parameters, by assuming centralized placement. Next,

we extend to the case of decentralized case at the receivers. In particular, we characterize an achiev-

able one-shot linear sum-DoF under decentralized placement which is up to constant multiplicative

factor of 3 for all system parameters [38].
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The result in this chapter has been accepted for publication in:

• E. Piovano, H. Joudeh, B. Clerckx, “Centralized and Decentralized Cache-Aided Interfer-

ence Management in Heterogeneous Parallel Channels”, Accepted for publication in IEEE

Transactions on Communications, 2019.

1.3. Thesis Organization

As already aforementioned, this thesis is divided into two parts. In Chapter 2 and 3 we study the

fundamental limits of robust interference management for content-oblivious wireless networks. In

particular, in Chapter 2 we study the optimal DoF region of the K-user MISO BC with arbitrary

CSIT levels. In Chapter 3 we study the overloaded MISO BC, where the number of users is larger

than the number of antennas at the transmitter.

On the other hand, in Chapter 4 and 5 we study the fundamental limits of robust interference

management for content-aware wireless networks. In Chapter 4 we study the symmetric K-user

cache-aided MISO BC under the GDoF metric. In Chapter 5 we study the cache-aided interference

channel, where an arbitrary number of cache-aided transmitters serve an arbitrary number of cache-

aided users. Finally, 6 concludes the thesis.

1.4. Publications

The work in my PhD has resulted in a number of papers, that have been published, accepted or

submitted for publications. Some of the papers have not been included in the content of this thesis.

1.4.1. Fundamental Limits of Content-Oblivious Networks

• E.Piovano, H. Joudeh, B. Clerckx, “Overloaded MU-MISO transmission with imperfect

CSIT”, Asilomar Conference on Signals, Systems, and Computers, Asilomar, 2016.

• E.Piovano, B. Clerckx “Optimal DoF region of the K-User MISO BC with Partial CSIT”,

IEEE Communication Letters, 2017.

1.4.2. Fundamental Limits of Content-Aware Networks

• E. Piovano, H. Joudeh, B. Clerckx, “On coded caching in the overloaded MISO broadcast

channel”, International Symposium on Information Theory, ISIT, 2017.

• E. Piovano, H. Joudeh, B. Clerckx, “Robust cache-aided interference management under full

transmitter cooperation”, International Symposium on Information Theory, ISIT, 2018.

• E. Piovano, H. Joudeh, B. Clerckx, “Generalized Degrees of Freedom of the Symmetric

Cache-Aided MISO Broadcast Channel with Partial CSIT”, IEEE Transactions on Informa-

tion Theory, 2019.
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ence Management in Heterogeneous Parallel Channels”, Accepted for publication in IEEE

Transactions on Communications, 2019.
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2. DoF Region of the K-user MISO BC with

Partial CSIT

2.1. Overview of the Chapter

In this chapter we make progress towards the understanding of the fundamental limits of robust in-

terference management under full transmitter cooperation in the context of the K-user MISO BC,

where a K-antenna transmitter serves K single-antenna users. The transmitter has partial instanta-

neous knowledge of the channels of the users. The main result of this chapter is the characterization

of the optimal DoF region under arbitrary CSIT levels for the users. Note that, before this work,

only the sum-DoF was known in the literature, while no attempt was made to derive the entire DoF

region.

The derivation of the DoF region requires a two-steps approach. We first derive a polyhedral

outer-bound region. Then, we characterize all the facets of such region and we show that a rate-

splitting strategy with flexible assignment of the DoF of the common codeword and flexible power

allocation for the private codewords achieves each of such facet. Note that considering the facets of

the polyhedral region is an original and unconventional approach. In fact, most of the achievability

proofs existing in the literature rely on characterizing and showing the achievability of the corner

points of the region. While this latter approach is feasible for small values of K, the number

of corner points dramatically explodes for increasing K, making this impracticable to generalize

in the setting of this chapter. Surprisingly, differently from the corner points, the facets of the

considered polyhedral region can be more easily characterized. In particular, each of such facets

can be rewritten in form of K inequalities which bound the per-user DoF of each individual user,

which turns out to be key to show the achievability through rate-splitting.

2.2. Introduction

In this chapter we consider the K-user Multiple-Input-Single-Output (MISO) Broadcast Channel

(BC), which consists of a K-antenna transmitter which serves K single-antenna users. Such setup

can model a radio cell where a multiple antenna Base Station (BS) is connected to multiple users.

However, the transmit antennas are not necessarily physically co-located, and may generally repre-

sent K radio heads (or remote antennas) connected through a strong fronthaul.

We assume that the transmitter has a partial instantaneous knowledge of the channels of the users,

modelled by the CSIT quality parameter β introduced in Section 1.1. In particular, each user i has

a CSIT quality βi ∈ [0, 1]. As seen in Section 1.1, the case βi = 1 is equivalent to perfect CSIT
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from a DoF perspective. In particular, if all users have a CSIT quality equal to 1, a full spatial

multiplexing gain of K can be enabled.

The other extreme case βi = 0, also denoted as finite precision CSIT, proved instead to be

significantly more difficult to characterize. In particular, a nearly one decade old open problem

proposed in [49] conjectured the total collapse of the sum-DoF to 1 under finite precision CSIT for

all users, i.e. βi = 0 for all i. This conjecture was shown to be true by the seminal work of Davoodi

and Jafar in [22]. This in turn implies that final precision CSIT is as (un)useful as no CSIT from a

DoF perspective. On the other hand, a CSIT quality βi ∈ (0, 1) helps to save some of the spatial

multiplexing gains and to achieve a sum-DoF between 1 and K.

The role of partial instantaneous channel knowledge is best exemplified by the main result in [22]

which, by assuming without loss of generality that the CSIT qualities of the users are sorted as

β1 ≥ βi for all i, proved that an upper-bound of the optimal sum-DoF dΣ for the K-user MISO BC

is given by

dΣ ≤ 1 + β2 + · · ·+ βK .

Note that all the observations made earlier about the impact of the CSIT quality, in particular the

DoF collapse under finite precision CSIT, are reflected in the above upper-bound. Interestingly, note

that the sum-DoF collapse is still verified in case one user has perfect CSIT and all the other users

finite precision CSIT. This upper-bound was proved by Davoodi and Jafar in [22] by introducing

a novel unconventional combinatorial argument known as aligned image set approach (AIS). We

will give some more insights about the AIS in Section 2.4. Moreover, the AIS will be revisited in

Chapter 4, where the proof in [22] will be extended to cache-aided settings.

Remarkably, this upper-bound is achievable through a rate-splitting strategy with proper alloca-

tion for the private codewords, as shown in the two users case in [13] and then extended to the

K users case in [45, 46]. It follows that this upper-bound is tight and corresponds to the optimal

sum-DoF of the K-user MISO BC under arbitrary CSIT levels. The rate-splitting scheme as well

the achievability proof will be revisited in Section 2.5.

2.2.1. Main Contributions

While the sum-DoF is an important information to know, it does not reveal any information about

the per-user DoF achieved by each user. The per-user DoF are instead characterized by the DoF

region, which is the set of all achievable DoF tuples (d1, . . . , dK).

The main result of this chapter is the characterization of the optimal DoF region of the K-user

MISO BC with arbitrary CSIT levels for the users. The proof involves two steps: a converse argu-

ment and an achievability argument. Starting from the converse, on the basis of the upper-bound

in [22], a polyhedral outer-bound can be constructed by bounding the sum-DoF of each subset

of users while ignoring the remaining users. The main challenge becomes then the achievability

argument of the constructed outer-bound, as it requires to show that each point of the region is

achievable. For small values of K, a conventional way to prove the achievability of a region is to

characterize and show the achievability of the corner points (also denoted as vertices) [76]. Any
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other point can be then obtain by time-sharing over the corner points. However, for increasing

values of K, the characterization of all corner points becomes in general unfeasible.

To overcome this problem, we introduce a novel and original approach: instead of characterizing

and showing the achievability of the corner points, we characterize and show the achievability of

each facet of the region. The key is to notice that, differently from the corner points, each of the

facets of the polyhedral region can be rewritten in form of K inequalities which bound the per-user

DoF of each individual user. Such characterization turns out to be suitable to show the achievability

of each point of each facet by employing a rate-splitting strategy with flexible power allocation for

the private codewords and flexible assignment of the DoF of the common codeword.

To conclude, the characterization of the DoF region of the K-user MISO BC is an essential step

towards a deeper understanding of the fundamental limits of robust interference management under

full transmitter cooperation, as it is an important achievement along a path of refinements towards

deriving capacity limits and capacity regions.

2.2.2. Notation

In order to state the main result of the chapter, we will define A as the set of all possible non-

empty subsets of K with elements arranged in an ascending order. For instance, in case of K =

{1, 2, 3}, the set A is given by A = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. Throughput

the chapter, we denote a generic element of A, which is itself a set, with a calligraphic upper

case letter and we denote its elements with the corresponding lower case letters (with numbered

subscripts). For instance the subset S = {s1, s2, . . . , s|S|} ∈ A, where s1 < s2 < . . . < s|S|, or

the subset G = {g1, g2, . . . , g|G|} ∈ A, where g1 < g2 < . . . < g|G|. Note that in this chapter,

without loss of generality, we assume that the users are ordered with respect to their CSIT qualities,

i.e. β1 ≥ β2 ≥ · · · ≥ βK .

As for the remainder of the chapter, the organization is as follows. Section 2.3 introduces the

system model. Section 2.4 introduce the sum-DoF upper-bound extablished in [22]. Section 2.5

introduces the rate-splitting scheme. Section 2.6 presents the main result and related insights. In

Section 2.7, we derive an outer-bound of the optimal DoF region. In Section 2.8 we prove the

achievability of the DoF region. Finally, Section 2.9 summarizes and concludes the chapter.

2.3. System Model

Before diving into the details of work of this chapter, we briefly revisit the problem setting in Sec-

tion 1.1.2 to see how it specializes for theK-user MISO BC considered in this chapter. We consider

here a MISO BC comprising of a K-antenna transmitter which serves K single-antenna receivers

(or users). The users are indexed by the set K = {1, 2, . . . ,K}. The input-output relationship at

the t-th use of the physical channel, t ∈ [T ] where T is the duration of the communication, for each
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receiver i ∈ K, is modelled by

Yi(t) =
K∑

j=1

Gij(t)Xj(t) + Zi(t) (2.1)

where Yi(t) ∈ C is the received signal, Xj(t) ∈ C is the signal transmitted from antenna j, Gij(t)

is the fading channel coefficient between transmit j and receiver i, and Zi(t) ∼ NC(0, 1) is the nor-

malized additive white Gaussian noise (AWGN), which is i.i.d. across all dimensions. The trans-

mitted signal across all transmitting antennas at the t-th channel use is X(t) , [X1(t) · · ·XK(t)]T.

The transmitter is then subject to the power constraint 1
T

∑T
t=1 |X(t)|2 ≤ P . On the other hand, for

each user i, we collect all its corresponding channel coefficients from all the transmitting antennas

into the vector given by Gi(t) , [Gi1(t) · · ·GiK(t)]T. The equation in (2.1) can then be rewritten

as

Yi(t) = GT
i (t)X(t) + Zi(t). (2.2)

Such compact form will be useful to simplify the notation in the explanation of rate-splitting. To

conclude, we point out that the same ergodic-rate assumption explained in Section 1.1.2 holds here.

2.3.1. Partial CSIT

We also briefly revisit here the partial CSIT assumption described in Section 1.1.2. Motivations

and more details can be find in Section 1.1.2. Under partial CSIT, the channel coefficient between

antenna j and user i is modeled as

Gij(t) = Ĝij(t) +
√
P−βiG̃ij(t) (2.3)

where Ĝij(t) is channel estimate, G̃ij(t) is the channel estimation error and βi ∈ [0, 1] is the

parameter capturing the CSIT quality level. As discussed in Section 1.1.2 and Section 2.2, the

parameter βi ∈ [0, 1] captures the whole range of channel knowledge, where βi = 0 corresponds

to the case of finite precision CSIT (equivalent to absent CSIT), while βi = 1 corresponds to

the case of perfect CSIT. The difference between Ĝij(t) and G̃ij(t) is that the former is revealed

to the transmitter while the latter is not. As done for the channel coefficients, we collect all the

channel estimates and channel error terms from all antennas to user i into the vectors Ĝi(t) =

[Ĝi1(t) · · · ĜiK(t)]T and G̃i(t) = [G̃i1(t) · · · G̃iK(t)]T, respectively. It follows that Gi(t) can be

written as

Gi(t) = Ĝi(t) +
√
P−βiG̃i(t). (2.4)

We assume, without loss of generality, that the users are ordered with respect to their CSIT qualities,

i.e. β1 ≥ β2 ≥ · · · ≥ βK . The tuple of CSIT levels is collected into the vector β , (β1, . . . , βK).

Before we proceed, it is worth highlighting that channel state information at the receivers (CSIR)

is assumed to be perfect.

In the next sections we will revisit the two main ingredients for the derivation of the optimal DoF

region of the K-user MISO BC under arbitrary CSIT levels. The first ingredient is the sum-DoF
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upper-bound obtained in [22]. This upper-bound will be utilized to derive an outer-bound of the

entire DoF region in Section 2.7. The second ingredient is the rate-splitting scheme, which will be

utilized to prove the achievability of such outer-bound.

2.4. Sum-DoF Upper-Bound

In this section, we dive more into the details and insights of the DoF upper-bound derived in [22].

To start, we state the main theorem in [22].

Theorem 2.1. [22, Th. 1] For the K-user MISO BC the sum-DoF is bounded above by

∑

i∈K

di ≤ 1 +
∑

i∈K\{1}

βi. (2.5)

The result was shown assuming β1 = 1 for the first user. However, since enhancing the CSIT

does not harm the sum-DoF, the same upper-bound holds for a generic value of β1 ∈ [β2, 1].

This upper-bound was obtained by Davoodi and Jafar by introducing a new technique denoted as

aligned image set (AIS). The key idea behind the AIS argument is to bound the expected number of

codewords which can be decoded at their desidered receivers whose images align at the uninteded

receivers under finite precision CSIT. The AIS will be revisited and extended to the cache-aided set-

ting in Chapter 4. Importantly, the DoF upper-bound of Theorem 2.1 can be achieved by employing

a rate-splitting strategy, where interference is managed by superimposing a common codeword de-

coded by all users on top of private codewords for the intended users only. It follows that this

upper-bound is tight and it corresponds to the optimal sum-DoF of the K-user MISO BC with ar-

bitrary CSIT levels. We want to recall three main insights from this result (the sum DoF is again

denoted as dΣ):

1. In case of βi = 0 for all i ∈ K we obtain dΣ ≤ 1, hence all the benefits of multiple

transmitting antennas are lost. This is also denoted as the collapse of the DoF under finite

precision and it was a decade long conjecture proposed in [49] and finally solved in [22].

Interestingly, the DoF collapse still happens when perfect CSIT is available for one user and

finite precision CSIT for all the others.

2. In case of βi = 1 for all i ∈ K we obtain dΣ ≤ K. This DoF upper-bound is then achieved

by employing a simple zero-forcing strategy, which in turn enables full spatial multiplexing

gain when the channel estimation errors of the users decay as O(P−1).

3. In case of βi ∈ (0, 1), some of the spatial multiplexing gains can be saved. In this case, the

sum-DoF upper-bound can be achieved by rate-splitting, by properly designing the transmis-

sion power of the common and private codewords. This will be revisited in the next section.
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2.5. Rate-Splitting

In this section we revisit the rate-splitting scheme, the key strategy for the achievability argument.

In rate-splitting two kind of codewords are superimposed in the power domain: a common code-

word decoded by all users, on top of private codewords decoded by the respective users only. In

particular, the transmitter splits the message Wi intended for each user i ∈ K into a common (or

public) sub-message W
(c)
i and a private sub-message W

(p)
i , i.e. Wi = (W

(c)
i ,W

(p)
i ). All the

common sub-messages W
(c)
1 , . . . ,W

(c)
K are jointly encoded into the common codeword X(c), i.e.(

W
(c)
1 , . . . ,W

(c)
K

)
→ X(c), which has to be decoded by all K users. On the other hand, each

private sub-message W
(p)
i is encoded into the private codeword X

(p)
i , i.e. W

(p)
i → X

(p)
i , which is

decoded by user i only. All the codewords are assumed to be drawn from a unitary-power Gaus-

sian codebook. After the encoding, the codewords are linearly precoded and power allocated. The

transmitted signal at the t-th channel use, i.e. X(t) = [X1(t) · · ·XK(t)]T , takes then the form

X(t) =
√
P (c)V(c)(t)X(c)(t) +

∑

i∈K

√
P

(p)
i V

(p)
i (t)X

(p)
i (t) (2.6)

where V(c)(t) ∈ C
K×1 and V

(p)
i (t) ∈ C

K×1 are unitary precoding vectors, and P (c) and P
(p)
i

are the corresponding long-term allocated powers to the precoded codewords, which have to satisfy

the constraint P (c) +
∑

i∈K P
(p)
i ≤ P . Note that X(c)(t) corresponds to the t-th symbol of the

common codeword, while X
(p)
i (t) corresponds to the t-th symbol of the private codeword intended

for user i.

As the common codeword X(c) has to be decoded by all users, V(c)(t) are chosen as a generic

(random) unit vector. On the other hand, as the private codewords are intended for the respec-

tive users only, the precoding vectors V
(p)
i (t) are chosen in order to zero-force interference at the

unintended users. It follows that V
(p)
i (t) ,

[
V

(p)
i1 (t) · · ·V (p)

iK (t)
]T

is a zero-forcing unit vector

designed by the transmitter using the channel estimates Ĝj(t) such that

Ĝj(t)
TVi(t)

(p) = 0, j 6= i. (2.7)

2.5.1. Power Allocation and Received Signal

The achievable DoF of rate-splitting depends in general on the power allocations for the common

and private codewords. However, as we will next, the power allocation for the common codeword

P (c) is always let to scale with the SNR P as O(P ), which let the power allocations for the private

codewords to be the only design variables. We first consider arbitrary power allocations for the

private codewords, and we will then specialize to the specific setting considered in this chapter.

As already mentioned, rate-splitting considers a power allocation which scales with the SNR P as

O(P ) for the common codeword, and as O(P ai) for the i-th private codeword, where ai corre-

sponds to the power level and it is such that ai ∈ [0, 1]. This can be formalized by P (c) = O(P ) for

the common codeword and P
(p)
i = O(P ai) for the i-th private codeword. Note that the different
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scaling of the power allocations is used to achieve different DoF values. The use of the big O nota-

tion, or Landau’s symbol, is used to guarantee that the power constraint P (c) +
∑

i∈K P
(p)
i ≤ P is

not violated. In fact, while we allocate the power for the common and private codewords to grow

with an order of P and P ai , respectively, the power allocations can be adjusted with appropriated

scaling or additive factors to guarantee that the power constraint is maintained, without changing

the achievable DoF. For instance, we can allocate a power P −∑K
i=1 P

ai to the common codeword

and P ai to the i-th private codeword. Another way to maintain the power constraint would be to

divide all the allocated powers by a constant scaling factor.

The transmitted signal can be then written as:

X(t) =
√
P (c)V(c)(t)X(c)(t)︸ ︷︷ ︸

O(P )

+
∑

i∈K

√
P

(p)
i V

(p)
i (t)X

(p)
i (t)

︸ ︷︷ ︸
O(Pai )

. (2.8)

where the power constraint P (c) +
∑

i∈K P
(p)
i ≤ P must be mantained.

The received signal by user i ∈ K is given by

Yi(t) =
√
P (c)GT

i (t)V
(c)(t)X(c)(t)︸ ︷︷ ︸

O(P )

+

√
P

(p)
i GT

i (t)V
(p)
i (t)X

(p)
i (t)

︸ ︷︷ ︸
O(Pai )

+
∑

j∈K\{i}

√
P

(p)
j GT

i (t)V
(p)
j (t)X

(p)
j (t)

︸ ︷︷ ︸
O(Paj−βi )

+Zi(t) (2.9)

where, in the equation above, we have pointed out that the common codeword X(c) is received

with strength O(P ), the intended private codeword X
(p)
i is received with strength O(P ai), while

the codeword X
(p)
j intended for users j 6= i generates an interference with strength O(P aj−βi).

The reason why the codeword intended for user j generates an interference of O(P aj−βi) can be

derived from the utilized definition of partial CSIT in Section 2.3.1. In fact, with the zero-forcing

unit vector V
(p)
i designed to satisfy Eq. (2.7), it can be shown that

lim
P→∞

− logE[|G̃i(t)
TVj(t)

(p)|2]
log(P )

= βi, (2.10)

where the expectation is taken over both the channel estimate and the actual channel vector. More

details can be found [14, 15] and references therein. From (2.10), and given that the private

codeword X
(p)
j (t) is delivered with power O(P aj ), it follows that the generated interference is

O(P aj−βi).

2.5.2. Rate-Splitting Decoding Scheme and Achievable DoF

In rate-splitting, all users decode the common codeword X(c) by treating interference from the

private codewords as noise, and they retrieve the common message W (c). From W (c) each user i

can then retrieve its own common sub-messageW
(c)
i . Each user i removes thenX(c) by performing
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successive interference cancellation (SIC) and proceeds to decode its own private codeword X
(p)
i ,

by treating the interference from all the other private codewords as noise. From X
(p)
i each user i

can then retrieve its own private message W
(p)
i .

The achievable DoF of the common and private codewords can be then characterized using the

analysis developed in the previous section. In particular, we remind that each user receives the

common codeword X(c) with power O(P ), its own private codeword with power O(P ai) and the

private codeword for user j 6= i with power O(P aj−βi). A simple calculation verifies that, in order

to be successfully decode by all users, the common codeword X(c) can support a DoF of

d(c) = 1−max
i∈K

ai. (2.11)

The DoF of the common codeword can be split in all possible ways among users in K. We denote

as d
(c)
i the DoF of the common codeword assigned to user i. It follows that any non-negative real

tuple d(c) = (d
(c)
1 , . . . , d

(c)
K ), which satisfies

∑
i∈K d

(c)
i = d(c), is an admissible partition of the

DoF carried by the common codeword among the users in K.

Next, each user i removes X(c) by performing SIC and proceeds to decode its own private code-

word X
(p)
i . A simple calculation can verify that the private codeword X

(p)
i intended for user i ∈ K

can support a DoF of

d
(p)
i =

(
ai −

(
max

j∈K\{i}
aj − βi

)+
)+

(2.12)

where (x)+ = max{x, 0}. The DoF of all the private codewords are collected into the vector the

tuple d(p) = (d
(p)
1 , . . . , d

(p)
K ).

To sum up, a per-user DoF tuple d = (d1, . . . , dK) is achievable by rate-splitting with power

levels given by a = (a1, . . . , aK) if the following equality holds:

(d1, . . . , dK) = (d
(p)
1 , . . . , d

(p)
K ) + (d

(c)
1 , . . . , d

(c)
K ) (2.13)

where d
(p)
i for any i ∈ K is given by (2.12), while (d

(c)
1 , . . . , d

(c)
K ) indicates an admissible partition

of the total DoF carried by the common codeword, where d(c) is given by Eq. (2.11).

2.5.3. Comparison between Rate-Splitting and Zero-Forcing

The main difference between rate-splitting and zero-forcing is the transmission of the common

codeword in rate-splitting which is absent in zero-forcing. As in zero-forcing the messages are not

split and only private codewords are delivered over the channel, the transmitted signal takes the

form

X(t) =
∑

i∈K

√
PiVi(t)Xi(t) (2.14)

where Xi is the codeword intended for receiver i and the precoding vectors Vi(t) correspond to

the zero-forcing precoding vectors V
(p)
i (t) in rate-splitting. It follows that, for a power allocation
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vector a = (a1, . . . , aK), zero-forcing achieves the DoF tuple d = (d1, . . . , dK), where for j ∈ K

di =

(
ai −

(
max

j∈K\{i}
aj − βj

)+
)+

. (2.15)

This clearly corresponds to the achievable DoF tuple for the private codewords in rate-splitting. It is

readily seen that rate-splitting better tackles interference thanks to the transmission of the common

codeword which in turn enhances the DoF, as characterized in Eq. (2.11).

2.5.4. Achievability of the Upper-Bound in Theorem 2.1

We prove here that rate-splitting attains the sum-DoF upper-bound in (2.1). To do so, we need to

consider a power allocation vector a with equal power levels for all the users, where this power

level can be any value between β2 and β1, i.e.

a = (b, b, . . . , b), with β2 ≤ b ≤ β1. (2.16)

Applying this to Eq. (2.11), the common codeword can support a DoF of

d(c) = 1− b. (2.17)

As we are considering the sum-DoF, the split of the common codeword DoF among users is ir-

relevant. To calculate the DoF supported by the private codewords, we apply Eq. (2.12) and we

obtain

d
(p)
i =




b i = 1

βi i ∈ K \ {1}.
(2.18)

Hence, the sum-DoF is equal to

1 + β2 + · · ·+ βK , (2.19)

which corresponds to the one in Theorem 2.1. Note that it can be easily verified that zero-forcing

achieves a sum-DoF of

β1 + · · ·+ βK (2.20)

hence, it only attains the upper-bound in Theorem 2.1 for β1 = 1, while it fails when β1 < 1, and

in this latter case rate-splitting is needed.

2.6. Optimal DoF Region of MISO BC with Partial CSIT

We state here the main result of this chapter, which is the characterization of the optimal DoF region

of the K-user MISO BC under arbitrary CSIT levels for the users. Note that we use the notation in

Section 2.2.2.
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Theorem 2.2. The optimal DoF region D∗ of the K-user MISO BC under arbitrary CSIT levels is

given by all the real tuples (d1, . . . , dK) which satisfy

di ≥ 0, ∀i ∈ K (2.21)

∑

i∈S

di ≤ 1 +
∑

i∈S\{s1}

βi, ∀S ∈ A, (2.22)

where we consider here the notation in Section 2.2.2. To remind, A is the set of all possible non-

empty subsets of K with elements arranged in an ascending order, and s1 indicates the smallest

element of the subset S ∈ A.

We first denote as D the above region described by the inequalities (2.21) and (2.22). We show

that D coincides with the optimal DoF region D∗ by showing that D is simultaneously an outer-

bound of D∗ and it is achievable. We will show in Section 2.7 that D is an outer-bound of D∗ as a

direct extension of Theorem 2.1, as already anticipated in the previous section. On the other hand,

the proof that D is achievable is significantly more involved and it will be presented in Section 2.8.

2.6.1. Main Insights and Connections with Other Works

In this section we provide the main insights which can be derived from Theorem 2.2.

1. First we notice that the DoF region does not change while considering any value of β1 ∈
[β2, 1]. This consideration extends to the DoF region what was already observed for the

sum-DoF in Theorem 2.1. Hence, from Theorem 2.2 we obtain that, regardless of the policy

or scheduling utilized to serve the users in the network, the performance is not deteriorated

when the CSIT quality of the user with the highest CSIT quality is alleviated to β2.

2. It is readily seen that, in case of βi = 1 for all users i ∈ K, the DoF region boils down to

di ∈ [0, 1] for any i ∈ K. Any point of this region can be then achieved by zero-forcing

with flexible power allocation. In particular, any point (d1, d2, . . . , dk) can be achieved by

zero-forcing with power allocation a = (d1, d2, . . . , dk).

3. In case of β1 = 1 we have seen in Section 2.5.4 that zero-forcing achieves the optimal sum-

DoF. However, it fails to achieve the entire DoF region, except for the case where all the

users excluding the last one have perfect CSIT quality, i.e. βi = 1 for all users i ∈ K \ {K}.

To better illustrate this, let us consider the case K = 3 where β1 = 1 and β2, β3 < 1. We

consider the points of the region D∗ which satisfy d2 + d3 = 1+ β3. These points cannot be

achieved by zero-forcing as zero-forcing only attains d2 + d3 ≤ β2 + β3, as seen in Section

2.5.4.

4. As a corollary of Theorem 2.2 we can deduce that the maximum symmetric per-user DoF,

denoted as d∗sym, is given by

d∗sym = min
j={2,...,K}

1 +
∑K

i=K−j+1 βi

J
(2.23)
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which is in agreement with the previous result obtained in [46].

2.7. Construction of the Outer-Bound

In this section we show that the region D described by Eq. (2.21) and (2.22) is an outer-bound of

the optimal DoF region D∗. First, let us consider a subset of users S ∈ A. We start by proving that

∑

i∈S

di ≤ 1 +
∑

i∈S\{s1}

βi, ∀S ∈ A. (2.24)

In fact, the sum-DoF of the subset S ∈ A is bounded above by the sum-DoF obtained while adding

K − |S| users with CSIT quality equal to 0, which we denote as K0 (this is obvious as adding new

users can never hurt the sum-DoF). This latter setting corresponds to the K-user MISO BC and we

can consequently apply Theorem 2.1. It follows that

∑

i∈S

di ≤
∑

i∈S
⋃

K0

di ≤ 1 +
∑

i∈S\{s1}

βi +
∑

i∈K0

0 = 1 +
∑

i∈S\{s1}

βi. (2.25)

Hence, the inequality in (2.24) holds. While considering all possible subsets of users S ∈ A, we

obtain (2.22). Moreover, the DoF of each user is a non negative value, from which we obtain (2.21).

It follows that the region D described by (2.21) and (2.22) is an outer-bound of the optimal DoF

region D∗.

2.8. Proof of the Achievability of D
In this section we prove the achievability of the region D characterized in Theorem 2.2. The region

D is the K-dimensional polyhedral region given by the intersection of the half-spaces described

by (2.21) and (2.22). Each inequality in (2.21) and (2.22) denotes an half-space delimited by the

hyperplane obtained while substituting the half-space’ inequality with an equality. Any of these

hyperplanes contains a facet of the polyhedral region D and the set of all the facets corresponds to

the boundary of D. Showing the achievability of such region turns out to be particularly challenging

as the most common approach, which consists of showing the achievability of the corner points of

the polyhedral region, cannot be easily generalized here as we will describe in the next section.

2.8.1. Problem in Finding the Corner Points

The most common way to prove the achievability of a DoF region, it is to characterize and show

the achievability of its corner points. For instance, while considering K = 2, the region boils down

to a polygon and the corner points were characterized and shown to be achievable by rate-splitting

in [13]. Every other point of the region can be then obtained by time-sharing over the corner points.

However, in our case, characterize the corner points is only feasible for small K.

From a combinatorial perspective, it can be obtained that there are 2K +K − 1 inequalities in
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(2.21) and (2.22), hence 2K+K−1 hyperplanes delimiting the polyhedral region. Any corner point

of the K-dimensional polyhedral region is given by the intersection of K hyperplanes. However,

K hyperplanes may not intersect or the intersection may not be a point included in the region D.

For instance, while considering the case K = 2, the lines d1 = 0 and d2 = 0 never intersect,

while the lines d1 = 1 and d1 + d2 = 1 + β2 intersect in the point (0, 1 + β2) which is not

contained in the region D. Hence, in order to characterize all the corner points, all the
(
2K+K−1

K

)

subsets of K hyperplanes have to be analyzed to see if they intersect in a point. In case a subset

of K hyperplanes intersect in a point, it is needed to further verify if such a point belongs to the

region D, hence satisfies all the inequalities in (2.21) and (2.22). In case the point belongs to the

outer-bound, it is a corner point. It is readily seen that such procedure is unfeasible for large K.

Moreover, the DoF region in Theorem 2.2 is not a polymatroid as shown in [125]. Hence, the

polymatroid properties to simplify the characterization of the corner points [126, 127] cannot be

utilized here. To overcome these problems a new approach is introduced, where the facets, instead

of the corner points, are shown to be achievable.

2.8.2. A new Approach to show the Achievability of the Region D

In this section we introduce the main technical novelty of the chapter, which is the new technique

developed to show the achievability of the DoF region D described in Eq. (2.21) and (2.22). The

main idea of the proof is to characterize and show the achievability of each facet of the polyhedral

region D. The facet contained in a specific hyperplane is characterized by the set of points which

satisfy the equation of the hyperplane and all the other inequalities of the DoF region. Interestingly,

given the structure of the inequalities in (2.21) and (2.22), the facets of the polyhedral region are

much easier to characterize than the corner points. Please note that the corner points are contained

into the facets, hence while showing the achievability of the facets, the achievability of the corner

points is automatically guaranteed.

We proceed to show the achievability of D by induction over the number of users K. The

hypothesis is clearly true for K = 1. In fact, in this case, the region (2.21) and (2.22) becomes

d1 ≥ 0 and d1 ≤ 1, which is the range of DoF values achieved in a single-user scenario. We assume

that the hypothesis is valid for K = 1, . . . , k − 1 and we consider the case K = k. The key idea of

the proof is to show that the facets from (2.22) are achievable by rate-splitting with flexible power

allocation for the private codewords and flexible split of the DoF carried by the common codeword,

while the facets from (2.21) are achievable by induction hypothesis.

2.8.3. Proof of the Achievability of the Facets delimited by the Half-Spaces in Eq.

(2.22)

In this section, we show the achievability of the facets contained in the hyperplanes which delimit

the half-spaces in (2.22). Any of these hyperplane is given by
∑

i∈S di = 1 +
∑

i∈S\{s1}
βi, for

a subset S ∈ A. We denote the facet contained in such an hyperplane as FS . The facet FS can

be analytically characterized as the set of all the points contained in the hyperplane which satisfy
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all the other inequalities of the polyhedral region in (2.21) and (2.22). Hence, FS is the set of all

non-negative real tuples (d1, . . . , dk) such that

∑

i∈G

di ≤ 1 +
∑

i∈G\{g1}

βi, ∀G ∈ A, G 6= S (2.26)

∑

i∈S

di = 1 +
∑

i∈S\{s1}

βi (2.27)

where the elements of any subset G of A, which are arranged in an increasing order (i.e. gi < gj

for i 6= q) according to the notation in Section 2.2.2, are indicated as G = {g1, . . . , g|G|}. While

the inequalities in (2.21) are satisfied by considering non-negative real tuples, Eq. (2.27) identifies

the hyperplane containing FS and the inequalities in (2.26) identify all the other inequalities of D
in (2.22).

Showing directly the achievability of FS by (2.26) and (2.27) seems a difficult task. To overcome

this problem, we first rewrite FS in a equivalent form where we bound through inequalities the per-

user DoF values achieved by each user i ∈ K. This is obtained, for each i ∈ K, by comparing an

inequality in (2.26), for a specific G which is a function of the value i as it will be detailed later,

with the equality in (2.27). The new parametrized form of the facet FS is then suitable to prove the

achievability by rate-splitting. For the proof, we separately consider the subsets S such that |S| ≥ 2

and the subsets S such that |S| = 1. We start with the case |S| ≥ 2.

Rewriting the Parametrized Form of the Facets FS for |S| ≥ 2

We consider here the case |S| ≥ 2. The first step is to rewrite the facet FS by bounding the per-user

DoF values of each user i ∈ K. We first bound the per-user DoF of the elements in the subset S .

Next, we bound the per-user DoF of elements in the subset S̄ = K \ S , i.e. the set of users which

not belong to S .

1. Per-user DoF bounding of the users i ∈ S . First, we consider the user i = s1. We consider

the inequality in (2.26) for the specific subset G = S \ {s1} and the equality in (2.27), i.e.

∑

j∈S\{s1}

dj ≤ 1 +
∑

j∈S\{s1,s2}

βj (2.28a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.28b)

By comparing the inequality with the equality, it follows that ds1 ≥ βs2 . We then move

to the case i ∈ S \ {s1}. Here, we consider the inequality in (2.26) for the specific subset
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G = S \ {i} and the equality in (2.27). By comparing the two we obtain

∑

j∈S\{i}

dj ≤ 1 +
∑

j∈S\{s1,i}

βj (2.29a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.29b)

Hence, it follows that di ≥ βi. To summarize, we have obtained that for i ∈ S we have

ds1 ≥ βs2 , and that for i ∈ S \ {s1} we have di ≥ βi.

2. Per-user DoF bounding of the users i ∈ S̄ , where S̄ = K \ S . The set S̄ is partitioned into

three subsets, denoted as S̄1, S̄2 and S̄3. The subset S̄1 contains all users listed before s1,

hence S̄1 = { i ∈ S̄ | i < s1 }. The subset S̄2 contains all users listed between s1 and s2,

hence S̄2 = { i ∈ S̄ | s1 < i < s2 }. Finally, the subset S̄3 contains all users listed after s2,

hence it is given by S̄3 = { i ∈ S̄ | i > s2 }.

We analyse the subset i ∈ S̄1 first. By taking any user i ∈ S̄1, we first compare the inequality

in (2.26) for the case G = S ∪ {i} and the equality in (2.27), i.e.

∑

j∈S∪{i}

dj ≤ 1 +
∑

j∈S

βj (2.30a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.30b)

It follows that di ≤ βs1 . We then compare the inequality (2.26) for the subset G = (S ∪ {i}) \ {s1}
and the equality in (2.27), i.e.

∑

j∈(S∪{i})\{s1}

dj ≤ 1 +
∑

j∈S\{s1}

βj (2.31a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.31b)

It follows that di ≤ ds1 . Hence, di ≤ min(βs1 , ds1) for i ∈ S̄1.

We then move to the case i ∈ S̄2. Proceeding as above, by comparing (2.26) for the case

G = S ∪ {i} and (2.27), we obtain

∑

j∈S∪{i}

dj ≤ 1 + βi +
∑

j∈S\{s1}

βj (2.32a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.32b)
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It follows that di ≤ βi. Also, from (2.26) for G = (S ∪ {i}) \ {s1} and (2.27), we obtain

∑

j∈(S∪{i})\{s1}

dj ≤ 1 +
∑

j∈S\{s1}

βj (2.33a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.33b)

It follows that di ≤ ds1 . To summarize, di ≤ min(βi, ds1) for i ∈ S̄2.

As a last case, we consider i ∈ S̄3. By simply comparing (2.26) for G = S ∪ {i} with (2.27),

we obtain that

∑

j∈S∪{i}

dj ≤ 1 + βi +
∑

j∈S\{s1}

βj (2.34a)

∑

j∈S

dj = 1 +
∑

j∈S\{s1}

βj . (2.34b)

It follows that di ≤ βi for i ∈ S̄3.

By summarizing the analysis above, we can conclude that the facet FS is included in the set of

all the non-negative real tuples (d1, . . . , dk) characterized by





ds1 ≥ βs2

di ≥ βi, i ∈ S \ {s1}
di ≤ min(βs1 , ds1), i ∈ S̄1

di ≤ min(βi, ds1), i ∈ S̄2

di ≤ βi, i ∈ S̄3
∑

i∈S di = 1 +
∑

i∈S\{s1}
βi.

(2.35)

Moreover, simple calculations also verify that each tuple (d1, . . . , dk) in (2.35) satisfies the con-

ditions in (2.26) and (2.27). Hence, (2.35) is equivalent to (2.26) and (2.27). It follows that FS

coincides with the set of tuples described by the inequalities in (2.35). We have consequently

rewritten the parametrization form of the facet FS from equations (2.26) and (2.27) to the form in

(2.35), where the latter bounds the per-user DoF of each user. We next show that this latter form is

suitable to show the achievability by rate-splitting.

Showing the Achievability of the Facets FS for |S| ≥ 2

After having re-parametrized the facet FS in a suitable form, we can show its achievability. We split

FS into two subsets, denoted by FS,1 and FS,2, on the basis of the value of ds1 , i.e. the per-user

DoF achieved by user s1. The subset FS,1 contains all the tuples of FS such that βs1 ≥ ds1 ≥ βs2 ,

while FS,2 contains all the tuples of FS such that ds1 > βs1 . We start by showing the achievability
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of FS,1. We have that FS,1 is given by





βs1 ≥ ds1 ≥ βs2

di ≥ βi, i ∈ S \ {s1}
di ≤ ds1 , i ∈ S̄1

di ≤ ds1 , i ∈ S̄21

di ≤ βi, i ∈ S̄22

di ≤ βi, i ∈ S̄3
∑

i∈S di = 1 +
∑

i∈S\{s1}
βi

(2.36)

where, for any value of ds1 , the subsets S̄21 and S̄22 are defined as S̄21 = { i ∈ S̄2 | βi ≥ ds1 } and

S̄22 = { i ∈ S̄2 | βi < ds1 } and they correspond to a partition of S̄2 on the basis of the value of βi

compared to ds1 . In practice this means that, for any tuple in the facet with a specific value of ds1 ,

we have that S̄21 is the subset of users of S̄2 with a CSIT quality larger than or equal to ds1 , while

S̄22 is the subset of users of S̄2 with a CSIT quality lower than ds1 .

Each admissible tuple (d1, . . . , dk) above of FS,1 is then achieved by rate-splitting considering

a power allocation a = (a1, . . . , ak) given by

ai =





ds1 , j ∈ S
di, j ∈ S̄1

di, j ∈ S̄21

di + ds1 − βi, i ∈ S̄22

di + ds1 − βi, i ∈ S̄3.

(2.37)

In fact, with theis power allocation, the DoF (d
(p)
1 , . . . , d

(p)
k ) carried by each private codeword can

be computed from Eq. (2.12) and it is given by

d
(p)
i =





ds1 , i = s1

βi, i ∈ S \ {s1}
di, i ∈ S̄.

(2.38)

The common codeword’s DoF, which can be calculated to be equal to d(c) = 1− ds1 from Eq.

(2.11), is partitioned in the following way

d
(c)
i =





0, i = s1

di − βi, i ∈ S \ {s1}
0, i ∈ S̄.

(2.39)

With such power allocation and split of the common codeword, equality in (2.13) is satisfied for the
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tuple (d1, . . . , dk) of FS,1 and the achievability of the tuple (d1, . . . , dk) directly follows. Hence,

FS,1 is achievable.

We can now prooced with the achievability proof for FS,2, which is given by FS \ FS,1. We

have that FS,2 is characterized by all non-negative real tuples (d1, . . . , dk) such that





ds1 > βs1

di ≥ βi, i ∈ S \ {s1}
di ≤ βs1 , i ∈ S̄1

di ≤ βi, i ∈ S̄2

di ≤ βi, i ∈ S̄3
∑

i∈S di = 1 +
∑

i∈S\{s1}
βi.

(2.40)

Each tuple (d1, . . . , dk) of FS,2 is achieved by rate-splitting considering a power allocation a =

(a1, . . . , ak) given by

ai =





βs1 , j ∈ S
di, i ∈ S̄1

di + βs1 − βi, i ∈ S̄2

di + βs1 − βi, i ∈ S̄3.

(2.41)

With such power allocation, the DoF (d
(p)
1 , . . . , d

(p)
k ) of each private codeword, from (2.12), is then

given by

d
(p)
i =




βi, i ∈ S
di, i ∈ S̄.

(2.42)

The DoF carried by the common codeword, which can be computed to be equal to d(c) = 1− βs1

from (2.11), is partitioned in the following way

d
(c)
i =




di − βi, i ∈ S
0, i ∈ S̄.

(2.43)

Equation (2.13) is satisfied and the tuple (d1, . . . , dk) of FS,2 is achievable. To summarize, as both

FS1 and FS2 are achievable, the entire facet FS , with |S| ≥ 2, is achievable by rate-splitting.

Showing the Achievability of the Facets FS for |S| = 1

Next, we move to the case |S| = 1, i.e. S = {s1}. The set S̄ = K \ S is partitioned into

two subsets, denoted as S̄1 and S̄2, such that S̄1 = { i ∈ S̄ | i < s1 } and S̄2 = { i ∈ S̄ | i > s1 }.

Hence, S̄1 contains all the users which precede s1 while S̄2 contains all users which proceed s1.

We start by considering S̄1 and, for i ∈ S̄1, by comparing (2.26) for G = {i, s1} and (2.27), we
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obtain

di + ds1 ≤ 1 + βs1 (2.44a)

ds1 = 1. (2.44b)

We deduce that di ≤ βs1 . Similarly, in case of i ∈ S̄2, by comparing (2.26) for G = {s1, i} and

(2.27), we obtain

ds1 + di ≤ 1 + βi (2.45a)

ds1 = 1. (2.45b)

Hence, we deduce that di ≤ βi.

It follows that FS can be rewritten as the set of all the non-negative real tuples (d1, . . . , dk) given

by 



ds1 = 1

di ≤ βs1 , i ∈ S̄1

di ≤ βi, i ∈ S̄2.

(2.46)

Each (d1, . . . , dk) is achieved by rate-splitting with power allocation a = (a1, . . . , ak) given by

ai =





βs1 , i = s1

di, i ∈ S̄1

di + βs1 − βi, i ∈ S̄2.

(2.47)

The common codeword’s DoF, which is equal to d(c) = 1− βs1 , is given to user s1 only, i.e. the

partition is such that d
(c)
s1 = d(c) and d

(c)
i = 0 for i ∈ K \ {s1} and this guarantees that ds1 = 1.

Equation (2.13) is satisfied and the tuple (d1, . . . , dk) of FS is achievable. It follows that FS , with

|S| = 1, is achievable.

2.8.4. Proof of the Achievability of the Facets delimited by the Half-Spaces in Eq.

(2.21)

We finally consider the facets contained in the hyperplanes which delimit the half-spaces in (2.21).

Taking any i ∈ K, we denote the facet contained in the hyperplane di = 0 as F (0)
i . After removing

the redundant inequalities, F (0)
i is given by all the non-negative real tuples (d1, . . . , dk) which

satisfy

di = 0 (2.48a)
∑

j∈S

dj ≤ 1 +
∑

j∈S\{s1}

βj , ∀S ∈ Āi (2.48b)
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where Āi is the set of all possible non-empty subsets of K\{i} with elements arranged in an ascend-

ing order. For instance, in case of K = {1, 2, 3} and i = 1, we have that Āi = {{2}, {3}, {2, 3}}.

While di = 0 (so user i is not considered), the set of admissible tuples (dj)j∈K\{i} corresponds to

the region in (2.21) and (2.22) when considering the k− 1 users K\{i}. Since we have k antennas

and k − 1 users, the facet F (0)
i is achievable by induction hypothesis. For instance, this can be

shown by shutting down one of the transmitting antennas and reducing the setting to the case of

k − 1 transmitting antennas and k − 1 users, which is achievable by induction hypothesis.

To conclude, since all facets of the polyhedral region are achievable, all the remaining points

of the polyhedral region are achievable by time-sharing. Hence, the outer-bound D for K = k is

achievable and it coincides with the optimal DoF region D.

2.8.5. Alternative Proof for the Achievability

A alternative proof for the achievability argument has been recently proposed in the works in

[125, 128]. In our approach, we build the polyhedral outer-bound first and we then exhaustively

characterize and show the achievability of all its facets. In their work, the authors of [125, 128]

considered the opposite approach. Instead of starting from the outer-bound and showing its achiev-

ability, they described the rate-splitting achievable region first and they then showed that it coincides

with the outer-bound. This latter result was obtained through a mathematical procedure called in-

ductive Fourier-Motzkin elimination scheme. Both our and their approaches have advantages and

disadvantages. Our approach dives deeper into the design of variables such as power allocation but

it requires an exhaustive characterization of all cases, on the other hand the approach in [125, 128]

does not offer this more deeper understanding but it avoids an explicit construction of specific

rate-splitting strategies for all cases.

2.9. Summary of the Chapter

In this chapter we have made progress in the characterization of the fundamental limits of robust

interference management under full transmitter cooperation. By considering the K-user MISO BC

with arbitrary CSIT levels, building upon previous works which have derived the optimal sum-

DoF, we have characterized the optimal DoF region. Moreover, we have shown that rate-splitting

is the key strategy to achieve this region. The essence of rate-splitting, compared to conventional

transmission techniques as zero-forcing which rely on the transmission of private codewords only,

is the transmission of a common codeword on top of the private codewords. The presence of the

common codeword allows to tackle the multi-user interference originating from the partial CSIT

more efficiently and, considering a flexible power allocation for the private codewords and flexible

split of the DoF of the common codeword, to achieve the entire DoF region. Rate-splitting boils

down to zero-forcing in case of perfect CSIT for all users, where the common message becomes

unnecessary and zero-forcing is sufficient to achieve the whole DoF region.
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3. Overloaded Multiuser MISO Transmission

with Imperfect CSIT

3.1. Overview of the Chapter

In this chapter we make progress towards the understanding of the fundamental limits of robust

interference management under full transmitter cooperation in the context of an overloaded MISO

BC, where the number of users is larger than the number of antennas at the transmitter. This

problem, which extends the setup in Chapter 2 where an equal number of transmitting antennas

and users was assumed, is motivated by the fact that a required feature for the next generation of

wireless communication networks will be the capability to serve simultaneously a large number of

devices with heterogeneous CSIT qualities and demands.

In particular, we consider an overloaded MISO BC with two groups of CSIT qualities. One group

has a CSIT quality β > 0, while the other group has a CSIT quality β = 0. The main contribution

of this chapter is two-fold: 1) we first propose a transmission scheme where no CSIT codewords are

superimposed on top of spatially-multiplexed codewords. The developed strategy allows to serve

all users in a non-orthogonal manner and the analysis shows an enhanced perfomance compared

to existing schemes. 2) We then characterize the optimal DoF region in the considered setting, by

employing a dual argument based on converse and achievability similar to the one in Chapter 2.

3.2. Introduction

The ability to simultaneously support a tremendous number of devices with heterogeneous de-

mands and capabilities is amongst the various features envisioned for future wireless networks [1].

Hence, it is expected that many networks will operate in overloaded regimes, roughly described as

scenarios where the number of messages exceeds the number of transmitting antennas. One fun-

damental example is captured by the Single-Input-Single-Output (SISO) Broadcast Channel (BC),

widely studied in literature. However, insights drawn from such studies are deemed insufficient

when considering multiple antennas, as the SISO BC is robust against CSIT inaccuracies due to its

degraded nature. On the other hand, the study of overloaded multiantenna channels is uncommon,

e.g. works on the Multiple-Input-Single-Output (MISO) BC with imperfect CSIT consider a num-

ber of users less or equal to the number of transmitting antennas, as assumed in Chapter 2 or in the

works in [13, 19, 21, 22].
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3.2.1. An Overloaded MISO BC with Heterogeneous Partial CSIT

In this chapter, we extend the results in Chapter 2 and we make progress towards understanding

the fundamental limits of overloaded multiantenna networks with heterogeneous partial CSIT. We

consider a MISO BC comprising a transmitter equipped with KT antennas, and KR > KT single-

antenna receivers (or users) indexed by KR = {1, . . . ,KR}. While a general heterogeneous setup

would consider arbitrary CSIT qualities, we restrict the analysis to the case where partial CSIT for

KT of the KR users is available (βk > 0), while no CSIT is available for the remaining KR −KT

users (βk = 0)1. This assumption is introduced in order to make the problem analytically tractable,

in particular to simplify the derivation of the sum-DoF upper-bound as well as the DoF region outer-

bound. We further simplify the analysis by considering a symmetric scenario where all users with

partial CSIT have the same quality β. It is implicitly understood that the CSIT quality is defined as

in Section 1.1.2 and Section 2.3.1. Such setup is sufficient to gain some insights into the structure

of the DoF-optimal transmission scheme and the influence of heterogeneous partial CSIT. Before

we proceed, let us denote the groups of receivers by Kβ and K0, where the subscript indicates the

CSIT quality.

3.2.2. Main Contributions: Time Partitioning versus Power Partitioning

In the presence of only one of the two groups Kβ and K0, DoF-optimal schemes are known. As

widely discussed Chapter 2, the optimal sum-DoF for group Kβ is achieved through rate-splitting,

which relies on the transmission of a degraded common codeword on the top of the classical zero-

forced private codewords [45]. On the other hand, the absence of CSIT results in a collapse of

the sum-DoF to unity [22], and the degraded layer becomes sufficient to achieve the DoF of group

K0. As a baseline, we consider the case where the two groups are served independently through

orthogonal time partitioning (or sharing). We show that such strategy is in fact suboptimal in a DoF

sense by proposing a superior strategy.

We propose a transmission scheme where the signals carrying the messages of groups K0 and

Kβ are superimposed and separated in the power domain. Users in K0 decode their codewords by

treating the interference caused by the signals intended to Kβ as noise. On the other hand, users

in Kβ first decode the codewords intended to K0 (without hurting their DoF!), and then proceed

to decode their own codewords. Contrary to the orthogonal time partitioning, this leads to a non-

orthogonal power partitioning. First, we show that such strategy achieves a strict DoF gain over

time partitioning when users in each group achieve a per-user symmetric-DoF. Second, we show

that this strategy in fact achieves the optimal DoF region for the considered overloaded MISO BC.

Third, we show using simulations that the DoF gains achieved through power partitioning over time

partitioning manifest in the finite SNR regime as significant achievable rate gains.

1In this chapter, as in Chapter 2, no CSIT implies that the transmitter has no (or finite precision [22]) information about

the channel direction. However, the channel gain (or long term SNR) is known to guarantee reliable communication.
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3.3. A Time Partitioning approach

Since group Kβ has (partial) CSIT and group K0 has no CSIT, it seems natural to partition the time

resource and carry out the transmission over two phases. In particular, the first phase occupies a

fraction λ ∈ [0, 1] of the time in which group Kβ is served using a multiuser scheme that leverages

partial CSIT and achieves spatial-multiplexing gains. On the other hand, the second phase occupies

the remaining 1−λ fraction of the time in which group K0 is served with no multiplexing gains due

to to the absence of CSIT. This time partitioning scheme acts as a baseline for the scheme proposed

in the following section. Moreover, the two phases are in fact used as basic building blocks to

construct the proposed scheme. Next, we describe the two phases in more detail.

Phase 1

For the first phase where users with CSIT are served, we adopt the rate-splitting scheme described

in Section 2.5, as in fact optimal for this scenario. For completeness, we briefly revisit rate-splitting

here. Users k ∈ Kβ split their respective messages into
(
W

(p)
k ,W

(c)
k

)
, whereW

(p)
k is a private sub-

message and W
(c)
k is a common (or public) sub-message. The sub-message W

(p)
k is encoded into

the private codeword X
(p)
k decoded only by user k, while W

(c)
1 , . . . ,W

(c)
KR

are jointly encoded into

the common codeword X(c) decoded by all users in Kβ . It is assumed that all codewords are drawn

from Gaussian codebooks with unitary powers. All codewords are linearly precoded and power

allocated and the transmitted signal at the t-th channel use is given by

X(t) =
√
P (c)V(c)(t)X(c)(t) +

∑

k∈Kβ

√
P

(p)
k V

(p)
k (t)X

(p)
k (t) (3.1)

where V(c)(t) ∈ C
KT×1 and V

(p)
k (t) ∈ C

KT×1 are unitary precoding vectors, and P (c) and P
(p)
k

are the corresponding allocated powers with P (c)+
∑

k∈Kβ
P

(p)
k ≤ P . Since the common codeword

is decoded by all users, V(c)(t) is chosen as a random (or generic) precoding vector. On the

other hand, the private codewords are precoded by zero-forcing over the channel estimate, i.e.

V
(p)
k (t) ⊥

{
Ĝl(t)

}
l∈Kβ\k

. The power allocation is set such that P (c) = O(P ) and P
(p)
k = O(P β).

Following the steps explained in Section 2.5, all users decode the common codeword by treating

the interference from all private codewords as noise, from which the Signal to Interference plus

Noise Ratio (SINR) scales as O(P 1−β). This is followed by removing the common codeword,

and then each receiver decodes its private codeword with SINR of O(P β). Normalized by the

time partitioning factor λ, the DoF achieved by the common codeword is given by 1 − β, while

each private codeword achieves a DoF of β [45]. Hence, the per-user symmetric normalized DoF

achieved by evenly sharing the common codeword is given by
1+(KT−1)β

KT
.

Phase 2

In the second phase, users k ∈ K0 are served. Since all users have no CSIT, after normalizing by

the time partition 1− λ, the sum-DoF collapses to 1 [22], as widely seen in Chapter 2. This single
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normalized DoF can be shared in an orthogonal fashion using time-sharing or in a non-orthogonal

fashion using superposition coding and SIC. From a DoF perspective, these two strategies achieve

the same performance. Assuming superposition coding, messages are encoded into codewords and

then precoded such that

X(t) =
∑

k∈K0

√
PkVk(t)Xk(t) (3.2)

whereXk is an encoded codeword, Vk(t) is a random unitary precoding vector and Pk is the power

allocation. Using an appropriate power allocation, it can be shown that the single normalized DoF

can be split evenly amongst users such that each user achieves a normalized DoF of 1
KR−KT

.

Achievable DoF

It can be seen that within each phase (or group), power allocation is carried out such that users

achieve symmetric normalized per-user DoF. By incorporating the time partitioning factor λ ∈
[0, 1], the actual (non-normalized) per-user DoF achieved by the k-th user is given by

dk =




λ1+(KT−1)β

KT
, k ∈ Kβ

(1− λ) 1
KR−KT

, k ∈ K0.
(3.3)

The time partitioning factor can be further optimized to achieve a symmetric-DoF amongst all users

in the system, or any other tradeoff depending on the design objective.

3.4. A Power Partitioning Approach

In contrast to the time partitioning approach in the previous section, we propose a scheme based

on power partitioning. For some partitioning factor Λ ∈ [0, 1], the bottom Λ power levels are

reserved for the transmission to Kβ with partial CSIT, while the top 1−Λ power levels are occupied

by the transmission to K0 with no CSIT. It can be seen that power partition Λ in this scheme is

reminiscent to the time partition λ in the previous scheme. Moreover, the transmitted signal is in

fact a superposition of the signals in (2.6) and (3.2) such that

X(t) =
√
P0

∑

i∈K0

√
qiVi(t)Xi(t) +

√
P (c)V(c)(t)X(c)(t)

+
∑

k∈Kβ

√
P

(p)
k V

(p)
k (t)X

(p)
k (t)

(3.4)

where codewords, precoding vectors and powers are as defined in the previous section. To highlight

the power partitioning, we introduce P0 which denotes the total power allocated to the signal in-

tended to all users in K0. It follows that qi = Pi/P0 is the normalized power allocated user i ∈ K0.

An example that illustrates the two scheme is given in Fig. 3.1.

Before we proceed to take a closer look at the power partitioning, it is useful to highlight that the
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Figure 3.1.: Time partitioning and power partitioning for KT = 2 and KR = 3. Define the nor-

malized spatial-multiplexing as the sum-DoF normalized by both the time partition and

power partition. The normalized spatial-multiplexing gain in rectangles with light and

dark shadings is 1 and 2 respectively.

signal received by the k users is expressed by

Yk(t) =
√
P0

∑

i∈K0

√
qiG

T
k (t)Vi(t)Xi(t) +

√
P (c)GT

k (t)V
(c)(t)X(c)(t)

+
∑

i∈Kβ

√
P

(p)
i GT

k (t)V
(p)
i (t)Xi(t)

(p) + nk(t),
(3.5)

in which all different desired and interference components can be seen. In order to partition the

signal-space through the power domain, the power allocation is carried out such that




P0 = O(P )

P (c) +
∑

k∈Kβ
P

(p)
k = O(PΛ).

(3.6)

No CSIT Receivers

Users in K0 decode their messages by treating the interference (consisting of signals intended to

users in Kβ) as noise. This is equivalent to raising the noise floor to PΛ in Phase 2 of the previous

section. Hence, the sum-DoF achieved by users in K0 is given by 1 − Λ. Through an appropriate

allocation of {qi}i∈K0 , this DoF can be split evenly amongst users in K0.

Partial CSIT Receivers

As for users in Kβ , the same rate-splitting strategy of Phase 1 in the previous section is carried out

where the power of O(PΛ) is further split between the common codeword and the private code-

words. In particular, the common codeword is allocated a power of O(PΛ), while private code-

words are allocated a power of O(P a) where a ≤ Λ. Before decoding their codewords, receivers

first decode all codewords intended to users in K0 and remove them from the received signal. Since

such messages are degraded already, the DoF achieved by users in K0 remains uninfluenced by this
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step. On the other hand, users in Kβ now fully occupy the bottom Λ power levels.

Users in Kβ now proceed to decode the common codeword as in Phase 1 of the previous section.

This is received with a SINR of O(PΛ−a), hence achieves a DoF of Λ − a. After removing the

common codeword, each receiver decodes its private codeword with SINR of O(P a), achieving a

DoF of a.

It remains to highlight that since the channel estimation error scales as O(P−β), and due to

zero-forcing, each receiver in Kβ experiences an interference from the other private codewords

that scales as O(P a−β). This is drowned by noise if a ≤ β. Knowing that a ≤ Λ, we may set

a = min{β,Λ}. In other words, as long as the partition Λ satisfies Λ ≤ β, users in Kβ only need to

rely on private messages using zero-forcing as interference can be drown by noise and rate-splitting

is unnecessary. For partitions with Λ > β, zero-forcing is insufficient to neutralize interference,

and rate-splitting becomes useful for users in Kβ . It follows that each private codeword achieves a

DoF of min{β,Λ}, while the common codeword achieves a DoF of Λ−min{β,Λ}.

Remark 3.1. The proposed scheme is a superposition of layers. The top layers consists of no CSIT

codewords coming from K0 and the common rate-splitting codeword in Kβ , decoded by treating the

bottom layer as noise, and removed using SIC. The bottom layer consist of spatially-multiplexed

codewords carrying the remaining information for Kβ , which see no interference due to SIC of the

top layers and zero-forcing up to the β-th power level.

Achievable DoF

As in the previous section, we consider the case where users in each group achieve a symmetric-

DoF. It follows that the DoF achieved by the k-th user is given by

dk =





Λ+(KT−1)·min{β,Λ}
KT

, k ∈ Kβ

(1− Λ) 1
KR−KT

, k ∈ K0.
(3.7)

Moreover, Λ can be optimized to achieve different tradeoffs.

Gain over Time Partitioning

Here we demonstrate that the power partitioning scheme achieves a DoF gain over the time parti-

tioning scheme. Let d
(tp)
k be the DoF achieved by the k-th user through time partitioning as in the

previous section, i.e. obtained using (3.3) for some partition λ.

To highlight the DoF gains, let us consider the symmetric-DoF achieved by users in Kβ through

power partitioning given that users in K0 maintain the same per-user DoF as in time partitioning,

i.e. dk = d
(tp)
k for all k ∈ K0. To achieve this, we need to set Λ = λ in the power partitioning

scheme. It follows from (3.7) that the per-user DoF of the remaining users is given by

dk =





λ+(KT−1)·min{β,λ}
KT

, β ≤ λ

λ, β > λ
, for all k ∈ Kβ . (3.8)
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It can be seen that dk ≥ d
(tp)
k for all k ∈ K. For k ∈ K0, this follows directly from the design

criteria. For the remaining users k ∈ Kβ , this follows by noting that for all β, λ ≤ 1, we have
λ+(KT−1)·min{β,λ}

KT
≥ λ+(KT−1)·βλ

KT
. Moreover, this inequality is strict whenever 0 < β, λ < 1, i.e.

partial CSIT for Kβ and non-zero (or unity) partitioning. Under such conditions, power partitioning

achieves a strict improvement in the DoF of users in Kβ over time partitioning.

To gain more insight into the DoF gain, consider the example shown in Fig. 3.1. It can be seen

that the DoF achieved in each rectangle (a time-power resource block) is given by the rectangle’s

area times the normalized spatial-multiplexing gain (2 for zero-forcing and 1 for degraded). First,

assume that user-3 is switched off. The sum-DoF achieved by the remaining two users through

RS is given by 1 + β. Now, introducing user-3 through time partitioning reduces the sum-DoF to

λ(1 + β) + (1− λ) = 1 + λβ. On the other hand, user-3 is introduced through power partitioning

without harming the sum-DoF as long as Λ = λ ≥ β. Keeping in mind that user-3 achieves

the same DoF in both cases, it follows that user-1 and user-2 achieve higher DoF in the latter. For

Λ = λ < β, introducing user-3 through power partitioning reduces the sum-DoF to 1+λ. However,

this is still higher than the sum-DoF of 1 + λβ achieved through time partitioning.

3.5. Optimal DoF Region

In the previous section, we considered the case where DoF tuples of the form (dβ , . . . , dβ , d0, . . . , d0)

are achieved, i.e. users in Kβ achieve the per-user symmetric-DoF of dβ while users in K0 achieve

the per-user symmetric-DoF of d0. This gave some insight into the gains achieved through power

partitioning as opposed to time partitioning. However, in more general scenarios, achievable DoF

tuples assume a wide variety of tradeoffs characterized by achievable and optimal DoF regions,

as we have seen in Chapter 2. Interestingly, the optimal DoF region for the considered setup is

achieved through variants of the power partitioning scheme proposed in the previous section. This

region is characterized in the following result.

Theorem 3.1. For the overloaded MISO BC described in this chapter, the optimal DoF region D∗

is given by

dk ≥ 0, ∀k ∈ KR (3.9)

∑

k∈S

dk +
∑

k∈K0

dk ≤ 1 + (|S| − 1)β, ∀S ⊆ Kβ , |S| ≥ 1. (3.10)

The achievability of the DoF region is based on generalizing the power partitioning scheme

of Section 3.4 by allowing arbitrary power allocations and splits of the common message. The

achievability follows a similar philosophy than the one in Section 2.8. On the other hand, the

converse is also based on the sum-DoF upper-bound in [22] as the converse in Section 2.7. The

complete proof of Theorem 3.1 is given in the Appendix.

Note that from (3.10), we have dk ≤ 1 for all k ∈ K which is a trivial upper-bound for the

per-user DoF, and
∑

k∈K0
dk ≤ 1 which limits the sum-DoF of the no CSIT users to unity. To

better visualize the optimal DoF region, an example is given in Fig. 3.2 (left) for a channel with
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Figure 3.2.: DoF region achieved by power partitioning (left) and time partitioning (right) for M =
2 and K = 3, and CSIT quality β = 0.5 for the first two users. The points are

A = (β, β, 1 − β), B = (1, β, 0) and C = (β, 1, 0). It can be seen that A cannot be

achieved through time partitioning.

KT = 2 and KR = 3, where the CSIT quality of the first two users is β = 0.5. Moreover, for the

sake of comparison, the DoF region achieved through time partitioning is shown in Fig. 3.2 (right).

The time partitioning region is obtained by time-sharing the DoF of 1 achieved by user-3 with the

DoF region of the two remaining users achieved through rate-splitting (see [23]). For the power

partitioning region, the facet given by A − B − C is in fact sum-DoF optimal. Hence, user-3 can

be served with non-zero DoF without influencing the Sum-DoF (e.g. point A). On the other hand,

serving user-3 with non-zero DoF through time partitioning is not possible without decreasing the

sum-DoF as it requires moving away from the segment B − C.

3.6. Numerical Results

In this section, we show that the obtained DoF gains translate into enhanced rate performances. We

consider a MU-MISO scenario with KT = 2 antennas and KR = 3 users. Uncorrelated channels

are assumed with entries drawn from CN (0, 1). Users 1 and 2 have CSIT qualities β, where

channel estimation errors have entries drawn from CN (0, σ2) with σ2 = P−β . On the other hand,

the instantaneous CSIT of user 3 is unknown. In agreement to Sections 3.3 and 3.4, the precoding

vector of the codeword intendend for user 3 as well as the precoding vector of the common rate-

splitting codeword are chosen as unitary random vectors. On the other hand, the private codewords

for users 1 and 2 are precoded by zero-forcing.

We numerically evaluate the ergodic sum-rate of the first two users achieved by power partition-

ing and time partitioning, while maintaining the ergodic rate of the third user to be the same in

both cases. This is obtained by properly tuning, in the power partitioning approach, the power P0

allocated to the codeword of the third user, while considering a RS strategy for the first two users.

Fig. 3.3 shows the sum rate of user 1 and user 2 with respect to their long-term SNR for both power

partitioning and time partitioning. We assume a scenario with β = 0.5 and we set the parameter

λ = 0.5. We consider two cases where the SNR of users 1 and 2 is taken to be 10 dB, and then 20

dB, larger than the SNR of user 3. Since in time partitioning users 1 and 2 are scheduled separately

from user 3, the difference in SNR only affects their sum rate performance in power partitioning.

In the legend, we include this difference by brackets (only for power partitioning). From Fig. 3.3,
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when the long-term SNR of user-3 is 10 dB and 20 dB lower than users-1,2. The

parameters are set as β = 0.5 and λ = 0.5.

it is evident that our proposed power partitioning based approach significantly outperforms time

partitioning in both cases. Furthermore, as the difference between the SNR of users 1 and 2 and the

SNR of user 3 becomes larger, the rate gain increases which cannot be seen from DoF analysis.

3.7. Summary of the Chapter

In this chapter, we have considered an overloaded MISO BC where the transmitter has partial CSI

for KT users (equal to the number of antennas) and no-CSI for the remaining KR −KT, in a DoF

sense. We have proposed a transmission scheme based on power partitioning and showed that it

achieves strict DoF gains compared to a scheme where the two sets of users are independently

served over orthogonal time slots. Moreover, we have showed that the optimal DoF region for such

channel is in fact achieved by generalizing the proposed power partitioning scheme. This in turn

extends the results in Chapter 2 to the overloaded regime. The finite SNR rate performance of the

proposed DoF-motivated scheme is evaluated through simulations in which significant gains over

time partitioning are demonstrated. This shows that such DoF-motivated design and analysis can be

indeed very useful in guiding the design and optimization of more efficient practical transmission

strategies.
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4. Generalized Degrees of Freedom of the

Symmetric Cache-Aided MISO BC with

Partial CSIT

4.1. Overview of the Chapter

In this chapter we make progress towards the understanding of the fundamental limits of robust

cache-aided interference management under full transmitter cooperation. We consider the K-user

cache-aided MISO BC, where aK-antenna transmitter servesK single-antenna receivers, and each

receiver is equipped with a cache memory. The transmitter has partial instantaneous knowledge of

the channels of the users. It is readily seen that this setup is the cache-aided counterpart of the

classical K-user MISO BC studied in Chapter 2, while taking into consideration the presence of

caches across the network.

The performance metric utilized in this chapter is the Generalized Degrees of Freedom (GDoF),

an extension of the DoF metric which takes into consideration the difference in channel strengths

between the cross-links and the direct-links. Note that the GDoF framework is mostly understood

for symmetric settings, and for this reason the DoF metric was utilized in Chapter 2 and 3.

The main result of this chapter, for a symmetric setting in terms of channel strength levels,

partial channel knowledge levels and cache sizes, is the characterization of the sum-GDoF of the

considered network up to a constant multiplicative factor. The achievability scheme exploits the

interplay between spatial multiplexing gains and coded-multicasting gain. On the other hand, a

cut-set-based argument in conjunction with a sum-GDoF upper-bound for a parallel MISO BC

under channel uncertainty are used for the converse. We further show that the characterized order-

optimal sum-GDoF is also attained in a decentralized setting, where no coordination is required for

content placement in the caches.

4.2. Introduction and Main Contributions

In this chapter we consider the K-user cache-aided multiple-input-single-output broadcast channel

(MISO BC), which is the extension of the classical K-user MISO BC to cache-aided setting. In

particular, the K-user cache-aided MISO BC consists of a K-antenna transmitter which serves K

single-antenna receivers, where each receiver is equipped with a cache memory. As already pointed

out in Chapter 2 note that, even though such setup can model a radio cell where a multiple antenna

BS is connected to multiple users, the transmit antennas in the considered setup are not necessarily
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physically co-located, and may generally represent K radio heads (or remote antennas) connected

through a strong fronthaul. When CSIT is available with high accuracy, parallel non-interfering

links can be created through zero-forcing. In this case, interference is completely managed through

spatial pre-processing, and the usefulness of caches is restricted to local caching gains. However,

this is not the case when only partial or imperfect CSIT is available as observed in [32, 36, 110].

From Chapter 2, we know that studying the classical MISO BC (with no caches) reveals that

spatial multiplexing gains (i.e. DoF) of this channel suffer losses under imperfect CSIT. As we

seen, the extreme case of finite precision CSIT causes a total collapse of the sum-DoF to 1, where

all (DoF) benefits of multiple transmitting antennas are lost [22]. The availability of partial in-

stantaneous CSIT can help salvage some of the lost gains, achieving sum-DoF between 1 and K

depending on the CSIT quality. The complementary role of coded-caching in such scenarios was

first observed in [110]. In particular, while the primary role of CSIT is to facilitate interference

management (e.g. through zero-forcing), coded-caching reduces interference all together by creat-

ing multicasting opportunities. Hence, it was shown in [110] that coded-caching can offset the loss

due to partial CSIT, up to a certain CSIT quality given the cache size.

The DoF metric, which we utilized in Chapter 2 and 3, however can be very pessimistic, as

best exemplified by the sum-DoF collapse in [22]. This is mainly due the limitations of the DoF

framework, assigning equal strengths to every link (with non-zero gain) in the wireless network. In

a way, the DoF metric fails to capture one of the wireless channel’s most important features: the

propagation loss. This limitation is countered by the GDoF framework, which largely inherits the

tractability of the DoF framework while capturing the diversity in channel strengths [41, 43, 66].

The GDoF framework has been mostly considered in the literature for symmetric settings, where

all users have the same CSIT quality and/or channel strenghts. Extending to asymmetric settings

poses many challenges and only limited results are known, and most of these results center around

the two-user case only [41]. For this reason, the DoF metric was utilized in Chapter 2 and 3.

For a symmetric setup in terms of channel strenght, the cache-aided MISO BC was studied

under the GDoF framework in [36], while limiting to completely absent CSIT and considering

only achievability, with no guarantees on optimality1. In a different line of work, the cache-aided

MISO BC under partial CSIT was considered while focusing on the massive MIMO regime [112].

In particular, [112] studies the delivery rate scaling laws, as the number of transmitting antennas

grows arbitrarily large, using off-the-shelf caching strategies. While no guarantees on information-

theoretic optimality are provided in the above work, the emphasis on the interplay between spatial

multiplexing gains and coded-multicasting gains is very interesting. It turns out that this interplay,

which was first noticed in [110] and then further investigated in [37,112,113], plays a central role in

achieving and interpreting the order-optimal sum-GDoF of the cache-aided MISO BC under partial

CSIT as we show through our results. Next, we highlight the main contributions of this chapter.

1The same can be said about [110], where the DoF under partial CSIT can be equivalently interpreted as the GDoF

under no CSIT (see Section 4.4.1). No converse is given in [110], except for the trivial case where perfect CSIT is

available.
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4.2.1. Main Contributions and Organization

In this chapter, we consider theK-user cache-aided MISO BC within the (symmetric) GDoF frame-

work, where the channel strength of cross-links is captured through the famous α ∈ [0, 1] param-

eter [41, 43, 66], which will be described in detail over the next sections. In addition, we capture

the entire range of (symmetric) partial CSIT levels through the quality parameter β ∈ [0, α], where

β = 0 and β = α correspond to essentially absent and perfect CSIT, respectively [43]. For this

setting, the main contributions are twofold, as stated below:

1. We characterize the optimal sum-GDoF up to a constant multiplicative factor, which is inde-

pendent of all system parameters. This order-optimal sum-GDoF characterization is derived

while allowing central coordination during the placement phase of the achievability scheme.

2. We show that the order-optimal sum-GDoF, characterized under centralized placement, is

also attained in decentralized settings where no coordination during the placement phase is

allowed.

It is worthwhile highlighting that the order optimal schemes for the considered cache-aided MISO

BC, for both the centralized and decentralized cases, abide by the separation principle [34]. In par-

ticular, the placement and generation of coded-multicasting messages are independent of the phys-

ical channel parameters (e.g. link strengths or topology), and follow the placement and message

generation of the original shared-link Maddah-Ali and Niesen schemes explained in Section 1.2.1,

first developed in the works in [24, 79]. On the other hand, the delivery of the coded-multicasting

messages over the physical channel uses the principle of rate-splitting with common and private

signalling, extensively explained and utilized in Chapters 2 and 3, which essentially operates the

physical channel at some point of its multiple multicast GDoF region.

One of the technical challenges in characterizing the optimal sum-GDoF for the above setting is

the converse, i.e. deriving an upper-bound which is within a constant multiplicative factor from the

achievable sum-GDoF. Under partial CSIT, the conventional cut-set-based argument in [24] fails

when employed on its own (see also [34,106,115] for variants of such argument). Alternatively, we

derive an upper-bound by marrying the approach in [24] with a robust sum-GDoF upper-bound for a

parallel MISO BC under partial CSIT, which in turn employs results from recent works by Davoodi

and Jafar on classical networks (with no caches) under channel uncertainty [22, 41, 43], already

mentioned in Chapter 2 and 3 when deriving robust outer-bounds of the DoF regions. Specifically,

in this novel adaptation of the approach in [22, 41, 43] to cache-aided networks, caches at receivers

are replaced with equivalent parallel side links, and then an upper-bound on the sum-GDoF of the

resulting parallel sub-channels is derived.

Another technical challenge arises when dealing with the decentralized setting, particularly due

to the intractable form of the sum-GDoF achieved under decentralized placement. This intractabil-

ity is circumvented by observing that the decentralized achievable sum-GDoF is bounded below

by a centralized-like achievable sum-GDoF, yet with a smaller coded-multicasting gain compared

to the one achieved in a true centralized setting. This key observation enables us to prove order-

optimality in the decentralized setting.
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Figure 4.1.: A wireless network in which a transmitter with K antennas, Tx1, . . . ,TxK , serves K
single-antenna receivers, Rx1, . . . ,RxK . The transmitter has access to a library of N
files, while each receiver Rxi is equipped with a cache memory Ui.

In addition to the contributions highlighted above, we derive several insights from the optimal

sum-GDoF characterization, which generalize former observations obtained in special cases of the

considered setting [22, 36, 43, 110]. Such insights, and how they relate to previous observations,

can be found in Section 4.4.1. As for the remainder of the chapter, the organization is as follows.

Section 4.3 introduces the considered setting and problem. Section 4.4 presents the two main results

and related insights. In Section 4.5, we derive an upper-bound which is employed in the following

two sections to show order optimality. In Section 4.6 and Section 4.7, we prove the two main

results, the centralized setting result and the decentralized setting result respectively. Section 4.8

summarizes and concludes the chapter.

4.3. Problem Setting

In this section we extend the setup in Chapter 2 to the cache-aided setting and to the GDoF frame-

work. For completeness, we repeat some of the explanations in Section 2.3. We consider the MISO

BC consisting of a K-antenna transmitter serving K receivers (or users), where users are equipped

with a single-antenna each. Users are indexed by the set [K] , {1, 2, . . . ,K}. In a communica-

tion session, each user requests one file from a content library W , {W1, . . . ,WN} consisting of

N ≥ K files, each of size F bits. We assume that the transmitter has access to the entire library

(this applies to each radio head, or remote antenna, in physically distributed settings).

At the receiving end of the channel, each user i is equipped with a cache memory Ui of size MF

bits, where M ∈ [0, N ]. We define the normalized cache size as

µ ,
M

N
(4.1)

which is interpreted as the fraction of the content library each user is able to store locally. An

illustration of the setup is given in Fig. 4.1. It is readily seen that µ = 0 reduces the setup to the

classical MISO BC, while no communication needs to take place under µ = 1. We refer to the j-th

transmit antenna (or radio head) as the j-th transmitter to emphatize the different channel gains

between each antenna and the different users, while transmitter refers to the K transmit antennas
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jointly.

As previously described in Section 1.2.1, the network operates in two phases, a placement phase

and a delivery phase [24]. The placement phase takes place during the off-peak times before know-

ing the future demands of different users. During this phase, the cache memories of the users are

filled as an arbitrary function of the N files, where such function is denoted as Ui = φi(W). The

delivery phase takes place during peak times where each user requests one of theN files. For exam-

ple, user i requests file Wdi for some di ∈ [N ], where d = (d1, . . . , dK) is the tuple of all user de-

mands. Upon receiving the requests, each transmitter j sends a codewordXT
j = Xj(1), . . . , Xj(T )

over T ∈ N uses of the physical channel. At the other end, each user i receives the sequence

Y T
i = Yi(1), . . . , Yi(T ), a noisy linear combination of the K transmitted codewords. The user

then decodes for its requested file from Y T
i and the content of its own cache memory Ui. This is

described in more detail below.

4.3.1. Physical Channel

The input-output relationship at the t-th use of the physical channel, t ∈ [T ], is modeled by

Yi(t) =
K∑

j=1

√
aijGij(t)Xj(t) + Zi(t) (4.2)

where Yi(t) ∈ C is the signal received by the i-th user, Xj(t) ∈ C is the j-th transmitter’s normal-

ized signal with power constraint ❊
(
|Xj(t)|2

)
≤ 1 and Zi(t) ∼ NC(0, 1) is the normalized addi-

tive white Gaussian noise (AWGN), which is i.i.d. across all dimensions. aij ∈ R+, ∀j, i ∈ [K],

captures the long-term constant gain of the link between the j-th transmitter and the i-th receiver,

while Gij(t) ∈ C is the corresponding time-varying fading channel coefficient. Note that the terms

aij are omitted in the DoF framework as the DoF metric assumes equal values of all the direct

and cross links. To avoid degenerate situations, we assume that the instantaneous value |Gij(t)| is

bounded away from zero and infinity for all i, j ∈ [K] and t ∈ [T ].

GDoF Framework

For any i, j ∈ [K] and i 6= j, we refer to the link between transmitter i and receiver i as a direct-

link, while the link from transmitter j to receiver i is referred to as a cross-link. We consider a

symmetric setup in which all direct-links (or cross-links) have similar long-term gains. For GDoF

purposes, we introduce the nominal SNR value P ∈ R+, simply referred to as the SNR henceforth.

Following the GDoF framework [41, 66], channel gains are expressed in terms of the SNR as

aii = P and aij = Pα, ∀i, j ∈ [K], i 6= j (4.3)

where the parameter α ≥ 0 quantifies the strength of cross-links. The exponents of P in (4.3), i.e.

1 and α, are known as the channel strength parameters or levels. The channel model in (4.2) is
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rewritten as

Yi(t) =
√
PGii(t)Xi(t) +

K∑

j=1,j 6=i

√
PαGij(t)Xj(t) + Zi(t) (4.4)

which is the model used throughout the chapter. Note here the contrast with the DoF framework

where all the direct and cross links are considered equal. The results in this chapter are restricted

to the regime α ∈ [0, 1], i.e. scenarios in which the cross-link strength level is at most as strong

as the direct-link strength level. This is the most practically relevant regime, since each receiver

associates with a transmitter (i.e. radio head or remote antenna) from which it receives the strongest

signal. Moreover, as highlighted in [43], the regime α > 1 poses new challenges both in terms of

achievability and upper-bounds and remains an open problem even for the classical MISO BC (with

no caches) under partial CSIT. In the following paragraph, we remark the main difference between

the GDoF and the DoF framework.

Remark 4.1. As pointed out in [41], the scaling of P in the GDoF framework does not correspond

to a physical scaling of transmitting powers in a given channel (or network). The correct interpre-

tation is that each value of P defines a new channel. A class of channels parameterized by α belong

together because the point-to-point capacity of any link (direct or cross) normalized by log(P ) is

approximately the same across all such channels belonging to the same class. Hence, unlike the

DoF framework, the GDoF framework preserves the diversity in link strengths as P → ∞. More-

over, DoF results are recovered from GDoF results by setting α = 1, i.e, the special case in which

all links are equally strong.

Partial CSIT

The partial CSIT is modelled as for the DoF case, with the only exception that the quality parameter

β is assumed to be in the range [0, α] instead of the range [0, 1]. Let G ,
{
Gij(t) : i, j ∈ [K], t ∈

[T ]
}

be the set of all channel coefficient variables. Under partial CSIT, such channel coefficients

may be represented as for the DoF framework

Gij(t) = Ĝij(t) +
√
P−βG̃ij(t) (4.5)

where Ĝ ,
{
Ĝij(t) : i, j ∈ [K], t ∈ [T ]

}
are channel estimates, G̃ ,

{
G̃ij(t) : i, j ∈ [K], t ∈

[T ]
}

are estimation error terms and β ∈ R is a parameter capturing the CSIT quality level. The

channel knowledge available to the transmitters includes the coarse channel strength level α, the

CSIT quality level β and the estimates in Ĝ, but does not include the error terms in G̃.

All variables in Ĝ and G̃ are subject to the bounded density assumption as explained in [41,

43]. The difference between Ĝ and G̃, as pointed out earlier, is that the former is revealed to the

transmitters while the latter is not. Hence, given the estimates Ĝ, the variance of each channel

coefficient in G behaves as ∼ P−β and the peak of the probability density function behaves as

∼
√
P β . We assume throughout this chapter that β ∈ [0, α]. In particular, β = 0 and β = α capture

the two extremes where channel knowledge at the transmitters is absent and perfectly available,

respectively, and a value β > α would not lead to any improvement in the GDoF compared to
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β = α [43]. Note here the difference with respect the DoF framework where cross-links and direct-

links have the same channel strengths, hence β = 1 is needed to obtain full spatial multiplexing

gains. However, in the GDoF framework, the difference in channel strength between the direct and

cross links helps to obtain full spatial multiplexing gains already when β = α. Before we proceed,

it is worth highlighting that channel state information at the receivers (CSIR) is assumed here to be

perfect. Moreover, in a slight abuse of notation, also here we henceforth use Ĝ to denote the entire

channel knowledge available to the transmitters.

4.3.2. Performance Measures

Once transmitters are informed of the demands d in the delivery phase, each transmitter j gener-

ates a sequence of T channel inputs XT
j = ψ

(T )
j (W,d,U1, . . . ,UK , Ĝ), where ψ

(T )
j is an encod-

ing function. Note that the availability of partial CSIT is reflected in the argument Ĝ of ψ
(T )
j .

Once the transmission is complete, each user i maps its received signal, local cache content,

user demands and perfect channel knowledge to an estimate of the requested file Wdi denoted

as Ŵi = η
(T )
i (Y T

i ,Ui,d,G), where ηi is the decoding function. The information theoretic limits

of the system are studied by fixing N,K,M,P , and Ĝ, referred to as system parameters, while

allowing F and T to grow arbitrarily large.

For fixed system parameters, a code which takes files of size F bits and transmits codewords

of block-length T channel uses is defined as C(T ) ,
{
φi, ψ

(T )
i , η

(T )
i : i ∈ [K]

}
. It is evident

that a code is characterized by its corresponding caching, encoding and decoding functions defined

earlier. The performance of a code is governed by its worst-case probability of error defined as

P (T )
e , max

G|Ĝ
max

d∈[N ]K
max
i∈[K]

 

(
Ŵi 6=Wdi

)
, (4.6)

which is taken over all possible users, for all possible demands, under all possible realizations of

the channel coefficients given the available CSIT. The (sum) rate of such code is defined as

R ,
KF

T
. (4.7)

For given system parameters, we say that the rate R is achievable if there exists a coding scheme,

consisting of a sequence of codes
{
C(T ) : T ∈ N

}
of rate R each, with a vanishing probability of

error as the block-length grows arbitrarily large, i.e. P
(T )
e → 0 as T → ∞. Note that a strictly

positive rateR > 0 requires F → ∞ as T → ∞. The (sum) capacity C is defined as the supremum

of all achievable rates taken over all feasible coding schemes.

Note that this corresponds to the definition of capacity in the classical sense, i.e. the rate is

still defined in bits for channel use. The only thing here is that we have taken the caches into

consideration when calculating the capacity, i.e. the delivered bits include both the bits transmitted

over the air and the ones brought from the local caches.
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GDoF

By highlighting the dependency on the SNR P , it can be seen that each P defines a new channel

(or network) with capacity C(P ). The optimal sum-GDoF is hence defined as

GDoF , lim
P→∞

C(P )

log(P )
. (4.8)

Being an asymptotic (high-SNR) measure, it is well understood that the GDoF, as the DoF, does not

depend on P . On the other hand, while fixing the number of usersK, we often write GDoF(µ, α, β)

to highlight the dependency on the system parameters µ, α and β. In particular, it turns out that our

GDoF characterization is expressed in terms of the normalized cache size µ =M/N instead of the

exact N and M , and the cross-link strength level α and partial CSIT level β instead of the entire

CSIT Ĝ. These observations are consistent with existing DoF results for cache-aided networks on

one hand [31, 32, 34], and GDoF studies in classical networks under finite precision and partial

CSIT on the other hand [41, 43].

Generalized Normalized Delivery Time

Instead of working directly with the GDoF, it will be seen later that it is easier to derive the results

in terms of a function of the reciprocal2 1/GDoF. Hence, we introduce the generalized normalized

delivery time (GNDT), where the optimal GNDT is defined as

GNDT(µ, α, β) ,
K

GDoF(µ, α, β)
. (4.9)

The GNDT (or the delivery time as we refer to it throughout the chapter) is measured in time-slots.

One time-slot is the optimal amount of time required to communicate a single file to a single user

over a direct-link (with strength level 1) under no caching and no interference as P → ∞. In

particular, since a single user direct-link with no interference and no caching has a capacity of

log(P ) + o
(
log(P )

)
, i.e. GDoF = 1, it is readily seen that GNDT = 1 time-slot for such setting.

For any given µ, α and β, as GNDT(µ, α, β) corresponds to the optimal delivery time, it follows that

a delivery time GNDT
′(µ, α, β) is achievable if and only if GNDT′(µ, α, β) ≥ GNDT(µ, α, β).

The GNDT generalizes the normalized delivery time (NDT) metric in [115] to suit the GDoF

framework. Hence, it is not surprising to observe that the GNDT-GDoF relationship resembles (and

generalizes) the NDT-DoF relationship. Moreover, it is readily seen from (4.9) that the GDoF can be

interpreted as the capacity in files per time-slot. We would also like to highlight that in the approach

followed in this chapter we first define the GDoF and then the delivery time as a function of the

GDoF. However, in many works in the the literature (see, for instance, [32, 38, 107, 109, 115, 129]

and references therein) the opposite approach is adopted, where the delivery time is defined first

and then the DoF as a function of the delivery time.

Before we proceed, we remark that in this chapter, as in [24, 25, 30–32, 34, 36, 79, 106, 115], we

2This has been observed when dealing with the DoF in many works including [25, 30, 32, 34, 106].
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adopt a worst-case definition of performance measures with respect to user requests. As a result, it

is always assumed that each user requests a different file.

4.3.3. Centralized Placement vs. Decentralized Placement

Although the placement phase does not depend on the actual user demands d in the delivery phase,

placement strategies may still depend on the identity and number of active users during the delivery

phase. Such coordination in the placement phase is known as centralized placement, which has

been described in Section 1.2.1. Since the identity, or even the number, of active users may not be

known several hours before the delivery phase takes place, it is also important to consider strategies

in which placement is not allowed to depend on such information. In particular, this is even more

crucial in wireless networks where users enjoy an high-degree of mobility. This lack of coordination

is known as decentralized placement [79], also explained in Section 1.2.1. Decentralization during

the placement phase can be realized by allowing randomized placement schemes. For instance,

each user i independently draws a caching function φi(W;D) from an ensemble of randomized

caching functions parameterized by an arbitrary random variable D, independent of i and K.

4.4. Main Results and Insights

The main results of this chapter are: 1) the sum-GDoF characterization of the symmetric cache-

aided MISO BC under partial CSIT, described in Section 4.3, to within a constant multiplicative

gap, and 2) showing that such sum-GDoF characterization is robust to decentralization. We start

by presenting the first result and deriving useful insights assuming a centralized setting, then we

extend to the decentralized setting.

4.4.1. Centralized placement

In order to state the sum-GDoF result, we define the centralized GNDT function GNDTC(µ, α, β),

where

GNDTC(µ, α, β) ,
K(1− µ)

K(1− (α− β)) + (1 +Kµ)(α− β)
(4.10)

for any α ∈ [0, 1], β ∈ [0, α] and µ ∈ {0, 1
K ,

2
K , . . . ,

K−1
K , 1}, and the lower convex envelope of

these points for all other µ ∈ [0, 1].

Theorem 4.1. For the symmetric K-user cache-aided MISO BC under partial CSIT described in

Section 4.3, under centralized placement we achieve the sum-GDoF given by

GDoFC(µ, α, β) =
K

GNDTC(µ, α, β)
. (4.11)

Moreover, the achievable sum-GDoF in (4.11) satisfies

GDoFC(µ, α, β) ≤ GDoF(µ, α, β) ≤ 12 · GDoFC(µ, α, β). (4.12)
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The proof of Theorem 4.1 is presented in Section 4.6. As in [25, 34], the somewhat loose multi-

plicative gap of 12 in Theorem 4.1 is due to the analytical bounding techniques used in the converse.

Numerical simulations suggest that such factor is no more than 3.5 for K ≤ 100 and N ≤ 500.

To gain some insights into the sum-GDoF characterized in Theorem 4.1, we restrict the following

discussion to µ ∈ {0, 1
K ,

2
K , . . . ,

K−1
K }, for which the achievable sum-GDoF in (4.11) is expressed

as

GDoFC(µ, α, β) = (1− (α− β))
K

1− µ
+ (α− β)

1 +Kµ

1− µ
. (4.13)

It is easily seen that GDoFC(µ, α, β) in (4.13) reduces to its classical counterpart in [43] under

µ = 0, i.e. where no caches are available. In this case, the multiplicative factor of 12 can be

reduced to 1. However, more significantly, the form taken by the sum-GDoF in (4.13), for any µ

(in the set above), is analogous to the form of the classical sum-GDoF in [43]. This is explained

in more details next, where we use the terminology of signal power levels measured in terms of

the exponent of P [130]. We start by looking at specialized cases from which we build our way

towards the general case.

DoF Under Partial CSIT

Recall that sum-DoF characterization under partial CSIT is obtained by setting α = 1. Defining

DoFC(µ, β) , GDoFC(µ, 1, β) and applying such specialization to (4.13), we obtain

DoFC(µ, β) = β
K

1− µ
+ (1− β)

1 +Kµ

1− µ
. (4.14)

Under perfect CSIT (β = 1), zero-forcing over the physical channel enables a spatial multiplexing

gain of K. By incorporating caches into the picture, we obtain a further local caching gain of 1
1−µ ,

which is the only relevant caching gain here as zero-forcing creates parallel (non-interfering) single-

user links. Under the other extreme, i.e. finite precision CSIT (β = 0), all spatial multiplexing

gains in the physical channel are lost and the sum-DoF collapses to the one obtained in the original

setting with a shared link [24]. In this case, the network relies on the local caching gain of 1
1−µ

and the global caching gain of 1 +Kµ, where the latter is enabled by creating coded-multicasting

opportunities.

It is readily seen that finite precision CSIT is as (un)useful as no CSIT from a DoF perspective3.

This is reminiscent of the sum-DoF collapse in the classical MISO BC seen in Chapter 2, proved

for the first time in [22]. Moreover, it is worth noting that since the sum-DoF of the cache-aided

MISO BC is an upper-bound for the sum-DoF of cache-aided interference networks, this collapse

under finite precision CSIT also holds for the networks in [31, 34, 106].

For partial CSIT (0 < β < 1), the sum-DoF takes the form βDoFC(µ, 1) + (1− β)DoFC(µ, 0),

laying on the line connecting the two extremes. In this case, partial CSIT of level β allows (power-

3It is implicitly understood that such statements hold in an order-optimal sense. This applies to all similar observations

herein.
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controlled) zero-forcing transmission in the bottom β signal power levels without leaking any in-

terference above the noise floor at undesired users, as extensively seen in Chapter 2 and 3 . This

utilization of only a fraction of power levels yields the factor β in the DoF. The remaining sig-

nal power levels are used for a shared-link-type transmission requiring no CSIT. In particular, this

transmission sees interference from the zero-forcing layer, hence is left with the top (1− β) power

levels as reflected in the DoF. Since all users can decode (and remove) all codewords in the shared-

link layer without influencing its achievable DoF, the zero-forcing layer remains unaffected. This

is again in agreement with what already extensively seen in Chapter 2 and 3. To facilitate such

partitioned transmission, messages (or files in this case) are split into private and common parts

delivered through the zero-forcing and shared link layers, respectively, in the way will be described

in detail later.

The scheme described above expands upon, and inherits the main features of, the rate-splitting

scheme used for the classical MISO BC with partial CSIT (alongside other networks) described

in Section 2.5. Hence, it is not surprising to see that the cache-aided sum-DoF takes the same

weighted-sum form of the classical sum-DoF βK + (1 − β), recovered from the above by setting

µ = 0.

GDoF Under Finite Precision CSIT

This is recovered from (4.13) by setting β = 0 and corresponds to the achievable sum-GDoF

in [36]. It is easily checked that the sum-GDoF in this case takes the form of the DoF in (4.13),

after replacing β with 1−α. This is inline with the observation that DoF results under partial CSIT

translate to GDoF results under finite precision CSIT [131]. This also highlights that unlike the

DoF metric, the GDoF metric captures spatial multiplexing gains under finite precision (or even

absent) CSIT. Such multiplexing gains, however, are achieved by exploiting the signal power levels

only.

The General Case

For arbitrary levels of β and α, the insights derived in [43] for the GDoF of the classical MISO

BC extend to the cache-aided counterpart. In particular, the cross-link strength level α and the

CSIT quality level β equally counter each other and hence only their difference (α − β) matters.

The bottom 1 − (α − β) power levels are reserved for parallel-link-type transmission through

zero-forcing and power control, while the shared-link-type transmission rises above, essentially

occupying the top (α − β) power levels. Therefore, it is readily seen that as (α − β) increases,

the network starts relying more on the global caching gain and less on spatial multiplexing gains as

reflected in (4.13).

4.4.2. Decentralized placement

In this part we consider the decentralized setting where centrally coordinated placement is not al-

lowed during the placement phase. Before we state the following result, we define the decentralized
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GNDT function GNDTD(µ, α, β), where

GNDTD(µ, α, β) , K
K−1∑

m=0

(
K−1
m

)
µm (1− µ)K−m

K(1− (α− β)) + (1 +m)(α− β)
(4.15)

for any α ∈ [0, 1], β ∈ [0, α] and µ ∈ [0, 1].

Theorem 4.2. For the symmetric K-user cache-aided MISO BC under partial CSIT described in

Section 4.3, under decentralized placement we achieve the sum-GDoF given by

GDoFD(µ, α, β) =
K

GNDTD(µ, α, β)
. (4.16)

Moreover, the achievable sum-GDoF in (4.16) satisfies

GDoFD(µ, α, β) ≤ GDoF(µ, α, β) ≤ 12 · GDoFD(µ, α, β). (4.17)

The proof of Theorem 4.2 is presented in Section 4.7. The most significant consequence of The-

orem 4.2 is that centralized placement leads to at most a constant-factor improvement of the GDoF

over decentralized placement. Through a straightforward inspection, this constant-factor improve-

ment is bounded above by GDoFC(µ, α, β) ≤ 12 · GDoFD(µ, α, β), obtained from (4.12) and

(4.17). In Section 4.7.3, this multiplicative gap between the centralized GDoF and decentralized

GDoF is tightened to 1.5.

In Section 4.7.2, we show that an upper-bound on GNDTD(µ, α, β) takes the form of the central-

ized delivery time in (4.10), yet with a lower coded-multicasting gain. It follows that the insights

that follow Theorem 4.1, derived in the light of the centralized achievable sum-GDoF, extend to the

decentralized setting.

4.5. Upper-Bound

In this section, we obtain an upper-bound for the sum-GDoF. Since it is more convenient to work

with the GNDT in (4.9), the upper-bound is derived in terms of a lower-bound on GNDT(µ, α, β).

Theorem 4.3. For the symmetric cache-aided MISO BC under partial CSIT described in Section

4.3, a lower-bound on the optimal GNDT is given by

GNDT(µ, α, β) ≥ max
s∈{1,2,...,K}

GNDT
lb
s (µ, α, β), (4.18)

where GNDT
lb
s (µ, α, β) is defined as4

GNDT
lb
s (µ, α, β) ,

(
s

1 + (s− 1)(1− (α− β))

(
1− M⌊

N
s

⌋
))+

. (4.19)

4For any x ∈ R, we define (x)+ , max{0, x}.
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In the above, for any subset of s ≤ K users, the corresponding GNDT
lb
s (µ, α, β) in (4.19) is a

lower-bound on the optimal delivery time GNDT(µ, α, β). It follows that the tightest of such lower-

bounds is obtained by maximizing GNDT
lb
s (µ, α, β) over s. We also observe that GNDTlb

s (µ, α, β)

depends on the parameters of the physical channel through the difference (α − β). In particular,

for a fixed number of users s, library size N and cache size M , GNDTlb
s (µ, α, β) decreases when

(α− β) decreases. This is intuitively explained by the fact that decreasing (α− β) corresponds to

higher (relative) CSIT quality, enabling larger spatial multiplexing gains which in turn reduce the

delivery time.

From Theorem 4.3 and (4.9), it is easily seen that an upper-bound for the sum-GDoF is given by

GDoF(µ, α, β) ≤ min
s∈{1,2,...,K}

K

GNDT
lb
s (µ, α, β)

. (4.20)

The upper-bound in Theorem 4.3 is employed to prove the converse parts of Theorem 4.1 and

Theorem 4.2 in the following sections. In the remainder of this section, we present a proof for

Theorem 4.3. The proof relies on two main ingredients summarized as follows.

1. A lower-bound on GNDT(µ, α, β) is obtained by considering a subset of s ≤ K users and a

multi-demand communication, in which each user requests multiple distinct files.

2. Each cache memory is replaced with a parallel side link of capacity that can convey the

information content of the cache to the user by the end of the multi-demand communication.

By bounding the sum-GDoF of this new channel, we bound the delivery time of the multi-

demand communication.

Similarities and differences between this proof and previous works are discussed at the end of this

section.

4.5.1. Multi-Demand Communication

Consider a subset of s ≤ K users and a multi-demand communication over the cache-aided chan-

nel, in which each user requests a set of
⌊
N
s

⌋
distinct files and no file is requested by two different

users. We denote the
⌊
N
s

⌋
files requested by user i as Wd1i

, . . . ,W
d
⌊N/s⌋
i

. By the end of the com-

munication, each user is able to recover the
⌊
N
s

⌋
requested files from the received signals and the

local cache content. The optimal delivery time for this multi-demand communication is denoted by

GNDTmd, which is also defined in the worst-case sense, i.e. for the worst-case amongst all possible

multi-demands of
⌊
N
s

⌋
files. It is readily seen that GNDTmd satisfies

GNDTmd ≤
⌊
N

s

⌋
GNDT(µ, α, β) (4.21)

since we are ignoringK−s users and it is always feasible to treat each demand of s files separately

in a consecutive manner. Next, we transfer to an equivalent setup with no caches.
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4.5.2. Cache Replacement and Delivery Time Lower-Bound

Now consider a new MISO BC consisting of the same K transmitters, with access to the same li-

brary of N files, and the s ≤ K users served in the multi-demand communication above. However,

users in this new channel are not equipped with caches. Alternatively, communication is carried

out over two parallel sub-channels. The input-output relationship is given by

Yi(t) =
√
PGii(t)Xi(t) +

K∑

j=1,j 6=i

√
PαGij(t)Xj(t) + Zi(t) (4.22)

Bi(t) =
√
P γAi(t) + Ci(t) (4.23)

where (4.22) and (4.23) describe the first and second sub-channels, respectively. All physical prop-

erties of (4.4), described in Section 4.3.1, are inherited by the first sub-channel in (4.22). For the

second sub-channel, Ai(t) ∈ C is the signal transmitted to the i-th user with a power constraint

❊

(
|Ai(t)|2

)
≤ 1, Bi(t) ∈ C is the signal received by the i-th user and Ci(t) ∼ NC(0, 1) is the

i.i.d. AWGN. Each link in the second sub-channel remains constant over t and has channel strength

level γ ≥ 0, hence supports a transmission at rate γ log(P ) + o
(
log(P )

)
without influencing the

rate over the first sub-channel. Equivalently, γ is the GDoF (or capacity in files per time-slot) of

each individual link in the second sub-channel.

In this new MISO BC with parallel sub-channels, each user i requests the same
⌊
N
s

⌋
files re-

quested by the corresponding user in the multi-demand communication, i.e. Wd1i
, . . . ,W

d
⌊N/s⌋
i

.

Each transmitter j then generates the codewords Xn
j and An

j , sent over n ∈ N channel uses

through the sub-channels in (4.22) and (4.23) respectively. By the end of the communication,

user i recovers the ⌊N/s⌋ requested files from the signals Y n
i and Bn

i , received through the sub-

channels in (4.22) and (4.23) respectively. The optimal sum-GDoF of this new MISO BC, denoted

by GDoFP(α, β, γ), is bounded above as follows.

Lemma 4.1. For the s-user MISO BC, consisting of two parallel sub-channels, described in (4.22)

and (4.23), the optimal sum-GDoF is bounded above as

GDoFP(α, β, γ) ≤ (α− β) + s
(
1− (α− β)

)
+ sγ. (4.24)

It is evident that the bound on GDoFP(α, β, γ) in (4.24) depends on α and β through their

difference (α − β). For the extreme case of (α − β) = 0, the parallel MISO BC enjoys full

spatial multiplexing gains over the first sub-channel. On the other hand, for the other extreme of

(α − β) = 1, all spatial multiplexing gains are annihilated and the sum-GDoF of the first sub-

channel collapses to 1. Note that the contribution from the second sub-channel is unaffected since

it consists of non-interfering links. The proof of Lemma 4.1 is relegated to Appendix B.1. Next,

we argue that by setting γ such that

γ · GNDTmd =M (4.25)
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the corresponding optimal delivery time of the new channel is a lower-bound on the optimal total

delivery time of the cache-aided multi-demand communication, i.e.

s
⌊
N
s

⌋

GDoFP(α, β, γ)
≤ GNDTmd. (4.26)

This follows by observing that (4.25) guarantees that for each user i, the content of the cache Ui in

the original channel can be delivered over the second sub-channel in (4.23) using at most GNDTmd

time-slots. Since this does not influence the GDoF achieved over the first sub-channel in (4.22), any

placement and delivery strategy implemented for the cache-aided multi-demand communication is

feasible in the new channel and will take at most GNDTmd time-slots. We proceed while assuming

that (4.25) holds.

By combining (4.26) with Lemma 4.1 and (4.25), followed by invoking (4.21), we obtain

⌊
N

s

⌋
s ≤ GNDTmd

(
1 + (s− 1)(1− (α− β)) + sγ

)
(4.27)

= GNDTmd

(
1 + (s− 1)(1− (α− β))

)
+ sM (4.28)

≤ GNDT(µ, α, β)

⌊
N

s

⌋ (
1 + (s− 1)(1− (α− β))

)
+ sM. (4.29)

After some rearrangement and by considering that the delivery time is non-negative, we obtain

GNDT(µ, α, β) ≥
(

s

1 + (s− 1)(1− (α− β))

(
1− M⌊

N
s

⌋
))+

. (4.30)

The lower-bound in (4.30) is further tightened by maximizing over all possible sizes of user subsets,

i.e. s ∈ [K], from which the result in (4.18) directly follows.

4.5.3. Insights and Relation to Prior Works

The multi-demand communication to a subset of users corresponds to the cut-set-based bound

in [24], while the cache replacement is inspired by [32]. However, it is worthwhile highlighting

that bounding the DoF under partial current and perfect delayed CSIT and side links (after cache

replacement) in [32] is very different from bounding the sum-GDoF under only partial current

CSIT and side links in Lemma 4.1. In particular, the DoF upper-bound in [32] follows the footsteps

of [124], and is essentially based on a genie-aided argument. Such argument does not work for

the DoF/GDoF with only partial current CSIT and is known to give a loose bound in general. The

proof of Lemma 4.1 is hence based on the outer-bounds in [22, 41, 43], which rely on the aligned

image sets approach under channel uncertainty, already mentioned in Chapters 2 and 3.

It is also worthwhile highlighting that the sum-GDoF upper-bound in Lemma 4.1 is achievable

through separate coding over the two sub-channels, i.e. there are no synergistic gains to be exploited

through joint coding. This comes in contrast to the setting in [32], where jointly coding over

the parallel sub-channels (after cache replacement) can strictly outperform separate coding. The
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influence of this synergy (or the lack of it) is clear when we revert back to the cache-aided channels.

In particular, we saw in Theorem 4.1 that the considered cache-aided MISO BC collapses to the

shared-link setting in [24] when (α − β) = 1. However, even when current CSIT is completely

absent in [32], the synergy between caches and delayed CSIT leads to an improved performance

compared to the shared-link setting.

4.6. Centralized Placement

In this section, we treat the centralized setting and prove Theorem 4.1. We start with the achiev-

ability and then we prove order-optimality using the upper-bound in Theorem 4.3.

4.6.1. Achievability scheme

Here we present a centralized scheme which achieves the delivery time given by GNDTC(µ, α, β)

in (4.10), and hence the sum-GDoF given by GDoFC(µ, α, β) in Theorem 4.1. This scheme builds

upon and generalizes the one proposed for the cache-aided MISO BC in [36]. The key difference is

that the scheme in [36] is tuned to a special case in which only finite precision CSIT (i.e. β = 0) is

available, while the one proposed here bridges the gap by considering all relevant levels of partial

CSIT, i.e. β ∈ [0, α].

A key ingredient of the achievability scheme is the transmission of common and private code-

words during the delivery phase. We start by treating this physical-layer aspect through the follow-

ing result.

Lemma 4.2. Consider the K-user MISO BC with signal model given by (4.4) and properties de-

scribed in Section 4.3.1. Further assume that the transmitter has a common message W (c), in-

tended to all user, and private messages W
(p)
1 , . . . ,W

(p)
K , where W

(p)
i is intended only to user i.

We achieve the GDoF

GDoF
(c) = α− β (4.31)

GDoF
(p)
i = 1− (α− β), ∀i ∈ [K] (4.32)

where GDoF(c) is the GDoF achieved by the common message and GDoF
(p)
i is the GDoF achieved

by the i-th private message.

The GDoF in (4.31) and (4.32) is achieved using rate-splitting applied to the GDoF framework.

Using the terminology of signal power levels to explain the power-level partitioning, the upper

(α − β) power levels are occupied by the common message while the bottom 1 − (α − β) power

levels are reserved for the private messages. Note that the transmission of the common message

requires no CSIT, while the transmission of the private messages is carried out using zero-forcing

and power control, and hence may rely on the available partial CSIT. Therefore, in the extreme

case of (α−β) = 1 (i.e. finite precision CSIT and equal strength paths), spatial multiplexing gains

achieved through zero-forcing and power control collapse and the corresponding private messages
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will have a GDoF of zero. Note that this is inline with the DoF analysis in Section 2.5. The full

proof of Lemma 4.2 is relegated to Appendix B.2.

In the following, we focus on µ ∈ { 1
K ,

2
K , . . . ,

K−1
K }, such that Kµ is an integer. For µ = 0,

no caching is possible and the GDoF-optimal transmission strategy is given in [43], which is an

extension of the DoF-optimal strategy in Section 2.5 to the DoF framework. For the other extreme

of µ = 1, we have GNDTC(1, α, β) = 0 as each user can store the entire library. For the remaining

µ, where Kµ is not necessarily an integer, GNDTC(µ, α, β) is obtained by memory-sharing over

the schemes corresponding to µ ∈
{
0, 1

K ,
2
K , . . . ,

K−1
K , 1

}
, as pointed out in [24].

Placement phase

The placement is analogous to [24] and does not depend on the parameters specific to the considered

channel, e.g. transmitting antennas, α and β. We use mC , µK for notational briefness and to

facilitate reusing some parts in the following section for the decentralized case. Let Ω = {T ⊆
[K] : |T | = mC} be the family of all subsets of users with cardinality mC. Each file Wl ∈ W is

split into
(
K
mC

)
non overlapping, equal size, subfiles labeled as Wl,T , for all T ∈ Ω, where each

subfile consists of F/
(
K
mC

)
bits. User i caches all the subfiles Wl,T such that i ∈ T and l ∈ [N ].

Hence, the corresponding cache memory is filled as Ui = {Wl,T : T ∈ Ω, i ∈ T , l ∈ [N ]}.

Each user stores N
(
K−1
mC−1

)
subfiles which corresponds to a total of MF bits, hence satisfying the

memory constraint.

Delivery phase

During the delivery phase, the tuple d of all user demands is revealed, where each user i makes

a request for file Wdi . Since user i has all subfiles Wdi,T such that i ∈ T , the transmitter has to

deliver all subfiles Wdi,T such that i /∈ T , for all users i ∈ [K]. This corresponds to a total of

K(1− µ)F bits to be delivered over the wireless channel.

The transmitter splits each subfile Wdi,T , with i /∈ T , into a common mini-subfile W
(c)
di,T

and a

private mini-subfile W
(p)
di,T

such that Wdi,T =
(
W

(c)
di,T

,W
(p)
di,T

)
. The two mini-subfiles W

(c)
di,T

and

W
(p)
di,T

have sizes q|Wdi,T | bits and (1 − q)|Wdi,T | bits respectively, where |Wdi,T | is the size of

file Wdi,T and q is the file splitting ratio given by

q =
(1 +mC)(α− β)

K(1− (α− β)) + (1 +mC)(α− β)
. (4.33)

All common mini-subfiles are coded using the techniques in the original coded-multicasting scheme

in [24]. In particular, subsets of 1+mC common mini-subfiles W
(c)
di,T

are combined together using

a bitwise XOR operation to generate multicasting messages intended for subsets of 1 +mC users

as follows

W
(c)
S = ⊕i∈SW

(c)
di,S\{i}

(4.34)

for all S ∈ Θ, where Θ = {S ⊆ [K] : |S| = 1 + mC}. All multicasting messages W
(c)
S are

encoded into a common codeword X(c), while all private mini-subfiles W
(p)
di,T

intended to user i
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are encoded into the private codeword X
(p)
i . Next, the transmission of the common and private

codewords over the wireless channel is carried out as described in Appendix B.2.

By decoding X(c), each user i retrieves the multicasting messages W
(c)
S for all S ∈ Θ. Hence,

user i recovers all missing common mini-subfiles by combining with the content of its local cache

as in [24]. For example, for some T such that i /∈ T , user i solves for the missing W
(c)
di,T

using

XOR combining of W
(c)
S , where S = T ∪ {i}, with the pre-stored mC common mini-subfiles

W
(c)
dk,S\{k}

with k ∈ T . After decoding X(c), and removing its contribution from the received

signal as explained in Appendix B.2, user i decodes the private codeword X
(p)
i , from which the

missing private mini-subfiles W
(p)
di,T

, with T such that i /∈ T , are retrieved. At this stage, the entire

requested file Wdi is recovered.

Achievable Delivery Time

The shared-link-type transmission, taking place over X(c), delivers a total of qK(1 − µ) files (by

excluding the parts already cached) at rate (α − β)(1 + mC) files per time slot, where (α − β)

is the GDoF of the physical channel as seen from Lemma 4.2 and (1 + mC) is the gain due to

coded-multicasting. Hence, the delivery time for the shared-link layer is

Kq(1− µ)

(α− β)(1 +mC)
=

K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
. (4.35)

On the other hand, each X
(p)
i in the zero-forcing layer delivers a total of (1− q)(1−µ) files at rate

1− (α− β) files per time slot, as seen from Lemma 4.2. Hence, the delivery time for this layer is

K(1− q)(1− µ)

K
(
1− (α− β)

) =
K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
. (4.36)

Since the two layers take place in parallel, the total delivery time is also given by

GNDTC(µ, α, β) =
K (1− µ)

K (1− (α− β)) + (1 +mC) (α− β)
. (4.37)

As GNDTC(µ, α, β) is achievable, then the corresponding sum-GDoF given by GDoFC(µ, α, β) is

achievable.

4.6.2. Converse

Here we prove the converse in (4.12), which is equivalent to showing order-optimality of GNDTC(µ, α, β),

i.e. GNDTC(µ, α, β)/GNDT(µ, α, β) ≤ 12. Since GNDTC(µ, α, β) and GNDT
lb
s (µ, α, β) only

depend on the difference (α− β), with a slight abuse of notation we define

GNDTC(µ, δ) ,
K (1− µ)

K (1− δ) + (1 +Kµ) δ
(4.38)
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and

GNDT
lb
s (µ, δ) ,

(
s

1 + (s− 1)(1− δ)

(
1− M⌊

N
s

⌋
))+

. (4.39)

where δ ∈ [0, 1], GNDTC(µ, δ = α − β) = GNDTC(µ, α, β) and GNDT
lb
s (µ, δ = α − β) =

GNDT
lb
s (µ, α, β). Note µ ∈ {0, 1

K ,
2
K , . . . ,

K−1
K , 1} is assumed in (4.38), where the lower convex

envelope is taken for the remaining points in µ ∈ [0, 1]. From the above, the lower-bound in (4.18)

is rewritten as

GNDT(µ, α, β) ≥ max
s∈{1,2,...,K}

GNDT
lb
s (µ, δ = α− β) (4.40)

In the remaining part, we work with GNDTC(µ, δ) and GNDT
lb
s (µ, δ) for convenience. We show in

Appendix B.3.1 that for any µ, there exists a particular s ∈ [K] such that GNDTC(µ, δ)/GNDT
lb
s (µ, δ) ≤

12 for all δ ∈ [0, 1]. Since the right-hand-side of (4.40) is bounded below by GNDT
lb
s (µ, δ) for

any s ∈ [K], the order-optimality within a factor of 12 follows. This concludes the proof of the

converse.

4.7. Decentralized Placement

In this section, we prove Theorem 4.2 which considers the decentralized setting. As in Section 4.6,

we start with the achievability and then proceed to prove order-optimality.

4.7.1. Achievability Scheme

Here we propose a decentralized scheme which achieves the delivery time given by GNDTD(µ, α, β)

in (4.15), and hence the sum-GDoF given by GDoFD(µ, α, β) in Theorem 4.2. We start with the

placement phase.

Placement Phase

This is similar to the procedure in the original decentralized coded-caching paper [79], and hence

does not depend on the wireless channel parameters. Each user i stores a subset of µF bits from

each file, chosen uniformly at random. Therefore, each bit of each file is stored in some subset of

users5 T̃ ∈ 2[K], where |T̃ | ∈ {0, 1, . . . ,K}. For some l ∈ [N ], we use Wl,T̃ to denote the bits of

file Wl which are stored by all users in T̃ , where each Wl,T̃ is referred to as a subfile henceforth. It

is readily seen that Wl can be reconstructed from
{
Wl,T̃ : T̃ ∈ 2[K]

}
.

Delivery Phase

User i requires all subfiles Wdi,T̃
, such that i /∈ T̃ , in order to recover the requested file Wdi . The

delivery phase takes place over K sub-phases indexed by m ∈ {0, 1, . . . ,K − 1}. In the m-th

sub-phase, the transmitter delivers all subfiles Wdi,T̃
, such that i ∈ [K] and i /∈ T̃ , with |T̃ | = m.

5For a set S, the power set 2S consists of all subsets of S (including S itself) and the empty set ∅. Note that we consider

finite [K], i.e. K does not go to infinity. This guarantees that the power set is not an uncountable set.
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Note that m goes up to K − 1 since for |T̃ | = K, the corresponding subfiles are pre-stored by all

users.

Focusing on the m-th delivery sub-phase, delivery is carried out as described in Section 4.6.1 for

the centralized setting, while replacing mC in Section 4.6.1 by m. This is due to the fact that each

subfile to be delivered during the m-th decentralized delivery sub-phase is pre-stored by m users

instead of mC users in centralized delivery. It follows that coded-multicasting messages have order

1 +m in the m-th decentralized delivery sub-phase compared to 1 +mC in centralized delivery,

which is due to the random decentralized placement. Note that when performing the XOR operation

in (4.34) for the decentralized setting, all subfiles are assumed to be zero-padded to the length of

the longest subfile [79]. By the end of the K delivery sub-phases, the entire requested files are

recovered by the users.

Note that in sub-phase m = 0, there are no coded-multicasting opportunities as this sub-phase

delivers parts which are not pre-stored by any user. Hence, the transmission here is similar to the

centralized setting with µ = 0, which corresponds to transmission in the classical MISO BC with

no caches [43].

Achievable Delivery Time

Consider the m-th sub-phase and an arbitrary subset of users T̃ with size m. For each file Wl,

l ∈ [N ], the probability of any of its bits to be stored in the cache of some user in T̃ is given

by µ. Hence, the probability of this bit to be stored by exactly the m users of T̃ is given by

µm(1 − µ)K−m, from which the expected number of bits stored by each of such users is given by

µm(1− µ)K−mF . It follows that, as F → ∞, the expected size of Wl,T̃ is given by

µm(1− µ)K−mF + o(F ) (4.41)

where the term o(F ) is omitted in the following calculations. Since there is a total of
(
K
m

)
subsets

of m users, we have
(
K
m

)
µm(1− µ)K−mF bits of each file which are cached by exactly m users.

Now we proceed to calculated the number of bits of the file Wdi , which are stored by exactly

m users, which have to be delivered to user i. Recall that user i already has all subfiles Wdi,T̃
,

with |T̃ | = m and i ∈ T̃ , pre-stored. Hence, user i already has
(
K−1
m−1

)
µm(1 − µ)K−mF bits of

Wdi which are cached in exactly m users. Hence, the number of unavailable bits, contained in all

subfiles Wdi,T̃
with |T̃ | = m and i /∈ T̃ , is given by

(
K−1
m

)
µm(1 − µ)K−mF . Since there are K

users in total, the total number of files (obtained after normalizing by F ) which have to be delivered

during the m-th sub-phase is given by

K

(
K − 1

m

)
µm(1− µ)K−m. (4.42)

A portion q(m) = (1+m)(α−β)
(1+m)(α−β)+K(1−(α−β)) of such files are delivered with coded-multicasting gain

1+m (i.e. simultaneously useful for 1+m users) over the common codeword with GDoF (α−β)
files per time-slot. On the other hand, the remaining portion of 1 − q(m) is delivered over the
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private codewords with GDoF K (1− (α− β)) files per time-slot. Hence, the delivery time of the

m-th sub-phase is

K
(
K−1
m

)
µm (1− µ)K−m

K(1− (α− β)) + (1 +m)(α− β)
. (4.43)

By summing over all K sub-phases, the total delivery time is given by

GNDTD(µ, α, β) = K

K−1∑

m=0

(
K−1
m

)
µm (1− µ)K−m

K(1− (α− β)) + (1 +m)(α− β)
. (4.44)

It follows that the corresponding GDoF given by GDoFD(µ, α, β) is achievable.

4.7.2. Converse

In this part, we prove the converse in (4.17), which is equivalent to showing order-optimality of

GNDTD(µ, α, β), i.e. GNDTD(µ, α, β)/GNDT(µ, α, β) ≤ 12. As in the centralized setting,

GNDTD(µ, α, β) only depends on the difference δ = (α− β). Therefore, we work with

GNDTD(µ, δ) , K
K−1∑

m=0

(
K−1
m

)
µm (1− µ)K−m

K(1− δ) + (1 +m)δ
(4.45)

where GNDTD(µ, δ = α−β) = GNDTD(µ, α, β). Unlike GNDTC(µ, δ) in (4.38), GNDTD(µ, δ)

does not have the desirable form which allows comparing it to the bound in (4.40) directly. Hence,

the first (key) step of the converse is to derive an upper-bound on GNDTD(µ, δ), denoted by

GNDT
ub
D (µ, δ), which takes the form of the centralized achievable delivery time in (4.38). This

is given in the following result.

Lemma 4.3. The decentralized delivery time GNDTD(µ, δ) is bounded above as

GNDTD(µ, δ) ≤ GNDT
ub
D (µ, δ) =

K (1− µ)

K(1− δ) + (1 + u)δ
(4.46)

where u is given by

u =
K (1− µ)

GNDTD(µ, 1)
− 1. (4.47)

The proof of Lemma 4.3 is given in Appendix B.4. One important consequence of Lemma 4.3 is

that the expression in (4.46) allows us to show order-optimality of GNDTub
D (µ, δ) to within a factor

of 12 using similar techniques to the ones used for the centralized setting. The details are relegated

to Appendix B.3.2. The order-optimality of GNDTD(µ, δ) to within a factor of 12 follows, which

concludes the converse.
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4.7.3. Gap Between Decentralized and Centralized Schemes

From a straightforward inspection of (4.38) and (4.46), it can be seen that for integer values of Kµ

(for which a close form of GNDTC(µ, δ) is obtained), we have

GDoFC(µ, δ)

GDoFD(µ, δ)
=

GNDTD(µ, δ)

GNDTC(µ, δ)
≤ K(1− δ) + (Kµ+ 1)δ

K(1− δ) + (u+ 1)δ
. (4.48)

We know that when δ = 1 (i.e. α = 1 and β = 0), all spatial multiplexing gains are lost and the

achievable delivery times collapse to the ones in [24,79]. Hence, it follows from the observations in

[79] (and then the proof in [76]) that for δ = 1, there is a small price to pay due to decentralization,

making the ratio in (4.48) small. By further examining the bound on the right-most side of (4.48), it

can be seen that it decreases when δ decreases, hence further reducing the price of decentralization.

For example, such price is minimal when δ = 0 (i.e. α = β), where both the centralized and

decentralized strategies achieve the optimal delivery GNDT(µ, α, β = α) = 1−µ. This is intuitive

as with a decreased δ, the system starts to rely more on spatial multiplexing gains and local caching

gains and less on global caching gains, which are affected by decentralization. Concretely, the gap

in (4.48) is bounded above as follows.

Corollary 4.1. For any δ ∈ [0, 1] and µ ∈ [0, 1], we have

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 1.5. (4.49)

The above corollary is obtained by employing the results in Theorem 4.1, Lemma 4.3 and [76].

The full proof is relegated to Appendix B.5.

4.8. Summary of the Chapter

In this chapter, we have study the fundamental limits of cache-aided interference management

under full transmitter cooperation. In particular, we characterized the optimal sum-GDoF of the

K-user symmetric cache-aided MISO BC under partial CSIT up to a constant multiplicative factor.

Moreover, we showed that such sum-GDoF characterization is robust to decentralization, i.e. we

proposed a decentralized caching strategy which attains an order-optimal sum-GDoF performance.

In order to derive the sum-GDoF results, we introduced the generalized normalized delivery time

(GNDT) metric, which extends the normalized delivery time (NDT) metric in the same way the

GDoF extends the DoF. The GNDT is related to the reciprocal of the sum-GDoF, and is generally

easier to deal with when characterizing achievable and optimal performances.

At the heart of our converse proof is a sum-GDoF upper-bound for a parallel MISO BC with par-

tial CSIT, which extends a family of robust outer-bounds based on the aligned image sets approach,

initially developed in the context of classical networks with no caches, to cache-aided networks.

On the other hand, we showed that the order optimal sum-GDoF takes a familiar weighted-sum

form, often observed in classical networks (with no caches) under partial CSIT. Achieving such

sum-GDoF relies on a key interplay between spatial multiplexing and coded-multicasting gains.
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5. Centralized and Decentralized Cache-Aided

Interference Management in Heterogeneous

Parallel Channels

5.1. Overview of the Chapter

In Chapter 4 we have characterized the information-theoretic limits of robust cache-aided interfer-

ence management under full transmitter cooperation. In particular, we considered a cache-aided

MISO BC setting, where multiple transmitters access the entire library and fully cooperate to serve

the users. Moreover, we assumed the same number of transmitters and receivers. In this chapter

we generalize those results by considering the more general problem of cache-aided interference

management in a network which consists ofKT single-antenna transmitters andKR single-antenna

receivers, where each node is equipped with a cache memory. In particular, this setting general-

izes the one in Chapter 4 in two directions: 1) each transmitter does not have access to the entire

library but only to the content stored in its cache memory, 2) an arbitrary number of transmitters

and receivers is considered.

In this chapter we assume that the transmitters communicate with the receivers over two hetero-

geneous parallel subchannels: the P-subchannel for which transmitters have perfect instantaneous

knowledge of the channel state, and the N-subchannel for which the transmitters have no knowl-

edge of the instantaneous channel state. This is reminiscent of the partial CSIT setting considered

in the previous chapters, as the two subchannels can be interpreted as the fractions of the bandwidth

where the transmitters have perfect and no CSIT, respectively. As we will see later, this can also be

linked to recent results which has shown the equivalence between wireless networks where partial

CSIT is reported for all the bandwidth and wireless networks where CSIT is only reported for a

fraction of the bandwidth.

In this chapter we focus on one-shot linear delivery strategies [31,118,132], where channel sym-

bols cannot be spread over time and frequency. One-shot linear schemes have been widely used as

they are practical appealing and allows to tackle otherwise intractable information-theoretic prob-

lems. The first result of this chapter, under the assumptions of uncoded placement and separable

one-shot linear delivery over the two subchannels, is the characterization of the optimal sum-DoF to

within a constant multiplicative factor of 2. Next, and this proves to be technically very challenging,

we extend the result to decentralized placement in which no coordination is required for content

placement at the receivers. In this case, we characterize the optimal one-shot linear sum-DoF to

within a factor of 3.
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5.2. Introduction and Main Contributions

In this chapter, we consider a setup comprising a content library of N files and a cache-aided

wireless network consisting of KT transmitters and KR receivers, each equipped with a single

antenna and a cache memory. The normalized sizes of transmitter and receiver cache memories

are given by µT ∈ [0, 1] and µR ∈ [0, 1], respectively. As known from the previous chapters, the

network operates in two phases: 1) a placement phase which takes place before user demands are

revealed and in which all the nodes (both transmitters and receivers) store arbitrary parts of the

library according to a certain caching strategy, and 2) a delivery phase in which users are actively

making demands for different files of the library and in which demands are satisfied through a

combination of transmissions and the locally stored content from the placement phase. Note that,

differently from the cache-aided MISO BC setup in Chapter 4 where only the caches of the receivers

were filled during the placement phase, in the setup considered in this chapter both the caches at the

transmitters and receivers are filled during the placement phase. In the delivery phase, transmitters

can then only access the content in their own cache memory.

In the considered setup, communication during the delivery phase takes place over two hetero-

geneous parallel subchannels: one for which transmitters have access to the instantaneous channel

coefficients (i.e. perfect CSIT), and another for which the transmitters have no knowledge of the

instantaneous channel coefficients (i.e. no CSIT). The two subchannels are referred to as the P-

subchannel and the N-subchannel, respectively. For the sake of generality, we assume that the two

subchannels occupy arbitrary fractions of the bandwidth given by β ∈ [0, 1] and β̄ = 1 − β, re-

spectively. Different variants of this hybrid PN-parallel channel model have been widely adopted

in information-theoretic studies focusing on capacity and DoF limits of wireless networks under

CSIT imperfections (see e.g. [47, 125, 133, 134] and references therein). This wide adoption may

be attributed to the fact that the PN-parallel channel model abstracts practically relevant scenar-

ios in which channel state feedback is available only for a fraction of signalling dimensions, e.g.

sub-carriers in OFDMA systems, due to limited feedback capabilities.

Moreover, recent results in [73, 125] have made the link between wireless networks where CSI

is only reported for a fraction of the bandwidth and wireless networks where CSI is reported for

the entire bandwidth but with a certain quality (for instance, receivers feedback the CSI over a

certain number of bits). In fact, it was shown in [73] (the paper [125] is the extended journal

version of [73]), in the context of a MISO BC with multiple parallel subchannels, that reporting

partial CSIT over all subchannels allows to achieve the same sum-DoF than reporting perfect CSIT

over a fraction of the subchannels, and no CSIT over the remaining subchannels. In particular,

the result shows that that reporting perfect CSIT for a fraction β of the subchannels is equivalent

to report a partial CSIT with quality β for all the subchannels (where the partial CSIT quality is

defined as in the previous chapters). Furthermore, this setup and the results we obtained may also

be linked to other related wireless and wired scenarios with mixed multicast and unicast capabilities

as explained further on in Section 5.4.4, making it all the more relevant.

We would like to highlight that the main reason why we do not consider in this chapter the same
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partial CSIT definition as in the previous chapters, but a simplified version with the introduction of

parallel subchannels, is to make the problem analytically more tractable. Hence, the work in this

chapter is a first step towards the characterization of the fundamental limits of interfence manage-

ment for cache-aided interference networks with partial CSIT.

In the same spirit of [31], we focus on separable one-shot linear delivery schemes where the

spreading of channel symbols over time or frequency (i.e. subchannels) is not allowed. This is also

known as linear precoding with no symbol extension [135]. Such linear schemes are appealing due

to their practicality and their suitability for making theoretical progress on otherwise difficult or

intractable information-theoretic problems.

5.2.1. Main Results and Contributions

Centralized Setting

For the above described setup, we first characterize an achievable one-shot linear sum-DoF under

centralized placement and show that it is within a factor 2 from the optimal one-shot linear sum-

DoF for all system parameters. This achievable one-shot linear sum-DoF is given by

DoFL,C(µT, µR, β) = β ·min{KTµT +KRµR,KR}+ β̄ ·min{1 +KRµR,KR}.

From the separable nature of the proposed scheme, DoFL,C(µT, µR, β) takes a weighted-sum form

of β ·DoFL,C(µT, µR, 1)+ β̄ ·DoFL,C(µT, µR, 0), and is hence achieved by employing the scheme

in [31] over the P-subchannel and the scheme in [24], with a slight modification, over the N-

subchannel.

To prove the order-optimality, we derive an upper-bound for the one-shot linear sum-DoF by

building upon the converse proof in [31], where an integer optimization problem is formulated

and then a worst-case to average demands relaxation is employed. Further to the proof in [31]

however, obtaining the upper-bound for the considered setup requires two more judicious steps,

namely: a decoupling of the two subchannels and then a careful optimization over a delivery rate

splitting ratio. This yields an upper-bound, denoted by DoFL,ub(µT, µR, β), which also takes a

weighted-sum form of β · DoFL,ub(µT, µR, 1) + β̄ · DoFL,ub(µT, µR, 0), hence reducing the task

of proving order optimality to comparing DoFL,C(µT, µR, β) and DoFL,ub(µT, µR, β) at the two

extreme points of β = 0 and β = 1 (see Sections 5.5 and 5.6).

Decentralized Setting

The insights gained from addressing the centralized setting are then employed to tackle a decentral-

ized variant of the considered setup, which proves more technically challenging. In the considered

decentralized setting, placement at the receivers is randomized and requires no central coordina-

tion. On the other hand, centralized placement at the transmitters is still allowed, as transmitters

are assumed to be fixed nodes in the network, e.g. base stations, access points or servers. For this

decentralized setting, we show that an achievable one-shot linear sum-DoF, which is within a factor
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of 3 from the optimal one-shot linear sum-DoF for all system parameters, is characterized by

DoFL,D(µT, µR, β) = β · 1
∑KR−1

l=0
(KR−1

l )µl
R(1−µR)KR−l−1

min{KTµT+l,KR}

+ β̄ · KRµR
1− (1− µR)KR

which evidently takes the weighted-sum form of β · DoFL,D(µT, µR, 1) + β̄ · DoFL,D(µT, µR, 0).
Once again, order-optimality is shown by comparing DoFL,D(µT, µR, β) and DoFL,ub(µT, µR, β)

at the two extreme points β = 0 and β = 1. While the case β = 0 follows by a direct compari-

son of DoFL,D(µT, µR, 0) and DoFL,ub(µT, µR, 0), the intricate form of DoFL,D(µT, µR, 1) does

not easily lend itself to such direct approach. Alternatively, we prove that
DoFL,ub(µT,µR,1)
DoFL,D(µT,µR,1) ≤

DoFL,ub(µT,µR,0)
DoFL,D(µT,µR,0) , which serves the same purpose. Showing that this last inequality holds true turns

out to be particularly challenging and involves first reformulating it as a inequality involving a

polynomial, and then proving a key quasiconcavity property for such polynomial from which the

inequality follows (see Section 5.7).

As highlighted above, the main technical challenge for the decentralized setting, and in general

of this chapter, is the proof that DoFL,D(µT, µR, 1) is to within a factor 3 from the optimal one-shot

linear sum-DoF. Moreover, as β = 1 corresponds to decentralized placement for the setting in [31],

this is an important result on its own. Hence, a major outcome of this chapter is the proof that

decentralized placement attains an order-optimal one-shot linear sum-DoF (to within a factor 3) in

the setup in [31].

Related Works

We conclude this part by highlighting the connection to other works that consider related setups. It

is evident that for β = 1, the considered setup reduces to the one in [31, 34, 106], where only cen-

tralized placement was considered. Since we adopt one-shot linear delivery schemes, our work is

most related to [31] and expands upon it in two main directions: 1) the consideration of parallel het-

erogenous subchannels, and 2) the consideration of decentralized placement at the receivers. Note

that already in [132, 136] a decentralized variant of the setting in [31] was considered, with addi-

tional assumptions of partial connectivity and asymptotically large networks. The latter assumption

allows for a considerable simplification of the achievable sum-DoF, which in turn, allows for a di-

rect comparison with the corresponding upper-bound to show order-optimality1. This approach,

however, does not work for the setting with finite transmitters and receivers considered here.

Regarding the point 1) above, the incorporation of parallel heterogeneous subchannels with the β

parameter into cache-aided interference networks reveals a tradeoff between CSIT feedback budget

and cache sizes as it will be described in Section 5.4.3. This tradeoff extends previous observations

that were made for the cache-aided multi-antenna broadcast channel [32,110]. Regarding the point

2) above, decentralized scenarios, which are somewhat related the setting of this work, were con-

sidered in Chapter 4 and the works in [108,109,119,120]. In Chapter 4, the multi-antenna broadcast

1In particular, the achievable sum-DoF in [132] is approximated by moving a summation over the delivery time and the

corresponding multicasting gains from the denominator into the numerator (see the expression of DoFL,D(µT, µR, β)
for β = 1).
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channel with partial CSIT was considered. As already pointed out earlier, the partial CSIT setting

in Chapter 4 can be translated into the parallel subchannels setting of this chapter by considering

the partial CSIT as the fraction of the bandwidth in which perfect CSIT is available. However, the

assumption of full transmitter cooperation (i.e. µT = 1) as well as the assumption of the same

number of trasmitters and receivers in Chapter 4 limits the applicability of the results in Chapter

4 to the setting of this chapter. We want to remark that, in case of full transmitter cooperation,

already the work in [37] considered the case of a different number of transmitters and receivers. In

particular, an overloaded cache-aided MISO BC where the number of receivers is larger than the

number of antennas at the transmitter was considered, which can be seen as the translation of the

setup in Chapter 3 to the cache-aided setting, while considering the same CSIT quality for all users.

The work in [108] introduced a cache-aided interference network with a setting with similar

placement to the one considered in this chapter, i.e. centralized at the transmitters and decentralized

at the receivers, and provided an achievable sum-DoF for an arbitrary number of transmitters and

receivers, by focusing on achievable schemes with no proofs of order-optimality. On the other hand,

[119,120] consider an F-RAN setting with randomized decentralized placement at both transmitters

and receivers. However, decentralization at both ends necessitates cloud transmission through the

front-haul in [119, 120], and the results are also not applicable to the setting considered in this

work. Finally, [109] provides achievable schemes for a F-RAN setting with similar placement to

the one considered here, i.e. centralized at the transmitters and decentralized at the receivers, with

no proofs of optimality.

To conclude, we want to remark that, while establishing the information-theoretic limits of cache-

aided interference management under partial CSIT and partial cooperation is a very challenging

problem, the work in this chapter is a first step forward towards the solution of this broader prob-

lem. Moreover, while considering the P-subchannel only (β = 1), which corresponds to the setup

in [31], an important consequence of this chapter is that decentralized placement attains order-

optimal one-shot linear sum-DoF in the cache-aided interference channel with perfect CSIT con-

sidered in [31]. As for the remainder of the chapter, the organization is as follows. Section 5.3

introduces the considered setting and problem. Section 5.4 presents the two main results and re-

lated insights. In Section 5.5, we derive an outer-bound which is employed in the following two

sections to show order optimality. In Section 5.6 and Section 5.7, we prove the two main results, the

centralized setting result and the decentralized setting result respectively. Section 5.8 summarizes

and concludes the chapter.

5.3. Problem Setting

The considered wireless network consists of KT transmitters, denoted by {Txi}KT
i=1, and KR re-

ceivers (or users), denoted by {Rxi}KR
i=1. The wireless channel comprises two parallel subchan-

nels: 1) the P-subchannel for which the transmitters have perfect CSIT, and 2) the N-subchannel

for which the transmitters have no CSIT2. We assume that the capacities of single links in the

2Also here, the CSIR is assumed to be perfectly available at all receivers.
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P-subchannel and the N-subchannel are given by β logP + o(logP ) and β̄ logP + o(logP ) re-

spectively, where β ∈ [0, 1] and β̄ , 1− β are the corresponding normalized single link capacities

(or DoF) and P is the SNR. Note that under the normalization 0 ≤ β ≤ 1, the parameters β and β̄

can be interpreted as the fractions of the total bandwidth for which CSIT is perfect and not available

respectively, in a DoF sense.

Communication over the two subchannels at time (or channel use) t is modeled by

Y
(p)
j (t) =

√
P β

KT∑

i=1

G
(p)
ji (t)X

(p)
i (t) + Z

(p)
j (t) (5.1)

Y
(n)
j (t) =

√
P β̄

KT∑

i=1

G
(n)
ji (t)X

(n)
i (t) + Z

(n)
j (t) (5.2)

where for the P-subchannel and the N-subchannel respectively, X
(p)
i (t) and X

(n)
i (t) denote the

signals transmitted by Txi, i ∈ [KT] , {1, . . . ,KT}, while Y
(p)
j (t) and Y

(n)
j (t) denote the signals

received by Rxj , j ∈ [KR]. Moreover, Z
(p)
j (t) and Z

(n)
j (t) denote the corresponding additive

white Gaussian noise signals at Rxj , distributed as NC(0, 1). G
(p)
ji (t) andG

(n)
ji (t) denote the fading

channel coefficients from Txi to Rxj , drawn from continuous stationary ergodic processes such that

G
(p)
ji (t), ∀i, j, t, are perfectly known to the transmitters (perfect CSIT), while G

(n)
ji (t), ∀i, j, t, are

not known to the transmitters (no CSIT). The transmit signals at Txi, i ∈ [KT], are subject to the

power constraints E
[
|X(p)

i (t)|2
]
≤ 1 and E

[
|X(n)

i (t)|2
]
≤ 1. Note that P is a nominal power (or

SNR) value, borrowed from the GDoF framework in Chapter 4 and in [66], which alongside β and

β̄ is used to distinguish the strengths of the two subchannels.

In any communication session, each user requests an arbitrary file out of a content library of N

files given by W , {W1, . . . ,WN}. Following the same model in [31], each file Wn consists of F

packets, denoted by {wn,f}Ff=1, where each packet is a vector of B bits, i.e. wn,f ∈ F
B
2 . Further-

more, each transmitter Txi, i ∈ [KT], is equipped with a cache memory Pi of size MTF packets,

while each receiver Rxj , j ∈ [KR], is equipped with a cache memory Uj of size MRF packets.

We assume that each cache memory, whether at transmitters or receivers, can be used to cache ar-

bitrary contents from the library before communication sessions begin. Moreover, we assume that

KTMT ≥ N , which ensures that the entire library W can be cached across the collective memory

of all transmitters.

We define the normalized transmitter cache size and the normalized receiver cache size as µT =
MT
N and µR = MR

N , respectively. For the sake of convenience, we assume that KTµT and KRµR

have integer values whenever we deal with the centralized case, while only KTµT is assumed to be

integer for the decentralized case. This is not a major restriction as schemes that correspond to the

remaining values are realized through memory-sharing. We next describe the placement phase and

the delivery phase.
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5.3.1. Placement Phase

Following the assumptions in [31], placement is done at the packet level, i.e. each memory is

filled with an arbitrary subset of the NF packets in the library where the breaking of packets into

smaller subpackets is not allowed. Moreover, uncoded placement is assumed [88, 137], where

it is not allowed to cache combinations of multiple packets as a single packet. Note that this is

more restrictive than the delivery phase considered in Chapter 4, where no assumptions about the

placement scheme were made. However, it turned out that a scheme with uncoded placement was

sufficient to obtain order-optimal performance.

Besides considering centralized placement, in which coordination amongst nodes during the

placement phase is allowed, we also consider as in Chapter 4 decentralized placement where no

coordination amongst receivers is allowed during the placement phase. Centralized placement at

the transmitters, however, is always assumed throughout this work, as transmitters are considered

to be fixed nodes in the network.

5.3.2. Delivery Phase

In this phase, each receiver Rxj reveals its request for an arbitrary file Wdj , where dj ∈ [N ]. The

tuple of all user demands is denoted by d = (d1, . . . , dK). As each receiver Rxj has the subset of

requested packets, given by {wdj ,f}Ff=1 ∩ Uj , pre-stored in its cache memory, the transmitters are

required to deliver the remaining packets given by {wdj ,f}Ff=1 \ Uj , for all j ∈ [KR]. Given the

demands d and the receiver caching realization {Uj}KR
j=1, the set of all packets to be delivered is

given by

D
(
d, {Uj}KR

j=1

)
=

KR⋃

j=1

{
{wdj ,f}Ff=1 \ Uj

}
.

Packet Splitting and Encoding: Unlike the placement phase, in which the breaking of packets

is not allowed, we assume that each packet to be transmitted in the delivery phase is split into

two subpackets, as communication is carried out over two parallel subchannels. In particular, each

packet wn,f is split as

wn,f =
(
w

(p)
n,f ,w

(n)
n,f

)

where w
(p)
n,f and w

(n)
n,f are referred to as the P-subpacket and the N-subpacket, respectively. Without

loss of generality, we assume that w
(p)
n,f and w

(n)
n,f consist of the first qB bits and the last q̄B bits

of wn,f , respectively, where the splitting ratio q ∈ [0, 1] is a design parameter and q̄ , 1 − q.

Moreover, while q may depend on β (i.e. long-term channel parameters), we assume that q is fixed

at the beginning of the delivery phase and is not allowed to depend on the fading coefficients or the

user demands. From the above, each transmitter cache Pi is split into P(p)
i and P(c)

i , containing

P-subpackets and N-subpackets respectively. Similarly, a set of packets to be delivered D is split

into D(p) and D(c).

Each subpacket cached by the transmitters is encoded into a coded subpacket using an inde-

pendent random Gaussian code. In particular, a coding scheme ψ(p) : F
qB
2 → C

B̃(p)
of rate

93



β logP +o(logP ) is used to encode P-subpackets, while a scheme ψ(n) : F
(1−q)B
2 → C

B̃(n)
of rate

β̄ logP + o(logP ) is used to encode N-subpackets 3. The coded versions of the P-subpacket w
(p)
n,f

and the N-subpacket w
(n)
n,f , defined as w̃

(p)
n,f , ψ(p)(w

(p)
n,f ) and w̃

(n)
n,f , ψ(n)(w

(n)
n,f ) respectively,

are given in terms of channel symbols as

w̃
(p)
n,f =

(
W̃

(p)
n,f (1), . . . , W̃

(p)
n,f (B̃

(p))
)

(5.3)

w̃
(n)
n,f =

(
W̃

(n)
n,f (1), . . . , W̃

(n)
n,f (B̃

(n))
)
. (5.4)

It is clear that a coded P-subpacket carries a DoF of β, while a coded N-subpacket carries a DoF of

β̄, which is in tune with the single link capacities of the corresponding subchannels.

Block Structure: Communication of coded subpackets is carried out independently over the P-

subchannel and the N-subchannel. Communication in the P-subchannel takes place over H(p)

blocks, each referred to as a P-block and spanning B̃(p) channel uses, while communication in

the N-subchannel takes place over H(n) blocks, each referred to as a N-block and spanning B̃(n)

channel uses.

The goal in each P-block m(p) ∈ [H(p)] is to deliver a subset of P-subpackets D(p)

m(p) ⊆ D(p)

to a subset of receivers, denoted by R(p)

m(p) , such that one P-subpacket is intended exactly for one

receiver. Similarly, in each N-block m(n) ∈ [H(n)], the goal is to deliver the N-subpackets in

D(n)

m(n) ⊆ D(n) to the subset of receivers R(n)

m(n) . At the end of the communication, for each receiver

Rxj to be able to retrieved its requested file, the sets of delivered subpackets and the content of the

cache memory Uj should satisfy

W
(p)
dj

, {w(p)
dj ,f

}Ff=1 ⊂




H(p)⋃

m(p)=1

D(p)

m(p)


 ∪ U (p)

j (5.5)

W
(n)
dj

, {w(n)
dj ,f

}Ff=1 ⊂




H(n)⋃

m(n)=1

D(n)

m(n)


 ∪ U (n)

j (5.6)

where U (p)
j and U (n)

j are the portions of Uj that correspond to P-subpackets and N-subpackets re-

spectively, i.e. the first qB bits and the last q̄B bits, respectively, of packets in Uj . Similarly, W
(p)
dj

and W
(n)
dj

are the portions of Wdj that correspond to P-subpackets and N-subpackets respectively.

As in [31], we adopt one-shot linear delivery schemes in each subchannel, i.e. each encoded chan-

nel symbol is beamformed in one channel use, where spreading over multiple channel uses is not

allowed.

Transmit Linear Beamforming: Transmission of coded subpackets in each P-block and N-block

is carried out using linear beamforming. In particular, consider the m(p)-th P-block, where m(p) ∈
[H(p)]. The transmitter Txi, i ∈ [KT ], transmits a linear combination of the P-subpackets in P(p)

i

3Note that both the number of packets F and the number of bits per packet B may grown infinitely large.
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and D(p)

m(p) given by

X
(p)
i (t) =

∑

(n,f):

w
(p)
n,f∈P

(p)
i ∩D

(p)

m(p)

v
(p)
i,n,f (t) · W̃

(p)
n,f (t), t ∈

[
(m(p) − 1)B̃(p) + 1 : m(p)B̃(p)

]
(5.7)

where [t1 : t2] , {t1, t1 +1, . . . , t2}. In (5.7), each v
(p)
i,n,f (t) is a complex beamforming coefficient

used at time t over the P-subchannel, which is allowed to depend on the channel coefficients of

the P-subchannel due to perfect CSIT (e.g. as in [31]). Similarly, for the m(n)-th N-block, where

m(n) ∈ [H(n)], Txi transmits a linear combination of the P-subpackets in P(n)
i and D(n)

m(n) given by

X
(n)
i (t) =

∑

(n,f):

w
(n)
n,f∈P

(n)
i ∩D

(n)

m(n)

v
(n)
i,n,f (t) · W̃

(n)
n,f (t), t ∈

[
(m(n) − 1)B̃(n) + 1 : m(n)B̃(n)

]
(5.8)

where each v
(n)
i,n,f (t) is a complex beamforming coefficient, which is not allowed to depend on

the channel coefficients of the N-subchannel due to no CSIT. Note that in (5.7) and (5.8), we im-

plicitly assume that W̃
(p)
n,f (t) = W̃

(p)
n,f (t mod B̃(p)), W̃

(p)
n,f (0) = W̃

(p)
n,f (B̃

(p)), W̃
(n)
n,f (t) = W̃

(n)
n,f (t

mod B̃(n)) and W̃
(n)
n,f (0) = W̃

(n)
n,f (B̃

(n)), to maintain consistency with (5.3) and (5.4). Moreover,

the coded subpackets and beamforming coefficients are designed such that the transmit power con-

straints are respected.

Receive Linear Combining: Transmit signals pass through the channel modeled in (5.1) and

(5.2). The signals received by Rxj , j ∈ [KR], in the P-block m(p) and the N-block m(n) are given

by

y
(p)
j (m(p)) =

(
Y

(p)
j (t) : t ∈

[
(m(p) − 1)B̃(p) + 1 : m(p)B̃(p)

])
(5.9)

y
(n)
j (m(n)) =

(
Y

(n)
j (t) : t ∈

[
(m(n) − 1)B̃(n) + 1 : m(n)B̃(n)

])
(5.10)

where
(
Y (t) : t ∈ [t1 : t2]

)
,
(
Y (t1), . . . , Y (t2)

)
. Focusing on the P-subchannel first and follow-

ing the linear scheme proposed in [31], each receiver Rxj in R(p)

m(p) uses the content of its cache to

subtract the interference of the undersidered subpackets in D(p)

m(p) , transmitted in the P-block m(p),

m(p) ∈ [H(p)]. This is achieved through a linear combination L(p)

j,m(p)(y
(p)
j (m(p)), Ũ (p)

j ) formed

to recover w
(p)
dj ,f

∈ D(p)

m(p) , where Ũ (p)
j denotes the set of coded P-subpackets cached at Rxj . The

communication in the m(p)-th P-block is successful if there exists linear combinations at the trans-

mitters (i.e. beamformers) and linear combinations at the receivers such that for all Rxj in R(p)

m(p) ,

we have

L(p)

j,m(p)(y
(p)
j (m(p)), Ũ

(p)
j ) =

√
P βw̃

(p)
dj ,f

+ z
(p)
j (m(p)) (5.11)

where z
(p)
j (m(p)) is a sequence of NC(0, 1) noise samples. The point-to-point channel in (5.11)

has a capacity of β logP + o(logP ), and therefore w̃
(p)
dj ,f

is reliably communicated as qB grows

large.
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In a similar manner, considering the N-block m(n), m(n) ∈ [H(n)], each receiver Rxj in R(n)

m(n)

forms a linear combination L(n)

j,m(n)(y
(n)
j (m(n)), Ũ (n)

j ) to recover w
(n)
dj ,f

∈ D(n)

m(n) , where Ũ (n)
j de-

notes the set of coded N-subpackets cached at Rxj . The communication in the m(n)-th N-block

is successful if there exists linear combinations at the transmitters and linear combinations at the

receivers such that

L(n)

j,m(n)(y
(n)
j (m(n)), Ũ (n)

j ) =
√
P β̄w̃

(n)
dj ,f

+ z
(n)
j (m(n)) (5.12)

where the point-to-point channel channel in (5.12) has a capacity β̄ logP +o(logP ), and therefore

w̃
(n)
dj ,f

is reliably communicated as q̄B grows large.

5.3.3. Delivery Time and DoF

As already mentioned in the previous sections, the performance metric utilized in this chapter is the

DoF. However, we have to adapt the definition of DoF to take into account the we are considering

one-shot linear DoF schemes. To achieve this, we start by defining a metric for the delivery time

similar as the GNDT in Section 4.3.2, which in turn will help to define the DoF. We start by

defining the unit of the delivery time, i.e. the packet-time-slot. One packet-time-slot is defined as

the optimal time required to communicate a single packet to a single user, under no caching and no

interference, as P → ∞. This is achieved by setting q = β, and hence communicating βB bits over

the P-subchannel at rate β logP +o(logP ) bits per channel use and β̄B bits over the N-subchannel

at rate β̄ logP + o(logP ) bits per channel use. Therefore, a packet-time-slot is equivalent to B
logP

uses of the channel (or time instances). It follows that an achievable sum-DoF can be interpreted as

an achievable sum-rate, measured in packets per packet-time-slots as P → ∞.

In general, for any feasible linear delivery scheme as described in Section 5.3.2, each P-subpacket

consists of qB bits and is delivered in one P-block over the point-to-point channel in (5.11) at rate

β logP + o(logP ). It follows that a P-block has a duration of q
β packet-time-slots. Similarly,

each N-subpacket consists of q̄B bits and is delivered over the point-to-point channel in (5.12)

at rate β̄ logP + o(logP ), and hence an N-block has a duration of q̄
β̄

packet-time-slots. It fol-

lows that the delivery time for a feasible scheme is given by H = max
{

q
βH

(p), q̄
β̄
H(n)

}
packet-

time-slots, and the achievable sum-DoF is given by
|D|
H . Therefore, for fixed caching realization(

{Pi}KT
i=1, {Uj}KR

j=1

)
and splitting ratio q, which are independent of user demands, the maximum

achievable one-shot linear sum-DoF (DoF for short) for the worst case demands is given by

DoF
({Pi}

KT
i=1,{Uj}

KR
j=1,q)

L = inf
d

sup
H(p), H(n),

{D
(p)

m(p)
}H

(p)

m(p)=1
,{D

(n)

m(n)
}H

(n)

m(n)=1

∣∣∣D
(
d, {Uj}KR

j=1

)∣∣∣

max
{

q
βH

(p), q̄
β̄
H(n)

} . (5.13)

Note that, differently from the definition of the GDoF in Section 4.3.2, we do not include here the

contribution of the local caching gain. This in turn allows to simplify the calculations later on and

to directly compare the results in this chapter with the ones in [31].
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The formulation in Eq. (5.13) leads to the definition of the one-shot linear DoF of the network as

the maximum achievable one-shot linear sum-DoF over all caching realizations and splitting ratios,

i.e.

DoF
∗
L(µT, µR, β) = sup

{Pi}
KT
i=1,{Uj}

KR
j=1,q

DoF
({Pi}

KT
i=1,{Uj}

KR
j=1,q)

L

s.t. |Pi| = µTNF, ∀i ∈ [KT]

|Uj | = µRNF, ∀j ∈ [KR]

q ∈ [0, 1].

(5.14)

5.4. Main Results

In this sections we present the main results of the chapter. The proofs are deferred to subsequent

sections and appendices. We start with the centralized setting and then move on to the decentralized

setting.

5.4.1. Centralized Setting

Theorem 5.1. For the cache-aided wireless network described in Section 4.3, assuming centralized

placement, an achievable one-shot linear sum-DoF is given by

DoFL,C(µT, µR, β) = β ·min{KTµT +KRµR,KR}+ β̄ ·min{1 +KRµR,KR}. (5.15)

Moreover, DoFL,C(µT, µR, β) satisfies

DoFL,C(µT, µR, β)

DoF
∗
L(µT, µR, β)

≥ 1

2
, (5.16)

where DoF
∗
L(µT, µR, β) is the one-shot linear DoF of the network as defined in (5.14).

The proof of Theorem 5.1 is presented in Section 5.6 and employs the result derived in Section

5.5. From Theorem 5.1, the result in [31, Th. 1] is recovered by setting β = 1 (P-subchannel only).

In this case, we know from [31] that perfect CSIT and caches at the transmitters allow cooperation

and DoFL,C(µT, µR, 1) scales with the aggregate memory of all transmitters and receivers. On

the other hand, when β = 0 (N-subchannel only), all DoF benefits of transmitter-side cooperation

are annihilated following the result in Section 4.4, and the achievable one-shot linear sum-DoF in

Theorem 5.1 reduces to the sum-DoF achieved with one transmitter [24]. In this case, the origi-

nal Maddah-Ali and Niesen scheme [24] is implemented, where the XoR takes place over the air

through superposition of coded packets, and DoFL,C(µT, µR, 0) scales with the aggregate memory

of the receivers only. For general β, DoFL,C(µT, µR, β) takes the form

DoFL,C(µT, µR, β) = β · DoFL,C(µT, µR, 1) + β̄ · DoFL,C(µT, µR, 0), (5.17)

which is achieved by choosing an adequate splitting ratio q (as a function of β) in order to best uti-
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lize the two subchannels. Once q is chosen, the P-subpackets and N-subpackets are then delivered

over the P-subchannel and N-subchannel as for the cases with β = 1 and β = 0, respectively. The

result in Eq. (5.17) can be easily linked to the result in Eq. (4.14). In particular, by considering

full transmitter cooperation and the same number of transmitters and receivers, i.e. µT = 1 and

KT = KR, it can be readily seen that (5.17) coincides with (4.14), while not considering the local

caching gain (for more details look at Section 5.3.3).

5.4.2. Decentralized Setting

In this part we consider the decentralized setting where centrally coordinated placement is only

allowed at the transmitters and not at the receivers side during the placement phase.

Theorem 5.2. For the cache-aided wireless network described in Section 4.3, under decentralized

placement in which centrally coordinated placement is only allowed at the transmitters and not at

the receivers, an achievable one-shot linear sum-DoF is given by

DoFL,D(µT, µR, β) = β · 1
∑KR−1

l=0
(KR−1

l )µl
R(1−µR)KR−l−1

min{KTµT+l,KR}

+ β̄ · KRµR
1− (1− µR)KR

. (5.18)

Moreover, DoFL,D(µT, µR, β) satisfies

DoFL,D(µT, µR, β)

DoF
∗
L(µT, µR, β)

≥ 1

3
. (5.19)

The proof of Theorem 5.2 is presented in Section 5.7. Choosing β = 1 in Theorem 5.2 is

equivalent to consider decentralized placement for the setting of [31]. Hence, given the order-

optimality result, also in the decentralized version of [31] the sum-DoF scales with the aggregate

cache memory of all transmitters and receivers. Proving order-optimality for the case β = 1 is the

main technical challenge of the chapter and it corresponds to an important result on its own. Hence,

we summarize it as a theorem, which directly follows from Theorem 5.2 by substituting β = 1.

Theorem 5.3. For the cache-aided wireless network with perfect CSIT described in [31], under de-

centralized placement in which centrally coordinated placement is only allowed at the transmitters

and not at the receivers, an achievable one-shot linear sum-DoF is given by

DoFL,D(µT, µR) = · 1
∑KR−1

l=0
(KR−1

l )µl
R(1−µR)KR−l−1

min{KTµT+l,KR}

. (5.20)

Moreover, DoFL,D(µT, µR) satisfies

DoFL,D(µT, µR)

DoF
∗
L(µT, µR)

≥ 1

3
. (5.21)

Note that β has been omitted in the notation as assumed equal to 1.
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Figure 5.1.: Tradeoff between δR and β̄ for networks with KR = 16, KT ∈ {8, 16}, µR = 1/16
and µT = 1/2.

On the other hand, β = 0 reduces the setup to the decentralized setting in [79] in a DoF sense

(the smaller multiplicative gap is due to uncoded placement and linear delivery). In general, similar

to Theorem 5.1, DoFL,D(µT, µR, β) takes the form

DoFL,D(µT, µR, β) = β · DoFL,D(µT, µR, 1) + β̄ · DoFL,D(µT, µR, 0). (5.22)

Moreover, one could easily conclude from Theorem 5.1 and Theorem 5.2 that centralized placement

at the receivers can only lead to at most a factor of 3 improvement over decentralized placement.

Furthermore, we observe through numerical simulations that this multiplicative factor does not

exceed 1.5, which is in agreement with the result obtained in Chapter 4.1.

5.4.3. Tradeoff Between Receiver Cache Size and CSIT Budget

In this part, we investigate the implications of Theorem 5.1 and Theorem 5.2 by considering the

tradeoff between the receiver cache memory size and the CSIT budget. For this purpose, we start

by assuming that CSIT is perfectly available across all signalling dimensions, captured by β = 1

(equivalently β̄ = 0). For given µT and µR, an achievable delivery time under centralized place-

ment, denoted by HC(µT, µR, 1), is easily derived from the one-shot linear sum-DoF in Theorem

5.1. Now suppose that the CSIT budget is reduced, e.g. by providing feedback for a fraction of

sub-carriers. This yields HC(µT, µR, 1 − β̄) ≥ HC(µT, µR, 1), where β̄ is interpreted as the re-

duction in CSIT budget. We are interested in the corresponding increase in receiver cache size, i.e.

δR ∈ [0, 1−µR], such that HC(µT, µR+ δR, 1− β̄) = HC(µT, µR, 1). Note that a similar tradeoff

is defined for the decentralized case through HD(µT, µR + δR, 1− β̄) = HD(µT, µR, 1).

The tradeoff between µR and β̄ is evaluated numerically and illustrated in Fig. 5.1 for both

centralized and decentralized cases. In particular, we consider a network of KR = 16 receivers

with µR = 1/16 and µT = 1/2. The number of transmitters KT is varied between 8 and 16. It can
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be seen that the tradeoff is sharper for KT = 8 compared to KT = 16 in the sense that a higher

reduction in CSIT β̄ can be achieved for a smaller increase in receiver cache size given by δR.

This is due to the fact that at most 8 orthogonal beams can be created (through e.g. zero-forcing)

in the setting with KT = 8, while KT = 16 allows up to 16 orthogonal beams. This makes the

latter setting more dependent on CSIT in general, hence requiring a higher increase in cache size to

compensate for the same reduction in CSIT budget.

5.4.4. Related Setups

It is worthwhile highlighting that the results in Theorem 5.1 and Theorem 5.2 can be easily applied

to other related setups. In particular, the N-subchannel can be replaced by a (KT+1)-th transmitter,

operating on a different frequency (e.g. a WiFi access point of femtocell), and connected to all

transmitter caches through a multicast capacitated link (captured by β̄) [124]. In practise, this

scenario is realized when the receivers are connected to a wireless cellular networks over the P-

subchannel and they are also in proximity of a WiFi access point of a femtocell base station, which

represents the aforementioned (KT + 1)-th transmitter. Note that, in this case, the ergodic fading

assumptions of our original setting can be relaxed, particularly if perfect CSI is also available at the

(KT + 1)-th transmitter.

The results also extend to the multi-server setting of [100] with wired (noiseless) linear networks,

in which the parallel subchannels correspond to scenarios where servers can reach receivers through

two parallel networks: a fully connected linear interference network, which corresponds to the P-

subchannel, and a multicast networks, which corresponds to the N-subchannel.

5.5. One-Shot Linear Sum-DoF Upper-Bound

In this section, we obtain an upper-bound of the one-shot linear sum-DoF of the network given as

follows.

Theorem 5.4. For the cache-aided wireless network described in Section 4.3, the one-shot linear

sum-DoF of the network, defined in (5.14), is bounded above as

DoF
∗
L(µT, µR, β) ≤ β ·min

{KTµT +KRµR
1− µR

,KR

}
+ β̄ ·min

{1 +KRµR
1− µR

,KR

}
. (5.23)

It is easily seen that by denoting the right-hand side of (5.23) as DoFL,ub(µT, µR, β), we have

DoFL,ub(µT, µR, β) = β · DoFL,ub(µT, µR, 1) + β̄ · DoFL,ub(µT, µR, 0). (5.24)

The expression in (5.24) proofs useful further on when the upper-bound in Theorem 5.4 is employed

to prove the converse parts of Theorem 5.1 and Theorem 5.2.

The rest of this section is dedicated to proving Theorem 5.4. We start with the observation that

under average distinct demands, as opposed to worst-case demands, there is a precise characteriza-

tion for the number of packets to be delivered to the receivers [31]. Since the performance under
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average demands is no worse than that under worst-case demands, the one-shot linear sum-DoF in

(5.14) is bounded above by

DoF
∗
L(µT, µR, β) ≤

KRF (1− µR)

H
, (5.25)

where H is a lower-bound on the delivery time under average demands rather than worst-case

demands. Note that the above relaxation is commonly used to obtain upper-bounds in cache-aided

setups, e.g. the proof in Section 4.5 and [24, 31, 32]. Next, we follow the same general footsteps

of [31, Sec. V] to characterize and then find a lower-bound for H . The steps borrowed from [31]

are explained in less detail, while we elaborate more on the new challenges that arise due to packet

splitting over the two subchannels.

5.5.1. Upper-Bound on the Number of Subpackets Reliably Delivered Per Block

First, let us fix the caching realization
(
{Pi}KT

i=1, {Ui}KR
i=1

)
, user demand vector d and splitting

ratio q. As described in Section 5.3.2, in each P-block or N-block, a subset of P-subpackets or N-

subpacket are delivered over the P-subchannel or the N-subchannel, respectively. Let
{
w

(p)
nl,fl

}L(p)

l=1

be a set of L(p) P-subpackets to be delivered to L(p) distinct receivers over one P-block, and{
w

(n)
nl,fl

}L(n)

l=1
be a set of L(n) N-subpackets to be delivered to L(n) distinct receivers over one N-

block. In order for the receivers to successfully decode the transmitted subpackets, L(p) and L(n)

must satisfy

L(p) ≤ min
l∈[L(p)]

{
|Rl|+ |Tl|

}
(5.26)

L(n) ≤ min
l∈[L(n)]

|Rl|+ 1 (5.27)

where, for any l ∈ [L(p)] or l ∈ [L(n)], Tl and Rl are the sets of transmitters and receivers,

respectively, which store the packet wnl,fl =
(
w

(p)
nl,fl

,w
(n)
nl,fl

) in their caches.

The inequality in (5.26) follows directly from [31, Lem. 3]. On the other hand, the inequality

in (5.27) can be shown to hold by following the same general steps used to prove [31, Lem. 3],

while observing that the generic channel matrices and the lack of CSIT make the zero-forcing

conditions in the proof of [31, Lem. 3] impossible to satisfy almost surely. This in turn eliminates

the transmitter cooperation gain. A more detailed explanation is given in Appendix C.2.

5.5.2. Integer Program Formulation

For any P-block and N-block indexed by m(p) and m(n) respectively, the sets of subpackets D(p)

m(p)

and D(n)

m(n) to be delivered are deemed feasible only if their cardinalities satisfy (5.26) and (5.27).

Hence by keeping the caching realization, demand vector and splitting ratio fixed, the following

integer programming problems yields a lower-bound on the delivery time:
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min max
{ q
β
H(p),

q̄

β̄
H(n)

}

s.t.

H(p)⋃

m(p)=1

D(p)

m(p) =

KR⋃

r=1

(
W

(p)
dr

\ U (p)
r

)

H(n)⋃

m(n)=1

D(n)

m(n) =

KR⋃

r=1

(
W

(n)
dr

\ U (n)
r

)

D(p)

m(p) ,D(n)

m(n) are feasible, ∀m(p) ∈ [H(p)], ∀m(n) ∈ [H(n)].

(5.28)

The optimal value for the above problem is denoted by H
∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

.

5.5.3. From Worst-Case to Average Demands and Optimizing Over Caching

Realizations and Splitting Ratios

Given a caching realization
(
{Pi}KT

i=1, {Ui}KR
i=1

)
, each file Wn, with n ∈ [N ], is split into (2KT −

1)(2KR) subfiles {Wn,T ,R}T ⊆∅[KT],R⊆[KR], where Wn,T ,R denotes the subfile of file Wn cached

by transmitters in T and receivers in R, and T ⊆∅ [KT] denotes T ⊆ [KT], T 6= ∅. Denoting

the number of packets in Wn,T ,R as an,T ,R, we may write an optimization problem to minimize

H
∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

, for the worst-case demands, over all caching realizations and splitting ra-

tios.

As in [31], we further lower-bound the delivery time by considering average demands instead of

worst-case demands. In particular, by taking the average over the set of all possible π(N,KR) =
N !

(N−KR)! permutations of distinct receiver demands, denote by PN,KR
, we write the problem:

min
{Pi}

KT
i=1,{Ui}

KR
i=1,q

1

π(N,KR)

∑

d∈PN,KR

H
∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

s.t.
∑

T ⊆∅[KT]

∑

R⊆[KR]

an,T ,R = F, ∀n ∈ [N ]

N∑

n=1

∑

T ⊆[KT]:
i∈T

∑

R⊆[KR]

an,T ,R ≤ µTNF, ∀i ∈ [KT]

N∑

n=1

∑

T ⊆∅[KT]

∑

R⊆[KR]:
j∈R

an,T ,R ≤ µRNF, ∀j ∈ [KR]

q ∈ [0, 1], an,T ,R ≥ 0, ∀n ∈ [N ], ∀T ⊆∅ [KT], ∀R ⊆ [KR].

(5.29)

The optimum objective for the above problem is denoted by H , which appears in the bound in

(5.25). In what follows, we are interested in further lower bounding H .
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5.5.4. Decoupling the P and N Subchannel and Optimizing Over Caching

Realizations

To obtain a lower-bound for H̄ , we consider optimizing over caching realizations for the P-subchannel

and N-subchannel independently. To facilitate this, we start by observing thatH
∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

in (5.29), the optimum objective of (5.28) is bounded below as

H
∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

≥ max
{ q
β
H(p)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

,
q̄

β̄
H(n)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)}

(5.30)

where H(s)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

, s ∈ {p, n}, is the optimum objective of the optimization problem

min H(s)

s.t.
H(s)⋃

m(s)=1

D(s)

m(s) =

Kr⋃

r=1

(
W

(s)
dr

\ U (s)
r

)

D(s)

m(s) is feasible, ∀m(s) ∈ [H(s)].

(5.31)

The lower-bound in (5.30) is derived directly from problem (5.28), e.g. the P-subchannel term on

the right-hand side of (5.30) is obtained by relaxing all N-subchannel components in the objective

and constraints of problem (5.28). Denoting the average demand operator 1
π(N,KR)

∑
d∈PN,KR

(·)
by ❊d(·) for brevity, it follows that the objective function of problem (5.29) is lower bounded as

❊d

(
H

∗
(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

))
≥ ❊d

(
max

{ q
β
H(p)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

,
q̄

β̄
H(n)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)})

≥ max
{ q
β
❊d

(
H(p)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

))
,
q̄

β̄
❊d

(
H(n)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

))}
(5.32)

where the inequality in (5.32) follows from the convexity of the pointwise maximum function and

Jensen’s inequality. Next, we plug the lower-bound in (5.32) into (5.29) from which we obtain a

lower-bound on H . Moreover, for any given splitting ratio q, we optimize over caching realizations
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independently for the P-subchannel and N-subchannel through

min
{Pi}

KT
i=1,{Ui}

KR
i=1

1

π(N,KR)

∑

d∈PN,KR

H(s)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

s.t.
∑

T ⊆∅[KT]

∑

R⊆[KR]

an,T ,R = F, ∀n ∈ [N ]

N∑

n=1

∑

T ⊆[KT]:
i∈T

∑

R⊆[KR]

an,T ,R ≤ µTNF, ∀i ∈ [KT]

N∑

n=1

∑

T ⊆∅[KT]

∑

R⊆[KR]:
j∈R

an,T ,R ≤ µRNF, ∀j ∈ [KR]

an,T ,R ≥ 0, ∀n ∈ [N ], ∀T ⊆∅ [KT], ∀R ⊆ [KR],

(5.33)

for which we denote the optimum objective function as H(s)
(q)

, s ∈ {p, n}. This yields the lower-

bound on H given by

H ≥ min
q∈[0,1]

max
{ q
β
H(p)

(q)
,
q̄

β̄
H(n)

(q)}
. (5.34)

The two components H(p)
(q)

and H(n)
(q)

can be separately lower bounded as

H(p)
(q) ≥ KRF (1− µR)

2

KTµT +KRµR
(5.35)

H(n)
(q) ≥ KRF (1− µR)

2

1 +KRµR
. (5.36)

The lower-bound in (5.35) follows directly from [31, Lem. 4]. On the other hand, the lower-bound

in (5.36) is derived in Appendix C.1 by employing the same techniques in the proof of [31].

Since in the problem in (5.33) the total number of subpackets per block delivered over either of

the two subchannels is KRF (1− µR), and no more than KR subpackets can be delivered simul-

taneously, we obtain H(s)
(q) ≥ KRF (1−µR)

KR
. Combining this with the lower-bounds in (5.35) and

(5.36), we obtain

H(p)
(q) ≥ KRF (1− µR)

min
{

KTµT+KRµR
1−µR

,KR

} (5.37)

H(n)
(q) ≥ KRF (1− µR)

min
{

1+KRµR
1−µR

,KR

} . (5.38)

It is evident that the above lower-bounds do not depend on the value of q, and by combining (5.37)

and (5.38) with (5.34), it follows that

H ≥ min
q∈[0,1]

max

{
q

β
· KRF (1− µR)

min
{

KTµT+KRµR
1−µR

,KR

} , q̄
β̄
· KRF (1− µR)

min
{

1+KRµR
1−µR

,KR

}
}
. (5.39)
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5.5.5. Optimizing Over Splitting Rations and Combing Bounds

The splitting ration q that minimizes the right-hand side of (5.39), which we denote by q∗, must

satisfy
q∗

β
· KRF (1− µR)

min
{

KTµT+KRµR
1−µR

,KR

} =
q̄∗

β̄
· KRF (1− µR)

min
{

1+KRµR
1−µR

,KR

} ,

as any other q leads to a larger value for the right-hand side of (5.39). By considering q∗, we obtain4

H̄ ≥ KRF (1− µR)

β ·min
{

KTµT+KRµR
1−µR

,KR

}
+ β̄ ·min

{
1+KRµR
1−µR

,KR

} . (5.40)

Combining the lower-bound in (5.40) with the upper-bound in (5.25), we obtain

DoF
∗
L(µT, µR, β) ≤ β ·min

{KTµT +KRµR
1− µR

,KR

}
+ β̄ ·min

{1 +KRµR
1− µR

,KR

}

which concludes the proof of Theorem 5.4.

5.6. Centralized Setting: Proof of Theorem 5.1

Equipped with the upper-bound in Theorem 5.4, we are now ready to prove the main results of the

chapter. We start with Theorem 5.1 in this section and proceed to Theorem 5.2 in the following

section.

5.6.1. Achievability of Theorem 5.1

Placement Phase

The placement phase is analogous to the one in [31]. Interestingly, as in Section 4.6, this implies

that the placement phase is not required to depend on the value of β. As in [31], each file Wn,

n ∈ [N ], is partitioned into
(

KT
KTµT

)(
KR

KRµR

)
disjoint subfiles of equal size, denoted by

Wn = {Wn,T ,R}T ⊆[KT]:|T |=KTµT

R⊆[KR]:|R|=KRµR

.

Note that each subfile contains F

( KT
KTµT

)( KR
KRµR

)
packets. Each transmitter Txi stores subfiles given

by Pi = {Wn,T ,R : i ∈ T }, while each receiver Rxj stores subfiles given by Uj = {Wn,T ,R : j ∈
R}. It is easy to verify that such placement strategy satisfies the memory size constraints at both

transmitters and receivers, and that each receiver caches µRF packets from each file.

4For any real numbers x, y and q such that q
x
= 1−q

y
, it is easy to verify that q

x
= 1

x+y
.
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Delivery Phase

During the delivery phase, each receiver Rxj requests for a file Wdj . As Rxj has all the subfiles

Wdj ,T ,R with j ∈ R cached in its memory, it only requires the remaining subfiles given byWdj ,T ,R

with j /∈ R. As shown in Section 5.3.2, each packet wdj ,f to be delivered is split into two subpack-

ets, i.e. wdj ,f =
(
w

(p)
dj ,f

,w
(n)
dj ,n

)
. We refer to the set of P-subpackets of Wdj ,T ,R as the P-subfile

W
(p)
dj ,T ,R, and the set of N-packets of Wdj ,T ,R as the N-subfile W

(n)
dj ,T ,R. The P-subfiles are de-

livered over the P-subchannel using the linear scheme in [31]. On the other hand, the N-subfiles

are delivered over the N-subchannel using the original coded-multicasting scheme in [24], with the

difference that superposition of coded N-subpackets over the air is used instead of XoR operations

before encoding, as the latter is infeasible due to the distributed nature of transmitters. Decoding of

subpackets at the receivers is carried out after taking the appropriate linear combinations, e.g. see

(5.11) and (5.12). Each Rxj retrieves all missing P-subfiles and N-subfile and hence the file Wdj is

recovered.

Achievable One-Shot Linear sum-DoF

Since each user has µRF packets from each file stored in its cache memory, a total of KRF (1 −
µR) packets are delivered during the delivery phase, split into KRF (1 − µR) P-subpackets and

KRF (1 − µR) N-subpackets delivered over the P-subchannel and N-subchannel, respectively. In

what follows, we denote KRµR and KTµT by mC,R and mC,T respectively. From [31], we know

that min{mC,T +mC,R,KR} P-subpackets are delivered in each P-block, and hence

H
(p)
C =

KRF (1− µR)

min{mC,T +mC,R,KR}
.

On the other, we know from [24] that min{1 + mC,R,KR} N-subpackets are delivered in each

N-block. Therefore, we obtain

H
(n)
C =

KRF (1− µR)

min{1 +mC,R,KR}
.

It follows that the delivery time in packet-time-slot is given byHC = max
{

q
βH

(p)
C , q̄

β̄
H

(n)
C

}
. Next,

we choose the splitting ratio q as follow:

q =
β ·min{mC,T +mC,R,KR}

β ·min{mC,T +mC,R,KR}+ β̄ ·min{1 +mC,R,KR}
.

It can be verified that the above splitting ratio satisfies q
βH

(p)
C = q̄

β̄
H

(n)
C . This value of q minimizes

the duration of the communication which in turn maximizes the achievable sum-DoF. Note that q

increases with β, due to the fact that a larger β implies that the P-subchannel occupies a larger

fraction of the bandwidth, hence carrying larger portions of each packet. As one may anticipate,

we obtain q = 0 and q = 1 at the two extremes β = 0 and β = 1, respectively. With such value of
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q we obtain

HC =
KRF (1− µR)

β ·min{mC,T +mC,R,KR}+ β̄ ·min{1 +mC,R,KR}
. (5.41)

From (5.41) and the fact that a total of KRF (1 − µR) packets are delivered during the delivery

phase, the result in (5.15) directly follows. This concludes the proof of achievability.

5.6.2. Converse of Theorem 5.1

From [31], we know that for β = 1, we have DoFL,ub(µT, µR, 1)/DoFL,C(µT, µR, 1) ≤ 2. We

show that when β = 0, we also have DoFL,ub(µT, µR, 0)/DoFL,C(µT, µR, 0) ≤ 2. Consider the

two cases:

1. µR ≤ 1
2 : In this case, from (5.23) in Theorem 5.4 we obtain

DoFL,ub(µT, µR, 0) = min
{1 +KRµR

1− µR
,KR

}

≤ min
{1 +KRµR

1− 1/2
,KR

}

≤ 2 · DoFL,C(µT, µR, 0).

2. µR >
1
2 : In this case, the achievability part implies that

DoFL,C(µT, µR, 0) = min{1 +KRµR,KR}
> min{1 +KR/2,KR}

>
KR

2
.

Since DoFL,ub(µT, µR, 0) ≤ KR, we obtain DoFL,ub(µT, µR, 0) ≤ 2 · DoFL,C(µT, µR, 0).

Now we extend the above to any β ∈ [0, 1]. From the two above constant factor inequalities for

β = 1 and β = 0, and the decomposition of the lower-bound and the upper-bound in (5.17) and

(5.24), we obtain

DoFL,ub(µT, µR, β) = β · DoFL,ub(µT, µR, 1) + β̄ · DoFL,ub(µT, µR, 0)
≤ 2β · DoFL,C(µT, µR, 1) + 2β̄ · DoFL,C(µT, µR, 0)
= 2 · DoFL,C(µT, µR, β).

This completes the proof of Theorem 5.1.

5.7. Decentralized Setting: Proof of Theorem 5.2

In this section, we present a proof of Theorem 5.2 starting with the achievability and then the

converse.
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5.7.1. Achievability of Theorem 5.2

Placement Phase

As in the centralized setting, the placement phase does not depend on β. Each file Wn, n ∈ [N ], is

partitioned into
(

KT
KTµT

)
disjoint subfiles of equal size, denoted byWn = {Wn,T }T ⊆[KT]:|T |=KTµT

,

where each subfile contains F

( KT
KTµT

)
packets. Each transmitter Txi then stores subfile given by

Pi = {Wn,T : i ∈ T }. On the other end, placement at the receivers is done in a decentralized

manner similar to Section 4.7 and [79]. In particular, each receiver Rxi stores µRF packets from

each file, chosen uniformly at random. Therefore, each packet of each file is stored in some subset

of users R̃ ⊆ [KR], where |R̃| ∈ {0, 1, . . . ,KR}. For any n ∈ [N ], we use Wn,T ,R̃ to denote

the packets of file Wn which are stored by transmitters in T and receivers in R̃, where Wn,T ,R̃ is

referred to as a mini-subfile henceforth. It follows that Wn can be reconstructed from
{
Wn,T ,R̃ :

T ⊆ [KT], |T | = KTµT, R̃ ⊆ [KR]
}

.

Delivery Phase

Each receiver Rxj requests for a file Wdj , hence the transmitters have to deliver all mini-subfiles

Wdj ,T ,R̃ with j /∈ R̃. Each packet to be delivered is split as in the centralized case, and we use

W
(p)
dj ,T

(P-subfile) and W
(n)
dj ,T

(N-subfile) to denote the sets of P-subpackets and N-subpackets of

Wdj ,T , respectively. Similarly, we use W
(p)

dj ,T ,R̃
(P-mini-subfile) and W

(n)

dj ,T ,R̃
(N-mini-subfile) to

denote the sets of P-subpackets and N-subpackets of Wdj ,T ,R̃, respectively.

The P-mini-subfiles are delivered over the P-subchannel, where the delivery takes place over KR

sub-phases indexed by l ∈ {0, 1, . . . ,KR − 1}. In the l-th sub-phase, the transmitters delivers all

W
(p)

dj ,T ,R̃
with |R̃| = l. Note that l goes up to KR − 1 since for |R̃| = KR, the corresponding

P-mini-subfiles are cached by all receivers. For each sub-phase l, the delivery in the P-subchannel

is reminiscent of the centralized P-subchannel delivery in Section 5.6.1, with the difference that

mC,R in the centralized setting is replaced with l here (i.e. smaller multicasting gain), as this sub-

phase considers subfiles which are cached by exactly l users. It follows that min{mC,T + l,KR}
P-subpackets are transmitted simultaneously.

On the other hand, the N-mini-subfiles are delivered over the N-subchannel using the original

decentralized coded-multicasting scheme in [79], while using over the air superposition instead of

XoR. Each receiver then obtains all missing mini-subfiles and recovers the demanded file.

Achievable One-Shot Linear sum-DoF

We start be focusing on the delivery time over the P-subchannel. Consider the l-th sub-phase and

an arbitrary subset of users R̃ with size l. For each P-subfile W
(p)
n,T , n ∈ [N ], stored by some

subset T of users), the probability that any of its P-subpackets is stored by any of the users in R̃
is given by µR, as each such user caches µRF random P-subpackets from each file. Hence, the

probability that a P-subpacket is stored by exactly the l users of R̃ is given by µlR(1 − µR)
KR−l.

It follows that the expected number of P-subpackets of W
(p)
n,T stored by each user in R̃ is given by
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µl
R(1−µR)KR−lF

( KT
KTµT

)
+ o(F ) when F → ∞. The term o(F ) is omitted henceforth. As there is a total

of
(
KR
l

)
subsets of l users, there is a total of

(KR
l )µ

l
R(1−µR)KR−lF

( KT
KTµT

)
P-subpackets of W

(p)
n,T which are

cached by exactly l users. We now proceed to calculate number of P-subpackets of W
(p)
dj

stored

by exactly l users and have to be delivered to receiver Rxj . For each T , receiver Rxj has all P-

mini-subfiles W
(p)

dj ,T ,R̃
, with |R̃| = l and j ∈ R̃, cached in its memory. Hence, Rxj already has

(KR−1
l−1 )µl

R(1−µR)KR−lF

( KT
KTµT

)
P-subpackets of W

(p)
dj ,T

which are cached by exactly l users. It follows that

the number of P-subpackets ofW
(p)
dj ,T

unavailable at Rxj , given by all P-mini-subfilesW
(p)

dj ,T ,R̃
with

|R̃| = l and j /∈ R̃, is equal to
(KR−1

l )µl
R(1−µR)KR−lF

( KT
KTµT

)
. Considering all possible P-subfiles W

(p)
dj ,T

for all T , and as there are KR receivers in total, the total number of P-subpackets which are stored

by exactly l users and have to be delivered to all receivers in the l-th delivery sub-phase is given by

KR

(
KR − 1

l

)
µlR(1− µR)

KR−lF.

We recall that in the l-th delivery sub-phase, a total of min{mC,T + l,KR} P-subpackets are deliv-

ered simultaneously over the P-subchannel. By summing over all KR sub-phases, we obtain

H
(p)
D = KR

KR−1∑

l=0

(
KR−1

l

)
µlR(1− µR)

KR−lF

min{mC,T + l,KR}
.

Moving on to the N-subchannel, as the delivery of the N-mini-subfiles follows the coded-multicasting

scheme of [79], it follows that

H
(n)
D = KR

KR−1∑

l=0

(
KR−1

l

)
µlR(1− µR)

KR−lF

1 + l
=

1− µR
µR

(
1− (1− µR)

KR
)
F.

From the above, it follows that the delivery time is given by HD = max
{

q
βH

(p)
D , q̄

β̄
H

(n)
D

}
packet-

time-slots. As for the centralized case, we choose q such that q
βH

(p)
D = q̄

β̄
H

(n)
D , which in turn min-

imizes the duration of the communication and hence maximizes the achievable sum-DoF. Hence,

we choose

q =

β · 1

∑KR−1

l=0

(KR−1
l )µlR(1−µR)KR−l−1

min{KR,KTµT+l}

β · 1

∑KR−1

l=0

(KR−1
l )µlR(1−µR)KR−l−1

min{KR,KTµT+l}

+ β̄ · KRµR

1−(1−µR)KR

.

From the above choice of q and the values of H
(p)
D and H

(p)
C , it follows that

HD =
KRF (1− µR)

β · 1

∑KR−1

l=0

(KR−1
l )µlR(1−µR)KR−l−1

min{mC,T+l,KR}

+ β̄ KRµR

1−(1−µR)KR
.

(5.42)
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As a total of KRF (1 − µR) packets are delivered during the delivery phase, the result in (5.18)

directly follows from (5.42), which concludes the proof of achievability.

5.7.2. Converse of Theorem 5.2

In this part, we prove (5.19) through the following steps:

• The first step of the proof is to show that when β = 0, we have the constant factor

DoFL,ub(µT, µR, 0)

DoFL,D(µT, µR, 0)
≤ 3. (5.43)

• The following step is to show that the one-shot linear DoF ratio in (5.43), with β = 0, is an

upper-bound for the ratio with β = 1, i.e.

DoFL,ub(µT, µR, 1)

DoFL,D(µT, µR, 1)
≤ DoFL,ub(µT, µR, 0)

DoFL,D(µT, µR, 0)
. (5.44)

• Equipped with (5.43) and (5.44), we proceed ad follows:

DoFL,ub(µT, µR, β) = β · DoFL,ub(µT, µR, 1) + β̄ · DoFL,ub(µT, µR, 0)
≤ 3β · DoFL,D(µT, µR, 1) + 3β̄ · DoFL,D(µT, µR, 0)
= 3 · DoFL,D(µT, µR, β).

It can be seen that the last of the three above steps concludes the proof of Theorem 5.2. Therefore,

the remainder of this part is dedicated to proving the inequalities in (5.43) and (5.44).

Proof of (5.43)

First, we recall that DoFL,D(µT, µR, 0) =
KRµR

1−(1−µR)KR
. Combining this with (1− µR)

KR ≥ 0 and

the Bernoulli inequality (1− µR)
KR ≥ 1−KRµR, we obtain

DoFL,D(µT, µR, 0) ≥ max
{
KRµR, 1

}
. (5.45)

For the trivial case ofKR = 1, it is easy to see that DoFL,D(µT, µR, 0) = DoFL,ub(µT, µR, 0) = 1.

For the case ofKR = 2, we have DoFL,D(µT, µR, 0) ≥ 1 from (5.45) and DoFL,ub(µT, µR, 0) ≤ 2

from (5.23) in Theorem 5.4. Hence for this case, (5.43) holds. Similarly, for the case KR = 3, we

have DoFL,D(µT, µR, 0) ≥ 1 and DoFL,ub(µT, µR, 0) ≤ 3 from which (5.43) also holds. There-

fore, without loss of generality, we assume that KR ≥ 4 henceforth. We proceed by considering

the following cases:
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1. µR ≤ 1/KR: For this case we have

DoFL,ub(µT, µR, 0) = min
{KRµR + 1

1− µR
,KR

}

≤ min
{ 1 + 1

1− 1/KR
,KR

}

≤ min
{8
3
,KR

}
≤ 3.

Combining the above with DoFL,D(µT, µR, 0) ≥ 1, we conclude that (5.43) holds.

2. µR ∈ (1/KR, 2/KR]: For this case, we start by defining the function

f(µR) = 3µR +
1

KRµR
.

The function f(µR) is convex in [0,∞), and hence f(µR) ≤ max
(
f( 1

KR
), f( 2

KR
)
)

over

the interval of interest µR ∈ (1/KR, 2/KR]. Moreover, it is easy to verify that f( 1
KR

) =
3

KR
+ 1 ≤ 7

4 and f( 2
KR

) = 6
KR

+ 1
2 ≤ 2. Therefore, f(µR) = 3µR + 1

KRµR
≤ 2 for all KR

and µR of interest. Combining this with (5.45) and (5.23), we obtain

DoFL,ub(µT, µR, 0)

DoFL,D(µT, µR, 0)
≤ min

{KRµR + 1

1− µR
,KR

}
· 1

max{KRµR, 1}

≤
(
1 +

1

KRµR

)
· 1

1− µR
≤ 3

where the last inequality is equivalent to 3µR + 1
KRµR

≤ 2. Therefore, (5.43) holds in this

case.

3. µR ∈ (2/KR, 1/2]: For this case we have

DoFL,ub(µT, µR, 0) = min
{KRµR + 1

1− µR
,KR

}

≤ min
{KRµR + 1

1− 1/2
,KR

}

= min
{
2KRµR + 2,KR

}

≤ min
{
3KRµR,KR

}
.

Combining the above with DoFL,D(µT, µR, 0) ≥ KRµR, it follows that (5.43) holds.

4. µR > 1/2: For this last case we have DoFL,D(µT, µR, 0) ≥ max{KRµR, 1} > KR/2.

Combining this with DoFL,ub(µT, µR, 0) ≤ KR, it follows that (5.43) holds, hence conclud-

ing the proof.
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Proof of (5.44)

From (5.18) and (5.23), the inequality in (5.44) can be expressed as

min
{

1+KRµR
1−µR

,KR

}

(∑KR−1
m=0

(KR−1
m )µm

R (1−µR)KR−1−m

1+m

)−1 ≥
min

{
KTµT+KRµR

1−µR
,KR

}

(∑KR−1
m=0

(KR−1
m )µm

R (1−µR)KR−1−m

min{KTµT+m,KR}

)−1 . (5.46)

Defining the function J(r) as

J(r) =
min

{
r+KRµR
1−µR

,KR

}

(∑KR−1
m=0

(KR−1
m )µm

R (1−µR)KR−1−m

min{r+m,KR}

)−1 (5.47)

it can be seen that (5.46) is equivalent to J(1) ≥ J(KTµT). In the following, we show that that

J(1) ≥ J(r) for all r ≥ 1. As a consequence, J(1) ≥ J(r) will also hold for integer values of

r, hence for any KTµT which is assumed to be integer for the decentralized setting and hence in

Theorem 5.2 and in (5.46).

It is readily seen that for r ≥ KR(1 − 2µR), the numerator in (5.47) becomes KR, and the

function J(r) decrease with r. Therefore, without loss of generality, we only consider the interval

r ∈ [1,KR(1 − 2µR)] in what follows. Equivalently, for any KR and r, we consider values of µR

that satisfy µR ≤ 1
2

(
1− r

KR

)
.

Next, the inequality in (5.46) is equivalently rewritten as

1 +KRµR
1− µR

KR−1∑

m=0

(
KR − 1

m

)
µmR (1− µR)

KR−1−m

1 +m
≥ r +KRµR

1− µR

KR−1∑

m=0

(
KR − 1

m

)
µmR (1− µR)

KR−1−m

min{r +m,KR}
.

After rearranging the terms and removing redundant factors, the above is expressed as

KR−1∑

m=0

1 +KRµR
1 +m

(
KR − 1

m

)(
µR

1− µR

)m

≥
KR−1∑

m=0

r +KRµR
min{r +m,KR}

(
KR − 1

m

)(
µR

1− µR

)m

,

which is further rewritten as

KR−1∑

m=0

ζ(KR + 1) + 1

1 +m

(
KR − 1

m

)
ζm ≥

KR−1∑

m=0

ζ(KR + r) + r

min{r +m,KR}

(
KR − 1

m

)
ζm, (5.48)

where ζ = µR
1−µR

, which is constrained as ζ ∈
[
0, KR−r

KR+r

]
for given KR and r. After further

rearrangement of terms, the inequality in (5.48) is rewritten as

p(ζ) ,

KR∑

m=0

cm · ζm ≥ 0, (5.49)

112



where p(ζ) is a polynomial in the variable ζ with coefficients given by

cm =





0, m = 0

1−r
KR

, m = KR
(
KR−1
m−1

)
·
(
KR+1

m − KR+r
min{r+m−1,KR}

)
+
(
KR−1

m

)
·
(

1
m+1 − r

min{r+m,KR}

)
, m ∈ [1,KR − 1]Z.

Note that in the above, we use [a, b]Z to denote the set of all integers that are in the interval [a, b],

i.e. [a, b]Z , [a, b] ∩ Z. At this point, it is clear that the problem reduces to showing that p(ζ) ≥ 0

for ζ ∈
[
0, KR−r

KR+r

]
. To this end, we derive the following property of p(ζ).

Lemma 5.1. The polynomial p(ζ) is quasiconcave and hence satisfies the following inequality:

p(ζ) ≥ min

(
p(0), p

(
KR − r

KR + r

))
, ∀ζ ∈

[
0,
KR − r

KR + r

]
. (5.50)

The proof of (5.50) is rather involved and hence is deferred to Appendix C.3. From Lemma 5.1,

it follows that to prove that the inequality in (5.49) holds, it is sufficient to show that p(0) ≥ 0 and

p
(
KR−r
KR+r

)
≥ 0. Note that the case with ζ = 0 is trivial as p(0) = 0. Hence, it remains to show that

p
(
KR−r
KR+r

)
≥ 0 holds true. For this, we require the following inequality.

Lemma 5.2. [138]. For any positive integer K ∈ Z+ and real number r ∈ [1,K], we have

K∑

m=1

m

min{r +m− 1,K}

(
K

m

)(
K − r

K + r

)m

≤ K − r + 2

K + r

[(
2K

K + r

)K

− 1

]
. (5.51)

The final step of the proof is to show that the inequality p
(
KR−r
KR+r

)
≥ 0 is an instance of Lemma

5.2, and hence holds true. Equivalently, we consider (5.48). By plugging ζ = KR−r
KR+r into (5.48) and

multiplying both sides by KR+r
KR

, the inequality p
(
KR−r
KR+r

)
≥ 0 is equivalently expressed as

KR−1∑

m=0

KR − r + 2

1 +m

(
KR − 1

m

)(
KR − r

KR + r

)m

≥
KR−1∑

m=0

KR + r

min{r +m,KR}

(
KR − 1

m

)(
KR − r

KR + r

)m

.

By rearranging the above inequality and using the fact that
(
KR
m+1

)
=
(
KR−1

m

)
KR
m+1 , we obtain

KR − r + 2

KR + r

KR∑

m=1

(
KR

m

)(
KR − r

KR + r

)m

≥
KR−1∑

m=0

KR

min{r +m,KR}

(
KR − 1

m

)(
KR − r

KR + r

)m+1

.

(5.52)

By employing
(
KR
m+1

)
=
(
KR−1

m

)
KR
m+1 one more time, we finally arrive at

KR − r + 2

KR + r

[(
2KR

KR + r

)KR

− 1

]
≥

KR∑

m=1

m

min{r +m− 1,KR}

(
KR

m

)(
KR − r

KR + r

)m

. (5.53)

where in going from (5.52) to (5.53), we used the binomial identity to obtain
∑KR

m=1

(
KR
m

) (
KR−r
KR+r

)m
=
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(
2KR
KR+r

)KR − 1. At this point, it is evident that the inequality in (5.53) holds true due to (5.51) in

Lemma 5.2. Therefore, (5.49) holds and the proof of (5.44) is complete.

5.8. Summary of the Chapter

In this chapter, we considered the problem of cache-aided interference management in a wireless

network where each node is equipped with a cache memory and transmission occurs over two par-

allel channels, one for which perfect CSIT is available and another for which no CSIT is available.

Focusing on strategies with uncoded placement and separable one-shot linear delivery schemes,

we characterized the optimal one-shot linear sum-DoF to within a multiplicative factor of 2. We

further considered a decentralized setting in which content caching at the receivers is randomized.

For this decentralized setting, we characterized the optimal one-shot linear sum-DoF to within a

multiplicative factor of 3. Our results generalize and expand upon previous one-shot linear sum-

DoF results in literature, namely [100] and [31], by including the parallel no CSIT (or multicast)

channel and by considering decentralization at the receivers. The order optimality proof for the de-

centralized setting posed a number of technical challenges, which were circumvented by involved

mathematical manipulations and employing the notion of quasiconcavity. Moreover, the results in

this chapter are the first important steps towards the characterization of the information-theoretic

limits of cache-aided interference networks under partial CSIT and partial cooperation.
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6. Conclusion

In the last two decades, a great deal of research has made significant progress towards the under-

standing of the capacity limits of multiantenna wireless networks under perfect CSIT. While this

has been a milestone in the information-theoretic literature, the acquisition of perfect channel state

information is hardly achieved in practical networks. Initial studies and deployments strived to

apply multiantenna techniques to scenarios with partial CSIT. However, recent breakthroughs in

the study of capacity approximation frameworks such as the DoF or the GDoF unveiled that such

approach is fundamentally flawed as it fails to achieve the information theoretic limits of the chan-

nels. While the design of capacity-achieving robust interference management strategies is rather

complicated on the basis of the current information-theoretic techniques, the use of DoF or GDoF

metrics has allowed to shed some light on this fundamental problem.

This thesis made progress towards the design of optimal interference management strategies for

multiantenna wireless networks with partial instantaneous CSIT. In particular, we characterized the

optimal sum-DoF (or sum-GDoF) and DoF regions for different kind of network settings. A two-

fold approach was taken in each of these settings: 1) an outer-bound (or upper-bound) was first

derived 2) an achievable scheme which attains such outer-bound was constructed.

We first considered classical content-oblivious networks, where no content can be predicted and

prestored in advance. In Chapter 2 we derived the optimal DoF region of the K-user MISO BC

with arbitrary CSIT levels. On the basis of previous results in the literature which had established

the optimal sum-DoF, we first derived an outer-bound of the optimal DoF region. We then proved

the achievability of such outer-bound by considering a rate-splitting strategy with flexible power

allocation for the private codewords and flexible allocation of the DoF of the common codeword.

To show the achievability, we introduced a novel and unconventional approach where, instead of

characterizing and showing the achievability of the corner points, we characterized and showed the

achievability of each facet of the polyhedral outer-bound.

In Chapter 3 we extended the work in Chapter 2 by studying the DoF behavior of the overloaded

MISO BC, where the number of users is larger than the number of transmitting antennas. To

simplify the analysis, we considered a setup where a number of users equal to the number of

transmitting antennas have partial CSIT and the remaining users have no CSIT. We first proposed a

scheme based on power partitioning where all users are simultaneously served in a non-orthogonal

manner and we showed that it achieves a strict DoF gain compared to an orthogonal scheme where

the two subsets of users with and without partial CSIT are independently served. We then showed

that a generalized version of such power partitioning scheme could achieve the entire DoF region

for the considered setting.
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We next moved from content-oblivious networks to content-aware networks, where the edge-

nodes can predict and prestore part of the most popular content in their cache memories. In Chapter

4 we considered the symmetric K-user cache-aided MISO BC with partial CSIT, where each user

is equipped with a cache memory where it can prestore part of the content library. We characterized

the optimal sum-GDoF of the network up to a constant multiplicative factor of 12 for all system pa-

rameters. Furthermore, we showed that such sum-GDoF characterization is robust to decentraliza-

tion, where no coordination is allowed during the placement phase. The construction of the GDoF

upper-bound extended a family of robust outer bounds based on the aligned image sets approach,

initially developed in the context of classical networks with no caches, to cache-aided networks. On

the other hand, the achievability schemes relied on the interplay between coded-caching, to enable

coded multicasting opportunities, and rate-splitting, to enable spatial multiplexing gains.

In Chapter 5 we extended the work in Chapter 4 by considering a cache-aided interference net-

work with an arbitrary number of transmitters and receivers, where each transmitter or receiver can

store a fraction of the content library. We assumed that the transmitters and receivers could commu-

nicate through two parallel channels, one for which perfect CSIT is available and another for which

no CSIT is available. The partial CSIT can be then seen as the fraction of the bandwidth given by

channel with perfect CSIT. By assuming separable one-shot linear delivery schemes and uncoded

placement, we derived the optimal sum-DoF of the network up to a constant multiplicative factor

of 2 for all system parameters. While this result was obtained by assuming centralized placement,

we showed that order-optimality is still attained in a decentralized setting, where a centrally coor-

dinated placement is not allowed at the receivers side. Our results generalized and expanded upon

previous one-shot linear DoF results in literature, namely [100] and [31], by including the parallel

no CSIT (or multicast) channel and by considering decentralization at the receivers. The order

optimality proof for the decentralized setting posed a number of technical challenges, which were

circumvented by involved mathematical manipulations and employing the notion of quasiconcavity.

From a more philosophical and abstract perspective, this thesis makes a step forward towards

a deeper understanding of the uncertainties arising in communication systems. Looking at the

history of Information Theory it is possible to appreciate the effort made by the researchers to

decouple these uncertainties and simplify the study of the fundamental limits of communications

by analyzing them individually. The most understood uncertainty is the noise. Starting from the

groundbreaking work of Shannon in 1948, a significant progress has been made in the study of

communication systems affected by noise only. This deep understanding has allowed a big leap

forward in the design of high-speed wireless communication systems. However, while dealing with

noise allows to serve at high data rate a single user in isolation, the situation becomes more compli-

cated in a multi-user scenario due the presence of interference. The ability to manage interference

is intimately related to another intrinsic uncertainty of communication systems, which is the quality

of the channel state information at the transmitter. The results in this thesis make progress towards

the understading of the effect of imperfect channel state information in the performance of multi-

user setups in wireless communication systems. Hopefully this will provide insights in the design

of novel interference management techniques which will dramatically improve the performance of

117



the future generation of communication systems.

Recently, a new job has brought me in the field of natural language processing. My task is

to make sense of sentences, i.e. extract their content. Again, this task is intimately related to

the understanding of uncertainties. In fact, the main uncertainty here is the form of the sentence,

i.e. the different ways to convey the same content. Even if in a completely different field, the

experience I have acquired by studying uncertainties in communication systems has allowed me to

better understand how to deal with the uncertainties arising in natural language processing.

6.1. Future Work

This PhD thesis has been the result of a 4 years journey, which started in October 2015, made of

exciting as well as frustrating periods. The main lesson learnt during this long journey has been

to never give up. PhD is made of an uncountable number of down moments, where I often felt

completely lost. During these moments, I could not find any new interesting direction or idea to

work on, or I had to deal with problems which seemed insurmountable. In fact, during this journey,

many problems were investigate and, while some of them could be solved, others still remain open

today. For instance, in Chapter 3 we studied the DoF of the overloaded MISO BC by restricting the

setup to the case where a number of users equal to the number of transmitting antennas have partial

CSIT and the remaining users have no CSIT. This in turn allows, with some minor modifications,

to utilize the sum-DoF upper-bound in [22] in order to derive an outer-bound of the optimal DoF

region. While this is an interesting problem on its own, our original direction was to consider a

symmetric setting where all users have partial CSIT. However, the main challenge which we were

not able to solve is the derivation of a robust sum-DoF upper-bound. It is unclear if this can be

obtained by extending the aligned image set approach in [22] or it requires the development of

novel techniques. This problem remains unsolved.

Regarding Chapter 4, for the original shared-link setting, recent efforts managed to reduce the

constant multiplicative factor to 2 [86,89]. Our observations through numerical simulations, which

shows that the gap is much smaller than 12, provide hope that such tightening may also be possible

for the order-optimal characterizations presented in our work.

Regarding Chapter 5, our initial intention was to study the cache-aided interference channel with

the same partial instantaneous CSIT as defined in the previous chapters. However, this was posing

very difficult challenges in the design of the achievability scheme as the multicasting messages

cannot be jointly encoded when they belong to different transmitters. Hence, instead of partial

CSIT, we considered a PN-parallel channel model, inspired by the works in [73, 125] which have

made the link between wireless networks where CSI is only reported for a fraction of the bandwidth

and wireless networks where CSI is reported for the entire bandwidth but with a certain quality (for

instance, receivers report the CSI over a certain number of bits), as explained in Chapter 5. Hence,

we leave as future work the study of cache-aided interference management where the transmitters

have a partial instantaneous knowledge of the CSIT of the users. To summarize, our work leaves

open a number of problems, and we summarize some of them below:
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• Optimal Sum-DoF and optimal DoF region of the Overloaded MISO BC: In Chapter 3

we studied the DoF of the overloaded MISO BC by restricting the setup to the case where a

number of users equal to the number of transmitting antennas have partial CSIT and the re-

maining users have no CSIT. As aforementioned, as important extension of this work would

be to consider an overloaded setting where all users have partial CSIT (restricting for sim-

plicity to a symmetric setting). However, the main challenge here would the derivationn of

the sum-DoF upper-bound and DoF region outer-bound.

• Characterization of order-optimal sum-GDoF of the K-user cache-aided MISO BC

with arbitrary CSIT levels: In Chapter 4 we studied the GDoF of the cache-aided MISO

BC for a symmetric setting of the CSIT levels. An interesting, even though very intricate

generalization, would be to characterize order-optimal sum-GDoF for arbitrary CSIT levels

of the users. The major difficulty here is the potential explosion in the number of channel

parameters. Therefore it is not surprising that such asymmetric GDoF characterizations are

still open even in classical networks [42, 43].

• Reduction of the constant multiplicative factor of 12 for the order-optimal sum-GDoF

of the K-user cache-aided MISO BC: For the original shared-link setting, recent efforts

managed to reduce the constant multiplicative factor to 2 [86, 89]. As aforementioned, our

observations through numerical simulations show that the gap is much smaller than 12, and

this provides hope that such tightening may also be possible for the order-optimal character-

izations presented in our work.

• Fundamental limits of cache-aided interference management in heterogeneous parallel

channels: In Chapter 5 we studied the cache-aided interference channel by assuming un-

coded placement and one-shot linear delivery schemes. An intriguing direction would be

to explore the fundamental limits of the considered setup while relaxing such restrictions.

While we expect uncoded placement to still be order-optimal, the delivery scheme will likely

rely on interference alignment and symbol spreading. This direction builds upon and benefit

from recent results reported in [34, 106].

• Fundamental limits of cache-aided interference management with partial CSIT: As al-

ready afrorementioned, another important direction would be to extend the model in Chapter

5 by considering partial instantaneous CSIT instead of parallel subchannels.

• Extension of the cache-aided interference setup to F-RAN networks: Another interest-

ing direction would be to extend the setup and results in Chapter 5 to F-RAN architectures,

where decentralized placement can also be afforded at the transmitters due to the support-

ing cloud [118–120]. Such direction will also be relevant to D2D networks underlaying a

cellular infrastructure, that performs the role of the cloud, which can benefit from the lower

complexity one-shot linear schemes.

Before concluding, I would like to mention an important direction of research which it has

only been touched in this thesis but it could be of potential interest as PhD topic for a new
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PhD student. In this thesis we wanted to characterize the fundamental limits of robust inter-

ference management and we had to consider the DoF/GDoF frameworks to make this char-

acterization analytically tractable. While this is interesting from an information-theoretic

perspective, still leaves open the question whether this is implementable in practical wireless

communication networks. Hence, I would suggest to a new PhD student to consider the prob-

lem of robust interference management in the finite SNR regime. By considering classical

scenarios without caches, previous works have tackled this problem by, for instance, formu-

lating it as an optimization problem for the precoders of the codewords [45,46]. However, no

works have considered robust interference management with caches. As mentioned above,

an important direction of research, which would be crucial to evaluate the impact of caching

in practical wireless networks, would be then the design of robust interference management

techniques in the finite SNR regime for cache-aided wireless networks.
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A. Proofs for Chapter A

Proof of the optimal DoF region D∗

The DoF region D∗ described by the inequalities in (3.9) and (3.10) is a KR-dimensional polyhe-

dral region. As in Chapter 2, we prove the optimality of D∗ by showing that it is simultaneously

achievable and an outer-bound of the optimal DoF region.

Achievability: In this section we prove the achievability of D∗. Before we delve into the general

case, we first characterize the achievable DoF region obtained by switching off all users in K0

(forcing their DoF to zero). This is equivalent to projecting D∗ onto the KT dimensional subspace

characterized by dKT+1, . . . , dKR
= 0. It is readily seen that this setup corresponds to the K-

user MISO BC studied in Chapter 2 for the case where all users have the same CSIT quality. The

corresponding DoF region can be then obtained from Theorem 2.2 and it is given by the lemma

below. This region is then utilized as a building block to prove the achievability of D∗.

Lemma A.1. For a MISO BC with KR = KT users and CSIT quality β ∈ [0, 1] for all users, the

optimal DoF region DKR=KT
is given by

dk ≥ 0, ∀k ∈ KR (A.1)

∑

k∈S

dk ≤ 1 + (|S| − 1)β, ∀S ⊆ KR, |S| ≥ 1 (A.2)

where KR denotes the set of users {1, . . . ,KR}.

We can now proceed to show the achievability of the region D∗. First, defining dΣ =
∑

i∈K0
di,

the problem is equivalent to showing that all the non-negative tuples (d1, . . . , dM , dΣ) that satisfy

di ≥ 0, dΣ ≥ 0 ∀i ∈ Kβ (A.3)

∑

i∈S

di + dΣ ≤ 1 + (|S| − 1)β, ∀S ⊆ Kβ , |S| ≥ 1 (A.4)

are achievable. All tuples (d1, . . . , dM , dM+1, . . . , dK) are then obtained by splitting, in all pos-

sible variants, the values of dΣ among users in K0. The proof follows the same steps as the proof

of Theorem 2.2 in Section 2.8. In this case, the induction is done over the number of users in Kβ ,

denoted as Kβ and equal to KT. The case Kβ = 1 is trivial. We assume that the hypothesis holds

for Kβ = 1, . . . , k − 1. As before, we show that each facet of the polyhedron is achievable. Start-

ing with the hyperplanes in (A.4), for each subset S ⊆ Kβ , |S| ≥ 1, we need to show that all the
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non-negative tuples (d1, . . . , dk, dΣ) that satisfy





∑
i∈S di + dΣ = 1 + (|S| − 1)β

∑
i∈S̄ di + dΣ ≤ 1 + (|S̄| − 1)β, ∀S̄ ⊆ Kβ , S̄ 6= S, |S̄| ≥ 1

are achievable. Following the same steps as in Section 2.8, it can be verified that the above condi-

tions are equivalent to





∑
i∈S di + dΣ = 1 + (|S| − 1)β

di ≥ β, ∀i ∈ S
di ≤ β, ∀i ∈ Kβ \ S.

Each DoF tuple is achieved through power partitioning by allocating powers scaling as O(P β) to

private symbols of users i ∈ S , and powers scaling asO(P di) to private symbols of users i ∈ Kβ\S .

On top, we consider all possible power partitions Λ ∈ [β, 1] and for each partition, the common

symbol’s DoF is split, in all possible variants, among users k ∈ S only, while dΣ = 1− Λ.

Considering the facets contained in the hyperplanes in (A.4), we have two cases. The first is

given by dΣ = 0 and it reduces to k users with CSIT β and k antennas as in Lemma A.1. The

second case considers any j ∈ Kβ and we have




dj = 0
∑

i∈S di + dΣ ≤ 1 + (|S| − 1)β, ∀S ⊆ Kβ \ {j}, |S| ≥ 1.

This corresponds to the region in (A.3) and (A.4) considering the k−1 users in Kβ . Using the same

argument as before, this region is achievable by induction. Moreover, all facets of the polyhedron

are achievable, all the remaining points can be achieved by time-sharing

Converse: The converse is based on the sum-DoF upper-bound obtained in [22] and it is similar

as the one in Section 2.7 in Chapter 2. For an arbitrary subset of users U ⊆ K, the sum-DoF is

upperbounded by ∑

k∈U

dk ≤ 1 + β(|S| − 1)+ (A.5)

where S = U ∩ Kβ . We increase the number of transmitter antennas to KR and then enhance the

quality of one of the users in S to 1 (if S is empty we pick any other user). Since the previous steps

provide an outer-bound and cannot harm the DoF, (A.5) directly follows from [22, Theorem 1]. By

removing all redundant inequalities, the outer-bound coincides with the region D∗.
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B. Proofs for Chapter 4

B.1. Proof of Lemma 4.1

The proof is based on the approach in [22, 41, 43], where outer bounds under finite precision and

partial CSIT are derived. We follow the same overall steps in these works, while specializing to the

specific setup considered here. For simplicity and notational briefness, we focus on real channels.

The extension to complex channels follows along the lines of [22, 41]. We consider s = K users.

For general s ≤ K, the exact same steps follow while considering only the corresponding s rate

bounds.

B.1.1. Deterministic Channel Model

The first step is to convert the channel into a deterministic equivalent with inputs and outputs all

being integers. This is given by

Ȳi(t) = ⌊Gii(t)X̄i(t)⌋+
K∑

j=1,j 6=i

⌊P̄α−1Gij(t)X̄j(t)⌋ (B.1)

B̄i(t) = Āi(t) (B.2)

where P̄ =
√
P , X̄i(t) ∈ {0, 1, . . . , ⌊P̄ ⌋} and Āi(t) ∈ {0, 1, . . . , ⌊P̄ γ⌋}, ∀i ∈ [K]. It can

be shown that a sum-GDoF upper-bound for the deterministic channel is also a sum-GDoF upper-

bound for the original channel using the same steps in [22]. Therefore we focus on the deterministic

channel henceforth.

B.1.2. Fanos Inequality and Differences of Entropies

For notational brevity, we define Mi ,
(
Wd1i

, . . . ,W
d
⌊N/s⌋
i

)
to denote the set of messages to be

delivered to user i. Moreover, we define M[i:K] , Mi, . . . ,MK . Using Fano’s inequality, for user

k we have

nRk ≤ I
(
Mk; Ȳ

n
k , B̄

n
k |M[k+1:K],G

)
+ o(n) (B.3)

≤ H
(
Ȳ n
k , B̄

n
k |M[k+1:K],G

)
−H

(
Ȳ n
k , B̄

n
k |M[k:K],G

)
+ o(n). (B.4)
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After omitting o(n) and o (log(P )) terms, we obtain

n
K∑

k=1

Rk ≤ n(1 + γ) log(P̄ ) +
K∑

k=2

H
(
Ȳ n
k−1, B̄

n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k , B̄

n
k |M[k:K],G

)
︸ ︷︷ ︸

H∆
k

.

(B.5)

Hence, the focus becomes to bound the differences of entropies H∆
2 , . . . , H

∆
K .

B.1.3. Bounding the Differences of Entropies

Focusing on the term H∆
k , k ∈ [2 : K], we proceed as follows:

H∆
k = H

(
Ȳ n
k−1, B̄

n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k , B̄

n
k |M[k:K],G

)
(B.6)

= H
(
Ȳ n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k |M[k:K],G

)

+H
(
B̄n

k−1 |M[k:K],G, Ȳ [n]
k−1

)
−H

(
B̄n

k |M[k:K],G, Ȳ n
k

)
(B.7)

≤ H
(
Ȳ n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k |M[k:K],G

)
+ n log

(
P̄ γ + 1

)
. (B.8)

In the above, (B.7) is obtained from the chain rule, while (B.8) follows fromH
(
B̄n

k |M[k:K],G, Ȳ n
k

)
≥

0 and H
(
B̄n

k−1 | M[k:K],G, Ȳ n
k−1

)
≤ H

(
B̄n

k−1

)
≤ ∑n

t=1H
(
B̄k−1(t)

)
≤ n log

(
P̄ γ + 1

)
. Now

it remains to bound the difference of entropies H
(
Ȳ n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k |M[k:K],G

)
under

partial CSIT and the bounded density assumptions as described in Section 4.3.1. This difference is

bounded above as

H
(
Ȳ n
k−1 |M[k:K],G

)
−H

(
Ȳ n
k |M[k:K],G

)
≤ n

(
1− (α− β)

)
log(P̄ ) + o

(
log(P̄ )

)
. (B.9)

The inequality in (B.9) follows directly from [43] (see the proofs of [43, Th. 1] and [43, Th. 2]),

and is obtained using the aligned image sets approach [22]. Intuitively, under perfect CSIT (i.e.

β = α), the transmitter uses zero-forcing to create a maximal difference of entropies, in a GDoF

sense, between Ȳ n
k−1 and Ȳ n

k . On the other hand, when all paths have equal strengths and the CSIT

is limited to finite precision (i.e. α = 1 and β = 0), a positive difference of entropies in a GDoF

sense cannot be created. Between the two extremes, the transmitter benefits from path-loss and

partial CSIT, through power control and zero-forcing, to create a positive difference of entropies

which is bounded above by 1, in a GDoF sense.

By combining the bounds in (B.9) and (B.8), we obtain

H∆
k ≤ n

(
γ + 1− (α− β)

)
log(P̄ ) + o

(
log(P̄ )

)
. (B.10)

The bound in (B.10) holds for all k ∈ [2 : K]. By plugging (B.10) into (B.5), the result in (4.24)

directly follows.
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B.2. Proof of Lemma 4.2

First, let us rewrite the signal model in (4.4) in vector form as (for brevity, the time index is omitted)

Yi =
√
P [Ĝi1 · · · ĜiK ]Qi X+

√
P 1−β [G̃i1 · · · G̃iK ]Qi X+ Zi (B.11)

where X , [X1 · · ·XK ]T is the signal transmitted from the K transmitters and Qi is a K × K

diagonal matrix with 1 as the (i, i)-th entry and
√
Pα−1 as the remaining diagonal entries. Note that

we ignore the time index for brevity. The messagesW (c) andW
(p)
1 , . . . ,W

(p)
K are encoded into unit

power independent Gaussian codewords X(c) and X
(p)
1 , . . . , X

(p)
K , respectively. The transmitted

signal is then constructed as

X = D

(√
1− P β−αV(c)X(c) +

√
P β−α

K∑

k=1

V
(p)
k X

(p)
k

)
. (B.12)

In the above, D is a K ×K diagonal matrix where the (j, j)-th entry is O(1) in P , and is chosen

such that the power constraint ❊
(
|Xj |2

)
≤ 1 is not violated. V(c) is a generic (random) unit vector

and V
(p)
k ,

[
V

(p)
k1 · · ·V (p)

kK

]T
is a zero-forcing unit vector designed using the channel estimates

such that

√
Pα
(
Ĝi1V

(p)
k1 + · · ·+

√
P 1−αĜiiV

(p)
ki + · · ·+ ĜiKV

(p)
kK

)
= 0, ∀i 6= k. (B.13)

It is simple to verify from the zero-forcing condition that V
(p)
ki cannot scale faster than O(

√
Pα−1)

for all k 6= i. Hence, the received signal of user i is rewritten as

Yi =
√
Pa

(c)
i X(c) +

√
P 1+β−αa

(p)
ii X

(p)
i +

K∑

k=1,k 6=i

a
(p)
ik X

(p)
k + Zi (B.14)

where a
(c)
i and a

(p)
ik , for all i, k ∈ [K], are all O(1).

Each user i decodes X(c) by treating interference as noise and recovers W (c). As X(c) is re-

ceived with power O(P ), while interference plus noise has power O(P 1+β−α), it follows that X(c)

supports a rate of (α − β) log(P ) + o
(
log(P )

)
. Then, each user i proceeds to remove the con-

tribution of X(c) from the received signal and decodes its own X
(p)
i while treating the remaining

interference as noise, from which W
(p)
i is recovered. As X

(p)
i is received with power O(P 1+β−α),

while the remaining interference plus noise has power O(1), it follows that X
(p)
i supports a rate of

(1 + β − α) log(P ) + o
(
log(P )

)
.

Remark B.1. It is worthwhile highlighting that the achievable GDoF in Lemma 4.2 (shown in this

appendix) can be inferred from [43]. One key difference, however, is that the MISO BC consid-

ered in [43] has private messages only, and rate-splitting is used to multicast part of the private

messages as a common codeword decoded by all users. This relationship between the MISO BC

with private messages and its counterpart with a common message under partial CSIT was first
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observed in [13].

B.3. Proofs of Order Optimality

Here we provide proofs for the order-optimality parts of Theorem 4.1 and Theorem 4.2. We start

with an instrumental lemma used throughout the proofs in the following subsections.

Lemma B.1. For parameters K,µ and s defined previously, if K
s(1+Kµ) ≥ 1, then the function

given by

f(δ;K,µ, s) =
1 + (s− 1)(1− δ)

K(1− δ) + (1 +Kµ)δ
(B.15)

is non-decreasing in δ ∈ [0, 1].

Proof. The derivative of f(δ;K,µ, s) with respect to δ is given by df
dδ = − s(1+Kµ)−K

(K(1−δ)+(1+Kµ)δ)2
,

which is non-negative for K ≥ s(1 +Kµ).

B.3.1. Order Optimality of GNDTC(µ, δ)

We show here that for any µ, there exists a particular s ∈ [K] such that GNDTC(µ, δ)/GNDT
lb
s (µ, δ) ≤

12 for all δ ∈ [0, 1]. We handle the two cases K ≤ 12 and K ≥ 13 separately. Starting with K ≤
12, consider a generic δ ∈ [0, 1]. By setting s = 1 in (4.19), we get that GNDTlb

1 (µ, δ) = 1−µ. On

the other hand, GNDTC(µ, δ) ≤ GNDTC(µ, 1) ≤ K(1− µ). Hence, GNDTC(µ, δ)/GNDT
lb
1 (µ, δ) ≤

12.

Next, we consider K ≥ 13. As in [24], we split the problem in three sub-cases: the sub-

case 0 ≤ µ ≤ 1.1
K , the sub-case 1.1

K < µ ≤ 0.092 and the sub-case 0.092 < µ ≤ 1. We start with

0 ≤ µ ≤ 1.1
K . For δ = 1, we have GNDTC(µ, 1) ≤ GNDTC(0, 1) = K. By setting s = ⌊0.275K⌋,

we know from [24] that GNDTlb
s (µ, 1) ≥ K/12. On the other hand, for a generic δ ∈ [0, 1], the

following upper-bound holds

GNDTC(µ, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(0, δ)

GNDT
lb
s (µ, δ)

=
1 + (s− 1)(1− δ)

K(1− δ) + δ︸ ︷︷ ︸
f(δ;K,0,s)

· K

s

(
1− M

⌊N
s ⌋

) . (B.16)

Since K
s ≥ 1

0.275 > 1, from Lemma B.1 it follows that f(δ;K, 0, s) is non-decreasing in δ ∈ [0, 1].

Hence,
GNDTC(µ, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(0, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(0, 1)

GNDT
lb
s (µ, 1)

≤ 12. (B.17)

We proceed to the sub-case 1.1
K < µ ≤ 0.092. Let µ̃ be the largest number in [0, µ] such that Kµ̃

is an integer. We know from [24] that GNDTC(µ, 1) ≤ GNDTC(µ̃, 1) ≤ 1
µ . By setting s =

⌊
0.3
µ

⌋
,

we also know from [24] that GNDTlb
s (µ, 1) ≥ 1

12µ . Considering a generic δ ∈ [0, 1], we write

GNDTC(µ, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(µ̃, δ)

GNDT
lb
s (µ, δ)

=
1 + (s− 1)(1− δ)

K(1− δ) + (1 +Kµ̃)δ︸ ︷︷ ︸
f(δ;K,µ̃,s)

· K (1− µ̃)

s

(
1− M

⌊N
s ⌋

) . (B.18)
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As K
s(1+Kµ̃) ≥ 1

0.3
Kµ

1+Kµ > 1, Lemma B.1 implies that f(δ;K, µ̃, s) is non-decreasing in δ ∈ [0, 1].

Hence,
GNDTC(µ, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(µ̃, δ)

GNDT
lb
s (µ, δ)

≤ GNDTC(µ̃, 1)

GNDT
lb
s (µ, 1)

≤ 12. (B.19)

Finally, we look at the sub-case 0.092 < µ ≤ 1 and we consider a generic δ ∈ [0, 1]. By setting

s = 1, we get GNDTlb
1 (µ, δ) = 1 − µ. Moreover, from [24], we know that GNDTC(µ, δ) ≤

GNDTC(µ, 1) ≤ 12(1−µ). Hence GNDTC(µ, δ)/GNDT
lb
1 (µ, δ) ≤ 12. This concludes the proof.

B.3.2. Order Optimality of GNDTD(µ, δ)

As for the centralized setting, we show that for any µ, there exists a particular s ∈ [K] such that

GNDT
ub
D (µ, δ)/GNDTlb

s (µ, δ) ≤ 12 for all δ ∈ [0, 1]. We start with the following lemma.

Lemma B.2. The value u, defined in (4.47), satisfies u ≤ Kµ for all µ ∈ [0, 1).

Proof. We focus on µ > 0 as u = 0 for µ = 0. By definition of u in (4.47), we have

K(1− µ)

Kµ

(
1− (1− µ)K

)
=
K(1− µ)

1 + u
(B.20)

which follows from GNDTD(µ, 1) =
K(1−µ)

Kµ

(
1− (1− µ)K

)
, as shown in [79]. Hence, showing

that u ≤ Kµ it is equivalent to showing that

K(1− µ)

Kµ

(
1− (1− µ)K

)
≥ K(1− µ)

1 +Kµ
(B.21)

⇒ (Kµ+ 1)
(
1− (1− µ)K

)
≥ Kµ (B.22)

⇒ 1 ≥ (Kµ+ 1)(1− µ)K . (B.23)

The inequality in (B.23) is shown to hold by observing that µ > 0 and Kµ+ 1 ≤ (1 + µ)K , from

which we obtain (Kµ + 1)(1 − µ)K ≤ (1 + µ)K(1 − µ)K = (1 − µ2)K ≤ 1. Hence, u ≤ Kµ

holds.

Equipped with Lemma B.2, the remainder of the proof follows the same procedures in Appendix

B.3.1. In particular, we consider the two cases K ≤ 12 and K ≥ 13. For the case K ≤ 12,

by setting s = 1 in (4.19), we get that GNDTlb
1 (µ, δ) = 1 − µ. On the other hand, we have

GNDT
ub
D (µ, δ) ≤ GNDT

ub
D (µ, 1) ≤ K(1−µ). It follows that GNDTub

D (µ, δ)/GNDTlb
1 (µ, δ) ≤ 12.

Next, we focus on K ≥ 13. As in [79], we consider three separate sub-cases: the sub-case

0 ≤ µ ≤ 1/K, the sub-case 1/K < µ ≤ 1/12 and the sub-case 1/12 < µ ≤ 1. We look at the

sub-case 0 ≤ µ ≤ 1/K first. For δ = 1, we have GNDT
ub
D (µ, 1) ≤ K, and by setting s = ⌊K/4⌋,

we obtain GNDT
lb
s (µ, 1) ≥ 1

12K from [79]. On the other hand, for a generic δ ∈ [0, 1], we have

GNDT
ub
D (µ, δ)

GNDT
lb
s (µ, δ)

=
1 + (s− 1)(1− δ)

K(1− δ) + (1 + u)δ︸ ︷︷ ︸
f(δ;K,u/K,s)

· K (1− µ)

s

(
1− M

⌊N
s ⌋

) . (B.24)
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By applying Lemma B.2 to lower bound the value of u, we can write K
s(1+u) ≥ K

K
4
·(1+Kµ)

> 1.

Hence, from Lemma B.1, the function f(δ;K,u/K, s) is non-decreasing in δ ∈ [0, 1]. It follows

that
GNDT

ub
D (µ, δ)

GNDT
lb
s (µ, δ)

≤ GNDT
ub
D (µ, 1)

GNDT
lb
s (µ, 1)

≤ 12. (B.25)

Next, we consider the sub-case 1
K < µ ≤ 1

12 . From [79], we have GNDT
ub
D (µ, 1) ≤ 1

µ , and by

setting s =
⌊

1
4µ

⌋
, we have GNDT

lb
s (µ, 1) ≥ 1

12µ . For a generic δ ∈ [0, 1], we have

GNDT
ub
D (µ, δ)

GNDT
lb
s (µ, δ)

=
1 + (s− 1)(1− δ)

K(1− δ) + (1 + u)δ︸ ︷︷ ︸
f(δ;K,u/K,s)

· K (1− µ)

s

(
1− M

⌊N
s ⌋

) . (B.26)

By applying Lemma B.2, it follows that K
s(1+u) ≥ 4 · Kµ

1+Kµ > 1. Hence, from Lemma B.1,

f(δ;K,u/K, s) is non-decreasing in δ ∈ [0, 1]. Therefore, the statement in (B.25) holds here as

well.

Finally, we consider the remaining sub-case 1/12 < µ ≤ 1 for a generic δ ∈ [0, 1]. By setting

s = 1, we get GNDTlb
1 (µ, δ) = 1 − µ. Moreover, from [79], we know that GNDTub

D (µ, δ) ≤
GNDT

ub
D (µ, 1) ≤ 1

µ − 1. Hence, GNDTub
D (µ, δ)/GNDTlb

1 (µ, δ) ≤ 12. This concludes the proof.

B.4. Proof of Lemma 4.3

It readily seen from the definition of u in (4.47) that GNDTD(µ, 1) = GNDT
ub
D (µ, 1). It is also

easy to verify that GNDTD(µ, 0) = GNDT
ub
D (µ, 0) and GNDT

ub
D (1, δ) = GNDTD(1, δ) = 0.

Therefore, we focus on δ ∈ (0, 1) and µ ∈ [0, 1). We define bm, m ∈ {0, 1, . . . ,K − 1}, such that

bm =
K
(
K−1
m

)
µm(1− µ)K−m

K(1− µ)
. (B.27)

It can be shown that
∑K−1

m=0 bm = 1 as follows

K−1∑

m=0

bm =
1

K(1− µ)

K−1∑

m=0

K

(
K − 1

m

)
µm(1− µ)K−m (B.28)

=

K−1∑

m=0

(
K − 1

m

)
µm(1− µ)K−1−m = 1 (B.29)
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where (B.29) follows from the binomial identity1. Hence, the inequality in (4.46) is equivalently

written as

K−1∑

m=0

bm
K(1− δ) + (1 +m)δ

≤ 1

K(1− δ) + (1 + u)δ
(B.30)

⇒
K−1∑

m=0

bm
cm + v

≤ 1

c̃+ v
. (B.31)

where v , K(1− δ), cm , (1 +m)δ and c̃ , (1 + u)δ. By rearrangement of (B.31), we obtain

(c̃′ + 1)
K−1∑

m=0

bm
c′m + 1

≤ 1. (B.32)

where c̃′ = c̃/v and c′m = cm/v By the definition of u in (4.47), for any δ ∈ (0, 1), we have

K−1∑

m=0

bm
(1 +m)δ

=
1

(1 + u)δ
(B.33)

⇒
K−1∑

m=0

bm
cm

=
1

c̃
(B.34)

⇒
K−1∑

m=0

bm
c′m

=
1

c̃′
. (B.35)

By plugging c̃′ from (B.35) into (B.32), we obtain

(
1

∑K−1
m=0

bm
c′m

+ 1

)
K−1∑

m=0

bm
c′m + 1

≤ 1. (B.36)

Hence, showing that (B.36) holds implies that (4.46) holds for δ ∈ (0, 1). This is shown next.

Let us define the function f(v) = v
1+v , which is concave in R+ \ {0}. Moreover, consider the

points
{

1
c′0
, . . . , 1

c′K−1

}
in R+ \ {0}. From

∑K−1
m=0 bm = 1, which is obtained from (B.29), and by

1Recall that the binomial identity is given by (a+ b)n =
∑n

r=0

(

n
r

)

arbn−r .
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applying Jensen’s inequality, we have

K−1∑

m=0

bmf

(
1

c′m

)
≤ f

(
K−1∑

m=0

bm
c′m

)
(B.37)

⇒
K−1∑

m=0

bm
1

c′m + 1
≤

∑K−1
m=0

bm
c′m∑K−1

m=0
bm
c′m

+ 1
(B.38)

⇒
(∑K−1

m=0
bm
c′m

+ 1
∑K−1

m=0
bm
c′m

)(
K−1∑

m=0

bm
c′m + 1

)
≤ 1 (B.39)

⇒
(

1
∑K−1

m=0
bm
c′m

+ 1

)
K−1∑

m=0

bm
c′m + 1

≤ 1 (B.40)

which is the inequality in (B.36). This concludes the proof.

B.5. Proof of Corollary 4.1

First, for µ = 0 we have that GDoFC(0, δ) = GDoFD(0, δ) = K(1 − δ) + δ, while for µ = 1 we

have that GNDTC(1, δ) = GNDTD(1, δ) = 0. Therefore, we focus on µ ∈ (0, 1) in what follows.

The multiplicative factor of 1.5 in (4.49) can be shown by considering the three following cases:

1. K ≥ 3: From Theorem 4.1, it follows that GDoFC(µ, δ) is bounded above by

GDoFC(µ, δ) ≤ (1− δ)
K

1− µ
+ δ

1 +Kµ

1− µ
(B.41)

where (B.41) holds with equality for µ ∈ {0, 1
K ,

2
K , . . . ,

K−1
K }, as expressed in (4.13). For

the remaining points in µ ∈ [0, 1], the achievable sum-GDoF upper-bound in (B.41) follows

from

GNDTC(µ, δ) ≥
K(1− µ)

K(1− δ) + (1 +Kµ)δ
(B.42)

which in turn holds as
K(1−µ)

K(1−δ)+(1+Kµ)δ is convex in µ and GNDTC(µ, δ) is the lower convex

envelope (see (4.10)). From Lemma 4.3, a lower-bound for GDoFD(µ, δ) is given by

GDoFD(µ, δ) ≥ (1− δ)
K

1− µ
+ δ

1 + u

1− µ
(B.43)

where 1 + u = K(1−µ)
GNDTD(µ,1) from (4.47). From [79], we know that GNDTD(µ, 1) can be

written as

GNDTD(µ, 1) =
1− µ

µ

(
1− (1− µ)K

)
. (B.44)

It follows that 1 + u is given by

1 + u =
Kµ

1− (1− µ)K
. (B.45)
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From (B.41) and (B.43), the ratio between GDoFC(µ, δ) and GDoFD(µ, δ) is bounded above

as
GDoFC(µ, δ)

GDoFD(µ, δ)
≤ (1− δ)K + δ(1 +Kµ)

(1− δ)K + δ(1 + u)
≤ 1 +Kµ

1 + u
. (B.46)

where the rightmost inequality in (B.46) follows from u ≤ Kµ, which in turn is obtained

from Lemma B.2 in Appendix B.3.2. By plugging (B.45) into (B.46), we obtain

1 +Kµ

1 + u
=

1 +Kµ

Kµ

(
1− (1− µ)K

)
≤ 1.5 (B.47)

where the bound by 1.5 follows directly from [76, Lem. 1].

2. K = 2: For this case, we consider the two following subcases:

• µ ∈ (0, 1/2]: For this interval, we employ the same bounding techniques used for the

case K ≥ 3. Hence, from (B.46) and (B.47) we obtain

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 1 + 2µ

2µ

(
1− (1− µ)2

)
. (B.48)

It is readily seen that the right-hand-side of (B.48), which we denote as g(µ), is a

concave parabola with a maximum at µ = 3/4. Given the symmetry of the parabola, it

follows that g(µ) ≤ g(1/2) = 1.5 for µ ∈ (0, 1/2].

• µ ∈ [1/2, 1): For this interval, the bounding techniques used for the case K ≥ 3 are

loose. Alternatively, it can be easily shown from Theorem 4.1 that GDoFC(µ, δ) =
2

1−µ . Combining this with the upper-bound for GDoFD(µ, δ) in (B.43), we obtain

GDoFC(µ, δ)

GDoFD(µ, δ)
≤ 2

2(1− δ) + (1 + u)δ
≤ 2

1 + u
(B.49)

where the rightmost inequality in (B.49) follows from the fact that 1 + u ≤ 2, which

can be easily shown. By plugging (B.45) into (B.49), we obtain

2

1 + u
=

1

µ

(
1− (1− µ)2

)
= 2− µ. (B.50)

It is readily seen that 2− µ ≤ 1.5 for µ ∈ [1/2, 1).

3. Case K = 1: In this case we have GNDTC(µ, δ) = GNDTD(µ, δ) = 1 − µ, hence (4.49)

holds.

From the above three cases, the proof is complete. It is worthwhile highlighting that for the case

K = 2, δ = 1 and µ = 1/2, we have GDoFC(µ, δ)/GDoFD(µ, δ) = 1.5. Therefore, 1.5 is in fact

the tightest possible upper-bound for GDoFC(µ, δ)/GDoFD(µ, δ).
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C. Proofs for Chapter 5

C.1. Proof of (5.36)

Note thatH(n)
(q)

corresponds to the optimum objective value for the optimization problem in (5.33)

when s = n. To bound this, we follow here the footsteps in the proof of [31, Lem. 4]. Starting from

H(n)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,d,q

)

and by invoking (5.27), we obtain

H(n)∗

(

{Pi}
KT
i=1,{Ui}

KR
i=1,q,d

)

≥
KT∑

i=1

KR∑

j=0

KR∑

r=1

∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j
r /∈R

adr,T ,R

j + 1
. (C.1)

By averaging over all possible demands, we obtain

H(n)

(

{P}
KT
i=1,{Ui}

KT
i=1,q

)

≥ 1

π(N,KR)

KT∑

i=1

KR∑

j=0

KR∑

r=1

∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j
r /∈R

π(N − 1,KR − 1)

N∑

n=1

an,T ,R

j + 1

=
1

N

KT∑

i=1

KR−1∑

j=0

wi,j

j + 1
.

(C.2)

where, for any i ∈ [KT] and j ∈ [KR − 1] ∪ 0, we define

wi,j =

KR∑

r=1

∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j
r /∈R

N∑

n=1

an,T ,R = (KR − j)
∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j

N∑

n=1

an,T ,R. (C.3)

It is readily seen that

KRµRNF ≥
KR∑

r=1

KT∑

i=1

KR∑

j=0

∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j
r∈R

N∑

n=1

an,T ,R ≥
KT∑

i=1

KR−1∑

j=0

j

KR − j
wi,j (C.4)

and

NF =

KT∑

i=1

KR∑

j=0

∑

T ⊆[KT]:
|T |=i

∑

R⊆[KR]:
|R|=j

N∑

n=1

an,T ,R ≥
KT∑

i=1

KR−1∑

j=0

1

KR − j
wi,j . (C.5)
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After applying the Cauchy-Schwarz inequality, we obtain

KR−1∑

j=0

wi,j ≤

√√√√
KR−1∑

j=0

j + 1

KR − j
wi,j ·

√√√√
KR−1∑

j=0

KR − j

j + 1
wi,j . (C.6)

Applying the Cauchy-Schwarz inequality again, we obtain

KT∑

i=1

KR−1∑

j=0

wi,j ≤

√√√√
KT∑

i=1

KR−1∑

j=0

j + 1

KR − j
wi,j ·

√√√√
KT∑

i=1

KR−1∑

j=0

KR − j

j + 1
wi,j . (C.7)

Moreover, from (C.4) and (C.5) we know that

KT∑

i=1

KR−1∑

j=0

j + 1

KR − j
wi,j ≤ KRµRNF +NF. (C.8)

It follows that

KT∑

i=1

KR−1∑

j=0

wi,j ≤
√
KRµRNF +NF ·

√√√√
KT∑

i=1

KR−1∑

j=0

KR − j

j + 1
wi,j . (C.9)

Furthermore, from [31] we know that

KT∑

i=1

KR−1∑

j=0

wi,j ≥ KRN(1− µR)F. (C.10)

Hence, it follows that

H(n)

(

{Pi}
KT
i=1,{Ui}

KT
i=1,q

)

≥ 1

N

KT∑

i=1

KR−1∑

j=0

wi,j

j + 1
≥ 1

KRN

KT∑

i=1

KR−1∑

j=0

KR − j

j + 1
wi,j

≥ 1

KRN
· 1

KRµRNF +NF




KT∑

i=1

KR−1∑

j=0

wi,j




2

≥ KRNF (1− µR)
2

KRµRN +N
=
KRF (1− µR)

2

1 +KRµR

(C.11)

for any caching realization
(
{Pi}KT

i=1, {Ui}KT
i=1

)
, which concludes the proof.

C.2. Proof of (5.27)

First, we will briefly revisit parts of the derivation in [31, Lem. 3] which in turn allows to proof

Eq. (5.26). Next, we will describe the extra steps needed in order to prove (5.27). Suppose that in

a certain N-block L(n) N-subpackets {w(n)
1,1 ,w

(n)
2,1 , · · · ,w

(n)
L,1} are scheduled to be communicated

to L receivers {Rx1,Rx2, . . . ,RxL}, respectively. As we are considering a specific N-block, we
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index the channel uses starting from 1 as t = 1, 2, · · · , B̃(n). Each transmitter transmits a linear

combination of the scheduled N-subpackets which are cached in its memory. From Section 5.3

each transmitter Txi, with i ∈ [KT], will transmit the symbols given by

X
(n)
i (t) =

∑

l: i∈Tl

v
(n)
i,l,1(t)W̃

(n)
l,1 (t).

where w̃
(n)
l,1 =

(
W̃

(n)
l,1 (1), . . . , W̃

(n)
l,1 (B̃(n))

)
as in Eq. (5.4). Note that the beamforming coefficients

of the N-subchannel cannot depend on the fading channel.

We can then write the received signal at Rxj as

Y
(n)
j (t) =

√
P β̄

L∑

l=1

∑

i∈Tl

G
(n)
ji (t)v

(n)
i,l,1(t)W̃

(n)
l,1 (t) + Z(n)(t). (C.12)

Therefore, by applying the approach in [31, Lem. 3], we can convert the network as a new MISO

interference channel (MISO IC) withL virtual transmitters {T̂xl}Ll=1, where each virtual transmitter

has |Tl| antennas, and L single-antenna receivers {Rxj}Lj=1, where the latter correspond to the

receivers scheduled in such N-block. In this network T̂xl wants to deliver the N-subpacket w
(n)
l,1 to

Rxl. Note that each antenna in the new network corresponds to a transmitter in the original network.

In particular, each antenna of T̂xl corresponds to a transmitter which caches the N-subpacket w
(n)
l,1

in its memory. This in turn implies that the channel vectors of the transmitters in the new MISO IC

are correlated.

To bound the sum-DoF of this network we take the same approach of [31] which in turn is derived

from [135]. Each virtual transmitter T̂xl in the constructed MISO BC will choose a beamforming

vector v
(n)
l (t) to precode W̃

(n)
l,1 (t). Note that v

(n)
l (t) ∈ C

|Tl|×1 consists of the set of complex

beamforming coefficients v
(n)
i,l,1(t), with i ∈ Tl, chosen by the original transmitters corresponding

to its antennas. We also denote the channel between Rxj and T̂xl as the fading channel vector

g
(n)
jl (t) ∈ C

|Tl|×1(t), which consists of the set of fading channel coefficients from the original

transmitters corresponding to the antennas of T̂xl to Rxj . The decodability conditions become then

g
(n),T
jl (t)v

(n)
l (t) = 0, ∀l 6= j s.t. j /∈ Rl (C.13)

g
(n),T
jj (t)v

(n)
j (t) 6= 0, ∀j ∈ [L]. (C.14)

Given that we are considering the N-subchannel, the beamforming vectors v
(n)
l (t) are independent

from the channel vector coefficients g
(n)
jl (t). However, in order to remove interference in (C.13), the

vector v
(n)
l (t) has still to belong to the null-space of g

(n)
jl (t), with j /∈ Rl. As the vector g

(n)
jl (t) has

dimension |Tl|, the null-space of g
(n)
jl (t) is a subspace of dimension |Tl| − 1. As any beamforming

vector v
(n)
l (t) is independent of g

(n)
jl (t), the probability of v

(n)
l (t) to belong to the null-space of

g
(n)
jl (t) is almost surely 0. It follows that the condition in (C.13) cannot be satisfied almost surely.

As a consequence, each N-subpacket scheduled to be delivered to a specific user has to be available

in the caches of all the other users in order for them to remove it from the received signal. It follows
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that the condition L ≤ |Rl| + 1 has to be satisfied for all the scheduled N-subpackets w
(n)
l,1 , from

which the result in Eq. (5.27) follows.

C.3. Proof of Lemma 5.1

Here we present a proof of the inequality in (5.50). We start with the following instrumental lemma.

Lemma C.1. Consider a polynomial φ(ζ) =
∑d

m=0 amζ
m for which there exists and integer N in

[−1, d]Z such that the coefficients of φ(ζ) satisfy the following condition

am ≥ 0, m < N

am > 0, m = N

am ≤ 0, m > N

(C.15)

where the case N = −1 implies a0, . . . , ad ≤ 0. The polynomial φ(ζ) is quasiconcave on ζ ∈
[0,∞).

Proof. First, we note that for the cases: N = −1 (i.e. when am ≤ 0 for all m), N = 0 and

N = 1, the second derivative of φ(ζ) is a polynomial with all coefficients not greater than zero.

Therefore, φ(ζ) is concave, and hence quasiconcave, on ζ ∈ [0,∞). We proceed by induction.

In particular, assume that the quasiconcavity hypothesis holds for all polynomials the satisfy the

condition in (C.15) for integer N = n, where n ≥ 1. Now consider a polynomial φ(ζ) that

satisfies the condition in (C.15) for N = n + 1. It is readily seen that the first derivative of φ(ζ),

denoted by φ′(ζ), is a polynomial which satisfies the condition in (C.15) for N = n. Hence, φ′(ζ)

is quasiconcave by the induction hypothesis. Moreover, as n ≥ 1, it follows from (C.15) that

φ′(0) ≥ 0. It can be verified that φ′(0) ≥ 0 combined with the quasiconcavity of φ′(ζ) guarantee

that: either φ′(ζ) is non-negative over [0,∞), or there exists ζ ′ ∈ [0,∞) such that φ′(ζ) ≥ 0

over the interval [0, ζ ′] and φ′(ζ) ≤ 0 over the interval [ζ ′,∞). It follows that φ(ζ) is eithrer

non-decreasing over [0,∞), or non-decreasing over [0, ζ ′] and non-increasing over [ζ ′,∞). In both

cases, φ(ζ) is quasiconcave. This concludes the proof of Lemma C.1.

Next, we show that the coefficients of the polynomial p(ζ) of interest satisfy the conditions in

Lemma C.1. As this shows that p(ζ) is quasiconcave, the inequality in (5.50) directly follows

by definition. The remainder of this appendix is dedicated to showing that p(ζ) is an instance of

Lemma C.1.

The key step of this proof is to show that the sequence
{

cm
(KR−1

m−1 )

}KR−1

m=1
is non-increasing. Sup-

posing that this holds true, then this sequence would satisfy the condition of Lemma C.1, applied

only to the indicesm ∈ [1,KR−1]Z. Since the sign of cm
(KR−1

m−1 )
is preserved by cm, then {cm}KR−1

m=1

also satisfies the condition of Lemma C.1 over m ∈ [1,KR − 1]Z. Combining this with c0 = 0

and cKR
≤ 0, it follows that {cm}KR

m=0 satisfies the condition of Lemma C.1, which in turn con-

cludes the proof. Therefore, our problem reduces to showing that cm
(KR−1

m−1 )
in a non-increasing over

m ∈ [1,KR − 1]Z.
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First, it is readily seen that cm can be written as

cm =

(
KR − 1

m− 1

)[(
KR + 1

m
− KR + r

min{r +m− 1,KR}

)
+
KR −m

m

(
1

m+ 1
− r

min{r +m,KR}

)]
.

For briefness, we denote the coefficient cm
(KR−1

m−1 )
as c′m. Hence, c′m is given by

c′m =

(
KR + 1

m
− KR + r

min{r +m− 1,KR}

)
+
KR −m

m

(
1

m+ 1
− r

min{r +m,KR}

)
.

Next, let us define the integer r̃ ∈ [1,KR − 1]Z as r̃ , ⌊r⌋ = r − ǫ, where ǫ ∈ [0, 1). Using this

definition, it can be shown that c′m, m ∈ [1,KR − 1]Z, may be expressed as:

c′m =





dm ,

(
KR+1

m − KR+r
r+m−1

)
+ KR−m

m

(
1

m+1 − r
r+m

)
, m ∈ [1,KR − r̃ − 1]Z(

KR+1
KR−r̃ −

KR+r̃+ǫ
KR+ǫ−1

)
+ r̃

KR−r̃

(
1

KR−r̃+1 − r̃+ǫ
KR

)
, m = KR − r̃

em ,

(
KR+1

m − KR+r
KR

)
+ KR−m

m

(
1

m+1 − r
KR

)
, m ∈ [KR − r̃ + 1,KR − 1]Z.

Showing that c′m is non-increasing in m is carried out through the two following steps:

1. We show that dm and em are both non-increasing sequences in m . This guarantees that c′m

is non-increasing over both the intervals [1,KR − r̃ − 1]Z and [KR − r̃ + 1,KR − 1]Z.

2. We show that c′KR−r̃ ≤ dKR−r̃−1 and c′KR−r̃ ≥ eKR−r̃+1. This guarantees that c′m is non-

increasing over the entire interval [1,KR − 1]Z.

Proof of Point 1): First, let us consider dm. This can be rewritten as:

dm =
(KR −m+ 1)(r − 1)

m(m+ r − 1)
+

(KR −m)(1− r)

(m+ 1)(m+ r)
. (C.16)

For r = 1, we have dm = 0 for all m ∈ [1,KR − 1]Z. Hence, we consider r ≥ 1. From (C.16),

and after some rearrangements, the inequality dm ≥ dm+1 which we wish to prove is equivalently

written as

KR −m+ 1

m(m+ r − 1)
− KR −m

(m+ 1)(m+ r)
≥ KR −m

(m+ 1)(m+ r)
− KR −m− 1

(m+ 2)(m+ r + 1)
. (C.17)

Using the following notation A = KR −m, B = m+ 1 and C = m+ r, (C.17) is rewritten as

A+ 1

(B − 1)(C − 1)
− A

BC
≥ A

BC
− A− 1

(B + 1)(C + 1)
. (C.18)

After further rearranging and simplifying, (C.18) becomes

ABC +B2C +BC2 ≥ A−AB2 −AC2. (C.19)

Since A ≥ 1, B ≥ 2 and C ≥ 2, (C.19) always holds and hence dm is non-increasing in m.
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Next, we consider em. This can be rewritten as:

em =
KR + 1

m
+

KR

m(m+ 1)
− 1

m+ 1
− r

m
− 1 (C.20)

From (C.20), it follows that em ≥ em+1 is implied by

KR + 1

m
+

KR

m(m+ 1)
− 1

m+ 1
− r

m
≥ KR + 1

m+ 1
+

KR

(m+ 1)(m+ 2)
− 1

m+ 2
− r

m+ 1
. (C.21)

After some rearrangements, the inequality in (C.21) becomes

(KR + 1− r)(m+ 2) + 2KR −m ≥ 0 (C.22)

which holds as m ≥ 1 and KR ≥ r. Hence, em is a non-increasing in m and this part is complete.

Proof of Point 2): In order to show that c′KR−r̃ ≤ dKR−r̃−1, we only need to observe the follow-

ing:

c′KR−r̃ =

(
KR + 1

KR − r̃
− KR + r̃ + ǫ

KR + ǫ− 1

)
+

r̃

KR − r̃

(
1

KR − r̃ + 1
− r̃ + ǫ

KR

)

≤
(
KR + 1

KR − r̃
− KR + r̃ + ǫ

KR + ǫ− 1

)
+

r̃

KR − r̃

(
1

KR − r̃ + 1
− r̃ + ǫ

KR + ǫ

)

= dKR−r̃

≤ dKR−r̃−1.

Next, we focus on showing that c′KR−r̃ ≥ eKR−r̃+1. We observe that c′KR−r̃ can be expressed as:

c′KR−r̃ =

(
KR + 1

KR − r̃
− KR + r̃ + ǫ

KR + ǫ− 1

)
+

r̃

KR − r̃

(
1

KR − r̃ + 1
− r̃ + ǫ

KR

)

=

(
r̃ + 1

KR − r̃
− r̃ + 1

KR + ǫ− 1

)
+

r̃

KR − r̃

(
1

KR − r̃ + 1
− r̃ + ǫ

KR

)
.

(C.23)

On the other hand, eKR−r̃+1 is given by:

eKR−r̃+1 =

(
KR + 1

KR − r̃ + 1
− KR + r̃ + ǫ

KR

)
+

r̃ − 1

KR − r̃ + 1

(
1

KR − r̃ + 2
− r̃ + ǫ

KR

)

=

(
r̃

KR − r̃ + 1
− r̃ + ǫ

KR

)
+

r̃ − 1

KR − r̃ + 1

(
1

KR − r̃ + 2
− r̃ + ǫ

KR

)
.

(C.24)

By taking the difference of (C.23) and (C.24), we obtain

c′KR−r̃ − eKR−r̃+1 =
KR + 1− r̃ − ǫ

(KR − r̃)(KR − r̃ + 1)
+

(ǫ− 1)(KR + r̃ + ǫ)

KR(KR + ǫ− 1)

+
KR + r̃

(KR − r̃)(KR − r̃ + 1)(KR − r̃ + 2)
. (C.25)

After rearranging the terms in (C.25), it follows that c′KR−r̃ − eKR−r̃+1 ≥ 0 is implied by the
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inequality

KR(KR + ǫ− 1)(KR + 1− r̃ − ǫ)(KR − r̃ + 2)︸ ︷︷ ︸
l1(ǫ)

+KR(KR + ǫ− 1)(KR + r̃)︸ ︷︷ ︸
l2(ǫ)

+ (ǫ− 1)(KR + ǫ+ r̃)(KR − r̃)(KR − r̃ + 1)(KR − r̃ + 2)︸ ︷︷ ︸
l3(ǫ)

≥ 0. (C.26)

We denote the left-hand side of (C.26) by l(ǫ) = l1(ǫ) + l2(ǫ) + l3(ǫ). It is readily seen that l1(ǫ)

and l3(ǫ) are second degree polynomials in the variable ǫ (i.e. parabolas). We consider the the three

functions separately in order to derive a lower-bound on l(ǫ).

• l1(ǫ): It can be easily verified that l1(ǫ) is concave with a maximum value at ǫ∗ = 2−r̃
2 .

Hence, ǫ∗ ≤ 0 for r̃ ≥ 2 and ǫ∗ = 1/2 for r̃ = 1. As a concave parabola is decreasing for

ǫ ≥ ǫ∗ and symmetric with respect to the maximum, it follows that for ǫ ∈ [0, 1), we have

l1(ǫ) ≥ l1(1) = K2
R(KR − r̃)(KR − r̃ + 2). (C.27)

• l2(ǫ): It is readily seen that for ǫ ∈ [0, 1), the following holds

l2(ǫ) ≥ l2(0) = KR(KR − 1)(KR + r̃). (C.28)

• l3(ǫ): This is a convex with a minimum value at ǫ∗ = −KR−r̃+1
2 < 0. Hence, for ǫ ∈ [0, 1),

we have

l3(ǫ) ≥ l3(0) = −(KR + r̃)(KR − r̃)(KR − r̃ + 1)(KR − r̃ + 2). (C.29)

By summing over the lower-bounds in (C.27), (C.28) and (C.29), it follows that for ǫ ∈ [0, 1), we

have:

l(ǫ) ≥ KR(KR − 1)(KR + r̃) + (KR − r̃)(KR − r̃ + 2)(r̃2 − r̃ −KR). (C.30)

Next, we express the right-hand side of the (C.30) as a function of KR:

g(KR) = KR(KR − 1)(KR + r̃) + (KR − r̃)(KR − r̃ + 2)(r̃2 − r̃ −KR) = aK2
R + bKR + c,

where a = r̃2 + 2r̃ − 3 and b = −r̃(2r̃2 − 3r̃ + 1). Finally, to show that l(ǫ) ≥ 0, it is sufficient

to show g(KR) ≥ 0 for all KR ≥ r̃. To this end, we observe that g(KR) = 0 for r̃ = 1, while

g(KR) is a convex parabola with a minimum value at
r̃(r̃−1/2)

r̃+3 ≤ r̃ for r̃ > 1. In latter case, g(KR)

is increasing for KR ≥ r̃. As g(r̃) ≥ 0, it follows that g(KR) ≥ 0 for all KR ≥ r̃. This concludes

the proof.
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