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Recently, the automatic detection of decayed blueberries is still a challenge in food industry. Early decay of blueberries happens on
surface peel, which may adopt the feasibility of hyperspectral imaging mode to detect decayed region of blueberries. An improved
deep residual 3D convolutional neural network (3D-CNN) framework is proposed for hyperspectral images classification so as to
realize fast training, classification, and parameter optimization. Rich spectral and spatial features can be rapidly extracted from
samples of complete hyperspectral images using our proposed network. This combines the tree structured Parzen estimator (TPE)
adaptively and selects the super parameters to optimize the network performance. In addition, aiming at the problem of few
samples, this paper proposes a novel strategy to enhance the hyperspectral image sample data, which can improve the training
effect. Experimental results on the standard hyperspectral blueberry datasets show that the proposed framework improves the
classification accuracy compared with AlexNet and GoogleNet. In addition, our proposed network reduces the number of
parameters by half and the training time by about 10%.

1. Introduction

Blueberries are popular worldwide for their excellent flavor
and high nutritional value [1]. Most of blueberries used for
fresh consumption are hand-picked and transported over
long distances. Damage during transportation will accelerate
fruit decay and reduce overall quality [2]. Therefore, it is
important to identify rotten blueberries from healthy
blueberries to remove low-quality blueberries from the fresh
blueberry supply chain [3].

Under the current industrial standard, the internal decay
of blueberry is usually judged by the human touch or by
observing the dark rotten tissue of blueberry [4, 5]. The
decayed tissue of blueberry becomes darker and more ob-
vious, similar to black, and easier to observe with the naked
eye. However, it takes a lot of manpower and time to identify
the degree of decay, and it will become inaccurate after
several hours of continuous inspection [6]. In addition, the

inspection efficiency is very low, and the inspection of early
decay is not accurate. The development of hardness mea-
surement method accelerates the detection process of fruit
quality evaluation and makes fruit classification more ac-
curate, including blueberry hardness and texture analyzer
[7], tomato acoustic pulse response measurement [8], and
peach inspection method based on frequency resonance [9].
These methods can provide more accurate hardness mea-
surement, but many hardness measurement technologies
need direct touch with fruits, which may cause blueberries to
be damaged.

Some researchers at home and abroad used nonde-
structive testing technology such as machine vision and
Hyperspectral Imaging to detect fruit disease or maturity
[10] and achieved some excellent results. Georgina et al. [11]
used machine vision technology to extract 14 types of fea-
tures such as color, shape, and texture of citrus and then used
Classification And Regression Trees(CART), naive Bayes
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(NB), and multilayer perceptron (MLP) to detect citrus
canker, black spot, and sclerosis. Lewers et al. [12] used
machine vision technology to detect pomegranate disease,
where K-means and threshold segmentation methods were
used in the experiment to extract the lesion area of
pomegranate, and the discrete wavelet transform is adopted
to get a set of visual features of the lesion as the input vector
of the support vector machine (SVM) model so as to identify
pomegranate disease. Lorente [13] uses the hyperspectral
imaging system to obtain the hyperspectral images of sound,
slight-decayed, moderate-decayed, and severe-decayed
peaches, the threshold segmentation method to detect the
disease area of peaches, and then the successive projections
algorithm (SPA) to extract six characteristic wavelengths,
establishes the partial least squares discriminant analysis
(PLS-DA) model to identify the disease, and further im-
proves the identification rate of the rotten peaches. Wang
et al. [14] also uses hyperspectral imaging technology to
obtain the spectral data of the region of interest, where five
characteristic wavelengths are extracted by the permutation
test method, and the multiple partial least squares regression
discriminant analysis model is used to detect the citrus-rot
disease caused by fungal infection. Wang et al. [15] used
hyperspectral imaging technology to obtain apple spectrum
data. Firstly, the threshold segmentation method is used to
segment Apple lesion area and extract hyperspectral data;
then, the successive projection algorithm is adopted to ex-
tract three characteristic wavelengths from the full wave-
length; finally, an improved linear discriminant analysis
combined with the support vector machine and BP artificial
neural network model to detect apple disease. Liu et al. [16]
used hyperspectral imaging technology to detect and dis-
tinguish the crack, peel spots, malformation, hidden dam-
age, and normal fruit of nectarine. Ten characteristic
wavelengths were extracted and the top ten principal
component values were obtained by principal component
analysis. The disease areas of Nectarine were extracted by
threshold segmentation. Finally, the principal component
value and six texture indexes (mean, contrast, correlation,
energy, homogeneity, and entropy) are fused to establish the
ELM model to detect and distinguish the external defect
samples and intact samples.

Hyperspectral imaging technology covered the range of
420-1000 nm was employed to detect the nectarine fruit in
the literature [17]. 400 RGB images were acquired through a
total of 400 samples, which included four types of defective
features and sound features. After acquiring hyperspectral
images of nectarine fruits the spectral data were extracted
from region of interest (ROI). Using Kennard Stone algo-
rithm, all kinds of samples were randomly divided into
training set (280) and testing set (120). First of all, according
to the calculation of partial least squares regression (PLSR),
10 wavelengths at 497 nm, 534 nm, 657 nm, 677 nm, 696 nm,
709 nm, 745 nm, 823 nm, 868 nm, and 943 nm were selected
as the optimal sensitive wavelengths (SWs), respectively.
Subsequently, the image of the 876 nm wavelength was
selected as the feature image; then, principal component
analysis (PCA), Sobel edge detector, and region growing
algorithm were carried out among defective and normal
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nectarines to extract the defective region. Moreover, ten
principal components (PCs) were selected based on PCA
and seven textural feature variables (mean, contrast, cor-
relation, energy, homogeneity, and entropy) were extracted
by using gray level co-occurrence matrix (GLCM), respec-
tively. Finally, the ability of hyperspectral imaging technique
was tested by using the extreme learning machine (ELM)
models. The ELM classification model was built on the basis
of the combination of PCs and textural features. The results
show the correct discrimination accuracy of defective
samples was 91.67 %, and the correct discrimination ac-
curacy of normal samples was 100%. The research revealed
that the hyperspectral imaging technique is a promising tool
for detecting defective features in nectarine which could
provide a theoretical reference and basis for design in the
classification system of fruits in further work [18-20].

In the abovementioned research studies, whether ma-
chine vision technology or hyperspectral imaging technol-
ogy is used, the disease areas of citrus, pomegranate, and
other medium-sized fruits need to be separated from the
normal areas. Because the color characteristics of the disease
areas are obviously different with that of normal areas, the
disease areas can be easily separated by threshold seg-
mentation. However, the skin color of blueberry is darker,
and the color characteristics of its normal area and disease
area are similar, so it is difficult to segment blueberry disease
effectively by using the conventional threshold segmentation
method [15]. With the development of intelligent signal
processing technology, using the convolutional neural
network (CNN), we can overcome the abovementioned
shortcomings [21]. CNN has a very prominent performance
in machine vision tasks by using the local receptive field
model to simulate human brain image processing. For ex-
ample, the two-dimensional convolutional neural network
(2D-CNN) is used to mine the spatial features of the
principal component band, and the spectral features are
fused by the feature fusion technology to classify the images
[21]. In the two-channel CNN method, one-dimensional
convolutional neural network is used for spectral feature
information, while the spatial feature information is
extracted, fused, and classified by 2D-CNN, which also
achieves good results. However, there is a disadvantage in
these methods: before extracting features, principal com-
ponent analysis (PCA) and other methods should be used to
select the principal component band to reduce the di-
mension, otherwise too many parameters will be introduced,
which is difficult to train and optimize the deep network.

The advantage of 3D-CNN convolution kernel in
extracting hyperspectral image features is that the spectral
information and spatial information are extracted syn-
chronously, which gives full play to the advantages of 3D
hyperspectral image [22]. The 3D-CNN feature model di-
rectly extracts the spectral spatial features of hyperspectral
image end-to-end, which has better classification effect than
2D-CNN features. Spectral spatial-based residual network
introduces the residual structure into the 3D-CNN network
and uses two 3D convolution kernels of spectral and spatial
features to extract deep features, which can improve the
recognition accuracy for mildew blueberries [23].
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There are some problems in the existing 3D-CNN model,
for example, the number of network layers is generally
shallow, hyperparameter optimization is time-consuming
and laborious, and the accuracy needs to be further im-
proved. To solve the abovementioned problems, the tradi-
tional hyperspectral 3D convolution method is improved to
obtain the deep features with stronger representation, and it
combines the tree structured Parzen estimator (TPE)
adaptively and selects the super parameters to optimize the
network performance [23]. In addition, aiming at the
problem of few samples, this paper proposes a novel strategy
to enhance the hyperspectral image sample data, which can
improve the training effect.

The contributions of this article are summarized as
follows:

(1) An improved Deep Residual 3D Convolutional
Neural Network is proposed. The input image of the
model is the original hyperspectral image, no di-
mensionality reduction method is needed, and the
image space and spectral characteristics are retained.
The extracted features are more representative of
hyperspectral images. It makes full use of spectral
and spatial 3D correlation information instead of just
their separate and independent feature information.

(2) It can avoid introducing excessive parameters, pre-
vent overfitting, and improve computing efficiency;
compared with 2D-CNN, 3D-CNN is more suitable
for hyperspectral image processing tasks.

(3) Rich spectral and spatial features can be rapidly
extracted from samples of complete hyperspectral
images using our proposed network. This combines
the tree structured Parzen estimator(TPE) adaptively
andselects the super parameters to optimize the
network performance. In addition, aiming at the
problem of few samples, this paper proposes a novel
strategy to enhance the hyperspectral image sample
data, which can improve the training effect.

2. Blueberry and Its Hyperspectral
Imaging Features

Since this study uses hyperspectral imaging mode to detect
rotten areas of blueberries, this section needs to introduce
blueberries and their hyperspectral imaging functions.
Blueberry is a typical climacteric fruit. In the process of
maturity, the physical and chemical properties of the inside
of the fruit are constantly changing, the color is gradually
changing from green to blue or dark purple, and the picking
period of blueberry is relatively concentrated. Figure 1(a)
shows fresh blueberries on fruit trees. Because the tem-
perature in picking season is high in summer, the fruits are
easy to soften or even brown after picking. In the process of
transportation, storage, and sales, they are also prone to rot
and disease. Because the picking time of fruit is one of the
key factors that lead to the taste of fruit, picking the fruit in
advance will lead to too stiff and sour taste, affect the flavor
and value of the fruit, and it is difficult to meet the eating
requirements; picking the fruit too late will lead to over-

ripeness, be easy to deteriorate, and be inconvenient for
storage, so it is not easy to carry out subsequent processing.
Figure 1(b) shows the mildewed blueberry. Therefore,
sorting blueberries after picking is of great significance to
increase the added value of blueberries.

Hyperspectral imaging integrates image processing and
spectroscopic techniques to obtain the hyperspectral 3D
cube data (hypercube). Hyperspectral data cube is not really
images that represent spatial 3D. Strictly speaking, the
hyperspectral image should be a 2.5D image data. In terms of
images, most of the digital images usually are RGB (red,
green, and blue) images, which are made up of three basic
colors. That is to say, an RGB image can be divided into red,
green, and blue components, and each component can
generate a gray image. In digital images, this grayscale image
is composed of a 2D data matrix, and each data in the matrix
is commonly referred to as a pixel. For example, a 256 x 256
RGB image, its actual data storage size is 256 x 256 x 3,
where 3 represents its three RGB components. If these 3
components are extended to hundreds or thousands of
continuous bands, such as 100 continuous bands, the data of
the image will be expanded to 256 x 256 x 100, and this 100 is
the expansion of the spectrum, which makes the image add
rich spectral information. The x and y of a hyperspectral
image represent its image in the pixel dimension. If you take
a point from the image dimension, this point can be con-
nected in the spectral dimension to get the spectrum at this
point.

3. Deep Residual 3D Convolutional
Neural Network

3.1. 3D Convolutional Neural Network. 2D-CNN, as a classic
deep learning in image processing, has outstanding per-
formance in a variety of machine vision tasks, such as image
classification, object detection, and dense captioning tasks
[24-26]. The advantage of 2D-CNN is that the features can
be directly extracted from ordinary images to complete end-
to-end processing. The structure of 2D-CNN is shown in
Figure 2, where N is the size of the convolution kernel in the
convolution layer and L is the number of output channels of
the convolution layer. The convolution process can be
written by the following equation:

H_, W,
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where m is s the number of channels; H,_; and W,_, are the
size of the convolution kernel, respectively; k and b are the
linear coefficients.

Each channel needs to train a convolution kernel when
performing 2D convolution processing. If 2D-CNN is used
directly in the hyperspectral image classification task, a large
number of parameters will be introduced into the calculation
because of the many channels in the hyperspectral image.
Too many parameters not only make the network more
prone to overfitting and affect the accuracy but also greatly
reduce the training speed and calculation efficiency of the
network.
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FiGUre 1: Comparison of blueberries with different levels. (a) Fresh blueberries on fruit tree; (b) mildewed blueberries.
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FiGure 2: The structure of 2D-CNN.

Usually, in order to solve this kind of problem, scholars
take dimension reduction as preprocess before inputting
hyperspectral image. For example, they use the PCA
method to extract 3 principal component channels in the
hyperspectral image, use random PCA (randomized PCA,
R-PCA) to keep 10 or 30 principal component channels,
and then use 2D-CNN for classification. Since 2D-CNN
only performs convolution operations in space and simple
linear operations in the spectral dimension, the obvious
disadvantages of this type of method is that it will cause the
loss of spectral data, which will affect the recognition re-
sults [27].

Differing from 2D-CNN, the 3D-CNN convolution
structure is shown in Figure 3, where N and M are the plane
of the convolution kernel in the convolution layer and
spectral dimensions, and L is the number of output channels
of the convolution layer. The model can be described as

follows:
blj >,

(2)

where R, _, is the spectral dimension of convolution kernel.

The 3D-CNN algorithm, which has one more convo-
lution kernel dimension R,_; than the 2D-CNN, can solve
the above problem because it has the following advantages:

Hl—l Wl—l Rl—l

z h (x+h) (y+w) (z+1)
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(1) The input image is the raw hyperspectral image,
without the need to use the dimension reduction
method, and the image space and spectral features
are preserved.

(2) The extracted features are more representatives of
hyperspectral images. 3D-CNN is different from 2D-
CNN. Instead of plane convolution, it performs
convolution operations in both spatial and spectral
dimensions to extract the features of the “spectral”
combination of hyperspectral images. It makes full
use of spectral and spatial 3D correlation informa-
tion instead of just their separate and independent
feature information.

(3) It can avoid introducing excessive parameters, pre-
vent overfitting, and improve computing efficiency.
Assuming that the size of the convolution kernel is 3,
the number of hyperspectral channels is 200, and the
number of output channels is 32, the first 2D-CNN
operation requires 3 x 3 x 200 x 32 = 57600 parameters,
and 3D-CNN operation requires 3 X 3 x 3 x 1 x 32 = 864
parameters.

Therefore, compared with 2D-CNN, 3D-CNN is more
suitable for hyperspectral image processing tasks. However,
as the network structure deepens, the vanishing gradient
problem will appear, which can affect the training effect of
deep neural networks, so introducing the residual error
structure is particularly critical.

3.2. Residual 3D-CNN Structure. In deep learning, the
deeper the network structure, the more accurate the
extracted features and the better the classification results.
However, as the network structure continues to deepen,
gradients will diffuse or explode during the backpropagation
process, resulting in bad effect on network training. After the
residual structure is proposed, due to the existence of
shortcuts, the gradient is more easily and effectively prop-
agated, which is good to solve the problem. In order to build
a deeper network structure, this paper also introduces re-
siduals into 3D-CNN and designs the residual 3D convo-
lution structure block.

According to the design rules for the size of the con-
volution kernel in 2D-CNN, several consecutive 3 x3
convolution kernels have the same field of view as the large
convolution kernel and contain fewer parameters and fewer
more complex nonlinear features. Research results show that
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FiGgure 3: The structure of 3D-CNN.

the 3 x 3 x 3 small convolution kernel is the optimal choice
for the spatiotemporal feature learning of video input. In
addition, many algorithms for CT 3D image detection also
use 3 x3x3 convolution kernels and have achieved good
results. Because hyperspectral images and video and the CT
images have plane image information and similar 3D data
structures, as a reference, this paper designs all the con-
volution kernel structures used for spectral feature extrac-
tion in the network to the size of 3 x 3 x 3.

The residual convolutional structure block is shown in
Figure 4. In the residual structure of this paper, there are
two forms of shortcut, one is the identity residual block,
whose input and output dimensions remain the same, as
shown in Figure 4(a). The other is the convolutional re-
sidual block, which has different input and output di-
mensions. The purpose of the design is to change the
number of channels. The shortcut of the convolutional
form uses IxIxI convolution kernel, which will not in-
troduce a large number of parameters, as shown in
Figure 4(b). The deepening or complication of the network
structure will necessarily introduce some additional
hyperparameters, such as the size of the convolution kernel
of each convolutional layer and the number of channels, so
these hyperparameters need to be selected more
reasonably.

In order to improve the calculation efficiency, the net-
work does not directly perform a convolution operation with
the size of 3 on each convolutional layer input but uses a
bottleneck structure, which will effectively reduce the number of
parameters and computational complexity. Assume that there
are 256 features as inputs, and if only 3 x3x3 convolution
operations are performed, 256 %3 X 3x 3 x256=1769472
convolution operations must be performed; if the bottleneck
structure is adopted, then only (256xIxIxIx64)
+(64x3%x3x3x%x64)+(64x1x1x1x256)=143360 con-
volution operations are performed. The bottleneck structure
is used in NIN, GoogleNet, and ResNet [12, 28]. This
structure can effectively reduce the computational com-
plexity and enhance the nonlinear expression ability of the
network to a certain extent.

In addition, a batch normalization layer (BN) is intro-
duced after each convolutional layer. BN can effectively
prevent vanishing gradient and gradient explosion. Al-
though it introduces additional calculations, it can make the
overall convergence rate of the model faster. It is worth
noting that the network uses ELU (exponential linear units)
instead of ReLU (rectified linear unit) as the nonlinear
activation function. Although the ReLU function has very

good characteristics and is widely used, when its existence
input is negative, the derivative will become 0 and no longer
change, which will lead to the problem that neurons die and
will never be activated. To solve this problem, the ELU
function presents a “Soft saturation” state at the part of less
than 0, making the derivative not become 0, thus keeping the
neuron alive [29].

4. Detection and Classification Based on 3D
Deep Residual Model

The input of the network is a 3D data matrix in 3D-CNN,
which is obtained by taking a pixel in the original image as
the center and its size as S x S X L, where L is the number of
hyperspectral image channels and S is the size of plane
dimension. However, the amount of calculation and rec-
ognition accuracy introduced by different sizes of the visual
field range are also different. According the tradeoff among
the accuracy rate, operation efficiency, and other factors, this
paper finally fixed the dimension to 7 x 7 in the multispectral
image.

As we all know, the deep learning model has the two
optimization tasks. One is the optimization of internal
parameters, such as the allocation of weights in neural
networks; the other is the optimization of hyperparameters,
such as the structural parameters and learning rate of neural
networks. The optimization of hyperparameters has always
been a difficult point in deep learning, such as the number of
channels and the size of the convolution kernel in equation
(2); in addition, there are also choices for weight initiali-
zation methods, regularization methods, and different
training methods. Setting these parameters requires rich
training experience, professional knowledge, and a large
number of experiments. Therefore, the TPE algorithm is
introduced for adaptive hyperparameter optimization,
which is used to quickly select the suitable hyperparameters,
and it is more time saving and labor saving compared to
manually adjusting the hyperparameters. In addition, the
training effect is also better.

It is assumed that A;,A,,---,A, represent the hyper-
parameters selected in the model; A, A,,---, A, represent
the selection domain of each hyperparameter; then, the
hyperparameter selection domain space of the model is
defined as A=A, xA,x---xA,. When k-fold cross-
validation method is used for hyperparameter A € A, the
optimization problem of hyperparameters can be expressed
as the follows:
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where L(-) is the loss function in training and D,,,;, and
D, iidation @re denoted as samples in the training set and
validation set, respectively.

Recently, the most commonly used hyperparameter
optimization methods are still manual search and grid
search (violent search), but their efficiency is extremely low,
so hyperparameter optimization has always been a very
tedious process.

The TPE algorithm is a sequential model-based global
optimization algorithm (Smoa). The Smoa algorithm uses

the previous hyperparameters to recommend the next
hyperparameters through optimization criteria. Different
Smoa algorithms use different optimization criteria. TPE
algorithm takes expected improvement (EI) as optimization
criterion. After each iteration, the algorithm returns the
hyperparameter selection of the best EI. In this way, by
continuously recommending hyperparameters with the best
EI standard, the algorithm can find the optimal hyper-
parameter faster than grid search. Compared to the random
forest algorithm, TPE adopts 2 probability distributions to
simulate the posterior probability, which has better mod-
eling strategies and advantages in hyperparameter optimi-
zation. The types of hyperparameters can be integers and
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continuous real numbers, for example, the number of
neurons uses integers and the dropout ratio uses continuous
real numbers, and the optimization method of the classifier
can use SGD, RMSProp, Adam, etc.

4.1. Structure of Our Model. The network input first is
proposed by a convolution layer with the convolution kernel
of IxIx7 and the step size of [xIx2 and a maximum
pooling layer with the kernel of I x Ix 3 and the step size of
Ix 1% 2. The purpose is to reduce the number of channels and
improve the operation efficiency. Then, two groups of re-
sidual structural units are designed, where each unit is
composed of two convolutional residual structural blocks.
The first group of residual structural unit is set to IxIx 3,
whose purpose is to extract and fuse spectral features; the
second group of residual structural unit is set to 3 x3x 3,
which is used to extract the spectral features of the hyper-
spectral image. Finally, a 7 x 7 x 1 global pooling layer and a
fully connected layer (FC) are used for classification; each
hidden layer uses the strategy in the literature [28] to ini-
tialize the convolution kernel parameters and regularize the
specification term L, of 1 x 107%. The activation function is
expressed as the exponential linear unit, and the Adam
optimizer is selected to train our model in experiment.

4.2. Training Process and Algorithm  Framework.
According to the structure of hyperparameters which is
manually initialized, a search space of hyperparameters is
defined for automatic adjustment. There are nearly 10,000
possibilities in the search space. The algorithm and TPE
algorithm use the same dataset to search for 50 iterations.
100 epochs are used in training operation. Finally, their
recognition accuracy rate is obtained. The hyperparameter
with the highest accuracy rate is selected as the hyper-
parameter of the network.

In this paper, the Softmax layer is used as a classifier.
Because it is superior to other classifiers such as support
vector machine (SVM) when dealing with multiclassification
problems, it has a wide application in deep learning. Its
function is defined as follows:

e’

= c 5
2en
i

Si

(4)

where V; is the output value of classifier in class i ¢ is the
number of class; and S; is the relative probability.

The algorithm calculates the relative probability for the
output value of each class, and the class with the highest
relative probability is the classification results.

For pixel-level classification in hyperspectral images, the
overall steps can be divided into 3 steps:

Step 1: a patch region with a size of 7x7 x L from the
hyperspectral image is extracted as the network input,
and the class label of the central pixel is extracted as the
object class, where L is the number of channels of the
original hyperspectral image.

Step 2: the basic structure of feature extraction is our
improved 3D residual convolution structure, and its
schematic diagram is shown in Figure 4. The TPE al-
gorithm is adopted to optimize hyperparameters,
which can realize end-to-end hyperspectral “spectrum”
feature extraction.

Step 3: the network is trained using crossentropy loss
and backpropagation; finally, the detection and clas-
sification results are obtained. The Softmax layer turns
the output of the deep network into a probability
distribution, where the distance between the predicted
probability distribution and the real probability dis-
tribution can be calculated by crossentropy.

5. Experiment Results and Analysis

5.1. Hyperspectral Curve Analysis. As we all know, there is
noise interference between the mildew region and the sound
region of blueberry in the wavelength range of 400-450 nm.
In order to not affect the accuracy of subsequent detection,
the spectral data of this waveband range is removed. In
addition, the spectral reflectance of the blueberry mildew
area in the visible band (450-760 nm) is slightly higher than
that of the sound area. In the near infrared band
(760-1000 nm), the spectral reflectance of the sound region
is higher than that of the mildew region [30]. The reason for
the difference of spectral reflectance between the blueberry
mildew area and sound area is that the color of the blueberry
mildew area is slightly different from that of sound area, and
the main components and physical and chemical properties
of the blueberry mildew area are changed due to the decay of
blueberry disease so that the spectral reflectance is changed.
Therefore, the spectral data of 450-1000 nm range were used
to establish a training and testing dataset so as to detect the
mildewed blueberry. The Hyperspectral Imaging System is
used to collect spectral images and is shown in Figure 5.

5.2. Dataset. Training a deep learning network requires a
large number of image samples, but the collected blueberry
data is often insufficient in practical application. In order to
obtain more data so that the deep learning model has strong
generalization ability, the obtained blueberry hyperspectral
images are expanded. The MATLAB software was used to
perform angle rotation, scale transformation, mirror
transformation, and adding noise to expand the number of
obtained images. Finally, the image is reshaped to the same
size 256 x 256. These images are divided into the training set
and the testing set, whose number is shown in Table 1.

5.3. Parameter Setting. The network parameter settings
proposed in this paper are as follows: depth=40,
growth_rate =12, bottleneck = True, reduction=0.5, batch
size is set to 16, learning rate is set to 0.001, and maximum
number of iterations is set to 10,000 times; in order to
improve optimization efficiency, the ADAMDAM optimi-
zation algorithm is adopted. This optimization method is
performed using an improved stochastic gradient descent
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FiGure 5: Hyperspectral Imaging System for blueberry
classification.
TaBLE 1: Dataset of blueberry on different situations.
Sound Slight- Moderate- Severe-
decayed decayed decayed

Training 15820 7821 3575 6951
Testing 526 425 358 398
Total 16346 8246 3933 7349

algorithm, which can iteratively update the neural network
weights based on the training data.

The input of the network is a 3D data matrix with the size
of S x S x L, where L is the number of hyperspectral image
channels and S is the field of view. The computation
complexity has very close relation with the size of fields of
view, so its size needs to be further experimentally
determined.

In order to verify the generalization ability of our al-
gorithm, all datasets are divided into three parts: dataset 1,
dataset 2, and dataset 3. Figure 6 shows the accuracy of
running 10 epochs on different blueberry hyperspectral
datasets with different input sizes S. It can be found that the
larger the input size, the faster the accuracy rate of the al-
gorithm rises before 3 epochs and the faster the model can
converge. The time taken to train 10 epochs and the time
spent on testing with different input sizes are shown in
Figure 6. It can be found that the larger the size of input, the
longer the training time spends. Since the input of larger size
converges faster than the input of smaller size, it also re-
quires more training and testing time. Therefore, according
the tradeoff between the recognition performance and cal-
culation efficiency, the input size of the hyperspectral image
is fixed as to 7 x 7 x L.

5.4. Quantitative Evaluation Indexes. In order to evaluate
the performance of our proposed model, the FPPI is adopted

Scientific Programming

as evaluation standard, which focuses on the frequency of
occurrence of FP (False Positive). For the mildew detection
rectangle obtained for each image, the evaluation criteria
used in this paper are Detection Rate (DR) and False Positive
Per Image (FPPI), and the relationship is as follows:

Re__ P (5)

" (TP +EN)
FpPI—— T 6
" (FP+TN) ©)

where TP represents the number of positive samples de-
tected correctly; TP +FN represents the number of all
positive samples in the picture; and FP + TN represents the
number of false positives. In addition, overall accuracy (OA),
average accuracy (AA), and kappa coefficient(K) are also
selected as quantitative evaluation indexes [31].

5.5. Qualitative and Quantitative Comparison Analysis.
In order to better verify the performance of our proposed
algorithm in this paper, AlexNet [32], GoogleNet [33], 3D-
CNN [34], and ResNet [35] are selected as comparison
models; the accuracy of the four algorithms is given from the
corresponding paper and open source, and the accuracy is
provided by 5 independent tests. The overall classification
accuracy is the ratio between the prediction accuracy and the
total number on all test sets. The average classification ac-
curacy is the ratio between the correct prediction of each
class and the total number of each class, and finally the
average value of all class accuracy is taken; kappa coefficient
represents the proportion of error reduction, and its cal-
culation is based on the confusion matrix.

In this paper, the neural network AlexNet has 8 layers;
the first 5 layers of the convolution layer extract the image
features and use the pooling layer to reduce the dimension of
the image features; multiple convolutions make the image
features become more abstract from the concrete, which can
better characterize hyperspectral images. As shown in Ta-
ble 2, with the increase of the number of iterations, the
accuracy of the network has been increasing to 100%. In fact,
due to the lack of hyperspectral blueberry image, there is an
overfitting situation in the process of training. The over-
fitting will cause all moderate-decayed blueberries to be
classified into severe-decayed blueberries when the trained
network is adopted to classify sound, slight-decayed,
moderate-decayed, and severe-decayed blueberries.

When the number of iterations of the network reaches
200, the fitness of the training model is not very high. When
classifying the blueberry hyperspectral images, the network
cannot classify the blueberry correctly. When the sound
blueberry hyperspectral images are input into the network
for recognition after the network training is completed,
more than 50% blueberries are classified as sound and more
than 40% are classified as decayed blueberries, but the sound
probability is greater than the decayed probability, so it can
be judged as sound conditions, and the purpose of accurate
classification can be achieved.
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FIGURE 6: Accuracy of different epochs on different datasets. (a) Dataset 1; (b) dataset 2; (c) dataset 3.

CaffeNet also has 8 layers. The output of each layer is
the input of the next layer. The data format has four di-
mensions in each spectral layer; the first dimension is the
number of images, the second dimension is the number of
channels, and the third and fourth dimensions are the
width and height of images. In deep learning, loss function
is often nonconvex, and there is no analytical solution,
which needs to be solved by the optimization method. In
this paper, the forward algorithm and backward algorithm
are called alternately to update the parameters so as to
reduce the loss value as much as possible and finally get the
local optimal solution. In the process of network iteration,
10-fold crossvalidation is used to verify the performance. It
can be seen from this that the accuracy of the network
increases rapidly, and the network tends to converge in the
process of training and finally reaches 100%. However, due
to the lack of data, the increasing number of iterations will

lead to overfitting. Because of the huge parameters of the
network in the process of overfitting, the data fitting results
of the training set are good, but the prediction results of the
samples outside the dataset are very poor, where there is a
great probability of classification errors. ResNet uses the
residual neural network to perform nondestructive de-
tection of blueberries. The detection accuracy rate is up to
90%, and the effect is better. The texture features of the
sound blueberry image are obviously different with mod-
erate-decayed and severe-decayed blueberries. It is easy to
identify the mildew blueberries using ResNet technology,
and the detection effect on the slight-decayed blueberry is
poor. The proposed model in this paper is an improved 3D-
CNN method for nondestructive detection of blueberries,
and its four types of blueberries have better classification
performance. Table 3 shows the accuracy under different
comparison models. Our proposed algorithm obtains the
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TaBLE 2: Classification accuracy under different number of iterations.

Number of iteration Accuracy Prediction probability
100 0.81 0.84
200 0.87 0.90
300 0.92 0.95
400 0.93 0.96
500 0.95 0.98
1000 0.95 1
1500 0.99 1
2000 0.97 1
3000 0.95 1

TaBLE 3: Accuracy under different comparison models.
Class AlexNet GoogleNet 3D-CNN ResNet Proposed
Sound 85.3 83.4 82.7 97.2 98.25
Slight-decayed 96.3 94.2 89.7 83.1 95.1
Moderate-decayed 69.6 70.4 62.0 84.4 93.6
Severe-decayed 58.0 66.9 65.5 84.4 89.4
OA (%) 77.8 81.9 80.6 85.6 95.2
AA (%) 61.3 64.2 68.3 79.8 91.5
K (%) 74.5 79.3 77.9 84.6 94.6

best classification results, which is 17.2%, 20.2%, and 19.8%
higher than GoogleNet in OA, AA, and kappa coefficients,
respectively. Compared with GoogleNet, our proposed
algorithm greatly improves the classification accuracy.
Compared with ResNet, our indicators increased by 13%,
14.4%, and 9.6%, respectively. In other words, our pro-
posed algorithm has the best OA, AA, and kappa
coefficients.

In order to analyze the blueberry mold recognition
performance of the algorithm proposed in this paper,
Figure 7 shows the relationship between the detection
rate and FPPI (False Positives per Image). Table 4 is the
prediction probability of the blueberries in testing set,
which is verified by different models. It can be seen from
the experimental results that there is an overfitting sit-
uation in GoogleNet and AlexNet. Because the Goo-
gleNet network reaches 22 layers, it can learn a lot of
features at the same time, but the amount of training
samples in this experiment is relatively small, which also
leads to overfitting during network training. Both the
ResNet network and the proposed network can accu-
rately identify the decay of blueberry hyperspectral
images, but the accuracy of ResNet is not as good as the
proposed algorithm in this paper. When FPPI=1, the
detection rate of the proposed detection algorithm is
96.69%, and the best result of the comparison algorithm
is the ResNet algorithm, the result is 95.42%, while the
detection rates of the GoogleNet, AlexNet, and 3D-CNN
are 89.12%, 91.88%, and 92.15%.

5.6. Generalization Performance. This paper tests the
classification effect of the trained network on different
datasets to verify the generalization ability of the model.

1.05

1.00 4

0.95 4

0.90 4

Detection rate

0.80 4

FPPI

--- ResNet model
—— Proposed model

—— GoogleNet model
AlexNet model
--- 3D-CNN model

FIGURE 7: Performance comparison in the database.

This paper uses the model trained on blueberry dataset 1
to classify dataset 2, and dataset 3, respectively. The
classification layer is different, so the transfer training
method is used to replace the classification part of the
network model and fine-tune. The parameters of other
parts of the network are not updated. The dataset is still
divided into 20% training, 10% verification, and 70% test
samples. Experiment results are shown in Table 5. It can be
found that the hyperspectral classification model has a
high accuracy rate for blueberries, which proves that its
“spatial spectrum” feature extraction part has a certain
generalization ability.
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TaBLE 4: Detection rate of different models when FPPI=1.

Models AlexNet (%) GoogleNet (%)

3D-CNN (%) ResNet (%) Proposed (%)

Detection rate 89.12 91.88

92.15 95.42 96.69

TaBLE 5: Comparison for generalization ability of the model.

Dataset
Indexes
1 2 3
OA (%) 98.37 96.35 95.31
AA (%) 97.85 92.61 92.09
K (%) 98.29 96.25 95.22

6. Conclusions

An improved deep residual 3D convolutional neural net-
work (3D-CNN) framework is proposed for hyperspectral
images classification so as to realize fast training, classifi-
cation, and parameter optimization. Rich spectral and
spatial features can be rapidly extracted from samples of
complete hyperspectral images using our proposed network.
This combines the tree structured Parzen estimator (TPE)
adaptively and selects the super parameters to optimize the
network performance. In addition, aiming at the problem of
few samples, this paper proposes a novel strategy to enhance
the hyperspectral image sample data, which can improve the
training effect. Experimental results on the standard
hyperspectral blueberries datasets show that the proposed
framework improves the classification accuracy compared
with AlexNet and GoogleNet. In addition, our proposed
network reduces the number of parameters by half and the
training time by about 10%.
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