
HAL Id: hal-00320640
https://hal.archives-ouvertes.fr/hal-00320640

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic index selection in data warehouses
Stéphane Azefack, Kamel Aouiche, Jérôme Darmont

To cite this version:
Stéphane Azefack, Kamel Aouiche, Jérôme Darmont. Dynamic index selection in data warehouses.
4th International Conference on Innovations in Information Technology (Innovations 07), 2006, Dubai,
United Arab Emirates. pp.34-28842. �hal-00320640�

https://hal.archives-ouvertes.fr/hal-00320640
https://hal.archives-ouvertes.fr

Dynamic index selection in data warehouses

Stéphane Azefack1, Kamel Aouiche2 and Jérôme Darmont1

1Université de Lyon (ERIC Lyon 2)
5 avenue Pierre Mendès-France

69676 Bron Cedex
France

jerome.darmont@univ-lyon2.fr

2Université du Québec à Montréal (LICEF)
100 rue Sherbrooke Ouest

Montréal (Québec) H2X 3P2
Canada

kamel.aouiche@gmail.com

Abstract

Analytical queries defined on data warehouses are
complex and use several join operations that are very
costly, especially when run on very large data
volumes. To improve response times, data warehouse
administrators casually use indexing techniques. This
task is nevertheless complex and fastidious. In this
paper, we present an automatic, dynamic index
selection method for data warehouses that is based on
incremental frequent itemset mining from a given
query workload. The main advantage of this approach
is that it helps update the set of selected indexes when
workload evolves instead of recreating it from scratch.
Preliminary experimental results illustrate the
efficiency of this approach, both in terms of
performance enhancement and overhead.

1. Introduction

A data warehouse is generally modeled by a star-
like schema that contains a central, typically very large
fact table, and several dimension tables that describe
the facts [1]. An analytical query over such a model
necessitates very costly join operations between the
fact table and dimension tables.

Selecting suitable physical structures that improve
system performance is the role of data warehouse
administrators. However, given the wide development
of data warehouses, as well as their structural and
operational complexity, minimizing the administration
function is a crucial issue.

In this context, we have proposed an automatic
bitmap join index selection method based on frequent
itemset mining from a given query workload [2].
Attributes that frequently appear together in queries
indeed constitute good candidate indexes; and bitmap
join indexes are particularly appropriate to data
warehouses [3]. However, this approach is static: if the

input workload significantly evolves with time, we
must rerun the whole process to preserve performance.

In this paper, we improve our approach by two
aspects. First, we replace the frequent itemset mining
technique we used (namely, Close [4]) with an
incremental frequent itemset mining technique, so that
the selected index configuration can be updated instead
of being recreated from scratch. Second, instead of
mining closed frequent itemsets, we mine maximal
frequent itemsets that are less numerous and help build
better indexes. Finally, to the best of our knowledge,
this is the first attempt at dynamically selecting indexes
in data warehouses.

The remainder of this paper is organized as follows.
We present the state of the art regarding both index
selection in data warehouses and incremental frequent
itemset mining in Section 2. Then, we detail our
approach in Section 3 and discuss related experimental
results in Section 4. We finally conclude this paper and
provide research perspectives in Section 5.

2. Related work

2.1. Index selection in data warehouses

The index selection problem has been studied for
many years in databases, but adaptations to data
warehouses are few. In this particular context, research
studies may be clustered into two families: algorithms
that optimize maintenance cost and algorithms that
optimize query response time. In both cases,
optimization is realized under storage space constraint.
In this paper, we are particularly interested in the
second family of approaches, which may be classified
with respect to the way a set of candidate indexes and
the final configuration of indexes are built.

A set of candidate indexes may be built manually
by the administrator, according to his expertise of the
workload [5, 6]. This is both subjective and quite hard

to achieve when the number of workload
queries is very large. In opposition,
candidate indexes may also be extracted
automatically by syntactically analyzing
the workload [7, 8, 9].

There are also several methods for
building the final index configuration from
candidate indexes. Typically, greedy
algorithms increasingly select indexes
minimizing workload cost until it does not
decrease anymore [5, 6, 7]. Classical
optimization algorithms have also been
used to solve this problem, such as
knapsack resolution [8] and genetic
algorithms [10].

2.2. Incremental frequent itemset
mining

Many algorithms have been proposed in
the literature for incrementally mining
frequent itemsets. They reuse the frequent
itemsets discovered before transaction
database update to compute new frequent
itemsets. Updating the set of frequent
itemsets is very costly, though.

To reduce the problem’s dimensionality,
closed or maximal frequent itemsets may
be mined instead of all frequent itemsets. A
frequent itemset I is closed if it contains all
the items that occur in every transaction in
which I is present. A maximal frequent
itemset is a frequent itemset that has no frequent
superset.

Most closed frequent itemset mining algorithms
exploit concept lattices. The main incremental
approach [11] manages lattice updates (unchanged,
updated and inserted nodes into the lattice). However,
its complexity is quadratic with respect to the number
of elements in the concept lattice [12] and the number
of closed frequent itemsets may become very large
with respect to database size [13].

To the best of our knowledge, the only incremental
maximal itemset frequent mining approach, GenMax,
exploits a backtracking algorithm to prune the search
space as soon as possible with respect to previous
iterations [14]. This algorithm also improves support
computation and optimizes short term mining.

3. Dynamic index selection strategy

In this section, we present the extension of our

automatic join index selection method based on

frequent itemset mining [2]. Its principle is to exploit
transaction logs (i.e., the set of all queries processed by
the system) to recommend an index configuration
improving data access time.

This new approach is subdivided into six steps
(Figure 1): (1) a workload Q we suppose
representative of system usage is extracted from
system logs; (2) so-called indexable attributes are
extracted from Q and structured in a suitable data
mining context QA; (3) incremental frequent itemset
mining is applied on QA, exploiting a knowledge base
P that stores information regarding previous
executions of this step; (4) emerged (new) frequent
itemsets are analyzed to generate new candidate
indexes; declined (now infrequent) itemsets
correspond to indexes to be dropped; retained (still
frequent) itemsets correspond to candidate indexes to
retain; the whole set of candidate indexes is labeled IC;
(5) since disk space is constrained, IC is pruned using
cost models; (6) the resulting index configuration I is
finally effectively updated. The whole process then
reiterates after a period of time set by the

Figure 1. Dynamic index selection strategy

administrator. We detail its steps in the following
sections.

3.1. Workload extraction

System workload is typically accessible from the
host database management system’s transaction log. A
given workload Q is supposed representative if it has
been measured during a time period the warehouse
administrator judges sufficient to anticipate upcoming
transactions.

Since we are more particularly interested in
analytical query performance and not warehouse
maintenance, we only consider interrogation query
workloads in this paper. These queries are typically
composed of join operations between the fact table and
dimensions, restriction predicates, and aggregation and
grouping operations. More formally, an analytic query
q may be expressed as follows in relational algebra:
q = πG, M σR (F >< D1 >< … >< Dn); where G is the set
of attributes from dimensions D1, …, Dn that are
present in q's grouping clause, M is a set of aggregate
measures from fact table F and R a conjunction of
predicates over dimension attributes.

3.2. Workload analysis

Attributes aj that may support indexes belong to the
sets G and R defined in Section 3.1 [7, 8, 9]. We
reference them in a “query-attribute” binary matrix QA
whose rows represent workload queries qi ∈ Q and
whose columns are indexable attributes aj. The general
term QAij of this matrix is equal to one if attribute aj is
present in query qi, and to zero otherwise. This data
structure or extraction context directly corresponds to
attribute-value tables that are exploited by data mining
algorithms.

3.3. Maximal frequent itemset mining

In the static version of our approach, we have used
the Close closed frequent itemset mining algorithm [4]
to obtain a set of candidate indexes IC. In this dynamic
extension, we replace it by the GenMax incremental,
maximal frequent itemset mining algorithm [14].

In our context, workload Q can be very large and
evolves with time. We selected GenMax because it can
determine, in a short time, all maximal frequent
itemsets from large databases, by optimizing support
computation and infrequent itemset pruning through a
backtracking process. Moreover, queried data from Q
are typically correlated, which leads to a dense
extraction context QA. Since incremental frequent

itemset mining may produce a number of closed
frequent itemsets exponentially greater than the
number of maximal frequent itemsets [13], GenMax
helps produce a smaller quantity of candidate indexes,
which reduces the dimensionality of index selection
and improves scalability.

In summary, GenMax, in a first iteration, exploits
an input transaction database D to produce a
knowledge base P that stores, e.g., the list of maximal
frequent itemsets from D, non-maximal, but frequent
itemsets, the number of transactions in D, etc. P is then
exploited and updated in the next iterations. At each of
these iterations, the list of new transactions d+ and the
list of deleted transactions d– are used to compute the
updated transaction database ∆ = (D ∪ d+) – d–.
Frequent itemset computation is then performed on ∆,
using P, to minimize accesses to D.

3.4. Candidate indexes generation

The application of GenMax onto matrix QA helps
obtain: a set I+ of emerged frequent itemsets, which
were infrequent in P but become frequent in ∆; a set I–
of declined frequent itemsets, which were frequent in
P but become infrequent in ∆; and a set I0 of retained
frequent itemsets, which are frequent in both P and ∆.
Then, the set of candidate indexes is IC = (I ∪ I+) – I–,
where I is the current index configuration. Note that I0
is not used to compute IC, but is nonetheless recorded
in P.

3.5. Candidate indexes selection

The number of candidate indexes in IC is generally
proportional to the size of workload Q. Thus, it is not
feasible to build all the proposed indexes because of
system limitations (e.g., a limited number of indexes
per table) or storage space constraints. To circumvent
these limitations, we exploit cost models that help
greedily select the most advantageous indexes. These
models estimate storage space occupied by bitmap join
indexes, data access cost whether using these indexes
or not, and index maintenance cost. Due to space
constraints, we cannot elaborate on these cost models
in this paper, but the interested reader can refer to [2]
for complete details.

3.6. Index configuration update

Applying index selection (Section 3.5) on IC outputs
a new index configuration I’. To update the current
index configuration I, we must eventually: create all
indexes i ∈ I’ such that i ∉ I, i.e., all emerged indexes

i ∈ (I’ – I); drop all indexes i ∈ I such that i ∉ I’, i.e.,
all declined indexes i ∈ (I – I’); and reset I to I’.

4. Experiments

4.1. Experimental conditions

To illustrate the advantage of our dynamic index
selection approach over our static one, we ran tests on
a 1 GB data warehouse implemented within Oracle 9i,
on a Pentium Dual Core 1.6 GHz PC with 1 GB RAM
and a 120 GB IDE disk under Windows XP Pro. Our
test data warehouse is derived from Oracle's, whose
classical sales star schema is composed of one fact
table and five dimensions. We have defined an initial
workload Q1 of 30 analytical queries involving
aggregation operations and multiple joins between the
fact table and dimension tables. Then, we defined four
evolutions of Q1 (Q2 to Q5), so that some frequent
attribute sets emerge, some decline, and others remain
frequent. Due to space constraints, we reproduce here
neither the full data warehouse schema nor the detail
of each workload, but they are available on demand.

4.2. Results

We ran our tests for each workload Q1 to Q5;
without indexing (for reference), with static and
dynamic indexing; and for an arbitrary minimum
support value (when mining frequent itemsets) of 0.05
that is low enough to produce a fair number of
candidate indexes. In each of these tests, we measured
index selection time (with both our static and dynamic
approaches), index creation (static approach) or update
(dynamic approach) time under Oracle, and workload
execution time. The results we obtained are plotted in
Figures 2, 3 and 4, respectively. All three figures
feature workloads (Q1 to Q5) on the X axis and
execution times on the Y axis (in milliseconds, seconds
and minutes, respectively).

Figure 2 shows that the overhead of our dynamic
approach, in term of index selection alone, is about 5.2
times greater than that of our static approach, on an
average. However, this is not due to the algorithms’
intrinsic complexity, but to our implementations. The
static approach has been implemented and optimized in
PHP, while our newer, dynamic approach is
implemented in Java (which appears slower than PHP
on a standalone workstation) and not optimized yet.
Both their execution times remain in the same order of
magnitude (hundreds of milliseconds here), though.

On the other hand, Figure 3 shows that index
update time is about 9.5 faster with our dynamic

approach on an average, and even about 11.5 times
faster if Q1’s execution (and thus initial index
configuration creation) is excluded from computation.
Since index update runs in tens of seconds in our
examples, the main overhead of our method lies here,
and the enhancement brought by dynamicity is
obvious.

Figure 4 eventually shows that exploiting maximal
frequent itemsets (dynamic approach) instead of closed
frequent itemsets (static approach) helps select more
pertinent indexes, since response time is slightly better
(about 13% on an average) in the dynamic case. This is
presumably because fewer candidate indexes are
generated and then selected, which simplifies index
choice at query optimization time.

0

1000

2000

3000

4000

5000

6000

Q1 Q2 Q3 Q4 Q5

(m
s)

Static Dynamic

Figure 2. Index selection time

0
20
40
60
80

100
120
140
160
180
200

Q1 Q2 Q3 Q4 Q5

(s
)

Static Dynamic

Figure 3. Index creation/update time

0
20
40
60
80

100
120
140
160
180
200

Q1 Q2 Q3 Q4 Q5

(m
in

)

No index Static Dynamic

Figure 4. Workload execution time

)
(m

in
)

5. Conclusion and perspectives

In this paper, we have presented a dynamic bitmap
join index selection method for data warehouses that is
based on incremental frequent itemset mining from a
given query workload. The main advantage of this
approach is that it helps update the set of selected
indexes when workload evolves instead of recreating it
from scratch.

Our first experiments (which we aim to extend,
notably by scaling them up, to complete our
approach’s validation) indeed show that introducing
dynamicity helps reduce index maintenance overhead.
Furthermore, exploiting maximal instead of closed
frequent itemsets also helps improve the index
configuration’s quality, and hence query response
time.

Furthermore, note that our approach is purposely
modular and generic. Each step (frequent itemset
mining, candidate indexes selection…) exploits
interchangeable tools. The data mining technique and
cost models we use are indeed not related to any
system in particular and could easily be replaced by
other, more efficient methods if necessary.

Eventually, a critical issue when using automatic,
dynamic optimization strategies is to master system
overhead, and in particular determine when the
administrator should run the incremental index update
process. Pursuing this lead is our main research
perspective. Studies related to session detection that
are based on entropy computation [15] could be very
useful for this sake.

References

[1] R. Kimball, and M. Ross, The Data Warehouse Toolkit,
Second edition, John Wiley & Sons, Hoboken, 2002.

[2] K. Aouiche, J. Darmont, O. Boussaïd, and F. Bentayeb,
“Automatic Selection of Bitmap Join Indexes in Data
Warehouses”, 7th International Conference on Data
Warehousing and Knowledge Discovery (DaWaK 05),
Copenhagen, Denmark; LNCS, Vol. 3589, Springer,
Heidelberg, 2005, pp. 64-73.

[3] S. Sarawagi, “Indexing OLAP Data”, Data Engineering
Bulletin, Vol. 20, No. 1, IEEE Computer Society, Los
Alamitos, 1998, pp. 36-43.

[4] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,
“Efficient mining of association rules using closed itemset
lattices”, Information Systems, Vol. 24, No. 1, Elsevier,
Amsterdam, 1999, pp. 25-46.

[5] M.R. Frank, E. Omiecinski, and S.B. Navathe, “Adaptive
and automated index selection in RDBMS”, 3rd International

Conference on Extending Database Technology (EDBT 92),
Vienna, Austria; LNCS, Vol. 580, Springer, Heidelberg,
1992, pp. 277-292.

[6] S. Choenni, H.M. Blanken, and T. Chang, “On the
selection of secondary indices in relational databases”, Data
Knowledge Engineering, Vol. 11, No. 3, Elsevier,
Amsterdam, 1993, pp. 207-238.

[7] S. Chaudhuri, and V.R. Narasayya, “An efficient cost-
driven index selection tool for Microsoft SQL server”, 23rd
International Conference on Very Large Data Bases
(VLDB 97), Santiago de Chile, Chile, Morgan Kaufmann,
San Francisco, 1997, pp. 146-155.

[8] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and
A. Skelley, “DB2 advisor: An optimizer smart enough to
recommend its own indexes”, 16th International Conference
on Data Engineering (ICDE 00), San Diego, USA, IEEE
Computer Society, Los Alamitos, 2000, pp. 101-110.

[9] M. Golfarelli, S. Rizzi, and E. Saltarelli, “Index selection
for data warehousing”, 4th International Workshop on Design
and Management of Data Warehouses (DMDW 02), Toronto,
Canada; CEUR Workshop Proceedings, Vol. 58, CEUR-
WS.org, Aachen, 2002, pp. 33-42.

[10] J. Kratika, I. Ljubic, and D. Tosic, “A genetic algorithm
for the index selection problem”, Applications of
Evolutionary Computing (EvoWorkshops 03), Essex, UK;
LNCS, Vol. 2611, Springer, Heidelberg, 2003, pp. 281-291.

[11] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji,
“Generating frequent itemsets incrementally: two novel
approaches based on Galois lattice theory”, Journal of
Experimental & Theoretical Artificial Intelligence, Vol. 14,
Taylor & Francis, London, 2002, pp. 115-142.

[12] P. Valtchev, R. Missaoui, M.Rouane-Hacene, and
R. Godin, “Incremental maintenance of association rule
bases”, 2nd Workshop on Discrete Mathematics and Data
Mining, San Francisco, USA, 2003.

[13] M.J. Zaki, and K. Gouda, “Fast Vertical Mining Using
Diffsets”, 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 03),
Washington DC, USA, ACM, New York, 2003, pp. 326-335.

[14] K. Gouda, and M.J. Zaki, “GenMax: An Efficient
Algorithm for Mining Maximal Frequent Itemsets”, Data
Mining and Knowledge Discovery, Vol. 11, Springer,
Heidelberg, 2005, pp 1-20.

[15] Q. Yao, J. Huang, and A. An, “Machine Learning
Approach to Identify Database Sessions Using Unlabeled
Data”, 7th International Conference on Data Warehousing
and Knowledge Discovery (DaWaK 05), Copenhagen,
Denmark; LNCS, Vol. 3589, Springer, Heidelberg, 2005,
pp. 254-255.

