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Abstract 
 

Analytical queries defined on data warehouses are 
complex and use several join operations that are very 
costly, especially when run on very large data 
volumes. To improve response times, data warehouse 
administrators casually use indexing techniques. This 
task is nevertheless complex and fastidious. In this 
paper, we present an automatic, dynamic index 
selection method for data warehouses that is based on 
incremental frequent itemset mining from a given 
query workload. The main advantage of this approach 
is that it helps update the set of selected indexes when 
workload evolves instead of recreating it from scratch. 
Preliminary experimental results illustrate the 
efficiency of this approach, both in terms of 
performance enhancement and overhead. 
 
1. Introduction 
 

A data warehouse is generally modeled by a star-
like schema that contains a central, typically very large 
fact table, and several dimension tables that describe 
the facts [1]. An analytical query over such a model 
necessitates very costly join operations between the 
fact table and dimension tables. 

Selecting suitable physical structures that improve 
system performance is the role of data warehouse 
administrators. However, given the wide development 
of data warehouses, as well as their structural and 
operational complexity, minimizing the administration 
function is a crucial issue. 

In this context, we have proposed an automatic 
bitmap join index selection method based on frequent 
itemset mining from a given query workload [2]. 
Attributes that frequently appear together in queries 
indeed constitute good candidate indexes; and bitmap 
join indexes are particularly appropriate to data 
warehouses [3]. However, this approach is static: if the 

input workload significantly evolves with time, we 
must rerun the whole process to preserve performance. 

In this paper, we improve our approach by two 
aspects. First, we replace the frequent itemset mining 
technique we used (namely, Close [4]) with an 
incremental frequent itemset mining technique, so that 
the selected index configuration can be updated instead 
of being recreated from scratch. Second, instead of 
mining closed frequent itemsets, we mine maximal 
frequent itemsets that are less numerous and help build 
better indexes. Finally, to the best of our knowledge, 
this is the first attempt at dynamically selecting indexes 
in data warehouses. 

The remainder of this paper is organized as follows. 
We present the state of the art regarding both index 
selection in data warehouses and incremental frequent 
itemset mining in Section 2. Then, we detail our 
approach in Section 3 and discuss related experimental 
results in Section 4. We finally conclude this paper and 
provide research perspectives in Section 5. 
 
2. Related work 
 
2.1. Index selection in data warehouses 
 

The index selection problem has been studied for 
many years in databases, but adaptations to data 
warehouses are few. In this particular context, research 
studies may be clustered into two families: algorithms 
that optimize maintenance cost and algorithms that 
optimize query response time. In both cases, 
optimization is realized under storage space constraint. 
In this paper, we are particularly interested in the 
second family of approaches, which may be classified 
with respect to the way a set of candidate indexes and 
the final configuration of indexes are built. 

A set of candidate indexes may be built manually 
by the administrator, according to his expertise of the 
workload [5, 6]. This is both subjective and quite hard 



to achieve when the number of workload 
queries is very large. In opposition, 
candidate indexes may also be extracted 
automatically by syntactically analyzing 
the workload [7, 8, 9].  

There are also several methods for 
building the final index configuration from 
candidate indexes. Typically, greedy 
algorithms increasingly select indexes 
minimizing workload cost until it does not 
decrease anymore [5, 6, 7]. Classical 
optimization algorithms have also been 
used to solve this problem, such as 
knapsack resolution [8] and genetic 
algorithms [10]. 
 
2.2. Incremental frequent itemset 
mining 
 

Many algorithms have been proposed in 
the literature for incrementally mining 
frequent itemsets. They reuse the frequent 
itemsets discovered before transaction 
database update to compute new frequent 
itemsets. Updating the set of frequent 
itemsets is very costly, though. 

To reduce the problem’s dimensionality, 
closed or maximal frequent itemsets may 
be mined instead of all frequent itemsets. A 
frequent itemset I is closed if it contains all 
the items that occur in every transaction in 
which I is present. A maximal frequent 
itemset is a frequent itemset that has no frequent 
superset. 

Most closed frequent itemset mining algorithms 
exploit concept lattices. The main incremental 
approach [11] manages lattice updates (unchanged, 
updated and inserted nodes into the lattice). However, 
its complexity is quadratic with respect to the number 
of elements in the concept lattice [12] and the number 
of closed frequent itemsets may become very large 
with respect to database size [13]. 

To the best of our knowledge, the only incremental 
maximal itemset frequent mining approach, GenMax, 
exploits a backtracking algorithm to prune the search 
space as soon as possible with respect to previous 
iterations [14]. This algorithm also improves support 
computation and optimizes short term mining. 
 
3. Dynamic index selection strategy 

 
In this section, we present the extension of our 

automatic join index selection method based on 

frequent itemset mining [2]. Its principle is to exploit 
transaction logs (i.e., the set of all queries processed by 
the system) to recommend an index configuration 
improving data access time. 

This new approach is subdivided into six steps 
(Figure 1): (1) a workload Q we suppose 
representative of system usage is extracted from 
system logs; (2) so-called indexable attributes are 
extracted from Q and structured in a suitable data 
mining context QA; (3) incremental frequent itemset 
mining is applied on QA, exploiting a knowledge base 
P that stores information regarding previous 
executions of this step; (4) emerged (new) frequent 
itemsets are analyzed to generate new candidate 
indexes; declined (now infrequent) itemsets 
correspond to indexes to be dropped; retained (still 
frequent) itemsets correspond to candidate indexes to 
retain; the whole set of candidate indexes is labeled IC; 
(5) since disk space is constrained, IC is pruned using 
cost models; (6) the resulting index configuration I is 
finally effectively updated. The whole process then 
reiterates after a period of time set by the 

Figure 1. Dynamic index selection strategy 



administrator. We detail its steps in the following 
sections. 

 
3.1. Workload extraction 
 

System workload is typically accessible from the 
host database management system’s transaction log. A 
given workload Q is supposed representative if it has 
been measured during a time period the warehouse 
administrator judges sufficient to anticipate upcoming 
transactions. 

Since we are more particularly interested in 
analytical query performance and not warehouse 
maintenance, we only consider interrogation query 
workloads in this paper. These queries are typically 
composed of join operations between the fact table and 
dimensions, restriction predicates, and aggregation and 
grouping operations. More formally, an analytic query 
q may be expressed as follows in relational algebra:  
q = πG, M σR (F >< D1 >< … >< Dn); where G is the set 
of attributes from dimensions D1, …, Dn that are 
present in q's grouping clause, M is a set of aggregate 
measures from fact table F and R a conjunction of 
predicates over dimension attributes. 
 
3.2. Workload analysis 
 

Attributes aj that may support indexes belong to the 
sets G and R defined in Section 3.1 [7, 8, 9]. We 
reference them in a “query-attribute” binary matrix QA 
whose rows represent workload queries qi ∈ Q and 
whose columns are indexable attributes aj. The general 
term QAij of this matrix is equal to one if attribute aj is 
present in query qi, and to zero otherwise. This data 
structure or extraction context directly corresponds to 
attribute-value tables that are exploited by data mining 
algorithms. 
 
3.3. Maximal frequent itemset mining 
 

In the static version of our approach, we have used 
the Close closed frequent itemset mining algorithm [4] 
to obtain a set of candidate indexes IC. In this dynamic 
extension, we replace it by the GenMax incremental, 
maximal frequent itemset mining algorithm [14]. 

In our context, workload Q can be very large and 
evolves with time. We selected GenMax because it can 
determine, in a short time, all maximal frequent 
itemsets from large databases, by optimizing support 
computation and infrequent itemset pruning through a 
backtracking process. Moreover, queried data from Q 
are typically correlated, which leads to a dense 
extraction context QA. Since incremental frequent 

itemset mining may produce a number of closed 
frequent itemsets exponentially greater than the 
number of maximal frequent itemsets [13], GenMax 
helps produce a smaller quantity of candidate indexes, 
which reduces the dimensionality of index selection 
and improves scalability. 

In summary, GenMax, in a first iteration, exploits 
an input transaction database D to produce a 
knowledge base P that stores, e.g., the list of maximal 
frequent itemsets from D, non-maximal, but frequent 
itemsets, the number of transactions in D, etc. P is then 
exploited and updated in the next iterations. At each of 
these iterations, the list of new transactions d+ and the 
list of deleted transactions d– are used to compute the 
updated transaction database ∆ = (D ∪ d+) – d–. 
Frequent itemset computation is then performed on ∆, 
using P, to minimize accesses to D. 
 
3.4. Candidate indexes generation 
 

The application of GenMax onto matrix QA helps 
obtain: a set I+ of emerged frequent itemsets, which 
were infrequent in P but become frequent in ∆; a set I– 
of declined frequent itemsets, which were frequent in 
P but become infrequent in ∆; and a set I0 of retained 
frequent itemsets, which are frequent in both P and ∆. 
Then, the set of candidate indexes is IC = (I ∪ I+) – I–, 
where I is the current index configuration. Note that I0 
is not used to compute IC, but is nonetheless recorded 
in P. 
 
3.5. Candidate indexes selection 
 

The number of candidate indexes in IC is generally 
proportional to the size of workload Q. Thus, it is not 
feasible to build all the proposed indexes because of 
system limitations (e.g., a limited number of indexes 
per table) or storage space constraints. To circumvent 
these limitations, we exploit cost models that help 
greedily select the most advantageous indexes. These 
models estimate storage space occupied by bitmap join 
indexes, data access cost whether using these indexes 
or not, and index maintenance cost. Due to space 
constraints, we cannot elaborate on these cost models 
in this paper, but the interested reader can refer to [2] 
for complete details. 
 
3.6. Index configuration update 
 

Applying index selection (Section 3.5) on IC outputs 
a new index configuration I’. To update the current 
index configuration I, we must eventually: create all 
indexes i ∈ I’ such that i ∉ I, i.e., all emerged indexes 



i ∈ (I’ – I); drop all indexes i ∈ I such that i ∉ I’, i.e., 
all declined indexes i ∈ (I – I’); and reset I to I’. 
 
4. Experiments 
 
4.1. Experimental conditions 
 

To illustrate the advantage of our dynamic index 
selection approach over our static one, we ran tests on 
a 1 GB data warehouse implemented within Oracle 9i, 
on a Pentium Dual Core 1.6 GHz PC with 1 GB RAM 
and a 120 GB IDE disk under Windows XP Pro. Our 
test data warehouse is derived from Oracle's, whose 
classical sales star schema is composed of one fact 
table and five dimensions. We have defined an initial 
workload Q1 of 30 analytical queries involving 
aggregation operations and multiple joins between the 
fact table and dimension tables. Then, we defined four 
evolutions of Q1 (Q2 to Q5), so that some frequent 
attribute sets emerge, some decline, and others remain 
frequent. Due to space constraints, we reproduce here 
neither the full data warehouse schema nor the detail 
of each workload, but they are available on demand. 
 
4.2. Results 
 

We ran our tests for each workload Q1 to Q5; 
without indexing (for reference), with static and 
dynamic indexing; and for an arbitrary minimum 
support value (when mining frequent itemsets) of 0.05 
that is low enough to produce a fair number of 
candidate indexes. In each of these tests, we measured 
index selection time (with both our static and dynamic 
approaches), index creation (static approach) or update 
(dynamic approach) time under Oracle, and workload 
execution time. The results we obtained are plotted in 
Figures 2, 3 and 4, respectively. All three figures 
feature workloads (Q1 to Q5) on the X axis and 
execution times on the Y axis (in milliseconds, seconds 
and minutes, respectively). 

Figure 2 shows that the overhead of our dynamic 
approach, in term of index selection alone, is about 5.2 
times greater than that of our static approach, on an 
average. However, this is not due to the algorithms’ 
intrinsic complexity, but to our implementations. The 
static approach has been implemented and optimized in 
PHP, while our newer, dynamic approach is 
implemented in Java (which appears slower than PHP 
on a standalone workstation) and not optimized yet. 
Both their execution times remain in the same order of 
magnitude (hundreds of milliseconds here), though. 

On the other hand, Figure 3 shows that index 
update time is about 9.5 faster with our dynamic 

approach on an average, and even about 11.5 times 
faster if Q1’s execution (and thus initial index 
configuration creation) is excluded from computation. 
Since index update runs in tens of seconds in our 
examples, the main overhead of our method lies here, 
and the enhancement brought by dynamicity is 
obvious. 

Figure 4 eventually shows that exploiting maximal 
frequent itemsets (dynamic approach) instead of closed 
frequent itemsets (static approach) helps select more 
pertinent indexes, since response time is slightly better 
(about 13% on an average) in the dynamic case. This is 
presumably because fewer candidate indexes are 
generated and then selected, which simplifies index 
choice at query optimization time. 
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5. Conclusion and perspectives 
 

In this paper, we have presented a dynamic bitmap 
join index selection method for data warehouses that is 
based on incremental frequent itemset mining from a 
given query workload. The main advantage of this 
approach is that it helps update the set of selected 
indexes when workload evolves instead of recreating it 
from scratch. 

Our first experiments (which we aim to extend, 
notably by scaling them up, to complete our 
approach’s validation) indeed show that introducing 
dynamicity helps reduce index maintenance overhead. 
Furthermore, exploiting maximal instead of closed 
frequent itemsets also helps improve the index 
configuration’s quality, and hence query response 
time. 

Furthermore, note that our approach is purposely 
modular and generic. Each step (frequent itemset 
mining, candidate indexes selection…) exploits 
interchangeable tools. The data mining technique and 
cost models we use are indeed not related to any 
system in particular and could easily be replaced by 
other, more efficient methods if necessary. 

Eventually, a critical issue when using automatic, 
dynamic optimization strategies is to master system 
overhead, and in particular determine when the 
administrator should run the incremental index update 
process. Pursuing this lead is our main research 
perspective. Studies related to session detection that 
are based on entropy computation [15] could be very 
useful for this sake. 
 
References 
 
[1] R. Kimball, and M. Ross, The Data Warehouse Toolkit, 
Second edition, John Wiley & Sons, Hoboken, 2002. 

[2] K. Aouiche, J. Darmont, O. Boussaïd, and F. Bentayeb, 
“Automatic Selection of Bitmap Join Indexes in Data 
Warehouses”, 7th International Conference on Data 
Warehousing and Knowledge Discovery (DaWaK 05), 
Copenhagen, Denmark; LNCS, Vol. 3589, Springer, 
Heidelberg, 2005, pp. 64-73. 

[3] S. Sarawagi, “Indexing OLAP Data”, Data Engineering 
Bulletin, Vol. 20, No. 1, IEEE Computer Society, Los 
Alamitos, 1998, pp. 36-43. 

[4] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal, 
“Efficient mining of association rules using closed itemset 
lattices”, Information Systems, Vol. 24, No. 1, Elsevier, 
Amsterdam, 1999, pp. 25-46. 

[5] M.R. Frank, E. Omiecinski, and S.B. Navathe, “Adaptive 
and automated index selection in RDBMS”, 3rd International 

Conference on Extending Database Technology (EDBT 92), 
Vienna, Austria; LNCS, Vol. 580, Springer, Heidelberg, 
1992, pp. 277-292. 

[6] S. Choenni, H.M. Blanken, and T. Chang, “On the 
selection of secondary indices in relational databases”, Data 
Knowledge Engineering, Vol. 11, No. 3, Elsevier, 
Amsterdam, 1993, pp. 207-238. 

[7] S. Chaudhuri, and V.R. Narasayya, “An efficient cost-
driven index selection tool for Microsoft SQL server”, 23rd 
International Conference on Very Large Data Bases 
(VLDB 97), Santiago de Chile, Chile, Morgan Kaufmann, 
San Francisco, 1997, pp. 146-155. 

[8] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and 
A. Skelley, “DB2 advisor: An optimizer smart enough to 
recommend its own indexes”, 16th International Conference 
on Data Engineering (ICDE 00), San Diego, USA, IEEE 
Computer Society, Los Alamitos, 2000, pp. 101-110. 

[9] M. Golfarelli, S. Rizzi, and E. Saltarelli, “Index selection 
for data warehousing”, 4th International Workshop on Design 
and Management of Data Warehouses (DMDW 02), Toronto, 
Canada; CEUR Workshop Proceedings, Vol. 58, CEUR-
WS.org, Aachen, 2002, pp. 33-42. 

[10] J. Kratika, I. Ljubic, and D. Tosic, “A genetic algorithm 
for the index selection problem”, Applications of 
Evolutionary Computing (EvoWorkshops 03), Essex, UK; 
LNCS, Vol. 2611, Springer, Heidelberg, 2003, pp. 281-291. 

[11] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji, 
“Generating frequent itemsets incrementally: two novel 
approaches based on Galois lattice theory”, Journal of 
Experimental & Theoretical Artificial Intelligence, Vol. 14, 
Taylor & Francis, London, 2002, pp. 115-142. 

[12] P. Valtchev, R. Missaoui, M.Rouane-Hacene, and 
R. Godin, “Incremental maintenance of association rule 
bases”, 2nd Workshop on Discrete Mathematics and Data 
Mining, San Francisco, USA, 2003. 

[13] M.J. Zaki, and K. Gouda, “Fast Vertical Mining Using 
Diffsets”, 9th ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining (KDD 03), 
Washington DC, USA, ACM, New York, 2003, pp. 326-335. 

[14] K. Gouda, and M.J. Zaki, “GenMax: An Efficient 
Algorithm for Mining Maximal Frequent Itemsets”, Data 
Mining and Knowledge Discovery, Vol. 11, Springer, 
Heidelberg, 2005, pp 1-20. 

[15] Q. Yao, J. Huang, and A. An, “Machine Learning 
Approach to Identify Database Sessions Using Unlabeled 
Data”, 7th International Conference on Data Warehousing 
and Knowledge Discovery (DaWaK 05), Copenhagen, 
Denmark; LNCS, Vol. 3589, Springer, Heidelberg, 2005, 
pp. 254-255. 


