
Provenance-based Rumor Detection

Chi Thang Duong *, Quoc Viet Hung Nguyen †,
Sen Wang †, and Bela Stantic †

École Polytechnique Fédérale de Lausanne *, Griffith University †

Abstract. With the advance of social media networks, people are shar-
ing contents in an unprecedented scale. This makes social networks such
as microblogs an ideal place for spreading rumors. Although different
types of information are available in a post on social media, traditional
approaches in rumor detection leverage only the text of the post, which
limits their accuracy in detection. In this paper, we propose a provenance-
aware approach based on recurrent neural network to combine the prove-
nance information and the text of the post itself to improve the accuracy
of rumor detection. Experimental results on a real-world dataset show
that our technique is able to outperform state-of-the-art approaches in
rumor detection.

1 Introduction

With the advance of social media networks, people are sharing user-generated
contents in an unprecedented scale. Due to its distributed and decentralized
nature, social media provides a platform for information to propagate without
any type of moderation. As a result, when an incorrect information propagates on
social media networks, it may have a profound impact on real life. For instance,
when a fake news claiming two explosions happened in the White House and
Barrack Obama got injured was posted by a hacked Twitter account associated
with a major newspaper, it caused panic in the society which incurred a loss
of $136.5 billion in stock market. This incident shows how a rumor can have a
severe impact on our life and it highlights the need for the detection of rumor
among different events being discussed on social media networks.

In an attempt to combat fake news, several rumor debunking services such
as snopes.com have been created to expose rumors and misinformation. These
websites harness collaborative efforts from internet users to identify potential
fake news and leverage experts to verify them. As they involve manual labor,
the number of events that can be covered are limited and it would take a long
time to fact-check an event.

In order to automate this process, several rumor detection models have been
proposed. These techniques first design a wide range of features based on the con-
tent of the posts[9,6], their characteristics [20,1,16] or the network of users [19,8].
However, feature engineering is a tedious and time-consuming process while the
hand-crafted features may not be applicable to a new dataset.

Another important characteristics of rumors on social networks is their tem-
poral nature. When some posts discuss an event, there would be several posts
discussing the same event subsequently. These subsequent posts may just be
reiteration of the original posts or they could add new information which sheds
light on the event. Traditional approaches in rumor detection tend to ignore the
temporal nature of the posts. The temporal dependency can also be indicator
of rumors. For instance, an event that has many posts providing different views
with subsequent posts arguing with previous ones tends to be a rumor as this
event is controversial. To the best of our knowledge, there is only one work[10]
that models the temporal dependency of the posts explicitly using recurrent
neural network(RNN). However, in this work, although various information can
be obtained from a post in social media, the users only leverage the textual
contents of the posts to classify rumors. We posit that the provenance of the
event plays a significant role in identifying rumors. The provenance of an event
appears in a post in social media in the form of a link to an article discussing the
event. Traditional approaches considered these links as part of the text, hence,
provided no special treatment.

Based on this observation, in this work, we propose a provenance-based ap-
proach to rumor detection. Our approach considers the provenance of the events
appearing as links in the posts as an important source of information. There are
several challenges we need to solve in order to leverage the provenance informa-
tion. First, as the provenance appears as links to some articles in the posts, we
need to find a way to model the provenance information. Second, as both the
provenance and textual information are present in a post, we also need a way
to combine these information in a coherent manner. Third, there are cases that
the provenance information is not available. For instance, a tweet may not refer
to any article. In these cases, we need to handle the missing of the provenance
information while making sure that the classification accuracy does not deteri-
orate. In order to handle these challenges, we propose a fusion approach that
is based on the pooling operation to combine information from the provenance
and the text itself. The pooling operation allows our approach to be robust with
the missing of the provenance information. In addition, we also leverage RNN
to capture the temporal dependency among the posts.

The contributions of this paper are as follows:

– We propose a provenance-based approach to classify events into rumors and
non-rumors. Our model also leverages RNN to capture the temporal depen-
dency between the posts.

– We have enriched a social media dataset by adding the provenance informa-
tion. Our dataset can also be used by subsequent research in this direction.

– Our extensive experiments on a real-world dataset show that our approach
is able to outperform state-of-the-art technique significantly.

The rest of the paper is organized as follows. Section 6 introduces related
works on the field of rumor detection. Section 3 discusses our general framework
to classify rumors. Section 2 explains in detail our provenance-based approach.

Experimental evaluation and analysis are presented in Section 5 while Section 7
concludes the paper.

2 Recurrent Neural Network for Rumor Detection

2.1 Problem statement

We consider a setting in which a set of users discuss n events which can be
rumors or not. We denote a discussion for an event ei as dit = 〈ei, t〉 where t is
the time the discussion took place. In our setting, a discussion can be a tweet
or a post by a user on a social network. It is worth noting that different events
may have different number of discussions. In addition, each event is associated
with a label indicating where it is a rumor or not.

The problem we want to solve is given a set of events together with their
discussions, classify the events correctly. In particular, given a temporal sequence
of discussions D = {ei, t}, our goal is to assign a label li ∈ {0, 1} for the event ei
where 1 denotes rumor and 0 otherwise. We achieve this by training a feedforward
neural network which takes the discussions of an event as input and returns the
label for the event. More precisely, given an event ei and two classes Y = {0, 1},
we define a neural network that assigns probabilities to all y ∈ Y . The predicted
class is then the one with the highest probability:

ŷ = argmax
y

P (Y = y|e) (1)

Our network models the temporal characteristics of the dicussions using RNN
and leverages the provenance of the tweets to achieve high accuracy.

2.2 Neural Network Model

A feedforward neural network estimates P (Y = y|e) with a parametric function
φθ (Equation 1), where θ refers to all learnable parameters of the network. Given
an event e, this function φθ applies a combination of functions such as

φθ(e) = φL(φL−1(. . . φ1(e) . . .)), (2)

with L the total number of layers in the network.

We denote matrices as bold upper case letters (X, Y, Z), and vectors as bold
lower-case letters (a, b, c). Ai represents the ith row of matrix A and [a]i denotes
the ith element of vector a. Unless otherwise stated, vectors are assumed to be
column vectors. We also denote |a| to be the dimensionality of the vector a. We
now introduce the layers when training linear classifiers with neural networks:
the recurrent neural network layer, the linear layer and the softmax layer.

Recurrent Neural Network Among different types of feed-forward neural
networks, RNN is the one that can model the sequential characteristics of the
input data such as time series or sentences. Given an input sequence (x1, ..., xT),
RNN processes each input sequentially (from x1 to xT), at each step, it updates
its hidden state hi and returns an output oi. The hidden state vector hi captures
information of the elements that the RNN has seen. More precisely, at the time
step i, the network does the following update operations[4]:

hi =tanh(Uxi + Whi−1 + b)

oi =Vhi + c

where the matrices U,V,W are used, respectively, to convert input vector to
hidden vector, hidden vector to output vector and hidden vector to hidden vector.
Two vectors b, c are the bias vectors and the function tanh is a nonlinearity
function. The matrices and the bias vectors are the trainable parameters of the
RNN. In order to find these parameters, we compute the gradients of the network
using back-propagation thorugh time[18]. However, the RNN as discussed above
suffers from the the vanishing or exploding gradients problem which makes it
unable to learn from long sequences. A solution to this problem is to implement
memory cells in the network to store information over time, which is the idea
of Long Short-Term Memory (LSTM)[5,7] and Gated Recurrent Unit (GRU)[2].
In this work, we use LSTM instead of the vanilla RNN to capture long-term
dependency in the inputs.

In our setting, we consider an RNN as the first layer in our network. It is
modelled by the function φ1θ1(e) which takes as input the event e which contains
|e| discussions and returns the output in the last time step o|e|. In particular,
o|e| = φ1θ1(e) and θ1 is the parameter of the RNN that we need to find. There
are two important hyperparameters of the RNN which is the size of the hidden
state vector hi and the output vector oi (denoted as m).

Linear layer This layer applies a linear transformation to its inputs x:

φl(x) = Wlx + bl (3)

where Wl and bl are the trainable parameters with Wl being the weight matrix,
and bl is the bias term.

In our model, we use two linear layers after the RNN layer to first convert the
output of the RNN to a hidden vector space and then, convert from this hidden
vector space to a score vector for the classes. In particular, the second layer of
our network φ2θ2(o) takes as input the output of the first layer (the output vector
o) and returns a vector from a hidden space p. More precisely, the layer φ2 takes
the vector o ∈ Rm as input and uses the matrix W2 ∈ Rp×m and b2 ∈ Rp to
convert o to the hidden space vector k ∈ Rp. Similarly, the third layer of our
network φ3θ3(k) takes as input the output of the second layer (the hidden space
vector k) and returns a score vector s ∈ R2.

Softmax layer Given an input x, the penultimate layer outputs a score for each
class s ∈ R2. The probability distribution is obtained by applying the softmax
activation function:

P (Y = y|e) ∝ φθ(e, y) =
exp([s]y)∑2
k=1 exp([s]yk)

(4)

2.3 Training

In summary, our network is modelled as a function φθ which is a combination
of functions where each function represents a layer. The parameter θ, which
combines all the trainable parameters in the network, is obtained by minimizing
the negative log-likelihood using stochastic gradient descent(SGD):

L(θ) =
∑
(e,y)

− logP (Y = y|e) ∝
∑
(e,y)

− log
(
φθ(e, y)

)
. (5)

3 Provenance-based Approach

In this section, we discuss how to obtain the provenance of the events that we
use in our models, and we present our technique for leveraging provenance to
classify the events.

3.1 Provenance of an event

When an event is discussed on social media, it usually has a source or several
sources backing it up. When a post discusses an event, it tends to cite one of
those sources. For instance, when a tweet mentions an event, it may include the
link to the article. We consider these articles as the provenance of the event. As
these articles contain detail information about the event, they provide several
indicators of rumor. Based on this observation, we also include the provenance
of the event into our model.

We consider a discussion (e.g. a tweet or a post) to be composed of a text, or
both an article and a text. The article appears in a discussion in form a hyperlink.
When both article and text are present, we assume that they are semantically
related, e.g. the text is a summary of the article. Traditional techniques in rumor
detection only leverage the textual information. As a result, they represent each
discussion using only the text. In our setting, as we also consider the provenance
of the event, we propose a technique to model a discussion using the text and
article information. The text and article information are represented as feature
vectors.

3.2 Feature vectors

Before diving into the detail how to represent a discussion its text and article,
we discuss the process to represent the article and text in a discussion as fea-
ture vectors (γ(i), ψ(s)) as they are the foundation to construct a post vector

representing a discussion. A good article and text representation can affect the
performance of our approach heavily. We model the article i in a discussion with
an article feature vector γ(i) ∈ Rn. Similarly, we represent the piece of text s
with a textual feature vector ψ(s) ∈ Rm.

Text Representation In order to represent a text, we aim to convert it from
its original format (i.e. words) to an n-dimensional vector. We first calculate
the tf-idf values of all words in all the posts. The tf-idf value of a word reflects
its importance based on its presence frequency in all the posts relative to the
number of posts it appears in. We keep the top-K words with the highest tf-idf
values as the vocabulary. Each post is then represented using the words in the
vocabulary as a vector of length |K|. The value of the i-th element in the vector
is 0 if the i-th word in the vocabulary does not appear in the text of the post.

Article Representation An article contains different types of information such
as its text, images. However, the images may not contain indicators of rumor.
As a result, among different types of information in an article, we only consider
its main text. We also follow the same approach from text representation by
modeling each article by its tf-idf vector.

3.3 Joint Fusion

From the article and text vector of a discussion, there are many ways to construct
a post vector representing the discussion. However, the technique to represent
the discussion needs to take into account the missing of the article information.
For instance, there are cases that a post may not always explicitly refer to an
article and the technique must be robust to these absences. We propose joint
fusion which is a technique to combine article and text vector which is able to
handle the absence of the article.

Joint fusion takes the article vector and text vector γ(i), ψ(s) as input and
applies the pooling operation to obtain the post vector x:

x = pooling(γ(i), ψ(s)) (6)

The pooling function can be either a component-wise max pooling, or an average
pooling. In this work, we leverage the max pooling and we will extend this work
with the average pooling in the future works.

It is worth noting that the pooling operation requires the vectors γ(i) ∈ Rn
and ψ(s) ∈ Rm to have the same size. This can be done by adding an extra
linear layer to γ (i.e. the network that extracts article feature vector). Assuming
n > m, the linear layer is as follows:

γ̃(i) = W̃γ(i) + b̃ (7)

where γ̃(i) ∈ Rm, W̃ ∈ Rn×m and b̃ ∈ Rm. The input to joint fusion is then two
vectors γ̈(i) and ψ(s). The trainable parameters of joint fusion are θ = {W̃, b̃}.

4 Putting it all together

Recall that our model takes an event as input and returns a prediction for the
label of the event. As the event is composed of several discussions, and the dis-
cussion contains different types of information, we first model the discussion by
combining information from the text and its provenance as discussed in Section
3. Then, we use the events with the post vectors as input to the network. The
complete model of our approach is shown in Figure 1. We train the model to
find all the parameters in an end-to-end manner which means the parameters of
the network and of the joint fusion are trained together. The training is similar
to the one discussed in Section 2.3.

Fig. 1: Model of the network

5 Experiments

In this section, we evaluate our proposed approach on a real-world dataset.

5.1 Dataset

To the best of our knowledge, there is no large-scale dataset for rumor detection
that contains both the texts and their provenance. For textual content only,
there are the twitter and weibo dataset which were produced by Ma et. al.[10].
This motivates us to construct a new dataset by adding the article information.

After inspecting the weibo dataset, we observe that there is no article in-
formation to be added. The reason is that each post from weibo contains only
text without any link to an outside article. As a result, in this work, we only
focus on the twitter dataset[10]. For this dataset, rumor and non-rumor events
were identified using a real-time rumor debunking service1. The authors of the
dataset then extracted keywords from Snopes and used the keywords to query
tweets in real-time from Twitter. Due to legal restrictions, only the tweet IDs
from the dataset are published instead of its content. Based on these tweet IDs,
we crawled their contents including its texts. For the tweets that contain links
to a article, we also followed the link and crawled the main text of the article.

1snopes.com

Table 1: Statistics of the
dataset

Statistics Twitter

Involved Users 231535
Total Posts 586162
Total Events 992
Total Rumors 498
Total Non-Rumors 494

Table 2: Model hyperparameters

Parameter Value

Text vector size wvdim = 5000
Article vector size avdim = 5000
Hidden vector size of RNN nhid = 800
Low rank output size lowrank = 400
Classification main task weight λ = 3
Fusion layer function max

However, some of the tweets from the original dataset are missing as they were
removed by the users or Twitter. As a result, we can only collected 586162 tweets.
Over 60% of them contain a link to an article. The statistics of the dataset is
shown in Table1.

5.2 Experimental settings

We compare our proposed approach (joint fusion) with a baseline that does
not leverage the provenance information. This baseline is similar to the original
approach to rumor detection by Ma et. al.[10].

As some events has thousands of posts, it is inefficient to back propagate
through time with such amount of posts. As a result, instead of considering each
post separately, we group the posts into partitions and make these partitions
as the input to the RNN. For each event, we split the posts in to N partition
where each partition has nearly the same amount of posts. It is worth noting
that the partitions retain the temporal information among the posts i.e. first
partition contains posts that occur first. For all the tweets inside a partition, we
concatenate them and generate a longer tweet. Similarly, we also concatenate
the main text of the articles appearing in the tweets in a partition.

For regularization, we used a dropout layer with a dropout probability of 0.5
right after the RNN layer to reduce overfitting. We also use a dropout probability
of 0.5 for the RNN layer following the suggestion from [17]. In addition, it is
reported that factorizing the linear classifier into low rank matrices may improve
the classification accuracy[13]. We also followed this approach by adding a linear
layer right before the last layer to map the output vector from the RNN layer
to a hidden vector space with a size of nhid. Regarding the hyperparameters,
we tested different values of them on the validation set and select the ones that
gave the best results. Table 2 describes other hyperparameters. Our models were
trained with a learning rate set to 0.01.

The models were trained on a server equipped with a Tesla GPU. We use
10% events for testing and 10% for validation, the rest is used for training. We
use the same splits for all the models in our experiments. All the source codes
and the datasets will be released upon the publication of this work.

5.3 Effectiveness of the provenance-based approach

Table 3 shows the experimental results of our approach in comparison with
the baseline. The results show that our provenance-based approach is able to
outperform the baseline significantly on three metrics: accuracy, recall and F-
measure. For instance, our technique has an accuracy of 0.85, which is a 9%
relative improvement in comparison with the baseline. The superior performance
of our technique is also demonstrated by the recall metric. We are able to recall
92% of events while the baseline approach can only achieve 70%, which is 22%
difference. These results show the effectiveness of our provenance-based approach
as adding the provenance information allows us to improve the performance
significantly. Although our approach has lower precision than the baseline, the
difference is extremely small (2%).

Table 3: Performance of the provenance-based approach

Method Accuracy Precision Recall F-measure

LSTM 1 0.78 0.83 0.70 0.76
ProvBased 2 0.85 0.81 0.92 0.86

1 wvdim = 5000, nhid = 800, lowrank = 400
2 wvdim = 5000, avdim = 5000, nhid = 800, lowrank = 400

5.4 Effects of RNN hidden vector size

In this experiment, we want to analyze the effects of the hidden vector size (nhid)
to the performance of our approach and the baseline. In order to analyze the
effect of nhid, we fix other parameters (wvdim = 5000 and lowrank=400). The
experimental results are shown in Figure 2. It is clear that our approach has
better accuracy, recall and F-measure over different values of nhid. For instance,
the recall of our approach is always higher than 0.8 while the recall of the baseline
is always lower.

600 800 1000
Size of hidden vector in RNN

0.0

0.2

0.4

0.6

0.8

1.0
Predictability of LSTM

Accuracy
Precision

Recall
F-measure

600 800 1000
Size of hidden vector in RNN

0.0

0.2

0.4

0.6

0.8

1.0

Predictability of ProvBased
Accuracy
Precision

Recall
F-measure

Fig. 2: Effects of hidden vector space on predictive power

5.5 Effects of lowrank vector space

In this experiment, we want to analyze the effect of the lowrank vector space to
the performance of two approaches. Similarly, in order to analyze this parameter,
we fix wvdim = 5000 and nhid = 800. It is clear in this experiment that our
approach outperforms the baseline significantly. For instance, when the size of
the lowrank vector space is 200, our accuracy is 0.81 while the baseline’s is
only 0.72. We also observe the same pattern with the F-measure metric. When
the lowrank vector space is 400, our approach achieves an F-measure of 0.83
while the baseline’s F-measure is only 0.78. We are able to achieve the highest
performance when the lowrank vector space is 400, which is the value we chose
for our model.

100 200 400
Size of low rank

0.0

0.2

0.4

0.6

0.8

1.0
Predictability of LSTM

Accuracy
Precision

Recall
F-measure

100 200 400
Size of low rank

0.0

0.2

0.4

0.6

0.8

1.0

Predictability of ProvBased
Accuracy
Precision

Recall
F-measure

Fig. 3: Effects of low rank layer on predictive power

5.6 Effects of word vector space

In this experiment, we want to analyze the effects of the input vector size to
the two techniques. For the sake of simplicity, we set the article and text vector
size to the same value. Similarly, we fix other parameters to nhid = 800 and
lowrank = 400. Once again, our approach is able to outperform the baseline
across different values of the word vector space. For instance, when the word
vector space size is 5000, the baseline has only the precision value higher than
0.8. On the other hand, our approach has 3 metrics which have a higher value
than 0.8. We also observe this phenomenon when the word vector space is 10000.
Our approach consistently outperform the baseline across all metrics. These
experiments confirm our observation that our approach is able to have higher
performance due to the addition of the provenance information.

6 Related Work

Rumor detection can be considered a binary classification task. Traditional works
on automatic rumor detection aim to construct some classifiers based on hand-
crafted features. Several works [3,12,6,15] leveraged linguistic features such as
word usage or presence of conjunctions or pronouns. For instance, the authors of
[6] found out that fake news usually contain swear words. Many works followed

3000 5000 10000
Size of word vector

0.0

0.2

0.4

0.6

0.8

1.0
Predictability of LSTM

Accuracy
Precision

Recall
F-measure

3000 5000 10000
Size of word vector

0.0

0.2

0.4

0.6

0.8

1.0
Predictability of ProvBased

Accuracy
Precision

Recall F-measure

Fig. 4: Effects of word vector size on predictive power

a different direction in which they do not take into account the content of the
posts. For instance, some statistical features such as the number of retweets or
replies are considered[1,20,11]. Similarly, some user-level features are also used
such as the credibility or readability of the users [1,9,14]. A different approach is
to examine network level features to detect rumors. For instance, by constructing
a tree representing how the messages in an event are related, the authors of [19]
is able to classify whether the root is a rumor or not. However, the problem with
these hand-crafted features is that the feature engineering process is tedious
and time-consuming. In addition, the selected features are usually data-specific
and/or domain-specific, which hinders their generality.

Another problem with these approaches is that they do not consider the
temporal information of the posts. As the posts are usually temporally related,
ignoring this information has a negative effect on the accuracy of rumor detec-
tion. Recently, the authors of [10] has leveraged RNN to capture the temporal
information of the posts while used deep learning to construct the features au-
tomatically. Although this work is the most similar to our work, there are some
differences. The approach in [10] does not take into account the provenance of
the events, which is an important information to detect rumors. As the tweets are
short in nature and they may contain similar phrases, leveraging the provenance
information allows us to improve the accuracy significantly.

7 Conclusions

In this paper, we propose a provenance-based approach to detect rumor. Our
model is able to combine the provenance information with the textual content
to improve the classification accuracy significantly. In addition, our model is
robust as it is able to handle the missing of the provenance information. In order
to showcase our model, we also enriched a real-world dataset with provenance
information which allow us to test our approach in a real-world scenario. Future
research directions will go towards adding different types of information such as
network or user-level features. In addition, it is worth investigating whether the
provenance information is reliable or not.

References

1. Castillo, C., Mendoza, M., Poblete, B.: Information credibility on twitter. In:
WWW. pp. 675–684 (2011)

2. Cho, K., Van Merriënboer, B., Bahdanau, D., Bengio, Y.: On the proper-
ties of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259 (2014)

3. Feng, V.W., Hirst, G.: Detecting deceptive opinions with profile compatibility. In:
IJCNLP. pp. 338–346 (2013)

4. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2016), http:
//www.deeplearningbook.org

5. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

6. Gupta, A., Kumaraguru, P., Castillo, C., Meier, P.: Tweetcred: Real-time cred-
ibility assessment of content on twitter. In: International Conference on Social
Informatics. pp. 228–243. Springer (2014)

7. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8), 1735–1780 (1997)

8. Hung, N.Q.V., Thang, D.C., Weidlich, M., Aberer, K.: Minimizing efforts in vali-
dating crowd answers. In: SIGMOD. pp. 999–1014 (2015)

9. Liu, X., Nourbakhsh, A., Li, Q., Fang, R., Shah, S.: Real-time rumor debunk-
ing on twitter. In: Proceedings of the 24th ACM International on Conference on
Information and Knowledge Management. pp. 1867–1870. ACM (2015)

10. Ma, J., Gao, W., Mitra, P., Kwon, S., Jansen, B.J., Wong, K.F., Cha, M.: Detecting
rumors from microblogs with recurrent neural networks. In: IJCAI (2016)

11. Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of
social context information on microblogging websites. In: Proceedings of the 24th
ACM International on Conference on Information and Knowledge Management.
pp. 1751–1754. ACM (2015)

12. Markowitz, D.M., Hancock, J.T.: Linguistic traces of a scientific fraud: The case
of diederik stapel. PloS one 9(8), e105937 (2014)

13. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

14. Nguyen, Q.V.H., Duong, C.T., Nguyen, T.T., Weidlich, M., Aberer, K., Yin, H.,
Zhou, X.: Argument discovery via crowdsourcing. VLDBJ pp. 1–25 (2017)

15. Nguyen, T.T., Duong, C.T., Weidlich, M., Yin, H., Nguyen, Q.V.H.: Retaining
data from streams of social platforms with minimal regret. In: IJCAI (2017)

16. Nguyen, T.T., Nguyen, Q.V.H., Weidlich, M., Aberer, K.: Result selection and
summarization for web table search. In: ICDE. pp. 231–242 (2015)

17. Pham, V., Bluche, T., Kermorvant, C., Louradour, J.: Dropout improves recurrent
neural networks for handwriting recognition. In: Frontiers in Handwriting Recog-
nition (ICFHR), 2014 14th International Conference on. pp. 285–290. IEEE (2014)

18. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-
propagating errors. Cognitive modeling 5(3), 1 (1988)

19. Wu, K., Yang, S., Zhu, K.Q.: False rumors detection on sina weibo by propagation
structures. In: Data Engineering (ICDE), 2015 IEEE 31st International Conference
on. pp. 651–662. IEEE (2015)

20. Yang, F., Liu, Y., Yu, X., Yang, M.: Automatic detection of rumor on sina weibo.
In: Proceedings of the ACM SIGKDD Workshop on Mining Data Semantics. p. 13.
ACM (2012)

http://www.deeplearningbook.org
http://www.deeplearningbook.org

	Provenance-based Rumor Detection

