
Lawrence Berkeley National Laboratory
Recent Work

Title
Preparing sparse solvers for exascale computing.

Permalink
https://escholarship.org/uc/item/0r56p10n

Journal
Philosophical transactions. Series A, Mathematical, physical, and
engineering sciences, 378(2166)

ISSN
1364-503X

Authors
Anzt, Hartwig
Boman, Erik
Falgout, Rob
et al.

Publication Date
2020-03-01

DOI
10.1098/rsta.2019.0053

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0r56p10n
https://escholarship.org/uc/item/0r56p10n#author
https://escholarship.org
http://www.cdlib.org/

royalsocietypublishing.org/journal/rsta

Review
Cite this article: Anzt H et al. 2020 Preparing
sparse solvers for exascale computing. Phil.
Trans. R. Soc. A 378: 20190053.
http://dx.doi.org/10.1098/rsta.2019.0053

Accepted: 5 November 2019

One contribution of 15 to a discussion meeting
issue ‘Numerical algorithms for
high-performance computational science’.

Subject Areas:
computational mathematics, computer
modelling and simulation, software

Keywords:
sparse solvers, mathematical libraries

Author for correspondence:
Michael Heroux
e-mail: maherou@sandia.gov

Preparing sparse solvers for
exascale computing
Hartwig Anzt1, Erik Boman2, Rob Falgout3,

Pieter Ghysels4, Michael Heroux2, Xiaoye Li4,

Lois Curfman McInnes5, Richard Tran Mills5,

Sivasankaran Rajamanickam2, Karl Rupp6,

Barry Smith5, Ichitaro Yamazaki2 and

Ulrike Meier Yang3

1Electrical Engineering and Computer Science, University of
Tennessee, Knoxville, TN 37996, USA
2Sandia National Laboratories, Albuquerque, NM, USA
3Lawrence Livermore National Laboratory, Livermore, CA, USA
4Lawrence Berkeley National Laboratory, Berkeley, CA, USA
5Argonne National Laboratory, Argonne, IL, USA
6Vienna University of Technology, Wien, Wien, Austria

MH, 0000-0002-5893-0273

Sparse solvers provide essential functionality for
a wide variety of scientific applications. Highly
parallel sparse solvers are essential for continuing
advances in high-fidelity, multi-physics and multi-
scale simulations, especially as we target exascale
platforms. This paper describes the challenges,
strategies and progress of the US Department
of Energy Exascale Computing project towards
providing sparse solvers for exascale computing
platforms. We address the demands of systems with
thousands of high-performance node devices where
exposing concurrency, hiding latency and creating
alternative algorithms become essential. The efforts
described here are works in progress, highlighting
current success and upcoming challenges.

This article is part of a discussion meeting
issue ‘Numerical algorithms for high-performance
computational science’.

1. Introduction
Sparse solver libraries represent some of the most
successful efforts to provide reusable, high-performance

2020 The Author(s) Published by the Royal Society. All rights reserved.

http://crossmark.crossref.org/dialog/?doi=10.1098/rsta.2019.0053&domain=pdf&date_stamp=2020-01-20
http://dx.doi.org/10.1098/rsta/378/2166
mailto:maherou@sandia.gov
http://orcid.org/0000-0002-5893-0273

2

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

software capabilities to scientific applications. These libraries provide efficient implementations
of widely used solver algorithms on a variety of architectures and, at the same time, expose
adaptable interfaces that enable integration into multiple application codes.

The solution of large, sparse linear systems is fundamental to many areas of computational
science and engineering, and other technical fields. Sparse problems are typically formulated as
the equation Ax = b, where A is a large matrix, usually non-singular and square, whose terms
are known and mostly zero, b is a vector with known values, and x is a vector whose values the
solver must determine in order to satisfy the equation, up to a certain tolerance. Sometimes, A may
not be explicitly constructed, but only defined as function that computes the values of a vector
z given a vector y: z = Ay. Rapid solution of these problems on parallel computers represents
a core enabling capability for multi-physics, multi-scale and high-fidelity simulations. From the
solution of a single nonlinear simulation problem to the optimal solution of a simulation problem
with quantified uncertainty, the performance of sparse linear solvers often determines the size,
fidelity and quality of the computational results.

Within the United States (US) Department of Energy (DOE) Exascale Computing Project (ECP),
we are placing particular emphasis on adaptation of our software capabilities, including sparse
solvers, to highly concurrent node architectures such as GPUs. Owing to practical limitations
on processor clock speeds, increased concurrency is the primary path to realizing improved
computational performance. GPUs and similar devices are viable platforms because they can
execute scientific computations fairly well and have markets in other areas such as visualization
and data sciences to help amortize development costs.

Regardless of the specific device, all paths to building a computer capable of an Exaflop
(a billion-billion floating-point operations per second) require very high on-node concurrency,
as represented by today’s GPU platforms such as Summit at Oak Ridge National Laboratory [1].

(a) Exascale architectures and challenges
The United States exascale computing systems are expected to be available in the early 2020s.
These systems will have thousands of nodes where the node architectures are designed to
deliver very high computational rates. The pre-exascale systems Summit [1] and Sierra [2]
provide a reasonable approximation to exascale systems in that successful use of these
systems requires very large amounts of on-node concurrency in order to achieve scalable
performance. Other node architectures, for example many-core processors with vectorization
capabilities, may be significantly different in design details but still require the same qualitative
level of concurrency. Exposing concurrency in algorithms and implementation represents one
of the most important challenges facing all scientific software developers, including sparse
solvers.

Another important design trend is the availability of memory systems that support increasing
concurrency to assist the programmer in reading and writing data. These memory systems
promise to provide significant bandwidth improvements, but do not substantially improve
latency. In other words, we can access large amounts of data from memory with lower average
access times but the amount of time required to receive the first data element has not improved.
Hiding memory latency by better algorithmic design and implementation is another important
challenge faced by scientific software developers.

Other challenges include exploring and enabling better coordination between inter-node and
intra-node computation and communication tasks. The message passing interface (MPI) [3] is
the preferred interface for most parallel scientific applications. Many options exist for encoding
on-node parallel computations. An evolving standard is OpenMP, which has targeted efficient
execution on accelerated devices since v. 4.5. OpenMP is anticipated to be one of the dominant
on-node parallel programming environments for ECP, either by programmers using it explicitly
or through an abstraction layer such as RAJA [4] or Kokkos [5]. Regardless of the specific on-node
programming environment, interleaving MPI communications with on-node parallel execution
will be challenging.

3

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

One last challenge, which seems to be a lesser concern at this time, is frequent system failure
due to software or hardware faults. Early in the ECP, efforts in application-level resilience
were considered as a way to address system failure. However, pre-exascale systems have
been extremely reliable. Furthermore, the availability of non-volatile memory components
woven into the network fabric of high-end machines has dramatically improved the effective
latency of classic checkpoint-restart as the primary means for application codes to recover
from system failure. At this point, we do not foresee that novel resilience strategies are
needed.

(b) Key sparse solver design and implementation challenges
Addressing the above exascale challenges, sparse solver developers must provide algorithms and
implementations that expose very high levels of concurrency, especially for on-node execution. In
addition, memory references for matrices and vectors, both sparse and dense must be tuned for
concurrency, and safe concurrent writes. Classic algorithms for recursive sparse computations,
such as incomplete factorizations and corresponding solve operations, must be revised for better
concurrency or replaced by other approaches.

Another challenge that has emerged gradually with increasing concurrency requirements is
the problem set-up. Traditional use of sparse solvers requires assembling matrix and vector
objects that define the linear system. In most instances, the sparse matrix is assembled by
providing a portion of matrix coefficients at a time, as would happen when constructing a
global stiffness matrix from local element stiffness matrices in a finite-element formulation. While
there is ample available parallelism in the set-up phase to enable highly concurrent execution,
expressing it in a way that is convenient for library users has been historically challenging. The
convenience of constructing a single local matrix is attractive. Transforming the construction
process to perform well on GPU and vectorizing architectures is hard. A related issue for
sparse solvers, especially those for unstructured patterns, is data-dependent communication
patterns. On exascale systems, we anticipate needing better latency hiding and more interleaving
of communication and computation for distributed matrix and vector operations. We expect
asymptotic performance of sparse computations to remain about the same, achieving only
small percentages of peak rates for most sparse kernels. Therefore, even if we are successful in
improving latency hiding, we will always have bandwidth limitations on the performance of our
computations.

One way to address assembly and sparse data structure challenges is the ever-attractive
approach of avoiding explicit formation of sparse matrix representations and instead use matrix-
free formulations where only the action of the linear operator is provided. Matrix-free techniques
can bypass many of the scaling challenges traditional approaches face.

(c) Libraries overview
In this paper, we present the efforts of five solver development teams to provide capabilities
needed by the high-performance computing (HPC) community, especially the ECP. Two of the
teams, PETSc (led from Argonne National Laboratory) and Trilinos (led from Sandia National
Laboratories), provide specific solver components and infrastructure for coordinating component
use. Ginkgo (led from the University of Tennessee), hypre (led from Lawrence Livermore National
Laboratory) and SuperLU/STRUMPACK (led from Lawrence Berkeley National Laboratory)
provide key solver capabilities that can be used independently or as part of the PETSc and Trilinos
infrastructures.

The hypre package (§3) provides distributed memory parallel sparse iterative solvers and is
particularly well known for its multigrid preconditioners. PETSc (§4) and Trilinos (§6) provide
comprehensive solver capabilities widely used in the community. SuperLU (§5) provides sparse
parallel direct solvers. All of these projects have been available to the HPC community for many
years and have evolved over time to support a variety of computing platforms. Ginkgo (§2),

4

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

STRUMPACK (also in §5) and KokkosKernels (also in §6) are newer efforts that have emerged
to address the particular challenges that modern node architectures present. Their details are
discussed below.

In the remainder of this paper, we discuss how each of our library development efforts is
addressing the challenges we have described above. All of the solvers discussed in this paper are
freely available as open-source software.

2. Ginkgo
Ginkgo [6] is a relatively new software effort that provides solvers, preconditioners and
central basic building blocks for the iterative solution of sparse linear systems. Ginkgo benefits
significantly from leveraging the expertise and experience of other math library projects.
Notable lessons learned from other libraries include software design in terms of expressing all
functionality as linear operators, which enables leveraging class inheritance of modern C++,
and software interoperability in terms of adopting community policies from the community
solver interoperability project, xSDK [7]. A strong asset of Ginkgo is its focus on software
sustainability, correctness, reproducibility and productivity. Ginkgo is designed as an open-source
C++ linear algebra library under BSD 3-clause license following the SOLID software design
principles [8]: single responsibility; open/closed; Liskov substitution; interface segregation; and
the dependency principle.

With the goal of maximizing compatibility and extensibility, Ginkgo separates algorithms from
architecture-specific kernel implementations. Using an architecture-specific ‘Executor’ allows
adding, removing or modifying backends according to future changes in hardware architectures
and parallelization strategies. Currently, Ginkgo is designed for node parallelism, featuring
backends for NVIDIA GPUs and OpenMP-supporting platforms. Additionally, it features a
sequential reference executor that is used in unit tests to ensure the correctness of hardware-
specific parallel kernels, via the Google Test [9] framework.

A central Git repository, requiring two reviews on every merge, is automatically
mirrored into a private repository to allow for the development of novel algorithms and
implementations without exposing new ideas to the community prior to academic publication.
Public and private feature developments are automated with the help of a continuous
integration (CI) framework that checks the compilation process for a large number of
hardware architectures and compiler/library environments (cross-platform portability), the
successful completion of the unit tests, and code quality in terms of design, memory leaks,
etc. [10].

In terms of technical functionality, Ginkgo focuses on novel algorithms and component design
strategies that enable efficient utilization of the large degree of parallelism provided by many-
core and accelerator processors under the challenges of increasing arithmetic performance via
concurrency and growing memory system complexity [11].

As with a distributed computing system, growing parallelism makes synchronizing
communication increasingly expensive. As sparse iterative problems typically prohibit the use
of dense matrix–matrix mathematical routines with high computational intensity, the use of
algorithms like Gaussian elimination with strong sparse data dependencies often leverage only
a small fraction of the available compute power. However, algorithms that relax or remove
conventional synchronization-enforcing paradigms can achieve higher performance on many-
core and accelerator architectures. An example is incomplete factorization (ILU) preconditioners
where the synchronizations of a truncated Gaussian elimination process allows for only limited
parallelization via level scheduling, notoriously resulting in low performance. Based on the
observation that incomplete factorizations as used for preconditioning are typically only a rough
approximation of the exact factorization and the fact that for a given sparsity pattern S of the
ILU, the incomplete factorization is exact in the locations of S [12], it is possible to formulate
the search for values in the incomplete factors as an iterative process [13]. In an element-wise

5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

identify locations
with non-zero ILU

residual

fixed-point sweep
approximates

incomplete factors

remove smallest
elements from

incomplete factors

select a threshold
separating smallest

elements

fixed-point sweep
approximates

incomplete factors

add locations to
sparsity pattern of
incomplete factors

compute ILU
residual and check

convergence

ParlLUT cycle

Figure 1. Iterative ParILUT algorithm for computing incomplete factorizations based on thresholding via a parallel process.
(Online version in colour.)

parallel fixed-point iteration of the form (L, U) = F(A, L, U), the unknowns lij in L and uij in U can
be approximated via

lij = 1
ujj

⎛
⎝aij −

j−1∑
k=1

likukj

⎞
⎠ , i > j, (2.1)

uij = aij −
i−1∑
k=1

likukj, i ≤ j (2.2)

and lij = 1, i = j. (2.3)

Aside from the theoretical proof that the fixed-point iteration updating all values in the
incomplete factors converges (for a suitable initial guess) in the asymptotic sense [13],
experiments using this ParILU algorithm in highly parallel environments reveal that a few
sweeps are often sufficient to generate preconditioners competitive in terms of quality to those
generated via the (sequential) truncated Gaussian elimination process [13–15]. As a result,
the ParILU algorithm has been established as an attractive alternative to the traditionally
employed Gaussian elimination process for generating level-ILU preconditioners on many-core
and accelerator architectures, typically outperforming the classical approach by a significant
margin [14].

To enhance the quality of incomplete factorization preconditioners, it is possible to interleave
the fixed point iterations approximating the values in the incomplete factors with a strategy
that dynamically adapts the sparsity pattern to the problem characteristics [16] (figure 1). In
an iterative process based on highly parallel building blocks, this strategy not only allows us,
for the first time, to generate threshold-based ILU factorizations on parallel shared-memory
architectures, but also enables us to efficiently leverage streaming-based architectures like
GPUs [17].

Based on our understanding of future node architectures and their projected computational
and bandwidth rates, we estimate that the asymptotic performance of unstructured sparse matrix

6

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

computations, assuming eight bytes (double precision) for the non-zero entries of the matrix
and vectors, and four bytes for the integer indexing values, will continue to be 1–2% of peak
performance. Latency in real-time will stay roughly the same, so that internode communication
latencies, measured in microseconds, will require 2–10 million operations in order to cover the
latency cost of communicating the first bytes of data. In other words, both latency and bandwidth
will continue to limit the performance of sparse computations.

Therefore, because sparse algorithms are memory-bound on virtually all modern architectures,
a variety of strategies have been explored to mitigate pressure on memory bandwidth, ranging
from sparse data formats over hierarchical structures to compression techniques and mixed
precision algorithms. Ginkgo addresses the memory bottleneck by moving towards a modular
precision ecosystem that decouples memory precision from the arithmetic precision format,
preserving full precision only for the arithmetic operations and dynamically adapting memory
precision to algorithmic requirements. For example, with block-Jacobi preconditioners typically
only providing a few digits of accuracy, it is possible to reduce the precision format in which the
distinct inverted diagonal blocks are stored without impacting the preconditioner accuracy [18].
Maintaining full precision in all arithmetic operations by converting between the formats in
the processor’s registers, the preconditioner remains a constant operator–thereby removing the
need for a flexible solver variant [18]. With the format being optimized for each Jacobi block
individually (carefully protecting against under/overflow and preserving regularity), memory
access reduction directly translates into runtime and energy savings [18].

3. hypre
The hypre software library provides high-performance preconditioners and solvers for the
solution of large sparse linear systems on massively parallel computers. One of its attractive
features is the provision of conceptual linear system interfaces, which include a structured, semi-
structured and traditional linear algebra-based interface. The (semi-)structured interfaces are an
alternative to the standard matrix-based interface that describes rows, columns and coefficients
of a matrix. Here, instead, matrices are described primarily in terms of stencils and logically
structured grids. These interfaces give application users a more natural means for describing their
linear systems and provide access to methods such as structured multigrid solvers, which can
take advantage of the additional information beyond just the matrix. Since current architecture
trends are favouring regular compute patterns to achieve high performance, the ability to express
structure has become much more important.

The hypre library historically uses an MPI/OpenMP model and was not GPU-enabled.
However, the team has recently begun to investigate various ways of enabling hypre to take
advantage of GPUs. The library provides both structured and unstructured algebraic multigrid
solvers, which use completely different data structures, as well as Krylov solvers.

The data structures in the structured interface are based on structured grids and stencils.
Loops within the structured solvers that use these data structures are generally abstracted with
macros called BoxLoops. These macros were completely restructured to allow the incorporation
of CUDA, OpenMP 4.X, RAJA [4] and Kokkos (§6) into the isolated BoxLoops. Since hypre is
written in C, but RAJA and Kokkos are written in C++11, it was necessary to enable hypre to
be compiled with the C++ compiler, particularly nvcc, requiring many changes to the library.
With these changes it is now possible to run the structured solvers completely on the GPU using
CUDA, OpenMP 4.X, RAJA or Kokkos.

On the unstructured side, focus has been on the algebraic multigrid solver BoomerAMG.
BoomerAMG consists of a set-up and a solve phase. The solve phase consists mainly of
matrix-vector multiplications and the smoother. While the default smoother is based on Gauss-
Seidel requiring triangular solves, one can also use matvec-based smoothers, such as Jacobi or
polynomial smoothers. CUDA implementations of the basic kernels were added. Since the matrix
data structures are based on the compressed sparse row (CSR) storage format, it was possible
to use the CuSPARSE matrix-vector multiplication routine. When suitable smoothers are used,

7

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

the solve phase can be performed on the GPU. The current version requires unified memory;
however, this requirement will be removed in the future. The set-up phase, which consists of
coarsening algorithms and the generation of interpolation and coarse grid operators, is highly
complex and not well suited for efficient implementation on the GPU. Therefore, it currently
remains on the CPU; however, efforts are underway to implement some of the more suitable
components as well as to design new algorithms that are suitable for GPU performance while still
delivering good multigrid convergence.

There are also several special multigrid solvers, such as the auxiliary-space Maxwell solver
(AMS) for H(curl) problems and the auxiliary-space divergence solver (ADS) for H(div) problems.
Since they are built on top of BoomerAMG, any GPU advances in BoomerAMG will carry over to
AMS and ADS.

Because of the growing disparity between communication and computation costs on computer
architectures, it is important to develop algorithms that attempt to minimize communication-
to-computation ratios. This is especially difficult to do for methods like multigrid that have
optimal O(N) computational complexity. Eliminating communication often has the side effect
of degrading convergence and hence may not speed up overall solve times (or reduce power
usage). However, the hypre team has already had some success with a number of approaches,
including sparse interpolation techniques [19], highly concurrent additive multigrid approaches
that converge with multiplicative multigrid rates [20] and non-Galerkin methods for reducing
coupling and communication on coarse grids [21–23]. These breakthroughs have led to speed-ups
of more than 10× for three-dimensional variable-coefficient diffusion problems (fig. 9.2 in [19]),
up to 2.5× for various three-dimensional unstructured Laplace problems (Section 5 in [20]), and
between 15% and 400% for constant-coefficient three-dimensional Laplace problems (Section 5.3
in [22]).

Another way to minimize communication-to-computation ratios is to increase local
computation on each processor, the idea being that this increase in computation will improve
convergence. However, it is a basic multigrid principle that local computations have little
effect on global convergence. To overcome this problem, the team developed the AMG domain
decomposition algorithm (AMG-DD) [24]. The algorithm is based on a number of earlier methods
[25–29] that share the idea to assign a discretization of the global problem to each processor, but
on a mesh with fine resolution in one region of the domain and successively coarser resolution
away from that region. The AMG-DD algorithm constructs the graded meshes and corresponding
composite operators algebraically from an existing multigrid hierarchy. These graded meshes
keep the computational cost and memory use per processor down to a reasonable size, and
provide a way of doing extra computations locally on a processor that are not strictly local
with respect to the grid. As a result, the potential to accelerate convergence is greatly increased.
A crucial contribution of the research in [24] is that both the set-up phase and solve phase of
the parallel AMG-DD solver have the same log(N) communication overhead as the underlying
multigrid algorithm on which it is based. The addition of AMG-DD to hypre is underway and
initial experiments show promise. The team is also seeking to improve the convergence of the
algorithm when solving only to discretization accuracy, motivated by a related non-algebraic
algorithm in [30] that was shown to be significantly faster than multigrid in parallel.

Computations that exhibit structure are ideal for GPU-based architectures. Although the hypre
library supports a semi-structured system interface and corresponding underlying data structure,
efforts to develop a multigrid solver that can exploit the local structure have only recently begun.
Semi-structured matrices in hypre are defined as the sum of two matrices, A = As + Au, where
As is structured and Au is unstructured. If interpolation is similarly defined as P = Ps + Pu, it
is easy to see that a semi-structured multigrid method would be composed of semi-structured
matrix-vector operations, which would, in turn, build on structured and unstructured matrix-
vector operations. One complication is that Ps is a rectangular (non-square) matrix, which is not
a straightforward concept to implement (see [31] for more details). The hypre team has recently
added a rectangular matrix to the structured component of the library (this is not yet released)
and has begun to implement a semi-structured multigrid method that uses it.

8

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

The use of high-order discretization methods is also gaining popularity due to their
demonstrated performance potential on GPU-based architectures. This performance is again
realized by exploiting structure in the system matrix, but in this case the structure is present in
the finite-element stiffness matrices instead of the grid. For these problems, matrix-free operations
are required, because it is not practical to fully assemble the matrix. As a result, existing algebraic
multigrid methods are not suitable. To address this, the hypre team is developing a variety of
matrix-free multigrid approaches.

4. PETSc
The portable extensible toolbox for scientific computing (PETSc) provides a large collection of
composable, hierarchical and nested solvers [32,33]. As such, PETSc addresses two needs: the
first need consists of more complex physical models, the coupling of diverse models, and work
towards predictive science needed by scientific applications. The second need is to run efficiently
on high-performance computing systems, where algorithms and implementations need to map
well onto many-core node architectures, hybrid combinations of accelerators and conventional
processors. This section provides a sketch of how PETSc addresses these two needs.

PETSc currently handles GPUs through dedicated subclasses of existing CPU-based
classes [34]. For example, the main compressed sparse row matrix class MATAIJ is CPU-based.
The subclasses with GPU support are MATAIJCUSPARSE (for CUDA) and MATAIJVIENNACL

(for CUDA, OpenCL, or OpenMP). These subclasses internally manage the data on the GPU.
Operations for which GPU-optimized routines are available—provided by the cuSPARSE or
ViennaCL libraries—are executed on the GPU, and routines for which no GPU-optimized routines
are available will be executed via a fallback implementation on the CPU. (Libraries such as Intel
MKL that provide vendor-optimized CPU kernels are leveraged in a similar fashion.) Such a
fallback mechanism has been shown to be superior over an approach where only GPU-accelerated
functionality is provided. First, one can always access the full set of operations and incrementally
remove bottlenecks. Second, there are operations for which no efficient GPU implementation is
possible; however, an inefficient, yet functional fallback implementation may still suffice for a
particular use case.

Currently in PETSc only a single (virtual) GPU can be associated with an MPI process and
needed communication between GPUs takes place through the associated MPI process and its
CPU memory. A challenge with this model is optimizing direct GPU to GPU memory transfers
(within a single compute node where direct communication paths exist between the GPUs).
MPI extensions that allow MPI message passing directly between different GPU’s memory (thus
preserving the clean separation of concerns between MPI code and the GPU details) are one
possible path, for which it is not yet clear whether broad support will be available. The alternative
is to introduce another level of complexity of the programming model that handles in-node
inter-GPU communication.

(a) The many-core composability challenge
As a platform for algorithmic experimentation, PETSc offers interfaces to many other solver
libraries, for example to the multigrid package hypre. Library users can thus quickly combine
and compare specialized solvers from different packages through a unified and mature PETSc
interface that facilitates runtime composability. As new libraries (for example, Ginkgo) addressing
the low-level needs of many-core architectures become available, PETSc can quickly adopt these
and leverage the new capabilities for more efficient high-level solvers.

The third-party packages interfaced by PETSc provide different approaches for many-core
architectures: CPU-centric packages may use—among others—OpenMP, pthreads, or C++11
threads for threading. GPU-accelerated libraries typically use CUDA, but may use OpenCL,
OpenACC, OpenMP or other approaches instead. This lack of a unified approach poses a
considerable challenge on the software stack in general. In order to combine functionality from,

9

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

lower-level libraries (MPI, BLAS, etc.)

PETSc

CUDA-Lib OpenCL-Lib OpenMP-Lib

higher-level librariesusers

conversion-layer

Figure 2. PETSc provides a unified interface for seamless composition of different GPU-accelerated libraries. (Online version in
colour.)

for example, a CUDA-based library with an OpenCL-based library, memory handles need to be
converted between CUDA and OpenCL. Compiler-based approaches such as OpenMP or unified
memory (CUDA) complicate the issue further, since the actual placement of the data is now
implicit within a translation unit rather than explicitly encoded in the memory buffer.

PETSc addresses the challenge of different many-core approaches used by third-party libraries
through internal conversion routines, cf. figure 2. Where possible, any data movement (for
example between host and GPU) is avoided; otherwise, an explicit (and potentially costly)
conversion is carried out. This enables users to experiment with the full range of solver building
blocks and use a mixture of different low-level approaches. If the conversion cost turns out to be
significant for an otherwise robust and algorithmically efficient solver, the conversion overhead
can still be addressed by the user in a second step.

The composability challenge not only affects the interoperability of different third-party
libraries used by PETSc, but also user callback routines. For example, a user may decide to write
matrix-free implementation of a sparse matrix-vector product with a particular programming
model. Callback interfaces in PETSc do not restrict the user in the use of a particular programming
model; thus, users can directly retrieve and operate with, for example, CUDA-based data. The
user’s choice may have an impact on performance due to internally required conversion: In
such case, PETSc’s integrated performance logging will allow the user to quickly identify this
bottleneck.

(b) Hybrid execution on hybrid hardware
PETSc already offers the ability to use different programming approaches concurrently using
ViennaCL [35]. In particular, a user may switch between CUDA, OpenCL, OpenMP or
conventional single-threaded execution individually on each MPI rank. In principle, such an
approach enables fully saturating all the available execution units on a hybrid architecture, thus
maximizing performance by splitting up the workload relative to the respective execution speed.

For more complex operations, a suitable workload decomposition becomes challenging.
A good example is sparse matrix–matrix products, which are encountered during the set-up
phase of algebraic multigrid methods: the many indirect memory accesses favour CPUs with
large caches, so most of the workload should be directed towards CPUs. The multigrid solver
cycle phase, however, consists of sparse matrix–vector products that can be efficiently executed on
GPUs, so the workload should be directed to GPUs. An on-the-fly redistribution of the workload
is typically too expensive, so the user is left with the choice of either a non-optimal solver set-up
phase (when executed on the GPU) or a non-optimal solver cycle phase (when executed on the
CPU). The answer is more complex code that allows for the different phases to be performed on
different hardware and manages the data transfers.

Similarly, the best architecture for a particular operation also depends on the size of the
workload. For example, it has been observed that multigrid methods can benefit from GPU
acceleration on the finest levels, but CPUs are more efficient on the coarser levels [36]. Current

10

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

activities in PETSc focus on providing maximum flexibility for the user to fine-tune the execution
units used for the different stages of a full solver hierarchy.

5. SuperLU/STRUMPACK
Sparse factorizations and the accompanying solution algorithms (e.g. triangular solution
associated with the LU factorization) are often the most robust algorithmic choices for linear
systems from multi-physics and multi-scale simulations. They can be used as direct solvers, as
coarse-grid solvers in multigrid (e.g. hypre), or as preconditioners for iterative solvers. The two
solver libraries we have been developing encompass the two widely used sparse LU algorithm
variants: supernodal (SuperLU library [37]) and multifrontal (STRUMPACK library [38]). Both
solvers are purely algebraic, applicable to a wide variety of application domains.

SuperLU has over 20 years of development history, evolving from multicore, distributed
memory, to recent many-core GPU clusters. SuperLU is used by numerous applications in
DOE, industry and academia (38 000+ downloads in FY15). Despite their wide usability, a
fundamental scaling impediment of traditional factorization algorithms is that the required flops
and memory are more than linear in problem size, hence non-optimal. By contrast, STRUMPACK
is a relatively new software effort, motivated by the need for optimal factorization-based
solvers and preconditioners. It was first released in 2015 and currently has a number of DOE
users. The baseline algorithm in STRUMPACK is a multifrontal sparse LU solver. On top of
this, we introduce data-sparseness in the dense blocks (frontal matrices) in the sparse factors
using several hierarchical matrix low-rank compression formats, including hierarchically semi-
separable (HSS) [39], hierarchically off-diagonal low rank (HODLR) [40] and a non-hierarchical
format called block low rank (BLR) [41]. The resulting factorizations have nearly optimal
complexity in flops and memory. STRUMPACK approaches are based on a large body of literature
on hierarchical matrix algebra. The most general rank structured matrix format is the class of
H matrices, where the matrix is recursively divided in 2 × 2 blocks and each block can be dense,
low rank or H. In the H2 format, low-rank factors are nested, with the low-rank bases from one
level given as a linear combination of those on a finer level. These hierarchical matrix formats are
shown to be usable as direct solvers for integral equations and PDEs with smooth kernels, or as
low-accuracy direct solvers for broader problems, or, more generally, as powerful preconditioners.

In addition to reducing arithmetic complexity, we are redesigning parallel algorithms to reduce
communication complexity, in particular to reduce the number of messages, hence to mitigate
latency cost. For SuperLU, we developed a novel communication-avoiding factorization and
triangular solve method where MPI processes are arranged as a three-dimensional process grid,
with selective data replication along the third dimension of the process grid, trading off small
amount of increased memory for much reduced per-process communication. Theoretically, we
proved that the communication complexity, in both message count and volume, is asymptotically
lower than the widely used two-dimensional process configuration. In practice, we observed
runtime speed-ups up to 27× on 32 k cores for sparse LU factorization [42] (Section V.F., p. 917),
and up to 7× on 12 k cores for sparse triangular solve [43] (Section 5.3, p. 135).

The solve phase is more challenging to scale up than factorization because of lower
arithmetic intensity and higher task dependency. Recently, we introduced two main techniques
to reduce amount of synchronization. The first technique uses an asynchronous binary-
tree-based communication scheme implemented via non-blocking MPI functions, leading to
4× improvement on 4000+ cores [44]. The second technique leverages the one-sided MPI
communication functions to implement a synchronization-free task queue, allowing more overlap
of communication and computation, leading to additional 2× improvement on 4000+ cores [45].

For the factorization function in SuperLU, we have done extensive work to improve on-node
efficiency for many-core and accelerator machines: aggregating small GEMMs into larger GEMM,
use OpenMP ‘task parallel’ to reduce load imbalance and ‘nested parallel’ to increase parallelism,
and vectorizing Gather/Scatter operations. We designed an asynchronous, pipelined CPU-GPU

11

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

algorithm to off-load part of Schur-complement update to GPU. For the GPU accelerated three-
dimensional sparse factorization algorithm, we have obtained up to 3.5× runtime improvement
on Titan’s 4096 GPU-nodes over the CPU-only code [46, fig. 15(b)]. A recent port of this code to
one-node Summit machine achieved 5× speed-up over the CPU-only code.

STRUMPACK provides a sparse direct solver and approximate factorization-based
preconditioners. It uses the multifrontal formulation of sparse LU. The multifrontal version
simplifies the communication pattern along the elimination tree, since Schur complement updates
from supernodes are accumulated and only passed to the next supernode to be eliminated, instead
of scattered throughout the sparse triangular factors. Although it results in a more synchronized
execution, it leads to larger dense matrix operations, for which STRUMPACK can exploit the use
of BLAS 3 and LAPACK routines and ScaLAPACK in distributed memory. After the triangular
factorization is performed, linear systems can be solved very efficiently. STRUMPACK relies on
BLAS, LAPACK, ScaLAPACK, Metis, and optionally ParMetis and PT-Scotch libraries.

The preconditioners available in STRUMPACK are also based on the multifrontal LU
factorization algorithm. In the triangular factors, the fill occurs in large dense blocks, called
fronts or frontal matrices, which correspond to supernodes or the separators from a nested
dissection fill reducing ordering. STRUMPACK uses rank structured, also called data sparse,
matrix approximation on these frontal matrices. STRUMPACK uses the HSS format, which is a
subclass of H2, where all off-diagonal blocks are assumed to be of low rank, a property called
weak admissibility. It is shown in the literature that for many PDE based problems, this is
indeed the case. For low-rank compression, STRUMPACK heavily relies on random projection,
which provides accurate results with very high probability, and with lower asymptotic cost than
standard techniques, while also lending itself well to execution on current architectures such as
GPUs. We have developed an efficient and robust blocked version of adaptive randomized low
rank approximation for use in HSS matrix construction [47].

Exploiting both the typical sparsity as well as data sparsity leads to optimal-complexity
solvers for specific model problems, such as elliptic partial differential equations in two spatial
dimensions. However, for numerically more challenging systems, such as those arising from high-
frequency Helmholtz problems, the numerical ranks in the hierarchical matrix approximations,
or the pre-factors in the complexity analysis, become too large, as illustrated in a recent
report [48]. As a remedy, we are incorporating other rank-structured matrix representations into
the STRUMPACK sparse preconditioner. For instance, the Hierarchically Off-Diagonal Low Rank
(HODLR) and BLR formats will lead to lower pre-factors and ranks, respectively. For very high-
frequency problems like Maxwell and acoustic scattering, we are developing Butterfly-based
matrix compression. The Butterfly format [49] is a multilevel low-rank scheme based on ideas
from the FFT. These different new formats are all being incorporated into the sparse solver using
randomized projection for the low-rank constructions.

These rank-structured matrix representations are also applicable to many dense linear systems,
such as those arising from integral equations through the boundary element method, to kernel
methods as used in machine learning, etc. Through the use of random projection, which only
requires matrix times (multiple) vector multiplication, we are developing matrix-free or partially
matrix-free solvers for these type of systems [50,51].

STRUMPACK uses hybrid MPI + OpenMP parallelism. The STRUMPACK solver and
preconditioners exploit multiple levels of parallelism: concurrency from the sparse elimination
tree, concurrency from the HSS hierarchy and from BLAS/(Sca)LAPACK routines. In distributed
memory, independent sub-trees are mapped to distinct MPI sub-communicators, using
ScaLAPACK for the linear algebra. Within a node, the code heavily relies on OpenMP task
parallelism. Dynamic scheduling of fine-grained tasks can handle the irregular workloads in
STRUMPACK that arise from different sparsity patterns and numerical rank distributions.

The multiple levels of parallelism in STRUMPACK make porting of the code to GPU
architectures very challenging. Work has started on adding GPU support to STRUMPACK,
initially relying on the SLATE (Software for Linear Algebra Targeting Exascale) framework as
a ScaLAPACK replacement with GPU off-loading capabilities. A further design study is required

12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

to define an efficient strategy to fully exploit the computational power of GPUs. We expect to
rely on batched BLAS operations, grouping many smaller matrix operations, to achieve high
performance.

6. Trilinos and Kokkos Kernels
Trilinos [52] is a large collection of software packages for scientific computing. The Trilinos
project is an effort to facilitate the design, development, integration, and support of mathematical
software libraries. The main focus is on scalable solvers within an object-oriented framework to
support complex multi-physics and multi-scale engineering applications on parallel computers.
Over time, Trilinos has grown to include many other capabilities such as partitioning and
load-balancing, discretizations, and algorithmic differentiation.

Trilinos was originally designed for ‘flat MPI’ but as node concurrency has grown in recent
years with the widespread adoption of first multicore then many-core architectures (e.g., GPU),
Trilinos has adopted a two-level parallel model. At the top level, objects (matrices, vectors) are
distributed across MPI ranks. The distribution is given by a map, a first-order object in the Petra
object model (as implemented in the Epetra [53] and Tpetra [54] packages).

One of the significant problems in designing solvers for exascale architectures is to plan for an
architecture that is yet to be designed. The complexity of this problem increases as we consider
that the new solvers have to work on multiple existing architectures. Our solution to this problem
focuses on designing solvers based on abstractions that are representative of current architectural
features and expected features in future architectures. With these abstractions in place, one can
implement the solvers in a number of different ways to handle different architectures such as
using a directive-based approach or library-based approach. Within Trilinos we rely on a library-
based approach for portability and our abstractions are provided by the Kokkos ecosystem [5].

The core programming model in Kokkos allows users to choose memory layouts for
data structures that are suitable for different architectures. It also allows users to express
the parallelism in the code with data-parallel, task-parallel or hierarchical-parallel constructs.
Kokkos Kernels is a library in the Kokkos ecosystem that provides optimized and portable
implementations of performance-critical sparse/dense linear algebra and graph kernels. Solvers
in Trilinos use these kernels for achieving portable performance. This library-based approach
in Trilinos defines clear responsibilities where Kokkos has to maintain/modify its abstractions
as the architectures evolve and Kokkos Kernels has to deliver high-performance kernels in
different architectures. This insulates the solvers from architecture changes. The key kernels that
currently exist in Kokkos Kernels include sparse matrix–vector multiplication, sparse matrix-
matrix multiplication [55], preconditioners such as symmetric Gauss-Seidel. In terms of graph
algorithms, Kokkos Kernels features include distance-1 colouring [56] to enable parallel assembly
in finite element codes, distance-2 colouring to support aggregation in multigrid methods,
triangle counting [57,58] to enable social network analysis. One of the key developments in
the move towards exascale computing is the new requirement from applications for batched
linear algebra and BLAS/LAPACK routines at different levels of hierarchical parallelism (e.g.
a GEMM call that can use an entire accelerator, or a team of threads in the accelerator or a single
thread). Kokkos Kernels provides a subset of the BLAS implementation that can be called at
the device-level, team-level or in serial [59]. This has been successfully used to enable portable
CFD simulations [60].

With the core programming model as MPI+X, and Kokkos ecosystem providing the flexibility
to select different choices for the on-node programming (the ‘X’), Trilinos users will simply choose
an appropriate execution space for the target architecture. This hybrid MPI+X parallel model is
supported via the Tpetra linear algebra package and compatible solver packages. Tpetra replaces
Epetra and has several advantages: (a) support for multi- and many-core architectures via Kokkos,
(b) templated scalar types to allow easy switch (mixing) of precision and (c) 64-bit integers and
pointers to support very large problem sizes. The solver stack has been rewritten using Kokkos

13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

from the ground up to support exascale architectures. This redesigned solver stack has been used
effectively in several scientific simulations [60,61].

In Trilinos, there is a distinction between solvers and preconditioners. Solvers include direct
sparse methods such as sparse LU/Cholesky in Amesos2, and iterative methods (mostly Krylov
methods) in Belos [62]. Preconditioners include stationary methods and incomplete factorizations
(Ifpack2 [63]), domain decomposition methods and (in)complete factorizations (ShyLU [64]),
and algebraic multigrid (MueLu [65]). There is some overlap among these packages in terms of
functionality. In particular, the preconditioners in Ifpack2 are mostly serial and/or MPI parallel,
while ShyLU was designed to take advantage of on-node (shared memory) parallelism. The
primary focus on exascale readiness has been on developing accelerator focused iterative solvers
in Belos, multithreaded and GPU-ready multigrid methods in MueLu, Kokkos-based direct
factorizations such as Basker [66] and Tacho [67] in ShyLU, GPU-ready domain decomposition
methods in Ifpack2 and ShyLU.

A recent algorithmic focus supported by the ECP PEEKS and Clover projects, is
communication-avoiding (CA) methods. The Belos package now supports single-reduce,
pipelined, and s-step (CA) solvers. These are three different ways to reduce communication
and synchronization, which is increasingly becoming an issue on extreme-scale systems. While
Krylov methods have good convergence properties, they typically rely on global inner products
(or orthogonalization), which can be expensive at large scale. Single-reduce methods reduce the
number of global (all-) reduce calls to one per iteration, by combining two or more all-reduce
operations into one. Pipelined methods overlap global communication, local communication,
and computation. S-step methods only communicate every s steps, where is s is a small integer.
In CA-GMRES, the orthogonalization step is replaced by more efficient block orthogonalization.
The trade-off is that more memory is needed to ‘ghost’ data. A potential future improvement
is adoption of the ‘matrix powers kernel’ to compute the Krylov basis {x, Ax, A2x, . . .}. This
is fairly straightforward without a preconditioner, but very challenging if a preconditioner is
embedded into the kernel (as the preconditioner itself requires communication). It appears most
current preconditioners cannot be used in this setting, and special ‘communication-avoiding’
preconditioners have been proposed for this case [68,69].

7. Conclusion
The U.S. Exascale Computing Project invests in sparse solver libraries in order to provide a
resource to application developers who want robust and scalable capabilities on a broad set
of platforms. The solver libraries discussed in this paper represent both new and established
efforts to provide these capabilities. New projects (Ginkgo, STRUMPACK and KokkosKernels)
are expressly focused on algorithms and implementations targeting emerging node architectures.
Established libraries (hypre, PETSc, SuperLU and Trilinos), by virtue of a modular design, are
integrating these and other new libraries, and adapting implementations of their own capabilities
with little or moderate interface changes, to the benefit of their large user bases. Our efforts to
prepare for accelerated architectures—represented most concretely by today’s GPU platforms
such as Summit [1] and Sierra [2]—challenge us to design algorithms and software that expose
very high levels of concurrency underneath each MPI process and to further enable efficient
scaling to thousands of nodes containing multiple accelerated devices.

We are confident that our efforts will lead to successful use of Exascale systems and
simultaneously help us prepare for post-Exascale parallel computing systems, even those with
significantly different designs. High levels of concurrency will be necessary for all foreseeable
future system. In addition, nodes with more heterogeneous devices are very likely [70]. Our
Exascale systems preparations will provide the foundation for algorithms and software that will
be needed for future target devices. These new devices will operate at clock speeds similar to
today, but will have favourable designs for higher bandwidth and better latency hiding, leading
to improved sparse solver performance on systems developed beyond the exascale time frame.

14

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

Data accessibility. Each of the solver libraries discussed in this paper provides detailed information available
from the respective project website, cited in the bibliography.
Authors’ contributions. H.A. is the primary author of §2 on Ginkgo. R.F. and U.M.Y. are the primary authors of §3
on hypre. K.R., L.C.M., R.T.M. and B.S. are the primary authors of §4. P.G. and X.L. (Sherry) are the primary
authors of §5. E.B., S.R., M.H. and I.Y. are the primary authors of §6. Finally, M.H. is the primary author of the
document overview and context, §1 and 7.
Competing interests. We declare we have no competing interests.
Funding. This work was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of
the US Department of Energy Office of Science and the National Nuclear Security Administration.

References
1. Oak Ridge Leadership Computing Facility. 2019 America’s Newest and Smartest

Supercomputer. See https://www.olcf.ornl.gov/summit.
2. Livermore Computing Center. 2019 Sierra Computing System. See https://hpc.llnl.gov/

hardware/platforms/sierra.
3. MPI Forum. 2019 Message Passing Interface (MPI). See http://www.mpi-forum.org.
4. Hornung RD, Keasler JA. 2014 The RAJA portability layer: overview and status. Technical

Report LLNL-TR-661403, Lawrence Livermore National Laboratory.
5. Edwards HC, Trott CR, Sunderland D. 2014 Kokkos: enabling Manycore performance

portability through polymorphic memory access patterns. J. Parallel Distrib. Comput. 74,
3202–3216. (doi:10.1016/j.jpdc.2014.07.003)

6. Ginkgo Homepage. See https://ginkgo-project.github.io/.
7. xSDK: Extreme-scale Scientific Software Development Kit. See https://xsdk.info/.
8. Martin RC. 2017 Clean architecture: a Craftsman’s guide to software structure and design. Robert C.

Martin Series. Boston, MA: Prentice Hall.
9. Google Test. See https://github.com/google/googletest.

10. Anzt H, Cojean T, Flegar G, Grützmacher T, Nayak P. 2015 Sustainable software development
in the Ginkgo library. See https://figshare.com/articles/SustainableGinkgo4_calibri_pdf/
7762802.

11. Office of Science, US Department of Energy. 2010 The Opportunities and Challenges
of Exascale Computing. See http://science.energy.gov//media/ascr/ascac/pdf/reports/
Exascale_subcommittee_report.pdf.

12. Saad Y. 2003 Iterative methods for sparse linear systems, 2nd edn. Philadelphia, PA: SIAM.
13. Chow E, Patel A. 2015 Fine-grained parallel incomplete LU factorization. SIAM J. Sci. Comput.

37, C169–C193. (doi:10.1137/140968896)
14. Chow E, Anzt H, Dongarra J. 2015 Asynchronous iterative algorithm for computing

incomplete factorizations on GPUs. In Proc. of 30th Int. Conf., ISC High Performance 2015. Lecture
Notes in Computer Science (eds J Kunkel, T Ludwig), vol. 9137, pp. 1–16. Berlin, Germany:
Springer.

15. Anzt H, Chow E, Saak J, Dongarra J. 2016 Updating incomplete factorization preconditioners
for model order reduction. Numer. Algorithm 73, 611–630. (doi:10.1007/s11075-016-0110-2)

16. Anzt H, Chow E, Dongarra J. 2018 ParILUT—a new parallel threshold ILU factorization. SIAM
J. Sci. Comput. 40, C503–C519. (doi:10.1137/16M1079506)

17. Anzt H, Ribizel T, Flegar G, Chow E, Dongarra J. 2019 ParILUT - a parallel threshold ILU for
GPUs. In 2019 IEEE Int. Parallel and Distributed Proc. Symp. (IPDPS), pp. 231–241. Piscataway,
NJ: IEEE.

18. Anzt H, Dongarra J, Flegar G, Higham NJ, Quintana-Ortí ES. 2019 Adaptive precision in
block-Jacobi preconditioning for iterative sparse linear system solvers. Concurrency Comput.:
Pract. Exp. 31, e4460. (doi:10.1002/cpe.4460)

19. Sterck HD, Falgout RD, Nolting JW, Yang UM. 2008 Distance-two interpolation for parallel
algebraic multigrid. Numer. Linear Algebra Appl. 15, 115–139. Special issue on Multigrid
Methods. UCRL-JRNL-230844 (doi:10.1002/nla.559)

20. Vassilevski PS, Yang UM. 2014 Reducing communication in algebraic multigrid using additive
variants. Numer. Linear Algebra Appl. 21, 275–296. (doi:10.1002/nla.1928)

21. Ashby SF, Falgout RD. 1996 A parallel Multigrid preconditioned conjugate gradient
algorithm for groundwater flow simulations. Nucl. Sci. Eng. 124, 145–159. UCRL-JC-122359
(doi:10.13182/NSE96-A24230)

https://www.olcf.ornl.gov/summit
https://hpc.llnl.gov/hardware/platforms/sierra
https://hpc.llnl.gov/hardware/platforms/sierra
http://www.mpi-forum.org
http://dx.doi.org/doi:10.1016/j.jpdc.2014.07.003
https://ginkgo-project.github.io/
https://xsdk.info/
https://github.com/google/googletest
https://figshare.com/articles/SustainableGinkgo4_calibri_pdf/7762802
https://figshare.com/articles/SustainableGinkgo4_calibri_pdf/7762802
http://science.energy.gov/ /media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
http://science.energy.gov/ /media/ascr/ascac/pdf/reports/Exascale_subcommittee_report.pdf
http://dx.doi.org/doi:10.1137/140968896
http://dx.doi.org/doi:10.1007/s11075-016-0110-2
http://dx.doi.org/doi:10.1137/16M1079506
http://dx.doi.org/doi:10.1002/cpe.4460
http://dx.doi.org/doi:10.1002/nla.559
http://dx.doi.org/doi:10.1002/nla.1928
http://dx.doi.org/doi:10.13182/NSE96-A24230

15

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

22. Falgout RD, Schroder JB. 2014 Non-Galerkin coarse grids for algebraic Multigrid. SIAM J. Sci.
Comput. 36, C309–C334. LLNL-JRNL-641635 (doi:10.1137/130931539)

23. Bienz A, Falgout RD, Gropp W, Olson LN, Schroder JB. 2016 Reducing parallel
communication in algebraic multigrid through sparsification. SIAM J. Sci. Comput. 38, S332–
S357. LLNL-JRNL-673388 (doi:10.1137/15M1026341)

24. Bank R, Falgout RD, Jones T, Manteuffel TA, McCormick SF, Ruge JW. 2015 Algebraic
MultiGrid Domain and range decomposition (AMG-DD/AMG-RD). SIAM J. Sci. Comput. 37,
S113–S136. LLNL-JRNL-666751 (doi:10.1137/140974717)

25. Brandt A, Diskin B. 1994 Multigrid solvers on decomposed domains. In Domain Decomposition
Methods in Science and Engineering: The Sixth Int. Conf. on Domain Decomposition, vol. 157 of
Contemporary Mathematics, pp. 135–155. Providence, Rhode Island: American Mathematical
Society.

26. Mitchell W. 1998 A parallel Multigrid method using the full domain partition. Electron. Trans.
Numer. Anal. 6, 224–233.

27. Bank R, Holst M. 2000 A new paradigm for parallel adaptive meshing algorithms. SIAM J. Sci.
Stat. Comp. 22, 1411–1443. (doi:10.1137/S1064827599353701)

28. Bank R, Jimack P. 2001 A new parallel domain decomposition method for the adaptive finite
element solution of elliptic partial differential equations. Concurrency Computat.: Pract. Exper.
13, 327–350. (doi:10.1002/cpe.569)

29. Bank RE, Lu S, Tong C, Vassilevski PS. 2004 Scalable parallel algebraic multigrid solvers.
Technical Report UCRL-TR-210788, Lawrence Livermore National Laboratory, Livermore,
California.

30. Appelhans DJ, Manteuffel T, McCormick S, Ruge J. 2016 A low-communication, parallel
algorithm for solving PDEs based on range decomposition. Numer. Linear Algebra Appl. 24,
e2041. (doi:10.1002/nla.2041)

31. Engwer C, Falgout RD, Yang UM. 2017 Stencil computations for PDE-based applications with
examples from DUNE and hypre. Concurrency Comput.: Pract. Exp. 29, e4097. LLNL-JRNL-
681537 (doi:10.1002/cpe.4097)

32. Balay S et al. 2019 PETSc users manual. Technical Report ANL-95/11 - Revision 3.11, Argonne
National Laboratory.

33. Balay S et al. 2019 PETSc Web page. See http://www.mcs.anl.gov/petsc.
34. Minden V, Smith BF, Knepley MG. 2013 Preliminary Implementation of PETSc Using GPUs.

In GPU solutions to multi-scale problems in science and engineering (eds DA Yuen, L Wang,
X Chi, L Johnsson, W Ge, Y Shi). Lecture Notes in Earth System Sciences, pp. 131–140. Berlin,
Germany: Springer.

35. Rupp K, Tillet P, Rudolf F, Weinbub J, Morhammer A, Grasser T, Jüngel A, Selberherr S. 2016
ViennaCL—linear algebra library for multi- and many-core architectures. SIAM J. Sci. Comput.
38, S412–S439. (doi:10.1137/15M1026419)

36. Bell N, Dalton S, Olson LN. 2012 Exposing fine-grained parallelism in algebraic multigrid
methods. SIAM J. Sci. Comput. 34, C123–C152. (doi:10.1137/110838844)

37. SuperLU: Sparse Direct Solver. See http://crd.lbl.gov/xiaoye/SuperLU/.
38. STRUMPACK: STRUctured Matrices PACKages. See http://portal.nersc.gov/project/

sparse/strumpack/.
39. Chandrasekaran S, Gu M, Lyons W. 2005 A fast adaptive solver for hierarchically

semiseparable representations. Calcolo 42, 171–185. (doi:10.1007/s10092-005-0103-3)
40. Ambikasaran S, Darve E. 2013 An O(N log N) fast direct solver for partial hierarchically semi-

separable matrices. J. Sci. Comput. 57, 477–501. (doi:10.1007/s10915-013-9714-z)
41. Amestoy P, Ashcraft C, Boiteau O, Buttari A, L’Excellent JY, Weisbecker C. 2015 Improving

multifrontal methods by means of block low-rank representations. SIAM J. Sci. Comput. 37,
A1451–A1474. (doi:10.1137/120903476)

42. Sao P, Vuduc R, Li X. 2018 A communication-avoiding 3D factorization for sparse matrices.
In 32nd IEEE Int. Parallel & Distributed Processing Symp. (IPDPS). Piscataway, NJ: IEEE.

43. Sao P, Vuduc R, Li X. 2019 A communication-avoiding 3D sparse triangular solver. In ICS
2019: Int. Conf. on Supercomputing. Piscataway, NJ: IEEE.

44. Liu Y, Jacquelin M, Ghysels P, Li X. 2018 Highly scalable distributed-memory sparse
triangular solution algorithms. In Proc. of the SIAM Workshop on Combinatorial Scientific
Computing. Philadelphia, PA: SIAM.

http://dx.doi.org/doi:10.1137/130931539
http://dx.doi.org/doi:10.1137/15M1026341
http://dx.doi.org/doi:10.1137/140974717
http://dx.doi.org/doi:10.1137/S1064827599353701
http://dx.doi.org/doi:10.1002/cpe.569
http://dx.doi.org/doi:10.1002/nla.2041
http://dx.doi.org/doi:10.1002/cpe.4097
http://www.mcs.anl.gov/petsc
http://dx.doi.org/doi:10.1137/15M1026419
http://dx.doi.org/doi:10.1137/110838844
http://crd.lbl.gov/ xiaoye/SuperLU/
http://portal.nersc.gov/project/sparse/strumpack/
http://portal.nersc.gov/project/sparse/strumpack/
http://dx.doi.org/doi:10.1007/s10092-005-0103-3
http://dx.doi.org/doi:10.1007/s10915-013-9714-z
http://dx.doi.org/doi:10.1137/120903476

16

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

45. Ding N, Liu Y, Li X, Williams S. Submitted Leveraging one-sided communication for
sparse triangular solvers—a pathway to exascale solvers. In Proc. of SC19. Denver, CO
(submitted).

46. Sao P, Vuduc R, Li X. 2019 A communication-avoiding 3D algorithm for sparse
LU factorization on heterogeneous systems. J. Parallel Distrib. Comput. 131, 218–234.
(doi:10.1016/j.jpdc.2019.03.004)

47. Gorman C, Chávez G, Ghysels P, Mary T, Rouet FH, Li XS. 2019 Robust and accurate stopping
criteria for adaptive randomized sampling in matrix-free HSS construction. SIAM J. Sci.
Comput. 41, S61–S85. (doi:10.1137/18M1194961)

48. Ghysels P, Li X, Liu Y, Kolev T, Anitescu M. 2018 ECP Application bottleneck
study for STRUMPACK/SuperLU: factorization Based Sparse Solvers and
Preconditioners for Exascale. http://portal.nersc.gov/project/sparse/strumpack/docs/
MS-ECP-App-Bottlenecks-study-Oct-2018.pdf.

49. Liu Y, Guo H, Michielssen E. 2017 An HSS matrix-inspired butterfly-based direct solver for
analyzing scattering from two-dimensional objects. IEEE Antennas Wirel. Propag. Lett. 16, 1179–
1183. (doi:10.1109/LAWP.2016.2626786)

50. Rouet FH, Li XS, Ghysels P, Napov A. 2016 A distributed-memory package for dense
hierarchically semi-separable matrix computations using randomization. ACM Trans. Math.
Softw. (TOMS) 42, 27. (doi:10.1145/2930660)

51. Rebrova E, Chávez G, Liu Y, Ghysels P, Li XS. 2018 A study of clustering techniques and
hierarchical matrix formats for kernel ridge regression. In 2018 IEEE Int. Parallel and Distributed
Processing Symposium Workshops (IPDPSW), pp. 883–892. Piscataway, NJ: IEEE.

52. Heroux MA et al. 2005 An overview of the trilinos project. ACM Trans. Math. Softw. (TOMS)
31, 397–423. (doi:10.1145/1089014.1089021)

53. Heroux MA. 2005 Epetra performance optimization guide. Technical Report SAND2005-1668,
Albuquerque, NM, Sandia National Laboratories.

54. Baker CG, Heroux MA. 2012 Tpetra, and the use of generic programming in scientific
computing. Sci. Program. 20, 115–128. (doi:10.1155/2012/693861)

55. Deveci M, Trott C, Rajamanickam S. 2018 Multithreaded sparse matrix-matrix multiplication
for many-core and GPU architectures. Parallel Comput. 78, 33–46. (doi:10.1016/j.parco.
2018.06.009)

56. Deveci M, Boman EG, Devine KD, Rajamanickam S. 2016 Parallel graph coloring for manycore
architectures. In 2016 IEEE Int. Parallel and Distributed Processing Symposium (IPDPS), pp. 892–
901. Piscataway, NJ: IEEE.

57. Wolf MM, Deveci M, Berry JW, Hammond SD, Rajamanickam S. 2017 Fast Linear Algebra-
based Triangle Counting with KokkosKernels. In 2017 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–7. IEEE.

58. Yaşar A, Rajamanickam S, Wolf M, Berry J, Çatalyürek ÜV. 2018 Fast triangle counting using
cilk. In 2018 IEEE High Performance extreme Computing Conference (HPEC), pp. 1–7. Piscataway,
NJ: IEEE.

59. Kim K, Costa TB, Deveci M, Bradley AM, Hammond SD, Guney ME, Knepper S, Story S,
Rajamanickam S. 2017 Designing Vector-friendly Compact BLAS and LAPACK Kernels. In
Proc. of the Int. Conf. for High Performance Computing, Networking, Storage and Analysis, p. 55.
New York, NY: ACM.

60. Howard M, Fisher T, Hoemmen M, Dinzl D, Overfelt J, Bradley A, Kim K, Rajamanickam S.
2018 Employing multiple levels of parallelism for CFD at large scales on next generation high-
performance computing platforms. In Proc. Tenth Int. Conf. on Computational Fluid Dynamics,
ICCFD10, Barcelona, 9–13 July 2018.

61. Lin P et al. 2014 Towards extreme-scale simulations for low mach fluids with second-
generation trilinos. Parallel Process. Lett. 24, 1442005. (doi:10.1142/S0129626414420055)

62. Bavier E, Hoemmen M, Rajamanickam S, Thornquist H. 2012 Amesos2 and Belos:
direct and iterative solvers for large sparse linear systems. Sci. Program. 20, 241–255.
(doi:10.1155/2012/243875)

63. Prokopenko A, Siefert C, Hu JJ, Hoemmen MF, Klinvex AM. 2016 Ifpack2 User’s Guide 1.0.
Technical Report, Sandia National Lab.(SNL-NM), Albuquerque, NM.

64. Rajamanickam S, Boman EG, Heroux MA. 2012 ShyLU: a Hybrid-hybrid Solver for Multicore
Platforms. In 2012 IEEE 26th Int. Parallel and Distributed Proc. Symp., pp. 631–643. Piscataway,
NJ: IEEE.

http://dx.doi.org/doi:10.1016/j.jpdc.2019.03.004
http://dx.doi.org/doi:10.1137/18M1194961
http://portal.nersc.gov/project/sparse/strumpack/docs/MS-ECP-App-Bottlenecks-study-Oct-2018.pdf
http://portal.nersc.gov/project/sparse/strumpack/docs/MS-ECP-App-Bottlenecks-study-Oct-2018.pdf
http://dx.doi.org/doi:10.1109/LAWP.2016.2626786
http://dx.doi.org/doi:10.1145/2930660
http://dx.doi.org/doi:10.1145/1089014.1089021
http://dx.doi.org/doi:10.1155/2012/693861
http://dx.doi.org/doi:10.1016/j.parco.2018.06.009
http://dx.doi.org/doi:10.1016/j.parco.2018.06.009
http://dx.doi.org/doi:10.1142/S0129626414420055
http://dx.doi.org/doi:10.1155/2012/243875

17

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190053

..

65. Prokopenko A, Hu JJ, Wiesner TA, Siefert CM, Tuminaro RS. 2014 MueLu User’s Guide 1.0.
Technical Report SAND2014-18874, Sandia National Laboratories, Albuquerque, NM.

66. Booth JD, Ellingwood ND, Thornquist HK, Rajamanickam S. 2017 Basker: parallel sparse LU
factorization utilizing hierarchical parallelism and data layouts. Parallel Comput. 68, 17–31.
(doi:10.1016/j.parco.2017.06.003)

67. Kim K, Edwards HC, Rajamanickam S. 2018 Tacho: memory-scalable task parallel sparse
Cholesky factorization. In 2018 IEEE Int. Parallel and Distributed Processing Symp. Workshops
(IPDPSW), pp. 550–559. Piscataway, NJ: IEEE.

68. Grigori L, Moufawad S. 2015 Communication avoiding ILU0 Preconditioner. SIAM J. Sci.
Comput. 37, C217–C246. (doi:10.1137/130930376)

69. Yamazaki I, Rajamanickam S, Boman EG, Hoemmen M, Heroux MA, Tomov S. 2014 Domain
Decomposition Preconditioners for Communication-avoiding Krylov Methods on a Hybrid
CPU-GPU Cluster. In Proc. Int. Conf. for High Performance Computing, Networking, Storage and
Analysis, SC’14, pp. 933–944. Piscataway, NJ: IEEE.

70. Vetter JS et al. 2018 Extreme heterogeneity 2018 - Productive Computational Science in the
Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity.
Technical Report 1473756, US Department of Energy, Washington, DC.

http://dx.doi.org/doi:10.1016/j.parco.2017.06.003
http://dx.doi.org/doi:10.1137/130930376

	Introduction
	Exascale architectures and challenges
	Key sparse solver design and implementation challenges
	Libraries overview

	Ginkgo
	hypre
	PETSc
	The many-core composability challenge
	Hybrid execution on hybrid hardware

	SuperLU/STRUMPACK
	Trilinos and Kokkos Kernels
	Conclusion
	References

