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Abstract Background Gesture is a basic interaction channel that is frequently used by humans to

communicate in daily life. In this paper, we explore to use gesture-based approaches for target acquisition

in virtual and augmented reality. A typical process of gesture-based target acquisition is: when a user

intends to acquire a target, she performs a gesture with her hands, head or other parts of the body, the

computer senses and recognizes the gesture and infers the most possible target. Methods We build mental

model and behavior model of the user to study two key parts of the interaction process. Mental model

describes how user thinks up a gesture for acquiring a target, and can be the intuitive mapping between

gestures and targets. Behavior model describes how user moves the body parts to perform the gestures, and

the relationship between the gesture that user intends to perform and signals that computer senses. Results

In this paper, we present and discuss three pieces of research that focus on the mental model and behavior

model of gesture-based target acquisition in VR and AR. Conclusions We show that leveraging these two

models, interaction experience and performance can be improved in VR and AR environments.

Keywords Gesture-based interaction; Mental model, Behavior model; Virtual reality; Augmented reality

1 Introduction

Virtual reality is growing to be an important platform for various types of scenarios (e.g., games[1],

training[2] and education[3]), where target selection is a common and basic interaction task. For example, a

game player often picks up game props, a mechanic might need several tools (e.g., a hammer). Currently,

target selection tasks require users to switch to the menu interface and select the target out of a list of

candidates. This method requires a series of manipulations including invoking the menu, choosing the

target category, scanning the items in the menus until the user pinpoint the desired one, and finally getting

back to the ongoing task. This interaction process could be time-consuming and distracting, especially

when users are new to the interface or when the target is buried deeply in a hierarchical menu[4].
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Compared to selecting targets through menus, gesture-based interaction can be a potential solution to

simplify the searching process. Gesture-based approach has the advantage of enabling eyes-free and direct

input[5] and does not require an additional interface. Eyes-free input refers to the interaction that does not

require the participation of users' visual focus on the input devices, e.g., typing on the keyboards to input

words while looking at the screen. In this paper, we explore to design intuitive hand gestures to retrieve

virtual objects, head-based gestures to trigger control commands, and using eyes-free pointing gestures to

acquire targets in the interaction space around the body. A key to gesture-based target selection is designing

the mapping between the gestures and the targets, which greatly influence the learnability of the gestures.

An ideal mapping should satisfy several criteria: it should be easy to discover and memorize[6,7], be easy to

perform, be consistent with the acquired experience of users[8], gains high consensus across users[9], and be

associated with high productivity and low error. To meet these criteria, we study how users build

connections between gestures and targets, which we refer to as users' mental model. Based on the results,

we leverage users' acquired interaction experience and sense of proprioception in the gesture-target

mapping design.

Related researches on gesture mapping design applied two major approaches. One way is to specially

design the appearance of the target to suggest the assigned gesture. The gestures were mapped to the

shapes, colors, motions of the targets, or directly overlaid onto the targets[8,10-13]. In these cases, the gestures

were cued by the appearance of the targets, and thus are easier to discover and remember[13]. However,

using these techniques, users need to observe the targets to find the gestures, which introduces a high

visual load. The second but more widely used solution is the user-defined approach, which was first

introduced by Wobbrock et al.[9] to design gestures for interaction on an interactive surface. This approach

portrays the effect of a command (e.g., to delete an item), and then asks a group of users to design their

own gestures to issue this command. The gesture with the highest consensus will be assigned to the

command. In this way, the elicited command-gesture mappings reflect daily behaviors and experience of

users, which results in a more contextual connection between gestures and commands[9]. The approach has

been successfully applied to many areas[14-17]. In this paper, we follow the approach of user-defined gesture

to elicit gesture-target mappings that users feel most intuitive.

In addition to intuitive mappings, the recognition of the input gestures is another challenge to gesture-

based target selection approaches. In the process of performing gestures, user controls her body parts to

mimic the gesture in her mind. However, limited by the motor control accuracy, the performed gesture is

usually not exactly the same as the desired one. Meanwhile, the system senses the performed gesture

through several information channels (e.g., camera and initial sensors). The sensing devices also introduce

noise and errors due to limited sensing accuracy. What we need to achieve is to detect and recognize the

user's intended gesture in spite of these noises and errors, and accurately return the target that the user

intends to select. We refer this part to be the understanding of user's behavior model. To achieve this goal,

we sample target positions in the interaction space around users, collect selecting data and regress the

position offset to help predict the desired target of the user.

In the process of performing gestures, user's control accuracy relies on a number of factors, and two

important factors among them are spatial memory and proprioception[18]. Spatial memory is the part of

memory that is responsible for recording information about different locations and the spatial relations

between objects[19]. It can help users efficiently retrieve positions of targets[20] in acquisition tasks. Previous

work studied the ability and effectiveness of users to build the spatial memory, both in 2D[21] and 3D[20]

spaces. In addition, proprioceptive feedback is important for human's movement control[18]. Proprioception

is the sense of position and orientation of one's body parts with respect to each other[22]. With the help of
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proprioception, users could perform eyes-free acquisitions of the targets on various platforms. For

example, Face-Touch[23] visualizes targets in the virtual world via a VR headset, and enables users to select

them by tapping onto the back of the headset at the according position to the target in their view. Although

users cannot see their hands or the target location on the headset in the real world, they can still estimate

the target location and reach to the vicinity of it without aiming. Similarly, with the help of proprioception,

users can perform target selection on a remote screen (Air Pointing[18]), select different directions by

orienting a mobile device (VirtualShelves[22,24]), or control the body posture as an input modality (Pose-

IO[25], FootGesture[26]).

The process of gesture-based target acquisition is as followed: User has a desired target as the intention

while she may have other ongoing tasks. Considering the intention, tasks and the current environment as

the context, user will decide a gesture to acquire the target. By controlling her hand, head or other body

parts, the user performs the gesture. The computer senses the gesture in different ways, including using

visual-based, inertial sensor-based sensing techniques. Limited by the accuracy of user's movement control

and the sensing accuracy, the sensed gesture data is not exactly the intended gesture in user's mind. In most

cases, it can be represented as a set of gesture candidates with different estimated possibility to match the

intention. Within this set, computer will extract temporal, spatial and frequency features and run algorithm

to recognize the original performed gesture and user's intention. As with many intelligent input algorithms,

the input prediction model that estimates the possibility of different candidate gestures should be trained

based on user data. As we will show in this paper, the mental model and behavior model of different users

share some similar characteristics, but are distinct from each other in other aspects. Therefore, to achieve

reliable performance in real use, the algorithm should not only consider patterns emerged from the data of

a number of different users, but also be able to continously adapt to each individual user during usage. In

practice, the training process demands a varying size of training data, depending on the specified error

tolerance, the signal-noise ratio and the tasks itself. For example, as we will show in Section 2.1, using

data from 12 participants and a list of top-5 candidates, users could reach an accuracy over 94% when

performing object retrieval by grasping gesture. Through this process, the two models we described above

play very important role. Mental model describes how users choose a gesture given intention, task and

context. Behavior model reveals the connection between the performed gesture and the sensed gesture.

Leveraging these models, we can improve the understanding of the user's intention and then provide the

intended target more efficiently and more accurately.

Based on the two models, we developed three novel target selection approaches in VR and AR. First, we

designed intuitive grasping gestures to retrieve virtual objects in VR through a gesture elicitation

experiment[27]. Evaluation results showed that novice user successfully retrieve targets with accuracy of

75.51% without any training. Second, we designed head movement based gesture to trigger command on

AR devices. Through participatory design process, we generated nine head gestures and assigned them to

trigger basic commands (e.g., select, drag and drop). This approach supported controlling the device in a

hands-free way. Third, we studied how user acquire targets in the interaction space around the body

without turning head to look at them[28]. By analyzing the distribution of acquisition points, we generated

the connection between the acquisition points and the desired target positions and then improved the

acquisition accuracy.

2 Materials and method

To explore users' mental model of gesture mapping, we applied participatory design process in two cases:
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(1) eliciting grasping gestures of objects for object retrieval tasks in VR; (2) eliciting head movement

based gestures to support hands-free control of AR devices. To study users' behavior model of performing

gestures, we analyzed users' target acquisition behaviors and model the connection between their

acquisition points and desired target positions.

2.1 Object retrieval by grasping gestures in VR

In reality, the gestures that we used to grasp or manipulate different objects are adapted to their different

shapes, sizes, and usages. For example, to grasp a mug, we often adapt our gestures to be "hook" shaped

for its ring-based handler. Based on this observation, we aim to explore how users think up the grasping

gestures of virtual objects and whether they can achieve consistent mappings from gestures to the objects.

So we conduct this gesture elicitation experiment to probe the consistency and intuitiveness of the grasping

gesture mappings.

2.1.1 Gesture elicitation

We recruited 20 participants (14M/6F) from a local campus. They aged from 20 to 27 (AVG=23.6). The

task of participants was to recall grasping gestures once given an object name. We used two cameras to

record the gestures by taking pictures from the front and side views. Forty-nine different, as listed in Table

1 objects were tested and 980 object-gesture pairs were collected. Authors merged the same object-gesture

pairs into 140 distinct object-gesture mappings. We applied two main metrics to measure the consistency

of the mappings. One is the number of gestures that were mapped to each object. The results showed that

18/49 objects were mapped to only one unique gesture by all the participants and all objects were mapped

to no more than five gestures. The other one was the agreement score proposed by Wobbrock[9]. In our

study, the average agreement score was 0.68 (SD=0.27) and 36/49 objects achieved a score of no less than

0.50, which could be regarded as indicators of robust proposals[17]. All these results proved that the

mappings of grasping gestures achieved very high consistency across users. Based on the results, we also

build taxonomy of the elicited gestures, as shown by Figure 1.

2.1.2 Evaluation

We used Perception Neuron, a MEMS (Micro-Electro-Mechanical System) to record gesture data of users.

We asked users to perform all the gestures and recorded positions of fourteen joints (except for the

carpometacarpal joint of the thumb) of five fingers relative to the palm, the position and orientation of two

palms for 40 frames for each gesture. In total, we obtained 12 participants×101 gestures (chosen out of 140

gestures)×2 rounds×40 frames = 96960 frames of data. Using these data, we implemented an SVM-based

classifier. Leave-Two-Out validation showed the offline classification accuracy was 70.96% (SD=9.25%)

Table 1 The object list for the study, which was divided into six groups, and objects in the same group could appear

in the same scenarios

Scenarios

Office

Game Weapons

Sports

Electronics

Home

Food

Object lists

book, briefcase, eraser, mouse, keyboard, pen, scissor, stapler

binocular, bow, dagger, grenade, handgun, rifle, shield, spear, sword

barbell, basketball, badminton racket, cue, golf club, javelin, ski stick, shot, skipping rope

camera, flash drive, headphone, interphone microphone, phone, remote control

bowl, broom, comb, glasses, mug, perfume, toothbrush, umbrella, watch

apple, banana, beer, hamburger, popsicle, watermelon
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for when the target was exactly most possible candidate, 89.65% (SD=6.39%) for when the target was

among top three candidates and 95.05% (SD=4.56%) for top five candidates.

We also tested the actual object retrieval tasks using the obtained gesture classifier. To test the

discoverability of the gesture-object mappings, we recruited twelve new participants (8M/4F) who did not

participate in the previous experiment. These participants were aged from 21 to 25 (AVG=23.1). The task

of participants was to perform a gesture to retrieve the target objects. The tested objects were the same 49

objects listed in Table 1. We implemented the experiment platform using Unity engine, which is shown in

Figure 2. Target name, participant's current input gesture and the recommended candidates with the highest

likelihood were visualized in this interface. We arranged three sessions in this experiment: discovery,

learning and recall sessions. In discovery session, we only inform participants the grasping metaphor and

let them recall their own grasping gestures to retrieve the target objects. In learning session, we show

participants the gestures that were supported by the system and they took time to practice to learn the

gestures and then performed them in the retrieval tasks. The gestures were exactly the 101 chosen gestures

in Gesture Elicitation. For the objects with more than one assigned gestures, we showed all the gestures

that can be used to retrieve them. In recall session, they came back to the lab after a week and perform the

retrieval tasks again. On average, the discovery and recall

session took 15min and the learning session took 30min

to complete. Results showed that in discovery session,

participants could discover the exact gestures for 40% of

the target objects. In learning and recall sessions, given a

list of five most possible candidates, participants could

successfully retrieve 94.50% and 93.20% of the objects

using our approach. Participants also commented that

they thought this approach to be interesting and intuitive.

2.2 Command selection by head gestures in AR

Current state-of-the-art head mounted AR devices (e.g.,

Figure 1 Distribution of the gestures that users designed in this study in four dimensions of the taxonomy.“Single/

Double”refers to whether user performs the gesture with both of the hands or only one of them.“Orientation”refers

to the orientation of the hand palm while performing the gesture.“Position”refers to the relative position of the hand

to the main body, e.g., on two sides or in the front.“Posture”refers to the hand shape while performing the gesture.

Figure 2 The user interface of the experiment,

showing the task (bow), object candidates (bow,

rifle, and sword) and current gesture (the visualiza-

tion of arms and hand).
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Hololens) mostly require users to trigger commands (e. g., select, main menu) by mid-air hand gestures.

However, there are a number of situations where users' hands are occupied, e.g., while writing notes with a

pen in the hand. In these cases, we explored to use head movement based gestures to control the AR

devices in a hands-free way. However, different to hand gesture, users are less familiar with performing

head gestures and some of the head gestures may be easy to confuse with unintentional head movements.

So in this research, our goal was to probe the mental model of users about how they will design the head

gestures to be intuitive and how they will avoid the confusions between head gestures and unintentional

head movements from their own perspective. To address these challenges, we went through gesture

exploration and design processes. As a result, we generated a set of nine intuitive and distinguishable head

gestures to trigger basic control commands on HMD AR devices.

2.2.1 Gesture space exploration

Previous research has explored to use head movements as a human-computer interaction channel[29],

including wheelchair control[30,31] for users with limited hand or arm mobility and target selection tasks on

desktop[32,33] and mobile devices[34] for able-bodied users. However, they required users to perform pre-

defined head movements to trigger different functions. In this research, we first explore the whole usable

gesture space and then elicited intuitive gesture-command mappings from end users.

In the exploration process, we recruited sixteen participants (12M/4F) from a local campus. Their average

age was 24.44 (SD=1.90). The task of participants was to propose usable head gestures that met two design

goals, which were intuitive to perform and distinguishable from unintentional head movements. We

showed a cursor and its recent trajectory of 500ms to help them observe the amplitude and direction of the

head rotations and movements. In total, we collected 210 head gesture instances. Based on the results, we

summarized the gesture taxonomy, which is listed in Table 2. We also elicited design inspiration and

strategies for avoiding false positives. The design inspiration included Act like using hands and Transfer

daily experience. Users proposed to perform gestures with their heads as if using their hands, e.g., to raise

the head fast towards the upper right corner to mimic throwing objects away with the right hand; and to

transfer acquired experience of performing head gestures, e.g., to lean the head to the shoulder when user

Table 2 The head gesture taxonomy that we summarized from the results

Movement

Trajectory

Flow

Nature

Lower or Raise

Tilt

Rotate

Stretch

Dwell

Directional

Shape

Character

Delimiter

Repetition

Reverse

Transfer

Existence

Infrequent

Large amplitude

Lower or raise the head along x axis

Rotate the head along y axis

Rotate the head along z axis

Stretch the neck and move the head to different directions rotating

Stop the head movement for a short duration

Move the head to different directions

Use head to draw geometrical shapes, e.g., circle

Use head to write characters or numbers

To perform a head gesture at the start and the end as the delimiter to switch the mode

Repeat a head gesture for more than one times

Perform a head gesture and then reverse it

Use the head movement to mimic the hand gestures

Use the head gestures that already exist, e.g., nodding

Actions Use the head movements that were rarely performed in daily life

Enlarge the amplitude of daily head movements

The dimensions include movement category, movement trajectory, gesture flow and nature of the design. The x, y, z axes are illustrated in

Figure 4.
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needs a rest. The strategies included Infrequent actions (performing the actions that were infrequent in

daily life), Repeat it twice, Draw strokes (e.g., triangles), Delimiter gestures and Forth and back.

2.2.2 Participatory gesture design

In the design process, we adopted the participatory design

and conducted a gesture elicitation experiment with users.

We recruited sixteen participants (10M / 6F) for this

experiment, with an average age of 25.56 (SD=2.97). The

task of participants was to design a head gesture to trigger

a target command. We referred to the command set of a

state-of-the-art AR headset (Hololens), which included

nine basic commands: Drag, Hold, Home (return to the

main menu), Scroll up/down, Select, Double Tap, Zoom in/

out. For each command, we first showed its effect on the

Hololens by recorded screen videos. Participant watched

this video through Hololens and after he or she confirmed

to understand the effect, sufficient time was given to them to design the related head gesture. In total, we

collected 267 head gestures that were reduced to 80 distinct gesture-command pairs after merging. We also

applied agreement score[9] to measure the consistency of the mapping. Figure 3 shows the results. The

consistency of the mappings were relatively low compared to previous gesture elicita-tion

experiments[16,17,35]. This reflected that users had less experience with head gestures. Based on participants'

most popular proposals and several refinements, we gene-rated the final gesture set, which is shown in

Figure 4.

2.3 Eyes-free target acquisition in VR

Two pieces of research above studied user's mental model on how to design intuitive gestures for target

selection tasks. This research focus on both user's mental model and behavior model in a specific situation

which is to acquire targets in the interaction space around body in an eyes-free way. Currently, acquiring an

object in VR is eyes-engaged: Even the object is near, user has to turn the head to the direction and visually

Figure 4 The final design of the HeadGesture set for the nine commands. The movement of head is indicated by the

arrows.“2×”represents the repeating of the action for twice;“1s”is an illustration for a dwell.

Figure 3 The agreement scores for the head gest-

ures that participants designed for each command.

282282



Yukang YAN et al: Gesture-based target acquisition in virtual and augmented reality
locate the target before acquiring it. However, in physical world, users have the ability to acquire targets

without eye's participation[36]. By leveraging the spatial memory and proprioception, people can reach for

an object in an eyes-free way (e.g., a driver reaches gear stick while driving). However, during this process,

the control accuracy of user will be lower compared to eyes-engaged way and their acquisition points may

have significant offsets. So in this research, we sampled target positions to study the acquisition behavior

of users while performing the acquiring gestures.

2.3.1 Subjective acceptance

Before testing the control accuracy and speed of the acquisition, we decided to first probe the subjective

acceptance of users. The aim was to test the confidence level of target acquisition with different levels of

difficulty in an eyes-free test condition. The difficulty is controlled by the distance between objects and the

target positions. We recruited twelve participants (8M /4F) from a local campus. They were between the

ages of 22 and 26 (AVG=24.2, SD=1.34), with average arm length of 67.95cm (SD=3.22). The task of

participants was to acquire the target at different position around the body and at the condition of different

distances between the target and its surrounding distracting objects. Participants were required to point at

the targets "as accurately as possible" and acquired the target by pointing at the target with the controller

and pressing the controller trigger. Sixty positions were evenly sampled in the angular space, which were

arranged at twelve levels from -180° to 180° horizontally and five levels from -60° to 60° vertically. The

target distance started at 5cm and users could enlarge it 1cm at a time until they felt the distance enough

for accurate acquisitions. Figure 5 shows the overall results of the subjective acceptance of eyes-free target

acquisition. RM-ANOVA tests showed that the vertical angle and horizontal angle of the target position

significantly affected the minimum distance between targets respectively (F4,44=5.173, p=0.002; F11,121=

31.451, p<0.001). This was also consistent with subjective feedback of users. "When I lifted my arm, the

jitters limited my accuracy." [P1] "The positions in the rear were very difficult to reach and the postures

were uncomfortable." [P5]

2.3.2 Control accuracy

In this experiment, we study user's behavior model of performing gestures to acquire targets at different

positions. We recruited 24 participants (20M/4F) from a local campus, aged from 20 to 26 (AVG=23.21,

SD=1.64). The task of participants was to rotate to the instructed direction and acquire the targets at the

informed position. The target positions were the same 60 positions as tested in Subjective Acceptance

experiment. The twelve directions were the twelve horizontal angles selected for the target positions. For

each direction, 60 target positions were tested. Acquisition tasks in different directions were to test how

well users rebuilt their sense of proprioception after rotations. They were given enough time to get familiar

Figure 5 The circles summarize the comfort level (color) and the minimum distance between targets (radius) for

different target positions (centers) when users acquired them.
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with the 60 target positions before the experiment. All 60 targets were shown during practicing, but none is

visible in the test sessions. The order of target position and rotation direction was randomized for each

participant. The experiment setting is illustrated in Figure 6. In total, we collected 24 participants × 60

positions×12 directions=17280 trials of target acquisitions. By data processing, we removed 1.12% of the

acquisitions which acquisition offsets were out of the range of three times deviation from the averaged

values.

The overall results is shown by Figure 7. Sixty circles summarize the acquisition points of different

target positions, which centers are the average acquisition positions and the radii are their standard

deviations. The blue lines show the average offsets of participants' acquisition points from the intended

target positions. We run RM-ANOVA to analyze the effects of the target positions (horizontal and vertical

angles) and the number of rotations on the acquisition offsets. The results show that horizontal angle and

vertical angle of the target position significantly affected the acquisition offset (F11,253=95.48, p<0.001; F4,92=

22.76, p<0.001). The vertical offsets increased symmetrically as the horizontal angle changed from 0

degree to both sides (180 and -180 degrees). This was because when targets were located to two sides, users

need to abduct the shoulder at a large angle to acquire them, which limited the range they could raise them

arm to and therefore they reached lower positions. The number of rotations also significantly effected

acquisition offsets (F11,253=70.46, p<0.001). This result indicates that the ability of participants to reintegrate

proprioception decreased with the number of rotations. Post hoc tests showed that the offset of the first

acquisition was significantly smaller than the others (all p<0.001), which showed that their reintegration

ability dropped most significantly after the first rotation.

Figure 7 Summary of the main results of this experiment. The centers of the circles are the averaged positions of

twelve acquisitions of 24 users and radiuses are the standard deviations. The blue lines visualize the offsets of the

average positions from the target’s actual positions. All coordinates and lengths are converted to angles in degrees.

Figure 6 The concept of the experiment settings. The furniture indicates the virtual surroundings of the partici-

pants. The red spheres indicate the twelve directions that the participants rotate to, and the green sphere indicates the

positioned target.
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Based on the acquisition data of 60 evenly sampled target positions, we interpolated the acquisition

offsets and standard deviations of the whole space. Figure 8 shows the interpolation of the standard

deviations. As standard deviation reflected the closeness of the acquisition points and the acquisition

accuracy of the participants at different target positions, user interface designers could refer to this result to

arrange the target (e.g., icon) position for eyes-free acquisitions. We also interpolated the offset model of

participants. Using this model, we improved the accuracy of selecting from 60 target positions from

74.99% to 78.17%.

3 Discussion

3.1 Mental model of gesture design

We studied the mental model of users in three research. Mental model determined how users design and

recall gesture-object mappings. This help us elicit the most intuitive mappings which can reduce the

learning effort of users and improve the discoverability of the designed gestures. Compared to previous

participatory design of gestures[9], we supported many-to-one mapping between gestures and the target

objects. This design is based on the finding that for some objects, users' mental models on the

corresponding gesture were significantly different. In addition, our results reflected the acceptance level of

performing gestures to acquire targets. In the eyes-free manner, users would refuse to use the approach

when the acquisition task was too difficult (the target was too close to distracting objects). So it is of great

value to probe the mental model, otherwise the designed gestures would never be adopted or discovered by

users. However, it is too complicated and involves many factors, including users' acquired experience and

personality. So in our research, we focused on the general model of most users and in the future, we can

further study it in more detailed level.

3.2 Behavior model of acquiring targets

After users come up with a gesture to acquire the target, he performs it by controlling his body to complete

the anticipatory movements. However, as the movements introduce noises and errors, we compute the

behavior model to deal with the mapping between the intended targets and the senses gestures. As our

research results showed that there are specific patterns of users' behavior changes when targets were

located at different positions. Leveraging these patterns, we could either improve the acquisition accuracy

Figure 8 The interpolation of the standard deviations of the target acquisition points on the whole surface,

visualized into a heat map.
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or to guide the design of user interface. Compared to related work[18,22-25], this is the first study to test the

usability and feasibility of eyes-free target acquisition in virtual reality environment. As we showed, this

model was also affected by other factors, including the number of rotations of the user. After several times

of rotation, especially the first rotation, users lost their reintegration of the proprioception and spatial sense

and finally created larger acquisition offsets. By adding more and more factors into consideration, the

behavior model will be more powerful in predicting the intended targets of users.

4 Limitation and future work

We present three studies on the mental model and behavior model of users performing gestures. However,

there are several factors that were not evaluated in this research and should be studied in the future. One

factor is the modality of the gesture interaction. We tested the gesture interaction with hands and heads

independently, but we did not study how combined modalities will affect the mental models of users. As

our results showed, when designing head gestures, users will transfer their experience of hand gestures but

also created more unique gestures for head movements. This connection and other effects that may be

introduced by other modalities (e. g., foot and gaze) will be tested in the future. Another factor was the

interaction effect between the mental model and the behavior model. With different mental models, users

understand gestures in different ways with different metaphors. Will this affect how well and accurately

they perform a gesture? In this research, we studied the models separately, but it would be of value to test

interaction effects in the future.

5 Conclusions

In this paper, we present and discuss three pieces of research on the gesture-based target acquisition in VR

and AR. We studied two key models, mental model and behavior model of user, in the interaction process

to better understanding user's intention and improves the efficiency and accuracy of the target acquisition

tasks. By leveraging these models, we realized three useful target acquisition approaches in VR and AR.

Our approaches enable user to perform intuitive gestures with the hand and head to acquire target objects

in VR and AR. The evaluation results also provide implication for designing the target layout of the user

interface and for developing the gesture recognition algorithm. Our results showed that when the hand and

head are used for gesture input, a mental and behavioral model can help interpret users' input intentions

from an ambiguous data set. We plan our future work to explore more input modalities and the interactions

between mental model and behavior model, which would help complement the limitation of this work.
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