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Abstract 
 

Underwater image enhancement has received considerable attention in last decades, due to the 

nature of poor visibility and low contrast of underwater images. In this paper, we propose a 

new automatic underwater image enhancement algorithm, which combines nonsubsampled 

contourlet transform (NSCT) domain enhancement techniques with the mechanism of the 

human visual system (HVS). We apply the multiscale retinex algorithm based on the HVS into 

NSCT domain in order to eliminate the non-uniform illumination, and adopt the threshold 

denoising technique to suppress underwater noise. Our proposed algorithm incorporates the 

luminance masking and contrast masking characteristics of the HVS into NSCT domain to 

yield the new HVS-based NSCT. Moreover, we define two nonlinear mapping functions. The 

first one is used to manipulate the HVS-based NSCT contrast coefficients to enhance the edges. 

The second one is a gain function which modifies the lowpass subband coefficients to adjust 

the global dynamic range. As a result, our algorithm can achieve contrast enhancement, image 

denoising and edge sharpening automatically and simultaneously. Experimental results 

illustrate that our proposed algorithm has better enhancement performance than 

state-of-the-art algorithms both in subjective evaluation and quantitative assessment. In 

addition, our algorithm can automatically achieve underwater image enhancement without any 

parameter tuning. 
 

 

Keywords: Underwater image, automatic enhancement, image denoising, human visual 

system, nonsubsampled contourlet transform 
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1. Introduction 

Underwater optical imaging is widely used in practical applications such as underwater 

archaeology, water conservancy project, marine biological monitoring and geological or 

biological environments assessment. Acquiring clear images from underwater environments is 

an important issue in these scientific missions [1]. However, underwater optical images are 

notorious for poor visibility, low contrast, edge-blurring and being full of noise, owing to the 

weak and non-uniform illumination, light absorption and light scattering caused by suspended 

particles in water, etc. Therefore it is necessary to improve the visual quality of underwater 

images for further image processing, such as edge detection, image segmentation, target 

recognition and so on.  

Generally, image enhancement approaches can be divided into two categories: spatial 

domain methods and transform domain ones. Spatial domain methods deal with the image 

pixels to achieve desired enhancement. Such methods include histogram equalization (HE), 

linear contrast stretch, convolution mask enhancement, etc. Many of these methods simply 

define a global or adaptive one-to-one mapping by which the intensity values of individual 

pixels are modified [2]. These approaches often yield inadequate detail preservation or 

over-enhancement as some local details and noise in the image are not considered. For 

example, HE has received considerable attention due to its simple and straightforward 

implementation. It uses an input-to-output mapping obtained from the cumulative distribution 

function (CDF), which is the integral of the image histogram [3]. Although HE can efficiently 

utilize display intensities to achieve global image enhancement, it tends to over-enhance the 

image contrast if there are high peaks in the histogram, often resulting in a harsh and noisy 

appearance of the output image [4]. The multiscale retinex (MSR) [5] algorithm is another 

type of spatial domain method which is developed to attain lightness and color constancy for 

machine vision applications. The constancy refers to the resilience of perceived color and 

lightness to spatial and spectral illumination variations. Retinex theory is a powerful tool that 

can explain many of the basic phenomena of human visual perception and is consistent with 

the psycho-visual laws of the human vision system (HVS) [6]. The benefits of MSR algorithm 

include dynamic range compression and color independence from the spatial distribution of 

the scene illumination. However, this algorithm can result in “halo” artifacts, particularly in 

boundaries between large uniform regions. Moreover, a “graying out” can occur, i.e., the 

scene tends to become middle gray.  

Transform domain methods often decompose the image into different frequency bands and 

process the image in each subband independently by using such transforms as Fourier 

transform (FT), discrete cosine transform (DCT), wavelet transform (WT), etc. 

Two-dimensional (2-D) WT commonly used is a separable extension of 1-D WT, which does 

not work well in capturing the image’s geometric edges because of its isotropy. Multiscale 

geometric analysis (MGA)
 
is developed to overcome the weakness of the separable WT in 

sparsely representing lines, curves and edges. In 2003, M. N. Do and M. Vetterli proposed the 

contourlet transform (CT) which possesses very high directional sensitivity and anisotropy 

[7,8]. Because of its shift-variance property, CT will cause pseudo-Gibbs phenomena around 

singularities. Then J. P. Zhou et al. proposed nonsubsampled contourlet transform (NSCT) 

which is a shift-invariant version of CT [9,10]. Due to the properties of directionality, 

anisotropy and shift-invariance, NSCT has been widely applied in image enhancement, 

segmentation, edge detection and so on [11-14]. In [15], H. Soyel et al. proposed a 
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NSCT-based automatic image enhancement method which enhances the contrast by 

modifying the NSCT coefficients with a nonlinear mapping function. This state-of-the-art 

image enhancement method has achieved good results in both grayscale and colour images. 

However, since it does not take into account of the physical properties in underwater 

environments, for some underwater images, this method could not sufficiently adjust contrast, 

suppress noise and amplify subtle details in some local regions to correct non-uniform 

illumination.  

Many existing multiscale transform domain enhancement algorithms achieve contrast 

enhancement by directly manipulating the transform coefficients [16], in which case the 

contrast is defined in terms of absolute luminance changes. However, the HVS is sensitive to 

relative luminance changes rather than absolute luminance changes, which is known as the 

luminance masking (LM) feature of the HVS [17]. So the transform coefficients integrating 

this masking effect are more consistent with the HVS than the transform coefficients alone. 

Another important feature of the HVS is that it is sensitive to relative changes in contrast. In 

other words, the visibility of a stimulus is affected when surrounding stimuli exist, which is 

known as the contrast masking (CM) feature of the HVS [17]. The image processing 

algorithms which consider both the LM and CM features of the HVS have displayed the 

dramatic performance in edge detection and compression applications [17-19]. However, the 

kind of methodology which can incorporate the Retinex, LM and CM features of the HVS into 

NSCT domain for automatic underwater image enhancement and denoising, has not been 

explored. 

In this paper, a novel HVS-based automatic underwater image enhancement method in 

NSCT domain is proposed. Firstly, MSR approach based on the HVS is introduced into NSCT 

domain in order to eliminate non-uniform illumination, and threshold denoising is also 

adopted to reduce noise. Secondly, the novel HVS-based NSCT is yielded by integrating the 

LM and CM characteristics of the HVS into NSCT. Lastly, a new nonlinear mapping function 

and a new nonlinear gain function, both of which are fully automatic without any parameter 

tuning, are designed to manipulate the HVS-based NSCT contrast coefficients and the NSCT 

lowpass subband coefficients respectively. Experimental results show that our proposed 

method can effectively enhance the contrast, emphasize weak edges and suppress noise, 

producing better enhanced results than existing methods. Moreover, this method is free of 

parameters adjusting and can be effectively applied in machine vision systems for underwater 

image processing. 

The rest of this paper is organized as follows: Section 2 describes the nonsubsampled 

contourlet transform. Section 3 analyzes the HVS perceptional properties which will be used 

in our algorithm. Section 4 introduces the new HVS-based NSCT and presents an automatic 

underwater image enhancement method which incorporates MSR, LM and CM features of the 

HVS into NSCT domain. The experimental results and performance evaluation are given in 

Section 5. The conclusions are drawn finally in Section 6. 

2. Nonsubsampled Contourlet Transform 

Considering the limitation of separable wavelet transform in capturing directional information, 

researchers have recently developed multiscale and multidirectional representations, e.g., 

contourlet transform, which can capture the intrinsic geometrical structures such as smooth 

contours in natural images [7]. A drawback of contourlet transform is its shift-variant due to 

downsampling and upsampling [8]. To overcome this shortcoming, A. L. Cunha et al. 

proposed an overcomplete transform called NSCT in 2006 [10]. The analysis part of NSCT is 
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shown in Fig. 1. Fig. 1(a) displays the nonsubsampled filter bank (NSFB) structure of NSCT. 

NSFB can be divided into two shift-invariant parts: 1) nonsubsampled pyramid (NSP) that 

provides multiscale decomposition and 2) nonsubsampled directional filter bank (NSDFB) 

that provides directional decomposition. First, a NSP splits the input into a lowpass subband 

and a highpass subband. Then a NSDFB decomposes the highpass subband into several 

directional subbands. The scheme is iterated repeatedly on the lowpass subband outputs of 

NSP. The 2-D frequency plane in the subbands split by the structure is illustrated in Fig. 1(b). 
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                         (a) NSCT filter bank structure                        (b) NSCT frequency domain partitioning  

Fig. 1. Nonsubsampled Contourlet Transform 

 

The multiscale property of the NSCT is obtained from a shift-invariant filtering structure of 

NSP. NSP is achieved by using two-channel nonsubsampled 2-D filter banks. The 

multidirection property of the NSCT is obtained from a shift-invariant filtering structure of 

NSDFB, which is constructed by eliminating the downsamplers and upsamplers in the DFB. 

This can be achieved by first switching off the downsamplers/upsamplers in each two-channel 

filter bank in the DFB tree structure and then upsampling the filters accordingly.  

By using NSP and NSDFB, NSCT can effectively capture geometry and directional 

information of images. Comparing with contourlet and other multiscale transforms, NSCT has 

the property of shift invariance. Therefore, NSCT can provide richer time information and 

more accurate frequency localised information. Furthermore, since each pixel of the transform 

subbands corresponds to that of the original image in the same spatial location, we can gather 

the geometrical information pixel by pixel from the NSCT coefficients. Based on the 

observations above, we use NSCT as the multiscale transform tool to achieve underwater 

image enhancement. 

3. Human Visual Perception Characteristics 

3.1 Image Representation Mechanism of the HVS 

Human visual information processing is multilevel and very complex, and human visual 

perception is closely related to retina and visual cortex. There are two classes of light receptors: 

cones and rods over the surface of the retina. Cones are able to resolve fine details because 

each cone is connected to its own nerve end, while rods serve to give a general, overall picture 

of the field of view because several rods are connected to a single nerve end. As the cones and 

rods capture details at different resolutions simultaneously, it can be said that the retina 

decomposes the image into many resolutions simultaneously. 
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In addition, it is well-known that the receptive fields of simple cells in mammalian primary 

visual cortex can be characterized as being spatially localized, oriented, and bandpass [20]. 

Since the cells in the primary visual cortex possess a multiresolution nature, the perception of 

the HVS to a certain field of view can be described by using a series of gradually smoothed 

images and the differences between successively smoothed images [21]. The HVS has been 

tuned so as to capture the essential information of a natural scene using a least number of 

visual active cells, which is called as a sparse code on a natural scene. This result suggests that 

for an efficient computational image representation, it should be based on a local, directional, 

and multiresolution expansion. From the above discussions, the principle of NSCT 

corresponds to the mechanism of human visual perception. 

3.2 Multiscale Retinex 

The retinal-cortical theory (Retinex theory) was conceived by E. H. Land et al. as a model of 

the lightness and color perception of human vision [22]. Sensations of color show a strong 

correlation with reflectance, even though the amount of visible light reaching the eye depends 

on the product of reflectance and illumination. Human vision computes lightness and color so 

as to be relatively independent of spectral variations in illumination, in another word, it is 

lightness and color constancy. In addition, the dynamic range compression of Retinex can 

eliminate shadows and lighting variations in images. According to the principle of Retinex 

theory, an image can be defined as follows: 

 

                         ),(),(),( yxRyxLyxI                          (1) 

 

where ),( yxI  is the amount of light perceived by human eyes, ),( yxL  represents the 

illumination, and ),( yxR  is the reflectance which contains the object’s characteristics. 

D. J. Jobson et al. developed the multiscale retinex (MSR) approach which applies the 

center/surround retinex model for light and color rendition as well as dynamic range 

compression [5]. It works by processing the image with a high-pass filter, using several 

different widths and averaging the results together. Mathematically, the MSR output of a 

grayscale image can be expressed as follows: 
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where ( , )MSRR x y  is the MSR output value, ( , )I x y  is the input image pixel value, N is the 

number of scales, 
n  is the weight associated with the nth scale, “ ” denotes the convolution 

operation, and ( , )nF x y  represents the Gaussian surround function at the nth scale as given by 
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where cn is the Gaussian surround space constant associated with the nth scale. K is selected as  

 

                          ( , ) 1F x y dxdy                              (4) 
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Experiments showed that a combination of three different scales (c1 = 15, c2 = 80, c3=250) 

with equal weighting ( 1  = 
2  = 

3  = 1/3) is sufficient to provide both dynamic range 

compression and tonal rendition for most images [5, 23]. In this paper, we choose the 

parameters as listed above for MSR. 

3.3 Luminance Masking 

The response of HVS depends much less on the absolute luminance than on the relation of its 

local variations to the surrounding luminance. The minimum change required for the HVS to 

perceive contrast is a function of background illumination and can be approximated with four 

regions, namely the dark, Devries-Rose, Weber, and saturation regions, as shown in Fig. 2 

[24]. In general, the just-noticeable difference (JND) contrast threshold tB  is given by 

 

                             
t

B
B

B


                                (5) 

 

where B is a background illumination and B is the absolute luminance difference. In the dark 

region, 0  , indicating that the perceived contrast doesn’t depend on the background 

luminance and is a function only of the absolute luminance difference B . The value of   

for the Devries-Rose region, Weber region, and saturation region as shown in Fig. 2 are given 

as 0.5  , 1  , 2  , respectively. Generally, the denominator in Eq. (5) is calculated 

by some sort of average, and the numerator by some sort of difference. Weber’s Contrast Law 

quantifies the minimum change required for a properly illuminated area which covers a very 

large range of background intensities. The Weber contrast of an image I is defined as 
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where 
0B  indicates the background luminance obtained by uniform averaging or Gaussian 

filtering, and the numerator denotes the detail information. 
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Fig. 2. Four regions of human visual response 
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3.4 Contrast Masking 

The HVS is sensitive not only to relative changes in luminance, but also to relative changes in 

contrast. CM is an important phenomenon of the HVS and refers to the visibility reduction of 

one visual signal at the presence of another one. It means that the perceived contrast of a 

certain pattern that is surrounded or superimposed by other stimuli, becomes lower than its 

counterpart when this pattern stays alone without other stimuli. In general, the CM effect is a 

function of spatial frequency. The signal threshold elevation is maximal when the masker and 

signal have the same frequency. Threshold elevation decreases regularly as the masking 

frequency departs from the signal frequency [25]. Denoting signal contrast threshold by tC  , 

masking contrast by C, and taking the power function exponent to be 0.62, the contrast 

masking function is given in [25]: 

                          0.62[ ( ) ]tC k f C                             (7) 

 

where k( f ) is a frequency-dependent scaling factor.  

4. Automatic Underwater Image Enhancement in HVS-based NSCT 
domain 

In this section, the proposed HVS-based automatic algorithm for underwater image 

enhancement in NSCT domain is formulated. Firstly, the new HVS-based NSCT is presented 

which integrates the HVS masking properties into NSCT so as to generate a new HVS-based 

multiscale transform. Subsequently, the whole scheme of the automatic underwater image 

enhancement algorithm using the HVS-based NSCT is introduced. 

4.1 HVS-based NSCT  

According to Section 3, the novel HVS-based NSCT is yielded by integrating the HVS 

masking characteristics into NSCT domain. Since each NSCT subband coefficient 

corresponds to the pixel of the original image in the same spatial location, each transform 

subband has the same size with the original image. To obtain HVS-based NSCT, two steps are 

to be conducted. Firstly, similar to Weber contrast measure shown in Eq. (6), the LM contrast 

in NSCT domain is measured by  
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where ( , )s dy  is the original NSCT bandpass directional subband indexed by scale s and 

direction d, which denotes the high frequency details of an image. ( ,0)sy  is the original NSCT 

lowpass subband at the sth scale, which denotes the low frequency component of an image, 

approximately corresponding to the background luminance. In an N level NSCT 

decomposition of an image, s=N denotes the scale after performing NSCT decomposition 

procedure one time (i.e., the finest scale), and s=1 denotes the scale after performing NSCT 

decomposition procedure N times (i.e., the coarsest scale). c is a small constant equal to 0.0001 

to avoid dividing by 0. ( , )LM s dC  is the output of LM contrast indexed by scale s and direction d. 

Secondly, the LM contrast is masked with a local activity measure (i.e., CM with Eq. (7)) to 

yield the LCM contrast, which is the HVS-based NSCT. The multiscale LCM contrast, which 
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is a function of the LM contrast, is defined as  

                    
( , )

( , ) 0.62

( 1, )

LM s d

LCM s d

LM s d

C
C

C c




                                                  (9) 

 

where c is a small constant equal to 0.0001 to avoid dividing by 0.  

The NSCT coefficients can be recovered from the multiscale LCM contrast coefficients. 

The LM contrast can be calculated from the LCM contrast by 

 

                  
0.62
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and the bandpass directional subband coefficients of NSCT are calculated from the LM 

contrast by 

                       
( , ) ( , ) ( ,0)( )s d LM s d sy C y c                                                 (11) 

 

Then, the image can be reconstructed from NSCT coefficients. As the proposed HVS 

masking transform is a completely invertible procedure, the new HVS-based NSCT is an 

invertible and perfect reconstruction, which generates contrast coefficients at each scale and 

direction of decomposition based on relevant psychophysical properties. The block diagram of 

the proposed HVS-based NSCT transform architecture is shown in Fig. 3. After NSCT 

decomposition, the bandpass directional subband coefficients are masked first by a measure of 

local luminance and then by a measure of local activity to yield the HVS-based NSCT contrast 

coefficients. The NSCT coefficients are recovered from the HVS-based NSCT contrast 

coefficients via inverse HVS masking transform. 
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Fig. 3. Block diagram of the proposed HVS-based NSCT 
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4.2 Automatic Underwater Image Enhancement Algorithm 

A novel automatic underwater image enhancement algorithm can be formulated using the 

newly proposed HVS-based NSCT. A block diagram of the proposed image enhancement 

algorithm is shown in Fig. 4. Firstly, the original image is decomposed in NSCT domain to 

obtain the lowpass subband coefficients and a series of the bandpass directional subband 

coefficients. Secondly, MSR algorithm is applied to the lowpass subband coefficients in order 

to remove the inhomogeneous illumination, and threshold denoising is implemented at each 

bandpass directional subband. Thirdly, HVS masking transform, which is shown in left dotted 

box of Fig. 3, is applied to the processed NSCT coefficients so as to yield the HVS-based 

NSCT contrast coefficients. A new nonlinear mapping function is designed to modify the 

HVS-based NSCT contrast coefficient subbands at each direction and scale of the 

decomposition. The overall contrast of the image is adjusted by using a new nonlinear gain 

function to alter the lowpass subband at the coarsest scale. Lastly, the inverse HVS masking 

transform, which is shown in right dotted box of Fig. 3, is performed to obtain the modified 

NSCT coefficients, and the enhanced image can be reconstructed with the modified NSCT 

coefficients via NSCT reconstruction. 
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nonlinear enhancement

HVS-based NSCT contrast 

nonlinear mapping

NSCT reconstruction

Original image

Enhanced image
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Fig. 4. Block diagram of the proposed image enhancement algorithm 
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After NSCT decomposition on an underwater image, the lowpass subband, which is almost 

noiseless, contains overall contrast information. While bandpass directional subbands contain 

not only edges but also noise.  

Taking into account of the presence of non-uniform illumination in the underwater image, 

the NSCT lowpass subband is manipulated with MSR algorithm which utilizes the HVS 

characteristics discussed in Section 3.2. In this stage, dynamic range is properly compressed to 

eliminate shadows and uneven illumination. 

Because edges correspond to the large NSCT coefficients and noise corresponds to the 

small NSCT coefficients in bandpass directional subbands, noise can be effectively 

suppressed by thresholding. The hard-thresholding rule is used for estimating the unknown 

noiseless NSCT coefficients. Thresholds for each bandpass directional subband can be chosen 

according to: 

                           , ,s d s dT k                                                             (12) 

 

We set k=4 for the finest scale and k=3 for the remaining ones. The noise standard deviation 

  of the original image is estimated by using the robust median operator [26], i.e.,  

 

                   6745.0/))(( Cabsmedian                                                   (13) 

 

where C refers to the NSCT coefficients in the finest subband. An approximate value 
2

,s d  of 

the individual variances at the dth directional subband of the sth scale is calculated by using 

Monte-Carlo simulations [27]. 

Subsequently, a forward HVS masking transform is applied to the NSCT coefficients to 

yield the HVS-based NSCT. We also propose a new nonlinear mapping function to modify the 

HVS-based NSCT contrast coefficients at each scale and direction independently and 

automatically so as to achieve multiscale contrast enhancement. The proposed nonlinear 

mapping function is given by: 
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( , )LCM s dC  is the original HVS-based NSCT contrast coefficient in the subband indexed by 

scale s and direction d. ( , )LCM s dC


 is the processed HVS-based NSCT contrast coefficient. 

( , )( )LCM s dmax C  denotes the maximum absolute contrast coefficient amplitude in the 
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subband indexed by scale s and direction d. 
( , )( )LCM s dmean C  denotes the mean value of 

absolute contrast coefficient amplitude in the subband indexed by scale s and direction d. 

Given an N scale NSCT decomposition of an image, 
( , )LCM s dC  includes N-1 scales (i.e., 

1 s N  ), according to Eq. (9).  

This nonlinear mapping function can well enhance low-contrast areas, and also avoid 

over-enhancement of high-contrast areas simultaneously.  

Furthermore, the global dynamic range of the image can be sufficiently and accurately 

adjusted by using a new nonlinear gain function in the lowpass subband at the coarsest scale of 

NSCT decomposition. The nonlinear gain function is defined as follows: 
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where                                      
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(1,0)y  is the NSCT lowpass subband coefficient at the first scale (i.e., the coarsest scale). 

(1,0)y


 is the modified NSCT lowpass subband coefficient at the first scale. 

Therefore, the proposed image enhancement allows for denoising, dynamic range 

adjustment and contrast enhancement to be achieved automatically and simultaneously. To 

summarize, the proposed algorithm is described as follows: 

Input: Original image I. 

1) Generate an N scale NSCT decomposition of I. 

2) Implement MSR algorithm in lowpass subband, and conduct threshold denoising in each 

bandpass directional subband. 

3) Perform HVS masking transform in NSCT domain, i.e., to measure the LM contrast 

using Eq. (8), and to measure the LCM contrast using Eq. (9). 

4) Calculate the enhanced LCM contrast using Eq. (14). 

5) Calculate the enhanced NSCT lowpass subband using Eq. (16). 

6) Implement the inverse HVS masking transform using Eq. (10) and Eq. (11). 

7) Get the enhanced image by NSCT reconstruction. 

Output: Enhanced image 
'I . 

5. Experimental Results and Discussion 

To demonstrate the effectiveness of the proposed image enhancement algorithm, we compare 

it with HE [3], MSR [5], and Soyel’s algorithm [15]. HE and Soyel’s algorithm both are fully 

automated image enhancement algorithms, and the MSR algorithm is implemented with 
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parameters listed in Section 3.2. 

Image enhancement assessment is not a trivial task, and it is better to have both qualitative 

and quantitative assessments. Qualitative visual evaluation of the algorithms is performed 

using Mean Opinion Scores (MOS) [28]. The image enhancement results generated by the 

various algorithms are shown to a group of 30 subjects who consider themselves image 

processing experts, and each enhancement result is scored by assigning one of the five 

numeric scores (1, 2, 3, 4, and 5), where 1 indicates very bad and annoying visual quality, 5 

indicates very good visual quality without annoying distortion, and other scores are selected 

according to the perceived image quality. These opinion scores are then averaged to yield a 

MOS score for each enhanced image for each algorithm. The higher the MOS score is, the 

better the visual quality is. 

To acquire quantitative evaluation of enhancement results, the image contrast measure 

called the measure of enhancement by entropy, or EME using entropy is proposed in [29]: 
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1 1 min; , min; ,

1
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EMEE
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 

                                      (18) 

 

where an image is split into M×N blocks B(m,n) of size 4×4 , and max; ,m nI , min; ,m nI are the 

maximum and minimum values of the pixels in each block B(m,n) respectively. c is a small 

constant equal to 0.0001 to avoid dividing by 0. 

The EME by entropy (EMEE), which is of the entropy formula form XlogX, is actually a 

measure of the entropy, or information, in the contrast of the image [30]. We use the EMEE 

here as a measure of visual quality, to compare the enhancement performance of various 

methods. In this case, the EMEE value should increase by a significant magnitude when the 

contrast of an image is enhanced noticeably, i.e., a higher EMEE value indicates an image with 

higher contrast. 

For these experiments, our algorithm uses three scales of NSCT decomposition and four 

directional subbands in each scale. The test images are Chair, Fish, Testboard, Archway, 

Statue and Reef respectively with 450×327 pixels, 549×335 pixels, 256×254 pixels, 400×300 

pixels, 437×328 pixels and 438×328 pixels. Illustrative examples of comparisons of the 

proposed approach with other existing enhancement techniques are shown in Figs. 5-10. 

The input image Chair in Fig. 5 is an underwater picture of the plastic chair in the King 

Cruiser wreck provided by the Bubble Vision Company. Overall, the image is dark, and in 

particular, the bottom half of the background is much darker than the top half of the 

background. HE over-enhances the image contrast with annoying amplified noise, and 

exaggerates the disproportionate brightness present between the top and bottom parts of the 

image. MSR increases the overall brightness of the image, but much of the image content 

tends to be a similar shade of gray, and edges become blurry. Soyel’s algorithm is able to 

enhance the contrast in a certain extent, but the bottom of the background is still dark resulting 

in the loss of some subtle features therein. However, the proposed algorithm yields visually 

pleasing brightness, removes the non-uniformity, and enhances the weak edges while 

inhibiting noise efficiently. 

The input image Fish in Fig. 6 is extracted from an underwater footage filmed by the 

Bubble Vision Company. Because of light scattering under water, the fishes, the diver, and the 

reef at the back are hazed. HE again over-enhances the image resulting in the undesired blur of 

weak edges and over-brightness of top region. MSR brings a “graying out” effect of the 

enhanced image. Soyel’s algorithm enhances the contrast of some of the image structures 
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slightly, but the overall contrast enhancement is not significant and fine features are still not 

clear. The proposed algorithm achieves both global and local enhancements simultaneously 

yielding the most visually pleasing output and the fine details could be enhanced sufficiently. 

The input image Testboard in Fig. 7 is dim in an inhomogeneous illumination. HE and 

Soyel’s algorithm both exaggerate the non-uniformity of lighting and the local details are 

coverd by shadows. MSR removes shadows and lighting variations, but the enhancement of 

contrast is not adequate. The proposed method improves both local and global contrast, makes 

the illumination uniform and sharpens the faint edges obviously.  

The dark input image Archway in Fig. 8 shows part of the memorial archway in the flooded 

ancient city under Qiandao Lake, China. The proposed method is the only approach which can 

simultaneously enhance the contrast, sharpen the edges while reducing noise. Furthermore, it 

can recover the details in dark region at the bottom corner in the right. 

The input image Statue in Fig. 9 is dark and blurry. HE again over-enhances the image 

contrast and enlarges the non-uniformity of lighting. The top of the enhanced image is 

obviously too bright and the shadow areas appear at the right of the statue’s face and body. 

MSR removes the lighting variations, but the scene tends to become middle gray and the 

details are still faint. Soyel’s algorithm cannot provide a sufficient contrast enhancement. The 

proposed enhancement approach effectively improves the overall contrast, removes the 

uneven illumination and sharpens the weak edges. For example, it can be observed in Fig. 9(e) 

that the proposed algorithm significantly enhances the textures and features of the statue. 

The input image Reef in Fig. 10 is very obscure. It is difficult to distinguish the objects in 

the image. HE fails to provide an improvement due to the over-enhancement. MSR increases 

the brightness, but a “graying out” effect is noticeable. Soyel’s algorithm produces a very 

slight contrast improvement. The proposed algorithm, on the other hand, produces sufficient 

contrast for the different objects to be recognized. It is even able to recover the details which 

were lost in the original image.  

In all the experimental cases, MOS and EMEE measurements listed in Table 1 and Table 2, 

respectively, agree with the subjective observations, demonstrating that the proposed 

algorithm outperforms other algorithms. 

All the algorithms are implemented under MATLAB R2011b environment on a PC with 

2.4-GHz Intel(R) Xeon(R) CPU and 8-GB RAM. The running times of the four methods are 

given in Table 3. For all the methods, the running time is proportional to the size of the image. 

The larger the size of the image is, the longer the running time is. The results indicate that our 

algorithm and Soyel’s algorithm which are both based on NSCT, consume more time than 

other two algorithms because NSCT decomposition is time-consuming. Meanwhile, compared 

with Soyel’s algorithm, our algorithm produces much better enhanced images though it costs a 

little more time. Therefore, the proposed algorithm can automatically achieve better 

enhancement results at the cost of a higher computational complexity which is mainly caused 

by NSCT decomposition. 

   
(a)                                                (b)                                                 (c) 
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(d)                                                (e) 

Fig. 5. Enhancement results for image Chair: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 

 

 

  
(a)                                                                          (b) 

  
(c)                                                                          (d) 

 
    (e) 

Fig. 6. Enhancement results for image Fish: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 
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(a)                                    (b)                                   (c) 

  
(d)                                    (e) 

Fig. 7. Enhancement results for image Testboard: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 

 

 

   
(a)                                           (b)                                             (c) 

  
(d)                                             (e) 

Fig. 8. Enhancement results for image Archway: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 
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(a)                                                (b)                                                (c) 

  

(d)                                                (e) 

Fig. 9. Enhancement results for image Statue: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 

 

 

   

(a)                                               (b)                                                 (c) 

  

(d)                                                (e) 

Fig. 10. Enhancement results for image Reef: (a) Original image, (b) HE,  

(c) MSR, (d) Soyel’s algorithm, (e) proposed algorithm. 
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Table 1. Subjective visual assessment scores as MOSs 

Image Original HE MSR 
Soyel’s 

algorithm 
Proposed 

Chair 1.63 2.57 3.02 3.78 4.21 

Fish 2.24 3.26 3.95 3.52 4.33 

Testboard 1.78 2.63 3.45 3.33 4.54 

Archway 1.58 2.11 3.38 3.46 4.29 

Statue 1.22 2.03 3.10 2.94 4.56 

Reef 1.05 1.67 3.26 3.01 4.19 

 

Table 2. EMEEs of different enhancement algorithms 

Image Original HE MSR 
Soyel’s 

algorithm 
Proposed 

Chair 2.27 175.38 324.45 426.50 1722.70 

Fish 0.15 251.31 97.12 33.12 792.06 

Testboard 0.06 11.71 73.77 12.05 152.63 

Archway 0.46 53.34 32.09 1.62 217.37 

Statue 0.05 39.31 0.09 0.13 92.95 

Reef 0.06 124.05 0.14 0.11 311.49 

 

Table 3. Comparison of running time (s) 

Image HE MSR 
Soyel’s 

algorithm 
Proposed 

Chair 0.15 0.44 18.95 19.48 

Fish 0.16 0.69 23.59 24.10 

Testboard 0.09 0.27 8.55 8.89 

Archway 0.13 0.38 15.32 15.91 

Statue 0.14 0.41 18.22 18.85 

Reef 0.14 0.42 18.39 18.91 

 

6. Conclusion 

In this paper, a new HVS-based automatic underwater image enhancement algorithm in 

NSCT domain is proposed. This algorithm combines NSCT transform techniques with the 

HVS phenomena. To eliminate non-uniform illumination in underwater images, MSR 

algorithm based on the HVS is integrated into NSCT domain, which can adjust the dynamic 

range properly. To reduce the noise, threshold denoising is also implemented in NSCT domain. 

The HVS-based NSCT is then proposed, which utilizes the LM and CM characteristics of the 

HVS, as well as the advantages of NSCT in capturing the geometric structures of an image. A 

new nonlinear mapping function is designed to manipulate the HVS-based NSCT contrast 

coefficients to amplify the edges, and a new nonlinear gain function is used to modify the 

lowpass subband coefficients to adjust the global dynamic range. Therefore, the proposed 

algorithm allows for underwater image denoising, edge sharpening and contrast enhancement 

to be achieved automatically and simultaneously. Experimental results show that the proposed 

algorithm outperforms the existing enhancement techniques in both MOS and EMEE 

assessments. However, the proposed algorithm can automatically achieve better results at the 

cost of a higher computational complexity which is mainly caused by NSCT decomposition.  
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