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Coverage Analysis of Drone-Assisted Backscatter
Communication for IoT Sensor Network

Ali Hayajneh, Syed Ali Raza Zaidi, Maryam Hafeez, Des McLernon and Moe Win

Abstract—In this article, we develop a comprehensive frame-
work to characterize the performance of a drone assisted
backscatter communication-based Internet of Things (IoT) sensor
network. We consider a scenario where the drone transmits
an RF carrier that is modulated by IoT sensor node (SN) to
transmit its data. The SN implements load modulation which
results in amplitude shift keying (ASK) type modulation for the
impinging RF carrier. In order to quantify the performance of the
considered network, we characterize the coverage probability for
the ground based SN node. The statistical framework developed
to quantify the coverage probability explicitly accommodates a
dyadic backscatter channel which experiences deeper fades than
that of the one-way Rayleigh channel. Our model also incorpo-
rates Line of Sight (LoS) and Non-LoS (NLoS) propagation states
for accurately modelling large-scale path-loss between drone and
SN. We consider spatially distributed SNs which can be modelled
using a spatial Binomial Point Process (BPP). We practically
implement the proposed system using Software Defined Radio
(SDR) and a custom designed SN tag. The measurements of
parameters such as noise figure, tag reflection coefficient etc.,
are used to parametrize the developed framework. Lastly, we
demonstrate that there exists an optimal set of parameters which
maximizes the coverage probability for the SN.

Index Terms—Drone, Backscatter communication, Dyadic fad-
ing, Stochastic geometry, Binomial process, Coverage probability.

I. INTRODUCTION

The number of connected consumer electronic devices has
exponentially increased over the past few years. According
to recent statistics [1], there are already 19.4 billion internet
connected devices that are in use across the globe, with the
number of Internet-of-Things (IoT) devices currently around
8.3 billion. The number of IoT devices is expected to increase
at a startling compound annual growth rate (CAGR) of 10%.
With such a massive volume of devices, it is becoming
increasingly important to explore energy efficient (EE) IoT
Sensor Node (SN) design. This is mainly motivated by the
fact that recharging the deployed SNs individually on a regular
basis might be impractical, especially for those SNs which
have limited post-deployment accessibility.

To realize EE design for IoT SNs, there are two possi-
ble avenues which have gained significant interest from the
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research community: (i) developing energy optimal proto-
cols/architecture for communication; (ii) harvesting energy
from ambient natural/synthetic sources to power the com-
munication hardware. In the recent past [2], there has been
a significant interest in simultaneous wireless power and
information transfer (SWIPT) based SN design. The SWIPT
techniques employ a rectenna, i.e., an antenna and a diode
to charge an on board energy storage component (such as
a battery or a super-capacitor). The harvested power is in
turn employed for provisioning communication between the
SN and the intended access point (AP). The key limitation
of SWIPT is that the harvested power is very small and the
RF signals which are optimal for energy harvesting are not
necessarily optimal for communication.

RF Backscatter based communication [3]–[6] presents an at-
tractive alternative. Backscatter radio communication does not
require expensive active components such as as RF oscillators,
mixers, crystals, decoupling capacitors, etc. The SNs commu-
nicate with the AP (also called the Reader) by modulating
the ambient un-modulated RF carrier which is transmitted by
the AP. The RF carrier modulation is achieved by connecting
an antenna to different loads which fundamentally translates
into different antenna-load reflection coefficients. Interested
readers are directed to [1] for a recent tutorial which provides
a comprehensive coverage of the backscatter based SN design.
RF backscatter based IoT SNs are particularly well suited for
applications where periodic polling can be employed for SN
data aggregation/collection. In other words, the data collection
can be duty cycled by the reader in an adaptive manner. This
is particularly useful in multi-modal sensing where certain
knowledge at the reader can be employed to increase/decrease
the duty cycle of data collection. For instance, in smart
agriculture application, weather data can be exploited to duty
cycle the collection of reading from soil moisture sensors.
RF backscatter based IoT SNs are particularly well suited to
environmental monitoring applications where SNs are spread
across a wider geographical region. Our prime interest in RF
backscatter based SNs is in the context of smart agriculture
where such sensors can provide wide scale deployment at a
very low cost. In practice, it is possible to print these sensors
(either using conductive ink on paper or on the semiconductor
substrate) and mount a single chip to implement a SN node.
Some initial investigations on backscatter based SNs for soil
moisture monitoring are conducted in [5], [7]–[9].

The key issue with the traditional approaches is that the
coverage range for RF backscatter based SNs is only of
the order of few hundred meters at best. Consequently, a
dense deployment of readers is required for provisioning data
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collection which is costly, as this requires not only more hard-
ware but also post-deployment maintenance. A simple solution
would be to use a single RF reader which is mounted on a
mobile platform which can navigate the intended monitoring
area. Drones present an attractive choice for mounting the
backscattering reader as several farmers are using drones for
various other agricultural monitoring functions. For instance,
multi-spectral cameras mounted on drones are being used to
calculate vegetation indices (for instance Normalized Differ-
ential Vegetation Index (NDVI)) which highlight a particular
characteristic of vegetation. To this end, this paper explores the
performance of RF Backscatter based IoT SNs with a Drone
mounted Flying Reader (DFR).

A. Contributions

In order to fully understand the networking dynamics of a
backscatter based IoT SN served by the DFR, it is essential to
characterize both the link and the network level performance
of such deployments. To this end, in this paper, we aim to
develop a comprehensive statistical framework to characterize
the performance of the considered IoT SN. To the best of
our knowledge this is the first study which presents such
a statistical framework to characterize the performance of
drone assisted backscatter based IoT SNs. The performance
of SNs is measured and quantified in terms of the well
known coverage probability metric. The coverage probability
is defined as the probability that the received signal-to-noise-
ratio (SNR) exceeds a certain desired threshold. The threshold
can easily be selected to satisfy a certain desired bit-error-
rate (BER), i.e. coverage probability can essentially serve
as a proxy for the successful packet decoding probability.
The framework presented in this paper implicitly incorporates
realistic propagation dynamics of communication between
DFR and SNs by: (i) employing the large-scale path-loss
model which accommodate both Line-of-Sight (LoS) and Non-
LoS (NLoS) link states; and (ii) by employing the small-scale
fading model which captures the dyadic nature of backscatter
communication, i.e., forward propagation (from DFR-to-SN)
and backward propagation (SN-to-DFR) may experience non-
zero correlation1. Due to a dyadic Rayleigh fading chan-
nel, it is difficult to analyse the performance of randomly
scattered SNs2. However, we present alternative closed-form
expressions which are amenable to analysis. We practically
implement a tag and software-defined radio (SDR) based
reader and parametrize the developed framework to investigate
the coverage performance of SNs. Lastly, the impact of various
parametric variations and optimal dimensioning of the network
is briefly explored.

B. Organization

The rest of the paper is organized as follows: Section
II introduces the system model and deployment geometry
of the network. Section III gives the performance analysis

1Notice that due to dyadic fading channel, the analysis of performance is
different from the scenario in [10], [11] where a drone is used as a BS.

2We borrow tools from stochastic geometry for analysis. The interested
reader is directed to [12] for a comprehensive tutorial.

Fig. 1: Drone-assisted smart IoT agriculture geometry. A
snapshot of the distribution of 10 sensor tags on the circular
area of a radius Rc.

and mathematical modelling. Section IV presents numerical
results. Finally, Section V provides some future work and
conclusions.

C. Notation.

Throughout this paper, we employ the following math-
ematical notations. The probability density function (PDF)
of a random variable X is represented as fX(x) with the
cumulative density function (CDF) written as FX(x). The
expectation of a function g(X) of a random variable X is
represented as EX[g(X)]. The bold-face lower case letters
(e.g., x) are employed to denote a vector in R2 and ‖x‖ is
its Euclidean norm.

II. SYSTEM MODEL

A. Spatial and Network Models

As depicted in Figure 1, we consider a scenario where a
drone is employed for data aggregation from SN tags. The
drone is furnished with a mono-static SN tag reader and is
tasked to cover a desired service area which is modelled
by a disc of radius Rc. It is assumed that SN tags are
uniformly distributed in the intended service area. The reader
does not possess any prior knowledge about the tag location
and randomly moves across the area such that its reference
distance to the centre of the disc is vo3. Assuming that the
number of SNs is finite and fixed, the spatial distribution of
the SNs is captured by a binomial point process (BPP) such
that [13]:

Φ = {x0,x1, ...,xNs ,∀ xi ∈ R2}, (1)

3For a randomly chosen point inside the circular coverage area, vo is no
longer constant and is indeed a random variable, say Vo with PDF given by
fVo (vo) =

2vo
R2

c
, for vo ∈ [0, Rc].
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Fig. 2: Architecture of backscatter DFR and SN.

where Ns is the number of tags on the two dimensional set
space. At a particular time instance, only one SN is served on
a particular resource channel to avoid co-channel interference.
The sensor at the location xi is associated to the nearest
neighbour flying drone reader.

B. SN Tag and DFR’s SDR Implementation

The backscattering SN tag reflects the ambient RF carrier
transmitted by the DFR by modulating the antenna’s reflec-
tion coefficient. This is simply achieved by connecting the
antenna to two different loads (one for information bit ‘0’
and the other for information bit ‘1’). In our SN design, the
load modulation is driven by the serial payload data packets
generated by the ultra-low power microcontroller unit (MCU).
Either MSP430 from Texas Instrument or STM32L063R8
ARM M0+ are suitable as their power-consumption is only
several µA in different modes. In our reference implementation
the tag charges a super-capacitor by harvesting energy from
an RF carrier. The harvested power is used to drive the SN
MCU. In a nutshell, our load modulation scheme translates
to amplitude shift keying (ASK). We associate the higher
reflection coefficient Γa to the binary logic ‘0’ and design
a circuit which tries to minimize reflection coefficient for
binary logic ‘1’ (i.e., no reflected carrier for the 1 binary
logic). Hence, if the binary logic ‘1’ has a reflection coefficient
Γ0 = 0, the resulting tag transmit signal can be written as [4]:

xTag(t) =

{
Γabn(t− nT ), Logic 0
0, Logic 1,

(2)

for t ∈ [nT, (n+1)T ], where bn(t−nT ) is the information bit
of a duration T . Figure 3 depicts the reception and decoding
of a serial data with the payload word “OK” in our refer-
ence implementation. The carrier is generated by the Nuand
BladeRF SDR transceiver with the transmit power of 14 dBm.
The bottom blue waveform presents the received modulated
carrier with a bit rate of 2.4 kbps. As we can see, the reflection
coefficient affects the distance between the two binary levels
of the modulated carrier and this directly effects the choice of
constellation size 4 and the likelihood of correct demodulation
(i.e., the bit error rate of the communication link). The red bit

4It is envisioned that higher-order modulation can be implemented by
employing cascaded RF switches.

sequence is the decoded bits after performing level detection
on the bandpass received RF signal and then recovering the
clock utilizing a Mueller-Müller timing recovery scheme [14].

C. Large-Scale fading Model:

In order to accurately capture the propagation conditions
for drone assisted backscatter communication, we employ the
path-loss model presented in [15]. The backscatter communi-
cation link is dyadic in nature, i.e., it is characterized by the
product of forward (DFR-to-SN) and backward (SN-to-DFR)
channel gains. We assume both forward and backward chan-
nels experience the same path-loss, which is reasonable for
the mono-static architecture. The employed path-loss model
adequately captures LoS and NLoS contributions for drone-
to-ground communication as follows:

LLoS(hd, r) = KLoS

(
r2 + h2d

)
, (3)

LNLoS(hd, r) = KNLoS

(
r2 + h2d

)
, (4)

where hd is the height of the drone in meters, r is the
two dimensional projection separation between the drone and
the SN, KLoS and KNLoS are environment and frequency
dependent parameters such that Ki = ζi

(
c/(4πfMHz)

)−1
, ζi is

the excess path-loss for i ∈ {LoS,NLoS} with typical values
for urban areas ζLoS = 1 dB. The probabilities of having a
LoS and NLoS link between the DFR and the desired SN are
as follows:

PLoS(hd, r) =
1

1 + a e
−bη tan−1

(
r
hd

)
+b a

, (5a)

PNLoS(hd, r) = 1− PLoS(hd, r), (5b)

where a, b, c are environment dependent constants, η = 180/π
and θ is the elevation angle in degrees.

D. Small-Scale Dyadic Rayleigh Fading Channel

We consider a mono-static backscattering DFR where both
transmit and receive antennas are co-located as shown in
Figure 2. The DFR transmits an unmodulated RF carrier
and the SN tag reflects it back with a reflection coefficient
of Γa. Both forward (Gf ) and backward (Gb) propagation
channels suffer from Rayleigh flat fading. However, due to
the dyadic nature of the link, the channels have non-zero
correlation captured by the parameter ρ = E(Gf ,Gb) with
Gf ,Gb ∼ CN (0, 1). The received channel power gain is given
by Hf = |Gf |2 and Hb = |Gb|2 and has the joint distribution
as:

fHf ,Hb
(hf , hf ; ρ) =

2

ρ̃σ2
f σ

2
b

exp

−1

ρ̃

[
hf
σ2
f

+
hb
σ2
b

]
×Io

(
ρ
√
hfhb

(1− ρ2)σ2
f σ

2
b

)
, (6)

where Io(z) = 1
π

∫ π
0

exp
(
−z cos(t)

)
dt, is the modified

Bessel function of first kind and zero order, ρ̃ = 1−ρ2 and σ2
f

and σ2
b are the variances of Gf and Gb respectively. The PDF
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Fig. 3: Backscatter transmission of the serial data for the word “OK” which is equivalent to the hexadecimal representation
of “0x4F,0x4B” from a sensor node tag. The lower curve is the ASK modulated carrier at the reader antenna. Serial data bit
rate is 2.4 kbps.

of the equivalent dyadic fading channel coefficient H = HfHb

can be written as

fH(h, ρ) =
1

2ρ̃σ2
f σ

2
b

Io

(
ρ
√
h

ρ̃σfσb

)
Ko

(
ρ
√
h

ρ̃σfσb

)
, (7)

where Ko(z) =
∫∞
0

cos(z sinh(t)) dt, is the modified Bessel
function of second kind and zero order. The PDF in (7) can
be simplified as both forward and backward Rayleigh channels
have unit mean, i.e., E(Hf) = E(Hb) = 1:

fH(h, ρ) =
2

ρ̃
Io

(
2ρ
√
h

ρ̃

)
Ko

(
2ρ
√
h

ρ̃

)
. (8)

Obtaining a CDF for (8) which is required for the coverage
analysis is quite complicated and mathematically intractable.
Hence, we develop an alternative performance characterization
framework by developing a tight approximation for the PDF
in (8). In fact, (8) is a monotonically decreasing product of
two modified Bessel functions in the interval H ∈ (0,∞)
as demonstrated in [16]. Moreover, the product decreases
exponentially fast. Clearly, this motivates approximation of the
PDF by using asymptotic expressions for Bessel functions. The
asymptotic Hankels expansion of the Bessel functions Io(z)
and Ko(z) are given as:

Ko(z) ≈
√
π

2
exp (−z) , (9)

Io(z) ≈
1

z
√

2π
exp (z) . (10)

Substituting the above to obtain f̃H(h) and normalizing the
result with the factor c =

∫∞
0
f̃H(h) dh, we can write the

approximate PDF and CDF as:

PDF: fH(h, ρ) ≈ h−
1
2

2
√
ρ

exp

(
−2(1− ρ)

√
h

1− ρ2

)
(11)

CDF: FH(h, ρ) ≈ 1− exp

(
−2(1− ρ)

√
h

1− ρ2

)
. (12)
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Fig. 4: Cumulative distribution function for the backscatter
dyadic fading channel coefficient H.

Figure 4 presents the tightness of the derived approximation
in (12). It is evident that the approximation is very tight
especially for high values of the correlation coefficient ρ.
Combining large-scale and small scale fading models the
overall propagation channel is given by HL(hd, r)

−2 with
H = HfHb and L(hd, r) = LLoS(hd, r)PLoS(hd, r) +
LNLoS(hd, r)PNLoS(hd, r).

III. PERFORMANCE ANALYSIS

A. Link Distance Analysis

In this section, we characterize link distance distributions
which are required to quantify the large scale path-loss given
by (3). These distributions are employed to quantify coverage
probability in section III-B. The PDF for the distance R
from the DFR (located at distance vo from the center of



5

coverage region) to an arbitrary SN tag can be written as in
(16). Employing the derived PDF with order-statistics enables
derivation of the PDF of the distance to the nearest SN from
the DFR denoted by R1 as summarized in Proposition 1.

Proposition 1. The PDF of the distance R1 from the DFR (at
a distance vo from the centre of the intended coverage area)
to the nearest SN tag can be evaluated as in (18) on the next
page.

Proof. Let Ns tags be distributed uniformly inside a circle
of radius Rc. Then the derivation of the nearest neighbour
distribution amongst the Ns SN tags follows the order statistics
using the fact that for general Ns i.i.d random variables
Zi ∈ {Z1, Z2, ..., ZNs

} with PDFs fZi
(z) ordered in ascending

order, then the PDF of Z1 = min
i

(Zi) can be written as

fZ1
(z) = N

(
1− FZi

(z)
)N−1

fZi
(z) [17]. Then, by applying

this to (16), we can write the PDF of the distance R1 as

fR1
(r1|vo, Rc) =

f
(1)
R1

(r1|vo, Rc), 0 ≤ r1 ≤ Rc − vo

f
(2)
R1

(r1|vo, Rc), Rc − vo < r1 ≤ Rc + vo,

(13)

where

f
(1)
R1

(r1|vo, Rc) = Ns(1− F (1)
R (r1|vo))Ns−1f

(1)
R (r1|vo) (14)

f
(2)
R1

(r1|vo, Rc) = Ns(1− F (2)
R (r|vo))Ns−1f

(2)
R (r1|vo). (15)

From the previous proposition we can easily integrate
fR1

(r1|vo, Rc) in (18) to get the CDF of the nearest neighbour
distance distribution as

FR1
(r1|vo, Rc)

=

{
(1− F (1)

R (r1|vo, Rc))
Ns , 0 ≤ r ≤ Rc − vo

(1− F (2)
R (r1|vo, Rc))

Ns , Rc − vo < r ≤ Rc + vo.
(19)

B. Coverage Probability

The coverage probability is defined as the probability that
the SNR will be greater than a certain predefined value β. The
average SNR for the uplink DFR can be quantified as:

SNR =
PtHfHbΓa[LLoS(r1)]−2

σ2
N

PLoS(r1)︸ ︷︷ ︸
SNRL

+
PtHfHbΓa[LNLoS(r1)]−2

σ2
N

PNLoS(r1)︸ ︷︷ ︸
SNRNL

, (20)

where Pt is the reader’s transmit power, σ2
N is the additive

white Gaussian noise (AWGN) power, SNRL is the SNR when
there is a LoS link between the user and the BS and SNRNL

is the SNR when there is a NLoS link between the user and
the DFR. The coverage probability for any arbitrary mobile
user can be evaluated as in the following theorem.

Proposition 2. (Coverage probability). The coverage proba-
bility for any BPP with Ns SNs in the presence of AWGN can
be evaluated as shown in (21).

Proof. For a pre-defined threshold β of SNR, then the cover-
age probability can be defined as

Pc(β|vo) = Pr[SNR ≥ β],

= Er1

[
1− FH(βσ2

N[LL(r1)]2/PtΓa, ρ)
]
PL(r1)

+ Er1

[
1− FH(βσ2

N[LNL(r1)]2/PtΓa, ρ)
]
PNL(r1).

(22)

Hence, by evaluating the averaging operator in (22) with
the distribution of R1 in (18), we can quantify the coverage
probability as shown in (21).

IV. RESULTS AND DISCUSSION

In this section, we validate the developed statistical frame-
work for quantifying the coverage probability. We also briefly
explore the impact of different parametric variations on the
coverage probability. We assume a rural environment with the
parameters a = 9.6, b = 0.28 for the path-loss model (see
Section 2), noise power σ2

N = 110 dBm, Pt = 0 dB and
f = 915 MHz illuminator carrier frequency. Also, as described
in the previous sections, we consider wireless, Rayleigh flat-
fading correlated channels. The noise power is estimated from
the practical implementation of the system as described in
Section II-B.

Figure 5(a) shows the coverage probability Pc versus the
DFR height hd for different tag reflection coefficient Γa

and different reference locations (vo) of the drone inside the
coverage area. The Figure shows that, for a certain deployment
parameters, there is always an optimal height of the DFR that
maximizes the coverage probability and this optimal height
changes with the change in the location of drone, i.e., with
the change in vo. For example, at vo = 0 and Γa = 0.9, the
optimal drone height is in the range of 40− 60 meters while
for vo = 500 and Γa = 0.9, the optimal height is lower in
the range of 50 − 60 meters. An interesting observation that
follows Figure 5(a) is that the range of heights which optimize
the coverage widens with increase in the reflection coefficient
Γa. Moreover, the decrease in the coverage probability with
the increase in DFR altitude (beyond optimal operational
altitude) is much slower for a higher reflection coefficient.
Consequently, when the reflection coefficient of the tag is
appropriately designed optimal height can be reduced while
concurrently the SN coverage probability can be maximized.

Figure 5(b) studies coverage against increasing number of
deployed SNs for different values of β. The figure shows
that, as we increase the number of the deployed SNs, the
coverage probability will increase. This is due to the change
of the characteristics of the nearest neighbour SN distance
distribution (i.e., the distance to the nearest neighbour SN
becomes lower and hence the path-loss decreases). However,
this is only true if the SNs do not interfere with each other,
i.e., by employing a highly directional antenna at the DFR.
In practice, the increasing number of SNs contribute to co-
channel interference and therefore reduce coverage probability.
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fR(r|vo, Rc) =


f
(1)
R (r|vo, Rc) = 2r

R2
c
, 0 ≤ r ≤ Rc − vo

f
(2)
R (r|vo, Rc) = 2r

πR2
c

arccos

(
r2+v2o−R

2
c

2vor

)
, Rc − vo < r ≤ Rc + vo,

(16)

with the CDF as follows:

FR(r|vo) =


F

(1)
R (r|vo) = r2

R2
c
, 0 ≤ r ≤ Rc − vo

F
(2)
R (r|vo) = r2

π R2
c

(
θ1 − 1

2
sin (2 θ1)

)
+ 1

π

(
θ2 − 1

2
sin (2 θ2)

)
, Rc − vo < r ≤ Rc + vo,

(17)

with θ1 = arccos

(
r2−R2

c+vo
2vor

)
and θ2 = arccos

(
−r2+R2

c+vo
2voRc

)
.

fR1
(r1|vo, Rc) =



f
(1)
R1

(r1|vo, Rc) = 2Nsr1
R2

c

(
1− r21

R2
c

)Ns−1

, 0 ≤ r1 ≤ Rc − vo

f
(2)
R1

(r1|vo, Rc) = 2Nsr1
πR2

c
arccos

(
r21+v

2
o−R

2
c

2vor1

)
×

1−

(
r21
π R2

c

(
θ11 − 1

2
sin
(

2 θ11

))
+ 1

π

(
θ12 − 1

2
sin
(

2 θ12

)))Ns−1

, Rc − vo < r1 ≤ Rc + vo,

(18)

with θ11 = arccos
(
r1

2−R2
c+vo

2vor1

)
and θ12 = arccos

(
−r12+R2

c+vo
2voRc

)
.

Pc(β|vo) =

∫ Rc−v0

0

f
(1)
R1

(r1|vo, Rc)
[[

1− FH(ζ1, ρ)
]
PL(r1) +

[
1− FH(ζ1, ρ)

]
PNL(r1)

]
dr1

+

∫ Rc+v0

Rc−v0

f
(2)
R1

(r1|vo, Rc)
[[

1− FH(ζ2, ρ)
]
PL(r1) +

[
1− FH(ζ2, ρ)

]
PNL(r1)

]
dr1, (21)

with ζ1 = βσ2
N[LL(r1)]2/PtΓa and ζ2 = βσ2

N[LNL(r1)]2/PtΓa.
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Fig. 5: (a) Coverage probability with Ns = 200, Rc = 500, ρ = 0.5, σ2
N = −110 dBm, β = 10 dBm. (b) Coverage probability

with Rc = 500, ρ = 0.5, σ2
N = −110 dBm, Γa = 0.9 and (c) Coverage probability with hd = 50 (m), Ns = 50, Rc = 500,

ρ = 0.5, σ2
N = −110 dBm, β = 0 dBm.

Figure 5(c) shows the coverage probability against the DFR
distance vo from the center of the coverage area. As we de-
scribed before, the coverage probability decreases as the DFR

comes closer to the border of the circular coverage area. This is
due to the BPP non-stationarity (i.e., the distance distributions
and void probability characteristics are not the same for any
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Fig. 6: Coverage probability. Rc = 500, ρ = .5, σ2
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arbitrary chosen point). Lastly, Figure 6 investigates the effect
of jointly changing the height of the DFR and the number of
SNs on the coverage probability. The Figure shows that for
any chosen number of SNs, there is always a DFR height that
maximizes the coverage probability.

V. CONCLUSION

In this paper, we investigated the design space of backscatter
IoT SNs which are polled via a drone based SN tag reader. We
developed a point-to-point implementation using SDR and a
custom designed SN tag. We then developed a comprehensive
statistical framework to quantify link level performance of
randomly distributed SNs. Our model explicitly incorporates
dyadic fading channel whereby forward (Drone-to-SN) and
backward (SN-to-Drone) propagation channels can experience
non-zero correlation. Performance analysis for a dyadic fading
channel is intricate due to the nature of the PDF expressions.
We present closed-form tight approximations which simplify
the analysis. Our analytical model also incorporates LoS and
NLoS components which characterize the path-loss for drone
based communication. The developed model is parametrized
by the experimental implementation and the impact of different
parameters on the coverage performance of the SN is inves-
tigated. We demonstrated that there exists a fruitful interplay
between the SN’s reflection coefficient, drone height and the
number of SNs which jointly dictate an optimal operation point
at which coverage probability is maximized.
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