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Blind Interference Alignment for

Private Information Retrieval

Hua Sun and Syed A. Jafar

Abstract

Blind interference alignment (BIA) refers to interference alignment schemes that are designed
only based on channel coherence pattern knowledge at the transmitters (the “blind” transmitters
do not know the exact channel values). Private information retrieval (PIR) refers to the problem
where a user retrieves one out of K messages from N non-communicating databases (each holds
all K messages) without revealing anything about the identity of the desired message index to
any individual database. In this paper, we identify an intriguing connection between PIR and
BIA. Inspired by this connection, we characterize the information theoretic optimal download
cost of PIR, when we have K = 2 messages and the number of databases, N , is arbitrary.

1 Introduction

Interference alignment, in a variety of forms [1], has produced some of the most novel [2], albeit
fragile [3, 4] solutions for circumventing the interference barrier in wireless interference networks.
Remarkably, the same ideas have found robust applications beyond wireless settings — from dis-
tributed storage [5, 6] and network coding [7, 8] to index coding [9, 10], hat-guessing [11] and
topological interference management problems [12, 13]. In this paper we report the discovery
of another robust application of interference alignment outside the context of wireless networks.
Specifically, we show how the idea of Blind Interference Alignment (BIA) that was originally intro-
duced to exploit the diversity of coherence patterns in wireless interference networks, translates into
new solutions for the Private Information Retrieval (PIR) problem previously studied by computer
scientists.

1.1 Blind Interference Alignment

The idea of blind interference alignment was introduced in [14] to take advantage of the diversity of
coherence intervals that may arise in a wireless network. For instance, different channels may expe-
rience different coherence times and coherence bandwidths. A diversity of coherence patterns can
also be artificially induced by the switching of reconfigurable antennas in pre-determined patterns.
As one of the simplest examples of BIA, consider a K user interference channel, where the desired
channels have coherence time 1, i.e., they change after every channel use, while the cross channels
(which carry interference) have coherence time 2, i.e., they remain unchanged over two channel

Hua Sun (email: huas2@uci.edu) and Syed A. Jafar (email: syed@uci.edu) are with the Center of Pervasive
Communications and Computing (CPCC) in the Department of Electrical Engineering and Computer Science (EECS)
at the University of California Irvine.
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uses. The transmitters are aware of the coherence times but otherwise have no knowledge of the
channel coefficients. The BIA scheme operates over two consecutive channel uses. Over these two
channel uses, each transmitter repeats its information symbol, and each receiver simply calculates
the difference of its received signals. Since the transmitted symbols remain the same and the cross
channels do not change, the difference of received signals from the two channel uses eliminates all
interference terms. However, because the desired channels change, the desired information symbols
survive the difference at each receiver. Thus, one desired information symbol is successfully sent for
each message over 2 channel uses, free from interference, achieving 1

2 DoF per message. Remark-
ably, with only the knowledge of channel coherence patterns and no knowledge of the actual values
of channel coefficients, the BIA scheme is able to achieve the same DoF as possible with perfect
knowledge of channel coefficients at all transmitters. Applications of BIA extend well beyond this
simple example [15, 16, 17, 18]. For instance, in the X channel comprised of M transmitters and
K receivers, using only the knowledge of suitable channel coherence patterns, BIA schemes achieve

MK
M+K−1 DoF, which cannot be improved upon even with perfect channel knowledge [14, 15].

1.2 Private Information Retrieval

In private information retrieval [19], the goal is to (as efficiently as possible) allow a user to retrieve
his desired information from data providers without disclosing anything about his interests. Note
that the user can hide his interests trivially by requesting all the information available to the data
providers, but that could be very inefficient (expensive). The goal of the PIR problem is to find
the most efficient solution. Here is the problem description. We have N ≥ 2 non-communicating
databases1, each stores a set of K ≥ 2 independent messages W1, · · · ,WK . A user wants one of the
messages, say Wi, i ∈ {1, 2, · · · ,K}, but requires each database to learn absolutely nothing (in the
information theoretic sense)2 about the retrieved message index, i. To do so, the user generates
N queries Q1, · · · , QN and sends Qj, j ∈ {1, 2, · · · , N} to the j-th database. After receiving query
Qj, the j-th database returns an answering string Aj to the user. The user must be able to obtain
the desired message Wi from all the answers A1, · · · , AN . To be private, each query Qj and each
answer Aj must be independent of the desired message index, i.

For example, suppose we have N = 2 databases and K messages. To retrieve W1 privately, the
user first generates a random length-K vector [h1, h2, · · · , hK ], where each element is uniformly
distributed over a finite field. Then the user sends Q1 = [h1, h2, · · · , hK ] to the first database and
Q2 = [h1+1, h2, · · · , hK ] to the second database. Each database generates the answering string by
taking a inner product of the query vector and the message symbols,

[

A1

A2

]

=

[

h1
h1 + 1

]

W1 + h2

[

1
1

]

W2 + · · ·+ hK

[

1
1

]

WK .

The user can obtain W1 by subtracting A1 from A2. Privacy is guaranteed as the query vectors
Q1, Q2 are marginally random and independent of the desired message index, such that each
database by itself can not tell which message is requested. The observant readers might have
noticed the similarity between this PIR scheme and the earlier example of BIA, where over two

1It turns out that the setting of N = 1 is not interesting. It is proved in [19] that in order to be private in this
case, the user has to download all the messages. Motivated by this result, [19] initiates the study of the benefit of
non-communicating databases, and we adopt this model in this paper.

2There is another line of research, where privacy needs to be satisfied only for computationally bounded databases
[20, 21, 22].
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channel uses (across two databases), the channel (corresponding scalar in the query vector) for the
desired message changes while the channels for the interfering messages remain the same. Note that
the scalars in the query vector correspond to the channel coefficients, and the answering strings
correspond to the received signal equations.

The cost of a PIR scheme is traditionally measured by the total amount of communication
between the user and the databases, i.e., the sum of lengths of each query string (upload) and
each answering string (download). Prior work in theoretical computer science society studies the
coding theoretic setting, where each message is one bit [19, 23, 24]. In this paper, we consider the
information theoretic formulation, where the size of each message goes to infinity. In this setting,
the upload cost is negligible compared to the download cost3. Therefore we concentrate only on
the download cost, measured in unit of the message size. For the above example, each message
is one symbol and we download 2 equations in total, so that the download cost is 2. We aim to
characterize the optimal download cost, as an exact function of N and K.

1.3 Overview of Contribution

The main contribution of this paper is the discovery of an interesting connection between PIR and
BIA such that a good BIA scheme translates into a good PIR protocol. Let us see how to obtain
a PIR protocol from a BIA scheme. The number of users in the BIA problem translates into the
number of messages in the PIR problem. The received signals for user i in BIA, translate into the
answering strings when message Wi is the desired message in the PIR problem. The channel vectors
associated with user i in the BIA problem translate into the query vectors for desired message Wi in
the PIR problem. The privacy requirement of the PIR scheme takes advantage of the observation
that in BIA, over each channel use, the received signal at each receiver is statistically equivalent,
because the transmitter does not know the channel values and the channel to each receiver has the
same distribution. The most involved aspect of translating from BIA to PIR is that in BIA, the
knowledge of the channel realizations across channel uses reveals the switching pattern, which in
turn reveals the identity of the receiver. To remove this identifying feature of the BIA scheme, the
channel uses are divided into subgroups such that the knowledge of the switching pattern within
each group reveals nothing about the identity of the receiver. Each sub-group of channel uses is
then associated with a different database. Since the databases are not allowed to communicate with
each other, and each sub-group of queries (channel uses) reveals nothing about the message (user),
the resulting scheme guarantees privacy. Finally, the symmetric degrees of freedom (DoF) value per
user in BIA is the ratio between the number of desired message symbols and the number of channel
uses (received signal equations), and the download cost η in PIR is the ratio between the total
number of equations in all answering strings and the number of symbols of the desired message.
In this way, the DoF value achieved with BIA translates into the reciprocal of the efficiency of the
corresponding PIR protocol, i.e., η = 1/DoF. We summarize these connections in the following
table.

As an application of the connection between BIA and PIR, we find the optimal efficiency η for
the PIR problem when we have K = 2 messages and the number of databases, N , is arbitrary. We
show that for this case, η = 1 + 1

N
. Recall that with BIA the X channel with N transmitters and

K = 2 receivers, achieves its optimal DoF value 1/(1 + 1
N
) = 1/η [14]. Indeed, for this setting the

3Similar observation is also made in [25]. The justification argument (traces back to Proposition 4.1.1 of [19]) is
that the upload cost does not scale with the message size. This is because we can reuse the original query functions
for each part of the message.
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PIR BIA

Message Receiver
Queries Channel Coefficients
Answers Received Signals
Efficiency 1/DoF

optimal PIR scheme for K = 2 messages, N databases, is found by translating from the BIA scheme
for the X channel with K = 2 receivers and N transmitters. A matching information theoretic
outer bound is obtained to establish optimality. We note that the cost is strictly decreasing in N ,
meaning that having more databases strictly decreases the download cost, and when the number
of databases becomes large, the cost approaches 1 (we just download what is needed). The best
previously known scheme achieves the download cost of 1 + 1

N−1 [26], which is strictly improved
upon here.

2 System model

We define the system model for the PIR problem as follows. There are K messages W1, · · · ,WK .
We assume that the messages are independent and of the same size, i.e.,

H(W1, · · · ,WK) = H(W1) + · · ·+H(WK), (1)

H(W1) = · · · = H(WK). (2)

There are N databases, and each database stores all the messages W1, · · · ,WK . A user wants to
retrieve Wi, i ∈ {1, · · · ,K} privately, i.e., without revealing anything about the message identity i
to any of the databases.

To retrieve Wi privately, the user first generates N queries Q
[i]
1 , · · · , Q

[i]
N , where the superscript

denotes the desired message index. Each query Q
[i]
j , j ∈ {1, · · · , N} is a random variable with finite

support. The queries are independent of the messages,

I(W1, · · · ,WK ;Q
[i]
1 , · · · , Q

[i]
N ) = 0. (3)

The user then sends queryQ
[i]
j to the j-th database. After receiving Q

[i]
j , the j-th database generates

an answering string A
[i]
j , which is a deterministic function of Q

[i]
j and the data stored (i.e., all

messages W1, · · · ,WK),

H(A
[i]
j |Q

[i]
j ,W1, · · · ,WK) = 0. (4)

Each database returns to the user its answer A
[i]
j . From all answers A

[i]
1 , · · · , A

[i]
N , the user can

decode the desired message Wi,

[Correctness] H(Wi|A
[i]
1 , · · · , A

[i]
N , Q

[i]
1 , · · · , Q

[i]
N ) = 0. (5)

To satisfy the privacy constraint that each database learns nothing about the desired message

index i information theoretically, each query Q
[i]
j must be distributed independently of i,

[Privacy] I(Q
[i]
j ; i) = 0,∀j. (6)
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As the answering string is a deterministic function of the query and all messages, the answering
string must be independent of i as well,

I(A
[i]
j ; i) = 0,∀j. (7)

For compact notation, we may sometimes ignore the desired message index superscript and simplify
the notation as Qj/Aj , when it would cause no confusion.

The metric that we study in this paper is the download cost (efficiency) η. It is defined as the
ratio between the total download cost and the size of the desired message,

η ,

∑N
j=1H(A

[i]
j )

H(Wi)
. (8)

We aim to characterize the optimal (minimum) download cost η∗, over all private information
retrieval schemes.

3 Main Result

We present our main result in the following theorem.

Theorem 1 For the private information retrieval problem with 2 messages and N ≥ 2 databases,
the optimal download cost η∗ is 1 + 1

N
.

Before presenting the proof for the general case of N databases in Section 4, let us consider the
N = 2 setting.

3.1 N = 2 databases, η∗ = 3
2

3.1.1 Achievability

The scheme follows from the BIA scheme of the X channel with 2 transmitters and 2 receivers,
where each transmitter has an independent message for each of the two receivers. The transmission
takes place over 3 channel uses. User 1 desires symbol a1 from Transmitter 1 and symbol a2 from
Transmitter 2, and his channel changes from the first channel use to the second channel use and then
remains the same from the second channel use to the third channel use, i.e., the channel pattern for
User 1 is h[1](1),h[1](2),h[1](2). User 2 desires symbol b1 from Transmitter 1 and symbol b2 from
Transmitter 2, and his channel remains the same from the first channel use to the second channel
use and then changes from the second channel use to the third channel use, i.e., the channel pattern
for User 2 is h[2](1),h[2](1),h[2](2). The h[i](j) are random and statistically equivalent realizations
of the 1 × 2 channel vector from the two transmitters to Receiver i. In this channel, suppose
the symbols are repeated by the transmitters over those channel uses where desired user’s channel
changes and the undesired user’s channel remains the same, i.e., a1, a2 are repeated over the first
two channel uses and b1, b2 are repeated over the second and third channel uses. Suppressing noise,
the signal equations seen at the two receivers are

y[1] =





h[1](1)

h[1](2)
0





[

a1
a2

]

+





0

h[1](2)

h[1](2)





[

b1
b2

]

, (9)
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y[2] =





h[2](1)

h[2](1)
0





[

a1
a2

]

+





0

h[2](1)

h[2](2)





[

b1
b2

]

. (10)

Thus, each user sees two different linear combinations of desired symbols and only one linear combi-
nation (repeated) of interfering symbols. Subtracting the interference from its repeated observation
allows each user access to two resolvable interference-free linear combinations of desired symbols.
Thus, 2 symbols are successfully sent to each receiver over 3 channel uses, achieving 2

3 DoF per
receiver.

Now let us translate this BIA scheme into a PIR scheme, wherein W1 = {a1, a2},W2 = {b1, b2}.
To achieve download cost 3

2 , the total number of answering strings from the 2 databases must
correspond to 3 equations. The queries are the channels in the BIA problem. However, the channel
uses must be grouped in such a way that the switching pattern does not reveal the identity of the
receiver. For example, if the first two channel uses are in the same group then the identity of the
receiver would be revealed (if the channel changes then it is Receiver 1 and if it does not then it
is Receiver 2). However, if the first and third channel uses are placed in the same group, then
we note that the channel changes within this group from one channel use to the next regardless
of the receiver, thus revealing nothing about the identity of the receiver. So this is the grouping
we choose. Channel uses 1 and 3 are placed in one group and associated with Database 1, and
channel use 2 is placed in the other group, associated with Database 2. Based on this grouping,

the resulting queries Q
[i]
j from the jth database when message Wi is desired, are summarized in the

following table.

Q
[i]
j Message Wi = W1 Message: Wi = W2

Database: j = 1 h[1](1), h[1](2) h[2](1), h[2](2)

Database: j = 2 h[1](2) h[2](1)

The answering strings in the PIR problem are the received signals of the BIA scheme. In
correspondence with the queries, the answering string from the first database, A1, is the received
signal over the first and third channel uses and the answering string from the second database, A2,
is the received signal over the second channel use.

A
[1]
1 =

[

h[1](1)
0

] [

a1
a2

]

+

[

0

h[1](2)

] [

b1
b2

]

(11)

A
[2]
1 =

[

h[2](1)
0

] [

a1
a2

]

+

[

0

h[2](2)

] [

b1
b2

]

(12)

A
[1]
2 =

[

h[1](2)
]

[

a1
a2

]

+
[

h[1](2)
]

[

b1
b2

]

(13)

A
[2]
2 =

[

h[2](1)
]

[

a1
a2

]

+
[

h[2](1)
]

[

b1
b2

]

(14)

Clearly, from A
[1]
1 , A

[1]
2 , we can decode W1, and from A

[2]
1 , A

[2]
2 , we can decode W2, because the

answering strings are the same as the received signals in the BIA scheme.
Narrowing down to specific choices, several simplifications are readily noted. First, note that

for the user to be able to recover his desired information, it suffices to set h[1](i) = h[2](i) = h(i),
i = 1, 2 and ensure that h(1) is linearly independent of h(2). Note that this means the query
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to Database 1 is the same regardless of the message. Now we just need two linearly independent
vectors, say e1 = [1, 0] and e2 = [0, 1]. In order to achieve privacy, it suffices if the user privately
tosses a fair coin to decide if h(1) = e1,h(2) = e2 or h(1) = e2,h(2) = e1. The PIR scheme thus
obtained can be specified explicitly as follows.

Prob. 1/2 Prob. 1/2
Want W1 = (a1, a2) Want W2 = (b1, b2) Want W1 = (a1, a2) Want W2 = (b1, b2)

Database 1 a1, b2 a1, b2 a2, b1 a2, b1
Database 2 a2 + b2 a1 + b1 a1 + b1 a2 + b2

Table 1: The information that the user downloads from each database depending on his desired
message and the outcome of a private fair coin toss.

Thus, the user is equally likely to ask Database 1 for either (a1, b2) or (a2, b1), regardless
of his desired message. Similarly, the user is equally likely to ask Database 2 for either a1 + b1
or a2 + b2, regardless of his desired message. Thus, from the perspective of each database, the
information downloaded is independent of the desired message, guaranteeing privacy. Also note
that in each case, the user has enough information to decode his desired message. This completes
the achievability proof for N = 2.

Remark: We note that the PIR scheme presented above is asymmetric in the sense that we
download 2 equations from the first database and 1 equation from the second database. This should
not raise any concern, because without loss of generality, any PIR scheme can be made symmetric
so that we download an equal number of equations from every database. To this end, we repli-
cate the PIR scheme, so that now each message consists of 4 symbols, i.e., W1 = {a1, a2, a

′

1, a
′

2},
W2 = {b1, b2, b

′

1, b
′

2}. For symbols a1, a2, b1, b2, we use the original PIR protocol. For symbols
a′1, a

′

2, b
′

1, b
′

2 we also use the original PIR protocol (by generating another independent set of chan-

nels h′[1](1),h′[1](2),h′[2](1),h′[2](2)), but switch the roles of Database 1 and Database 2, so that for
these symbols, we download 2 equations from Database 2 and one equation from Database 1. This
produces a symmetric PIR scheme.

3.1.2 Converse

Since the queries and answering strings for any given database are marginally independent of the

desired message index, let us assume without loss of generality that A
[1]
1 = A

[2]
1 = A1, Q

[1]
1 = Q

[2]
1 =

Q1, i.e., the query and answering string for the first database is the same, regardless of which

message is requested. Then, from A1, A
[1]
2 , A

[2]
2 one can decode both messages, and from Fano’s

inequality we have,

2H(W1) = H(W1,W2|Q1, Q
[1]
2 , Q

[2]
2 ) (15)

= I(A1, A
[1]
2 , A

[2]
2 ;W1,W2|Q1, Q

[1]
2 , Q

[2]
2 ) (16)

= H(A1, A
[1]
2 , A

[2]
2 |Q1, Q

[1]
2 , Q

[2]
2 ) (17)

= H(A1, A
[2]
2 |Q1, Q

[1]
2 , Q

[2]
2 ) +H(A

[1]
2 |A1, A

[2]
2 , Q1, Q

[1]
2 , Q

[2]
2 ) (18)

≤ H(A1, A
[2]
2 ) +H(A

[1]
2 |A1, A

[2]
2 , Q1, Q

[1]
2 , Q

[2]
2 ,W2) (19)

≤ H(A1) +H(A
[2]
2 ) +H(A

[1]
2 |A1, Q1, Q

[1]
2 ,W2) (20)

= ηH(W1) +H(A1, A
[1]
2 |Q1, Q

[1]
2 ,W2)−H(A1|Q1, Q

[1]
2 ,W2) (21)
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= ηH(W1) +H(A1, A
[1]
2 |Q1, Q

[1]
2 ,W2)

− 1/2H(A1|Q1, Q
[1]
2 ,W2)− 1/2H(A

[1]
2 |Q1, Q

[1]
2 ,W2) (22)

≤ ηH(W1) +H(A1, A
[1]
2 |Q1, Q

[1]
2 ,W2)

−1/2H(A1|Q1, Q
[1]
2 ,W2)− 1/2H(A

[1]
2 |A1, Q1, Q

[1]
2 ,W2)

= ηH(W1) + 1/2H(A1, A
[1]
2 |Q1, Q

[1]
2 ,W2) (23)

= ηH(W1) + 1/2H(W1) (24)

where (17) is due to the fact that the answering strings are deterministic functions of the messages

and queries, i.e., H(A1, A
[1]
2 , A

[2]
2 |W1,W2, Q1, Q

[1]
2 , Q

[2]
2 ) = 0, and (19) follows from the correctness

condition that W2 is a deterministic function of A1, A
[2]
2 . (20) follows from the property that

dropping conditioning does not reduce entropy. In (21), we plug in the definition of η. In (22), we use

a symmetric argument without loss of generality, so that H(A1|Q1, Q
[1]
2 ,W2) = H(A

[1]
2 |Q1, Q

[1]
2 ,W2)

(this argument is proved in Lemma 1 in the next section). (24) follows from the fact that from

A1, A
[1]
2 , we can decode W1, and applying Fano’s inequality. Rearranging (24), we have that η ≥ 3

2
and the outer bound proof is complete.

4 Proof of Theorem 1

4.1 Outer Bound

We defineA
[i]
j:l , {A

[i]
j , A

[i]
j+1, · · · , A

[i]
l }, 1 ≤ j ≤ l ≤ N, i ∈ {1, 2}. Similarly, Q

[i]
j:l , {Q

[i]
j , Q

[i]
j+1, · · · , Q

[i]
l }.

Without loss of generality, we assume that A
[1]
1 = A

[2]
1 = A1, and that the PIR scheme is

symmetrized by combining all permutations of any given PIR scheme as explained earlier. A
consequence of this symmetry is formalized in the following lemma.

Lemma 1 [Symmetry] Without loss of generality, we have

H(A
[1]
1 |Q

[1]
1:N ,W2) = · · · = H(A

[1]
N |Q

[1]
1:N ,W2) (25)

H(A
[1]
1 |Q

[1]
1:N ,W2) ≥

1

N
H(W1) (26)

Proof: We first prove (25). It follows from a permutation argument. Given a retrieval scheme
described by a set of query and answer functions, we replicate the scheme N ! times and use one
copy for each permutation of the databases. As a result, for the replicated scheme, the conditional
entropy of the answer from each database is the same, and (25) follows.

Next we proceed to prove (26). Note that from A
[1]
1:N , we can decodeW1. From Fano’s inequality,

we have

H(W1) = I(A
[1]
1:N ;W1|Q

[1]
1:N ,W2) = H(A

[1]
1:N |Q

[1]
1:N ,W2)

≤

N
∑

j=1

H(A
[1]
j |Q

[1]
1:N ,W2) = NH(A

[1]
1 |Q

[1]
1:N ,W2)

where the first line follows from the fact that the answers are deterministic functions of the messages
and queries, and the second line is due to the property that dropping conditioning does not reduce
entropy, and (25). Thus, (26) is proved.
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As in the N = 2 case, from A1, A
[1]
2:N , A

[2]
2:N , we can decode both messages W1,W2. From Fano’s

inequality, we have

2H(W1) = H(W1,W2|Q
[1]
1:N , Q

[2]
2:N ) (27)

= H(A1, A
[1]
2:N , A

[2]
2:N |Q

[1]
1:N , Q

[2]
2:N ) (28)

≤ H(A1, A
[2]
2:N ) +H(A

[1]
2:N |A1, A

[2]
2:N , Q

[1]
1:N , Q

[2]
2:N ) (29)

= ηH(W1) +H(A
[1]
2:N |A1, A

[2]
2:N , Q

[1]
1:N , Q

[2]
2:N ,W2) (30)

≤ ηH(W1) +H(A
[1]
2:N |A1, Q

[1]
1:N ,W2) (31)

= ηH(W1) +H(A
[1]
1:N |Q

[1]
1:N ,W2)−H(A1|Q

[1]
1:N ,W2) (32)

≤ ηH(W1) +H(W1)−H(W1)/N (33)

where (28) is due to the fact that the answering strings are deterministic functions of the messages

and queries, (30) is due to the definition of η and W2 is a deterministic function of A1, A
[2]
2:N , and in

(33) the second term follows from the fact that from A
[1]
1:N we can decode W1 and applying Fano’s

inequality and the last term is due to (26). Rearranging (33) produces the desired outer bound and
the proof is complete.

An intuitive understanding of the outer bound proof is as follows. In total, we download ηH(W1)
amount of information, out of which H(W1) is the desired message and the remaining (η−1)H(W1)
is interference. When we request W2, the interference would be W1, and (η − 1)H(W1) would be
the amount of the information about W1 contained in the answering strings. From (26), we know
that this interference is at least 1

N
H(W1), so that (η − 1)H(W1) ≥

1
N
H(W1), and η ≥ 1 + 1

N
.

4.2 Inner Bound

The achievable scheme follows from the BIA scheme of the X channel with N transmitters and
2 receivers, which achieves N/(N + 1) DoF per receiver [14]. The scheme operates over N2 − 1
channel uses. Transmitter i ∈ {1, · · · , N} wishes to send N − 1 symbols a1,i, a2,i, · · · , aN−1,i to
User 1 and another N − 1 symbols b1,i, b2,i, · · · , bN−1,i to User 2. The channel coherence pattern
is given by the following grid, where h[i](j) are random and statistically equivalent realizations of
the 1×N channel vector from the N transmitters to Receiver i.

h[2](1) 1 2 · · · N − 1 N

h[2](2) N + 1 N + 2 · · · 2N − 1 2N
...

...
...

...
...

...

h[2](N − 1) N2 − 2N + 1 · · · · · · N2 −N − 1 N2 −N

h[2](N) N2 −N + 1 · · · · · · N2 − 1

h[1](1) h[1](2) · · · h[1](N − 1) h[1](N)

In this channel, suppose symbols are repeated by the transmitters over channel uses where
desired users’ channel changes and the undesired users’ channel remains the same, i.e., ap,i, p ∈
{1, · · · , N − 1} are repeated by Transmitter i over the channel uses where the channel to User 2
remains h[2](p), and bq,i, q ∈ {1, · · · , N − 1} are repeated by Transmitter i over the channel uses
where the channel to User 1 remains h[1](q). Thus, the received signal at each receiver has the
property that the desired signal has rank N2−N and the interference has rank N−1 [14]. Further,
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the desired signal does not overlap with the interference, and each user is able to achieve DoF
N/(N + 1).

Now let us translate the BIA scheme to a PIR scheme, wherein each message consists of N2−N
symbols. To achieve download cost N+1

N
= N2

−1
H(W1)

, the answering strings from all N databases must

consist of N2 − 1 equations. The queries are the channels in the BIA problem. To ensure that the
switching pattern does not reveal the identity of the receiver, the channel uses are grouped as follows.
Channel uses at the diagonal of the grid, i.e., channel uses 1, N+2, 2N+3, · · · , N2−N−1 (N−1 in
total), are placed in the first group and associated with Database 1. Channel uses at the diagonal
of the grid shifted cyclicly to the right by 1, i.e., channel uses 2, N + 3, · · · , N2 − N,N2 − N + 1
(N in total), are placed in the second group and associated with Database 2. Channel uses at the
diagonal of the grid shifted cyclicly to the right by 2 are placed in the third group, associated with
Database 3, and so on. As a result, the channel changes within this group from one channel use to
the next regardless of the receiver, thus revealing nothing about the identity of the receiver. When
message Wi is desired, the query vector sent to the jth database is comprised of the channels to
Receiver i in the jth group. The answering string from each database is comprised of the received
signal equations corresponding to the channel uses in each query vector. When message Wi is
desired, the answering string is the received signal at the Receiver i. As the answering strings are
the same as the received signal in the BIA scheme, we can decode the desired message.

Similar to the proof for N = 2 presented in the previous section, let us specify the choices.
To ensure decodability, we set h[1](i) = h[2](i) = h(i), i = 1, · · · , N and ensure h(i) are linearly
independent. For such a purpose, we just need N vectors e0, · · · , eN−1, where ei−1 is an N × 1
vector, where the ith entry is one and all other entries are zero. To be private, it suffices if the user
privately draw a number l uniformly from the set {0, 1, · · · , N − 1} and set h(i) = ei−1+l mod N .
This completes the achievability proof.

5 Discussion

We identified an interesting connection between PIR and BIA, which ensures that a good BIA
scheme can be translated into a good PIR protocol. Based on this insight we found the optimal
download cost for the K = 2 messages setting with N ≥ 2 databases.

An immediate open problem is to find the optimal download cost when K ≥ 3. Here the
best known scheme achieves the cost of 1 + 1

N−1 [26]. Interestingly, the scheme proposed in [26]
can also be translated from a BIA scheme. Consider a K user MISO interference channel, where
each transmitter is equipped with N − 1 antennas and each receiver is equipped with a single
antenna. The BIA scheme achieves 1/(1 + 1

N−1) =
N−1
N

DoF per receiver, where each transmitter
sends N − 1 symbols to its desired receiver over N channel uses. Over these N channel uses,
the desired channel changes after every channel use, the cross channels remain unchanged, and
each transmitter repeats its information symbols (one from each antenna). Thus, each receiver
sees only one repeated linear combination of interfering symbols and he can project the received
signal equations along the direction of the nullspace of the all 1 vector to extract the N − 1 desired
symbols. Following the general connection between BIA and PIR, this BIA scheme can be easily
translated into a PIR scheme, where each message consists of N − 1 symbols and we download one
equation from each of the N databases. Each channel use in BIA is associated with one database
in PIR, so that when Wi, i ∈ {1, · · · ,K} is desired, the query to the jth, j ∈ {1, · · · , N} database
in PIR is the channel vector from all transmitters to the ith receiver over the jth channel use in
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BIA and the answering string from the jth database in PIR is the received signal equation at the
ith receiver over the jth channel use in BIA. This completes the description of the PIR scheme with
download cost 1 + 1

N−1 . However, the cost of 1 + 1
N−1 does not match the converse provided by

direct extensions of the techniques introduced in this paper. This leaves open the possibility of
another BIA scheme that may provide a better efficiency. Notably, in the regime where the number
of messages becomes large, i.e., K → ∞, the download cost of 1 + 1

N−1 is asymptotically optimal.
The converse can be established as follows, which is a simple extension of our outer bound proof.

Without loss of generality, we assume A
[1]
1 = · · · = A

[K]
1 = A1. Then, from A1, A

[2]
2:N , · · · , A

[K]
2:N one

can decode all K messages W1, · · · ,WK , so that the entropy of A1, A
[2]
2:N , · · · , A

[K]
2:N is no less than

KH(W1). By a simple extension of Lemma 1 to K messages setting, we know that by symmetry,

the entropy of each term in A1, A
[2]
2:N , · · · , A

[K]
2:N is the same and is equal to ηH(W1)/N . As there

have 1 + (K − 1)(N − 1) terms in total, we have

η ≥
NK

1 + (K − 1)(N − 1)
=

N
1
K

+ (1− 1
K
)(N − 1)

and when K → ∞, η ≥ 1 + 1/(N − 1).

References

[1] S. Jafar, “Interference Alignment: A New Look at Signal Dimensions in a Communication
Network,” in Foundations and Trends in Communication and Information Theory, 2011, pp.
1–136.

[2] V. Cadambe and S. Jafar, “Interference Alignment and the Degrees of Freedom of the K
user Interference Channel,” IEEE Transactions on Information Theory, vol. 54, no. 8, pp.
3425–3441, Aug. 2008.

[3] A. G. Davoodi and S. A. Jafar, “Settling Conjectures on the Collapse of Degrees of Freedom
under Finite Precision CSIT,” in GLOBECOM 2014.

[4] ——, “Generalized Degrees of Freedom of the Symmetric K-User Interference Channel under
Finite Precision CSIT,” arXiv preprint arXiv:1601.06463, 2016.

[5] V. Cadambe, S. Jafar, H. Maleki, K. Ramchandran, and C. Suh, “Asymptotic interference
alignment for optimal repair of mds codes in distributed data storage,” IEEE Trans. on In-
formation Theory, vol. 59, no. 5, pp. 2974–2987, May 2013.

[6] N. B. Shah, K. Rashmi, P. V. Kumar, and K. Ramchandran, “Interference Alignment in Regen-
erating Codes for Distributed Storage: Necessity and Code Constructions,” IEEE Transactions
on Information Theory, vol. 58, no. 4, pp. 2134–2158, 2012.

[7] C. Meng, A. K. Das, A. Ramakrishnan, S. Jafar, A. Markopoulou, S. Vishwanath et al.,
“Precoding-based Network Alignment for Three Unicast Sessions,” IEEE Transactions on
Information Theory, vol. 61, no. 1, pp. 426–451, 2015.

[8] J. Han, C.-C. Wang, and N. B. Shroff, “Graph-theoretic Characterization of the Fea-
sibility of the Precoding-based 3-unicast Interference Alignment Scheme,” arXiv preprint
arXiv:1305.0503, 2013.

11



[9] H. Maleki, V. Cadambe, and S. Jafar, “Index Coding – An Interference Alignment Perspec-
tive,” IEEE Transactions on Information Theory, vol. 60, no. 9, pp. 5402–5432, Sep. 2014.

[10] H. Sun and S. A. Jafar, “Index Coding Capacity: How far can one go with only Shannon
Inequalities?” IEEE Trans. on Inf. Theory, vol. 61, no. 6, pp. 3041–3055, 2015.

[11] S. Riis, “Information Flows, Graphs and their Guessing Numbers,” The Electronic Journal of
Combinatorics, vol. 14, no. 1, p. R44, 2007.

[12] S. A. Jafar, “Topological Interference Management through Index Coding,” IEEE Trans. on
Inf. Theory, vol. 60, no. 1, pp. ”529–568”, Jan. 2014.

[13] X. Yi and D. Gesbert, “Topological Interference Management with Transmitter Cooperation,”
Information Theory, IEEE Transactions on, vol. 61, no. 11, pp. 6107–6130, 2015.

[14] S. A. Jafar, “Blind Interference Alignment,” IEEE Journal of Selected Topics in Signal Pro-
cessing, vol. 6, no. 3, pp. 216–227, June 2012.

[15] T. Gou, C. Wang, and S. A. Jafar, “Aiming Perfectly in the Dark - Blind Interference Align-
ment through Staggered Antenna Switching,” IEEE Trans. on Signal Processing, vol. 59, pp.
2734–2744, June 2011.

[16] H. Yang, W. Shin, and J. Lee, “Dynamic Supersymbol Design of Blind Interference Alignment
for K-user MISO Broadcast Channels,” in Communications (ICC), 2015 IEEE International
Conference on. IEEE, 2015, pp. 2301–2306.

[17] Y. Lu, W. Zhang, and K. Letaief, “Blind Interference Alignment With Diversity in K-User
Interference Channels,” IEEE Transactions on Communications, vol. 62, no. 8, pp. 2850–2859,
2014.

[18] L. Ke and Z. Wang, “On the Degrees of Freedom Regions of Two-user MIMO Z and Full Inter-
ference Channels with Reconfigurable Antennas,” in Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE. IEEE, 2010, pp. 1–5.

[19] B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private Information Retrieval,” Journal
of the ACM (JACM), vol. 45, no. 6, pp. 965–981, 1998.

[20] W. Gasarch, “A Survey on Private Information Retrieval,” in Bulletin of the EATCS. Citeseer,
2004.

[21] S. Yekhanin, “Private Information Retrieval,” Communications of the ACM, vol. 53, no. 4, pp.
68–73, 2010.

[22] R. Ostrovsky and W. E. Skeith III, “A Survey of Single-database Private Information Retrieval:
Techniques and Applications,” in Public Key Cryptography–PKC 2007. Springer, 2007, pp.
393–411.

[23] S. Yekhanin, “Locally Decodable Codes and Private Information Retrieval Schemes,” Ph.D.
dissertation, Massachusetts Institute of Technology, 2007.

[24] Z. Dvir and S. Gopi, “2-Server PIR with Sub-polynomial Communication,” arXiv preprint
arXiv:1407.6692, 2014.

12



[25] T. H. Chan, S.-W. Ho, and H. Yamamoto, “Private Information Retrieval for Coded Storage,”
arXiv preprint arXiv:1410.5489, 2014.

[26] N. Shah, K. Rashmi, and K. Ramchandran, “One Extra Bit of Download Ensures Perfectly
Private Information Retrieval,” in ISIT 2014.

13


	1 Introduction
	1.1 Blind Interference Alignment
	1.2 Private Information Retrieval
	1.3 Overview of Contribution

	2 System model
	3 Main Result
	3.1 N=2 databases, *=32
	3.1.1 Achievability
	3.1.2 Converse


	4 Proof of Theorem ??
	4.1 Outer Bound
	4.2 Inner Bound

	5 Discussion



