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Abstract  Multi-input and multi-output (MIMO) radar 

systems possess numerous advantages, such as scanning an 

entire region much faster than a phased array, enhancing 

the spatial resolution, mitigating interference and multipath 

fading, and improving the probability of detection of 

targets. MIMO radar systems use adaptive beamforming 

techniques such as the minimum variance distortionless 

response (MVDR) to obtain the best possible estimation of 

the direction of arrival (DOA) of the targets. The MVDR 

algorithm has been thoroughly investigated for traditional 

phased array radars. For MIMO radar systems, however, it 

requires significant signal processing, which can introduce 

substantial latency, especially in the case of large MIMO 

systems where few hundred antennas are used; this can be 

solved by using a Graphics Processor Unit (GPU), which 

contains thousands of cores and can execute many 

operations in parallel. This paper presents a 

MATLAB-based approach for GPU parallelization of the 

minimum variance distortionless (MVDR) beamforming 

algorithm in a MIMO radar system. Two MIMO radar 

systems are considered. The first one is a simulated MIMO 

radar which is used for automotive adaptive cruise control 

(ACC), and the second one is an experimental monostatic 

MIMO radar that is based on a vector network analyzer 

(VNA). It is shown that the GPU achieved a speedup of up 

to 7 times while successfully detecting all targets. 

Keywords  MIMO Radar, GPU, MVDR 

1. Introduction

The application of multi-input and multi-output (MIMO) 

techniques to radar systems has received considerable 

attention recently [1-13]. Unlike traditional phased-array 

radars in which a steered beam is used at the transmitter to 

scan a sector, MIMO radar transmits different waveforms 

from each omnidirectional antenna element simultaneously, 

allowing for a sector scan rate that is several times faster 

than steered beam radars. A band of matched filters can 

extract the waveforms bearing with the target information 

at the receiver end. Generally, MIMO radar is implemented 

using either widely separated antennas [7-8] or colocated 

antennas [9-13]. In a MIMO radar with widely separated 

antennas, each transmit-receive pair sees a different aspect 

of the target, which improves the detection probabilities of 

targets. This configuration relies on space diversity to 

improve the detection performance but does not provide 

the flexibility of transmitting the desired beampattern. On 

the other hand, in a MIMO radar with collocated antennas, 

the antenna elements are closely spaced so that each 

transmit-receive pair sees the same aspect of the target. 

While this configuration does not provide spatial diversity, 

it relies on waveform diversity to achieve a better spatial 

resolution by combining all the transmitting paths in a 

virtual array with an extended aperture. This configuration 

also has many other advantages compared to the spatial 

diversity configuration, such as excellent clutter 

interference rejection capability, improved parameter 

identifiability, and enhanced flexibility for transmitting 

beampattern design. In this paper, therefore, only the 

colocated antenna configuration will be examined. Two 

MIMO radar systems are considered. The first one is a 

simulated MIMO radar, which is used for automotive 

adaptive cruise control (ACC) [14] and the second one is 

an experimental monostatic MIMO radar that is based on a 

vector network analyzer (VNA) [15]. A generic MIMO 

radar design is illustrated in Figure 1, where there are 𝑀 

independent orthogonal transmitters and 𝑁  receivers. 

Each receiver would have 𝑀  matched filters that 

correspond to the 𝑀  distinct transmitted waveforms. 

Having 𝑀  independent transmitters and 𝑁  receivers 

produces 𝑀 × 𝑁 paths for the return from the 𝑘𝑡ℎ target, 

which in turn creates a virtual array with a narrower beam 

and a larger effective aperture in comparison to a phased 

array.  
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Figure 1.  Generic MIMO radar [15]. 

The generic received signal for the system illustrated in 

Figure 1 is given by [2]: 

𝑦𝑛[𝑛] = ∑ 𝛼(𝜃𝑘) ∑ 𝑒−𝑗𝜔𝑐𝜏𝑚𝑛(𝜃𝑘)𝑠𝑚[𝑛] + 𝑤𝑛[𝑛]𝑀
𝑚=1

𝐾
𝑘=1 ,  (1) 

where α is the complex amplitude of the 𝑘𝑡ℎ return signal 

from a target located at an angle 𝜃𝑘, 𝑠𝑚 is the baseband 

samples of the 𝑚𝑡ℎ  transmitted signal, 𝜏𝑚𝑛(𝜃𝑘)  is the 

total phase delay between the mth transmitting element, the 

𝑘𝑡ℎ  target, and the 𝑛𝑡ℎ  receiver, 𝜔𝑐  is the carrier 

frequency, [n] is the time index, and 𝑤𝑛  is an additive 

white Gaussian noise with zero-mean and a covariance 

matrix 𝑅𝑤 = 𝜎2𝐼𝑀. 
It is essential to note in (1) that a MIMO radar takes the 

sum of returns from all targets, whereas a phased array 

radar will only have a return from its directed beam. 

Extracting the independent transmit and receive paths is 

the most critical step in designing a MIMO radar as these 

signals are used to form the virtual array, will define the 

two-way antenna pattern, and contains the necessary 

information to conduct beamforming on reception. 

Time-division multiplexing (TDM) MIMO was selected 

as the orthogonal waveform to be implemented in this 

paper for its simplicity to form a virtual array and to 

reduce the number of matched filters required on 

reception. The received signals from individual elements 

can be mapped directly to a virtual element as follows [2]:  

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝐴𝑟𝑟𝑎𝑦(𝑥) = ∑ ∑ 𝛿(𝑥 − (𝑥𝑚 + 𝑥𝑛))𝑁−1
𝑛=0

𝑀−1
𝑚=0 , (2) 

where 𝑀  and 𝑁  are the numbers of transmitting and 

receiving antennas, respectively, 𝑥𝑚  and 𝑥𝑛  are the 

physical locations of the 𝑚𝑡ℎ  transmit element and the 

𝑛𝑡ℎ receive element. 

Using a virtual array allows for the system to increase 

the angular resolution and accuracy beyond the physical 

number of elements that are present in the transmit and 

receive arrays [2]. It also allows for a sparsely filled array 

to maintain the same resolution of a full array, without the 

added cost of more hardware. On the other hand, MIMO 

radar systems use adaptive beamforming techniques such 

as the minimum variance distortionless response (MVDR) 

to obtain the best possible estimation of the direction of 

arrival (DOA) of the targets [14-14]. The MVDR technique 

attempts to minimize the noise and interference by creating 

nulls toward their directions and maintaining a fixed gain 

in the look direction. The MVDR spectrum given in [22] 

can be extended to MIMO radar as follows:  

𝑆 =  
1

𝒔𝑣
𝐻(𝜃𝑡)𝑹𝑥𝑥

−1𝒔𝒗(𝜃𝑡)
 (3) 

where 𝒔𝒗 is the steering vector of the virtual array and 

𝑹𝑥𝑥 is the covariance matrix at the output of the virtual 

array. 

The MVDR algorithm has been thoroughly investigated 

for traditional phased array radars. For MIMO radar 

systems, however, it requires matrix inversions for each 

pulse that is transmitted by the MIMO radar. In a small 

system, the time to complete these calculations on a Central 

Processing Unit (CPU) may be acceptable. However, when 

a system grows to be quite large such as in the case of large 

MIMO systems where few hundred antennas are used, the 

required calculation time to carry out the MVDR 

beamforming algorithm would be enormous and 

unacceptable. An alternative to the CPU is the Graphics 

Processor Units (GPU) that contain thousands of cores and 

can execute software programs in parallel [23]. It is lucky 

then that many algorithms used within MIMO radar 

systems are highly parallel and computationally intensive, 

which makes them ideal candidates for a GPU 

implementation. A survey paper completed in 2017 

showed that there had been much success in using GPUs in 

traditional single input single output (SISO) radar systems 

[21]; significant computational speedups were found to 

have occurred. As well, several papers were found which 

had success integrating GPU and MIMO in communication 

scenarios that provided optimization or greater accuracy 

[22-26]. However, there was little research to be found 

concerning incorporating MIMO radar and GPUs. This 

paper explores the use of GPU technology in a traditional 

MIMO radar. More specifically, the paper investigates the 

speedup achieved when using a MATLAB-based GPU 

acceleration of the MVDR algorithm in a MIMO radar. 
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Figure 2.  Automotive MIMO Radar for ACC 

2. GPU Acceleration of an Automotive 
MIMO Radar 

Figure 2 shows the first MIMO radar system considered 

in this paper. It consists of a simulated automotive MIMO 

radar that is used for adaptive cruise control (ACC) 

onboard an autonomous vehicle that tracks two moving 

vehicle targets [27]. The simulation of this system is 

performed using the Phased Array Toolbox (PAT) of 

MATLAB [28], and the GPU acceleration of the MVDR 

algorithm is performed using the Parallel Computing 

Toolbox (PCT) [29]. 

2.1. Waveform Generation 

In this simulation, a frequency modulated continuous 

(FMCW) Waveform is created using the 

phased.FMCWWaveform object and then transmitted with 

specified peak power using the phased.Transmitter object. 

Figure 3 shows how the FMCW waveform can be 

simulated, and Table 1 summarizes its parameters that are 

based on vehicle ACC [14]. The sweep bandwidth is 

determined according to the range resolution of 1 m. The 

sweep time for the FMCW wave was chosen to be 5.5 

times the round-trip time to account for the time needed for 

the signal to travel the maximum unambiguous range. The 

sample rate of the FMCW signal is the same as the sweep 

bandwidth. 

waveform = phased.FMCWWaveform('SweepTime',tm, ... 

'SweepBandwidth',bw,'SampleRate',fs); 

sig = waveform(); 

transmitter= phased.Transmitter('PeakPower',... 

0.001,'Gain',36); 

txsig = transmitter(sig); 

Figure 3. Waveform generation 

Table 1.  Transmitted FMCW properties 

Properties Values 

Maximum Unambiguous Range 200 m 

Sample Rate 150 MHz 

Sweep Time 7.3 µs 

Sweep Bandwidth 150 MHz 

2.2. Transmit and Receive Arrays Simulation 

Figure 4 shows how the radar transmitter and receiver 

are simulated. The transmitter and receiver use uniform 

linear arrays (ULAs) with identical sensor elements that are 

created by the phased.ULA object. 
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dt = lambda/2;% half-wavelength ant. spacing at TX 

dr = lambda/2; ;% half-wavelength ant. spacing at RX 

txarray = phased.ULA(Nt,dt);%Nt:nbr of elements at TX 

rxarray = phased.ULA(Nr,dr);%Nr:nbr of elements at RX 

txradiator=phased.Radiator('Sensor',txarray,'OperatingFrequency'...  

,fc,'PropagationSpeed',c, 'WeightsInputPort',true); 

rxcollector=phased.Collector('Sensor',rxarray, ... 

'OperatingFrequency',fc,'PropagationSpeed',c); 

receiver=phased.ReceiverPreamp('Gain',40, ... 

'NoiseFigure',4.5,...'SampleRate',fs); 

Figure 4.  Transmit and receive arrays Simulation 

After the construction of the ULAs, a radiator and a 

collector are created using the phased.Radiator and 
phased.Collector System objects. The radiator converts 

the waveform into radiated wavefields transmitted from 

antenna arrays and the collector converts incident wave 

fields into signals that are preamplified by the 

phased.ReceiverPreamp System object. The parameters 

of this simulation are shown in Table 2. 

Table 2.  Antenna array parameters 

Sensor parameters Value 

Operating Frequency (GHz) 77 

Transmit Array Spacing dt 0.5λ 

Receive Array spacing dr 0.5λ 

Transmitter Peak Power (W) 0.001 

Transmitter Gain (dB) 36 

Receiver Gain (dB) 40 

Receiver Sample Rate (MHz) 75 

Receiver Noise Figure (dB) 4.5 

2.3. Target Simulation 

The radar targets consist of two moving cars that are 

created using the system object phased.RadarTarget 
which models how the radar signal will be reflected from 

the targets. The measure of a target's ability to reflect radar 

signals in the direction of the radar receiver is called the 

radar target cross-section (RCS). The motion of a platform 

in space is simulated using phased.Platform object. This 

platform can be a target or a radar transmitter/receiver. The 

model created assumes that the platforms undergo their 

motion at a constant velocity during the simulation where 

positions and velocities are defined within the global 

coordinate system. The position and motion of the 

autonomous vehicle and the two cars are presented in Table 

3, whereas the code used to define the position and motion 

of the target is illustrated in Figure 5. 

Table 3.  Position and motion of the autonomous vehicle and the two 
cars 

Parameters Car 1 Car 2 
Ego 

vehicle 

Velocity in x direction 

(km/h) 
-80  96  100 

Azimuth -30 degrees 10 degrees 0 

RCS (m2) 100  200  100 

Starting Position (m)  

x direction: 

34.64  

x direction: 

49.24  

x 

direction: 

0 

y direction: 

-20  

y direction: 

8.68m  
0 

z direction: 

0.5  

z direction: 

0.5  
0.5 

Distance between car 

and autonomous 

vehicle sensor 

40 m 50 m 0 

 
radarspeed = 100*1000/3600;% vehicle speed 100 km/h 

radarmotion=phased.Platform('InitialPosition', ...  

[0;0;0.5],'velocity', [radar-speed;0;0]); 

cardist = [40 50]; % Dist. radar to cars (m) 

carspeed = [-80 96] * 1000/3600; % km/h -> m/s 

caraz = [-30 10]; 

carrcs = [100 200]; 

carpos = [cardist.*cosd(caraz); ... 

cardist.*sind(caraz);0.5 0.5]; 

cars = phased.RadarTarget('MeanRCS',carrcs, ... 

'PropagationSpeed',c,'OperatingFrequency',fc); 

carmotion = phased.Platform('InitialPosition', ... 

carpos,'velocity',[carspeed;0 0;0 0]); 

Figure 5.  Target motion code 

2.4. Virtual Array Processing 

The raw data that is received by the physical receive 

array must be processed to associate the returns with the 

correct transmit element in order to form the virtual array 

data. Since this simulation uses TDM-MIMO FMCW 

waveform with two transmit elements, the virtual array 

data can be processed by doing two sweeps of the data. 

Given that there are 64 radar sweeps completed, 32 of these 

sweeps will correspond to transmit element zero, and 32 

belong to transmit element one. Because the transmitters 

are toggled midway through the simulation, it is deduced 

that every other data cube will belong to the same 

transmitter, with the odd elements corresponding to 

element zero and the even corresponding to element One. 
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These two arrays are then catenated together to create the 

virtual array data. The code used to create the virtual array 

is shown in Figure 6.  

% the data from the two transmit antenna 

% elements extracted from two consecutive 

Nvsweep = Nsweep/2; 

xr1 = xr(:,:,1:2:end); 

xr2 = xr(:,:,2:2:end); 

% These two arrays are then catenated together to  

% create the virtual array data as follows: 

xrv = cat(2,xr1,xr2); 

Figure 6.  Virtual array creation 

2.5. GPU Acceleration of the MVDR Spectrum 

CUDA is a programming language that exploits the 

parallel processing capabilities of GPUs and is used in 

heterogeneous computing [30]. NVIDIA has developed 

CUDA extensions that can be used with other languages, 

such as FORTRAN and Python [31], which allows the 

coder to use a language of their choice and decreases the 

learning curve associated with parallel programming. 

MATLAB users can also compile their complete 

algorithms to run on any modern NVIDIA GPUs using the 

Parallel Computing Toolbox (PCT) without having to use 

CUDA programming [31]. In this paper, the PCT of 

MATLAB is used to achieve a GPU acceleration of the 

MVDR algorithm in a MIMO radar system. The MVDR 

spectrum was run on the GPU using the gpuArray function. 

When a gpuArray argument is supplied to any 

GPU-enabled function, the function runs automatically on 

the GPU. Figure 7 shows the code used for the GPU-based 

MVDR spectrum. The GPU used to carry out the parallel 

algorithm is a NVIDIA GeForce GTX TITAN which is 

based on the Kepler Architecture [32].  The specifications 

for this GPU can be found in Table 4 [33]. On the other 

hand, the CPU simulation is performed using a 

high-performance Linux computer with Intel Xeon CPU 

E5-2660 operating at 2.60 GHz and 128 GB of RAM and 

running a 64-bit operating system. 

% copy the virtual array to the GPU 

xrv_parallel = gpuArray(xrv);  

% copy the virtual steering vector to the GPU 

sv_parallel = gpuArray(sv);  

% Compute the covariance matrix on the GPU 

Rxx_parallel = transpose(xrv_parallel)* xrv_parallel;  

% Compute the MVDR spectrum on the GPU.  

S_parallel=transpose(sv_parallel)*(Rxx_parallel\sv_parallel);  

Figure 7.  GPU-based MVDR spectrum 

Table 4.  NVIDIA GeForce GTX TITAN operating specifications [33] 

CUDA Cores 2688 

Base Clock  837 MHz 

Boost Clock 876 MHz 

Memory Clock 6.0 Gbps 

Memory Bandwidth 288.4 GB/sec 

Computing Capability 3.5 

Max Threads/Warp 32 

Max Threads/Multiprocessor 2048 

Max Blocks/Multiprocessor 16 

Max Shared Memory/thread block 48 kilobytes 

Max Registers/block 65536 

Max X Grid Dimension 232-1 

2.6. Simulation Results and Analysis  

For simplicity, the MIMO radar system with only two 

transmit elements were simulated. The number of 

receivers was varied from four to 100 to determine how an 

increased number of receivers will affect the speedups and 

execution times. The CPU-based and GPU-based MVDR 

spectrums with two transmitters and four receivers are 

shown in Figure 8. Both spectrums are similar and clearly 

show two independent targets represented by the azimuth 

of both cars. Table 5 shows the CPU and GPU execution 

time for a varying number of receiving elements, as well as 

the speed up that was obtained by utilizing the GPU. It is 

shown that as the number of receivers is increased the 

overall speedup also is increased. This is an expected result 

since large data sets will take longer to execute serially 

than in a parallel operation. The strength of the GPU’s 

parallel computing capability is highlighted once the 

number of receivers is increased to 100, as the overall 

speedup of the MVDR algorithm is increased to 7.26x.  

 

(a) 
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(b) 

Figure 8.  MVDR Spectrum for two transmitting elements and four 

receiving elements: (a) CPU-based MVDR, (b) GPU-based MVDR 

Table 5.  CPU and GPU execution time and speedup for two transmit 
antennas and different number of receive antennas 

Number of 

Receivers 

CPU Execution 

Time (ms) 

GPU Execution 

Time (ms) 
Speedup 

4 269.68 53.57 5.04 

8 270.68 54.46 4.97 

16 343.704 60.44 5.69 

24 387.34 61.92 6.26 

48 529.22 88.30 6.00 

75 703.60 118.13 5.96 

100 890.50 122.78 7.26 

Overall, this simulation was a success and has proven 

that a simulated MIMO radar system can be successfully 

integrated with a GPU. However, with a bigger, more 

complex system (thousands of TX/RX elements instead of 

the hundred in this system), utilizing shared memory would 

allow for an even more significant advantage. The faster 

execution time associated with shared memory is a 

well-documented property [20,32]. Unfortunately, this 

possibility was not explored due to MATLAB’s 

limitations. 

3. GPU Acceleration of a Vector 
Network Analyzer (VNA)-Based 
MIMO Radar 

GPU acceleration of the MIMO radar was also tested in 

a laboratory setting using experimental data of a 

VNA-based 4x4 monostatic MIMO radar system [15]. 

Figure 9 shows the diagram of the experimental MIMO 

radar using the Keysight N5244A 4-port PNA-X VNA [16]. 

A four-element microstrip patch antenna array, with a 

half-wavelength antenna spacing and operating at 8.925 

GHz, is connected to a 4-ports VNA, which is connected to 

a computer running MATLAB/SIMULINK. The VNA 

measures the phase-coherent scattering (S) parameters 

between each of its ports. The S-parameter data are then 

saved in an I and Q format, which can be used as radar 

returns and can be processed by Simulink to form a virtual 

array and perform and beamforming so that range and 

angle information from targets could be extracted. The 

high-level Simulink model used to process the radar returns 

is shown in Figure 10. In a laboratory setting, clutter may 

be removed by performing two sets of measurements: one 

with targets and another one with only the background. 

 

Figure 9.  System Overview of VNA MIMO radar [15]. 
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Figure 10.  Simulink overview of the PNA-X MIMO radar [15]. 

 

Figure 11.  MVDR spectrum of two targets at 4 m separated by 19o 

The matrices of the PNA-X Data and Background 

Measurement from Figure 9 are measured with the same 

settings to ensure that they have the same matrix 

dimensions. These two matrices are the input to the 

Simulink model, which processes the data one sweep at a 

time. The data from both matrices are sent to the 

S-parameters block, which subtracts the background 

measurement from the data with targets and converts the 

received data from amplitude and phase to I/Q data. The 

I/Q data are then sent to an IFFT block to convert the data 

from the frequency domain to the time domain. An IFFT is 

conducted on each S-parameter and then buffered over a 

specified coherent integration interval. After the 

S-parameter radar returns are converted to the time domain, 

they are sent to the virtual array block for coherent 

integration and to create a virtual array. It should be noted 

that since a 4-element ULA is used in a monostatic scheme, 

the received signals will be mapped to a 7-element virtual 

array, which will be used to compute the CPU-based and 

the GPU-based MVDR spectrums. Two cylindrical 

metallic targets were placed at a range of 4 m then 

separated in azimuth by 19o. Figure 11 shows the MVDR 

spectrum that can distinguish between the two closely 

spaced targets with a GPU execution time that is 5.00 times 

faster than the CPU. This result concurs with the speedup 

of 5.04 achieved with the 2 x 4 MIMO radar simulation 

data that corresponds to an 8-element virtual array.  

4. Conclusions 

The GPU-based MVDR algorithm was tested using an 

ACC MIMO-TDM radar system on board of an 

autonomous car and using experimental data of a 

VNA-based MIMO radar. The ACC MIMO-TDM radar 

system was simulated using two transmit antennas and a 

different number of receive antennas varying from four to 

100. All these scenarios were successful at resolving the 

two moving targets and reached a speedup of 7.26x when a 

100-element array was used at the receiver. On the other 

hand, the virtual array experimental data were extracted 

from a VNA-based 4x4 monostatic MIMO radar system 
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and used with the MVDR spectrum to distinguish between 

two closely spaced targets with a GPU execution time that 

is 5.00 times faster than the CPU. These experiments 

proved that it is possible to integrate a GPU within a 

MIMO radar system to accelerate the MVDR algorithm. 
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