
Universal Journal of Electrical and Electronic Engineering 7(1): 19-27, 2020 http://www.hrpub.org

DOI: 10.13189/ujeee.2020.070102

MATLAB-Based GPU Acceleration for Multiple-Input

Multiple-Output Radar Beamforming Algorithm

Mostafa Hefnawi
*
, Gillian Rideout

Department of Electrical and Computer Engineering, Royal Military College of Canada, Canada

Received November 19, 2019; Revised December 30, 2019; Accepted January 13, 2020

Copyright©2020 by authors, all rights reserved. Authors agree that this article remains permanently open access under
the terms of the Creative Commons Attribution License 4.0 International License

Abstract Multi-input and multi-output (MIMO) radar

systems possess numerous advantages, such as scanning an

entire region much faster than a phased array, enhancing

the spatial resolution, mitigating interference and multipath

fading, and improving the probability of detection of

targets. MIMO radar systems use adaptive beamforming

techniques such as the minimum variance distortionless

response (MVDR) to obtain the best possible estimation of

the direction of arrival (DOA) of the targets. The MVDR

algorithm has been thoroughly investigated for traditional

phased array radars. For MIMO radar systems, however, it

requires significant signal processing, which can introduce

substantial latency, especially in the case of large MIMO

systems where few hundred antennas are used; this can be

solved by using a Graphics Processor Unit (GPU), which

contains thousands of cores and can execute many

operations in parallel. This paper presents a

MATLAB-based approach for GPU parallelization of the

minimum variance distortionless (MVDR) beamforming

algorithm in a MIMO radar system. Two MIMO radar

systems are considered. The first one is a simulated MIMO

radar which is used for automotive adaptive cruise control

(ACC), and the second one is an experimental monostatic

MIMO radar that is based on a vector network analyzer

(VNA). It is shown that the GPU achieved a speedup of up

to 7 times while successfully detecting all targets.

Keywords MIMO Radar, GPU, MVDR

1. Introduction

The application of multi-input and multi-output (MIMO)

techniques to radar systems has received considerable

attention recently [1-13]. Unlike traditional phased-array

radars in which a steered beam is used at the transmitter to

scan a sector, MIMO radar transmits different waveforms

from each omnidirectional antenna element simultaneously,

allowing for a sector scan rate that is several times faster

than steered beam radars. A band of matched filters can

extract the waveforms bearing with the target information

at the receiver end. Generally, MIMO radar is implemented

using either widely separated antennas [7-8] or colocated

antennas [9-13]. In a MIMO radar with widely separated

antennas, each transmit-receive pair sees a different aspect

of the target, which improves the detection probabilities of

targets. This configuration relies on space diversity to

improve the detection performance but does not provide

the flexibility of transmitting the desired beampattern. On

the other hand, in a MIMO radar with collocated antennas,

the antenna elements are closely spaced so that each

transmit-receive pair sees the same aspect of the target.

While this configuration does not provide spatial diversity,

it relies on waveform diversity to achieve a better spatial

resolution by combining all the transmitting paths in a

virtual array with an extended aperture. This configuration

also has many other advantages compared to the spatial

diversity configuration, such as excellent clutter

interference rejection capability, improved parameter

identifiability, and enhanced flexibility for transmitting

beampattern design. In this paper, therefore, only the

colocated antenna configuration will be examined. Two

MIMO radar systems are considered. The first one is a

simulated MIMO radar, which is used for automotive

adaptive cruise control (ACC) [14] and the second one is

an experimental monostatic MIMO radar that is based on a

vector network analyzer (VNA) [15]. A generic MIMO

radar design is illustrated in Figure 1, where there are 𝑀

independent orthogonal transmitters and 𝑁 receivers.

Each receiver would have 𝑀 matched filters that

correspond to the 𝑀 distinct transmitted waveforms.

Having 𝑀 independent transmitters and 𝑁 receivers

produces 𝑀 × 𝑁 paths for the return from the 𝑘𝑡ℎ target,

which in turn creates a virtual array with a narrower beam

and a larger effective aperture in comparison to a phased

array.

20 MATLAB-Based GPU Acceleration for Multiple-Input Multiple-Output Radar Beamforming Algorithm

Figure 1. Generic MIMO radar [15].

The generic received signal for the system illustrated in

Figure 1 is given by [2]:

𝑦𝑛[𝑛] = ∑ 𝛼(𝜃𝑘) ∑ 𝑒−𝑗𝜔𝑐𝜏𝑚𝑛(𝜃𝑘)𝑠𝑚[𝑛] + 𝑤𝑛[𝑛]𝑀
𝑚=1

𝐾
𝑘=1 , (1)

where α is the complex amplitude of the 𝑘𝑡ℎ return signal

from a target located at an angle 𝜃𝑘, 𝑠𝑚 is the baseband

samples of the 𝑚𝑡ℎ transmitted signal, 𝜏𝑚𝑛(𝜃𝑘) is the

total phase delay between the mth transmitting element, the

𝑘𝑡ℎ target, and the 𝑛𝑡ℎ receiver, 𝜔𝑐 is the carrier

frequency, [n] is the time index, and 𝑤𝑛 is an additive

white Gaussian noise with zero-mean and a covariance

matrix 𝑅𝑤 = 𝜎2𝐼𝑀.
It is essential to note in (1) that a MIMO radar takes the

sum of returns from all targets, whereas a phased array

radar will only have a return from its directed beam.

Extracting the independent transmit and receive paths is

the most critical step in designing a MIMO radar as these

signals are used to form the virtual array, will define the

two-way antenna pattern, and contains the necessary

information to conduct beamforming on reception.

Time-division multiplexing (TDM) MIMO was selected

as the orthogonal waveform to be implemented in this

paper for its simplicity to form a virtual array and to

reduce the number of matched filters required on

reception. The received signals from individual elements

can be mapped directly to a virtual element as follows [2]:

𝑉𝑖𝑟𝑡𝑢𝑎𝑙 𝐴𝑟𝑟𝑎𝑦(𝑥) = ∑ ∑ 𝛿(𝑥 − (𝑥𝑚 + 𝑥𝑛))𝑁−1
𝑛=0

𝑀−1
𝑚=0 , (2)

where 𝑀 and 𝑁 are the numbers of transmitting and

receiving antennas, respectively, 𝑥𝑚 and 𝑥𝑛 are the

physical locations of the 𝑚𝑡ℎ transmit element and the

𝑛𝑡ℎ receive element.

Using a virtual array allows for the system to increase

the angular resolution and accuracy beyond the physical

number of elements that are present in the transmit and

receive arrays [2]. It also allows for a sparsely filled array

to maintain the same resolution of a full array, without the

added cost of more hardware. On the other hand, MIMO

radar systems use adaptive beamforming techniques such

as the minimum variance distortionless response (MVDR)

to obtain the best possible estimation of the direction of

arrival (DOA) of the targets [14-14]. The MVDR technique

attempts to minimize the noise and interference by creating

nulls toward their directions and maintaining a fixed gain

in the look direction. The MVDR spectrum given in [22]

can be extended to MIMO radar as follows:

𝑆 =
1

𝒔𝑣
𝐻(𝜃𝑡)𝑹𝑥𝑥

−1𝒔𝒗(𝜃𝑡)
 (3)

where 𝒔𝒗 is the steering vector of the virtual array and

𝑹𝑥𝑥 is the covariance matrix at the output of the virtual

array.

The MVDR algorithm has been thoroughly investigated

for traditional phased array radars. For MIMO radar

systems, however, it requires matrix inversions for each

pulse that is transmitted by the MIMO radar. In a small

system, the time to complete these calculations on a Central

Processing Unit (CPU) may be acceptable. However, when

a system grows to be quite large such as in the case of large

MIMO systems where few hundred antennas are used, the

required calculation time to carry out the MVDR

beamforming algorithm would be enormous and

unacceptable. An alternative to the CPU is the Graphics

Processor Units (GPU) that contain thousands of cores and

can execute software programs in parallel [23]. It is lucky

then that many algorithms used within MIMO radar

systems are highly parallel and computationally intensive,

which makes them ideal candidates for a GPU

implementation. A survey paper completed in 2017

showed that there had been much success in using GPUs in

traditional single input single output (SISO) radar systems

[21]; significant computational speedups were found to

have occurred. As well, several papers were found which

had success integrating GPU and MIMO in communication

scenarios that provided optimization or greater accuracy

[22-26]. However, there was little research to be found

concerning incorporating MIMO radar and GPUs. This

paper explores the use of GPU technology in a traditional

MIMO radar. More specifically, the paper investigates the

speedup achieved when using a MATLAB-based GPU

acceleration of the MVDR algorithm in a MIMO radar.

 Universal Journal of Electrical and Electronic Engineering 7(1): 19-27, 2020 21

Figure 2. Automotive MIMO Radar for ACC

2. GPU Acceleration of an Automotive
MIMO Radar

Figure 2 shows the first MIMO radar system considered

in this paper. It consists of a simulated automotive MIMO

radar that is used for adaptive cruise control (ACC)

onboard an autonomous vehicle that tracks two moving

vehicle targets [27]. The simulation of this system is

performed using the Phased Array Toolbox (PAT) of

MATLAB [28], and the GPU acceleration of the MVDR

algorithm is performed using the Parallel Computing

Toolbox (PCT) [29].

2.1. Waveform Generation

In this simulation, a frequency modulated continuous

(FMCW) Waveform is created using the

phased.FMCWWaveform object and then transmitted with

specified peak power using the phased.Transmitter object.

Figure 3 shows how the FMCW waveform can be

simulated, and Table 1 summarizes its parameters that are

based on vehicle ACC [14]. The sweep bandwidth is

determined according to the range resolution of 1 m. The

sweep time for the FMCW wave was chosen to be 5.5

times the round-trip time to account for the time needed for

the signal to travel the maximum unambiguous range. The

sample rate of the FMCW signal is the same as the sweep

bandwidth.

waveform = phased.FMCWWaveform('SweepTime',tm, ...

'SweepBandwidth',bw,'SampleRate',fs);

sig = waveform();

transmitter= phased.Transmitter('PeakPower',...

0.001,'Gain',36);

txsig = transmitter(sig);

Figure 3. Waveform generation

Table 1. Transmitted FMCW properties

Properties Values

Maximum Unambiguous Range 200 m

Sample Rate 150 MHz

Sweep Time 7.3 µs

Sweep Bandwidth 150 MHz

2.2. Transmit and Receive Arrays Simulation

Figure 4 shows how the radar transmitter and receiver

are simulated. The transmitter and receiver use uniform

linear arrays (ULAs) with identical sensor elements that are

created by the phased.ULA object.

22 MATLAB-Based GPU Acceleration for Multiple-Input Multiple-Output Radar Beamforming Algorithm

dt = lambda/2;% half-wavelength ant. spacing at TX

dr = lambda/2; ;% half-wavelength ant. spacing at RX

txarray = phased.ULA(Nt,dt);%Nt:nbr of elements at TX

rxarray = phased.ULA(Nr,dr);%Nr:nbr of elements at RX

txradiator=phased.Radiator('Sensor',txarray,'OperatingFrequency'...

,fc,'PropagationSpeed',c, 'WeightsInputPort',true);

rxcollector=phased.Collector('Sensor',rxarray, ...

'OperatingFrequency',fc,'PropagationSpeed',c);

receiver=phased.ReceiverPreamp('Gain',40, ...

'NoiseFigure',4.5,...'SampleRate',fs);

Figure 4. Transmit and receive arrays Simulation

After the construction of the ULAs, a radiator and a

collector are created using the phased.Radiator and
phased.Collector System objects. The radiator converts

the waveform into radiated wavefields transmitted from

antenna arrays and the collector converts incident wave

fields into signals that are preamplified by the

phased.ReceiverPreamp System object. The parameters

of this simulation are shown in Table 2.

Table 2. Antenna array parameters

Sensor parameters Value

Operating Frequency (GHz) 77

Transmit Array Spacing dt 0.5λ

Receive Array spacing dr 0.5λ

Transmitter Peak Power (W) 0.001

Transmitter Gain (dB) 36

Receiver Gain (dB) 40

Receiver Sample Rate (MHz) 75

Receiver Noise Figure (dB) 4.5

2.3. Target Simulation

The radar targets consist of two moving cars that are

created using the system object phased.RadarTarget
which models how the radar signal will be reflected from

the targets. The measure of a target's ability to reflect radar

signals in the direction of the radar receiver is called the

radar target cross-section (RCS). The motion of a platform

in space is simulated using phased.Platform object. This

platform can be a target or a radar transmitter/receiver. The

model created assumes that the platforms undergo their

motion at a constant velocity during the simulation where

positions and velocities are defined within the global

coordinate system. The position and motion of the

autonomous vehicle and the two cars are presented in Table

3, whereas the code used to define the position and motion

of the target is illustrated in Figure 5.

Table 3. Position and motion of the autonomous vehicle and the two
cars

Parameters Car 1 Car 2
Ego

vehicle

Velocity in x direction

(km/h)
-80 96 100

Azimuth -30 degrees 10 degrees 0

RCS (m2) 100 200 100

Starting Position (m)

x direction:

34.64

x direction:

49.24

x

direction:

0

y direction:

-20

y direction:

8.68m
0

z direction:

0.5

z direction:

0.5
0.5

Distance between car

and autonomous

vehicle sensor

40 m 50 m 0

radarspeed = 100*1000/3600;% vehicle speed 100 km/h

radarmotion=phased.Platform('InitialPosition', ...

[0;0;0.5],'velocity', [radar-speed;0;0]);

cardist = [40 50]; % Dist. radar to cars (m)

carspeed = [-80 96] * 1000/3600; % km/h -> m/s

caraz = [-30 10];

carrcs = [100 200];

carpos = [cardist.*cosd(caraz); ...

cardist.*sind(caraz);0.5 0.5];

cars = phased.RadarTarget('MeanRCS',carrcs, ...

'PropagationSpeed',c,'OperatingFrequency',fc);

carmotion = phased.Platform('InitialPosition', ...

carpos,'velocity',[carspeed;0 0;0 0]);

Figure 5. Target motion code

2.4. Virtual Array Processing

The raw data that is received by the physical receive

array must be processed to associate the returns with the

correct transmit element in order to form the virtual array

data. Since this simulation uses TDM-MIMO FMCW

waveform with two transmit elements, the virtual array

data can be processed by doing two sweeps of the data.

Given that there are 64 radar sweeps completed, 32 of these

sweeps will correspond to transmit element zero, and 32

belong to transmit element one. Because the transmitters

are toggled midway through the simulation, it is deduced

that every other data cube will belong to the same

transmitter, with the odd elements corresponding to

element zero and the even corresponding to element One.

 Universal Journal of Electrical and Electronic Engineering 7(1): 19-27, 2020 23

These two arrays are then catenated together to create the

virtual array data. The code used to create the virtual array

is shown in Figure 6.

% the data from the two transmit antenna

% elements extracted from two consecutive

Nvsweep = Nsweep/2;

xr1 = xr(:,:,1:2:end);

xr2 = xr(:,:,2:2:end);

% These two arrays are then catenated together to

% create the virtual array data as follows:

xrv = cat(2,xr1,xr2);

Figure 6. Virtual array creation

2.5. GPU Acceleration of the MVDR Spectrum

CUDA is a programming language that exploits the

parallel processing capabilities of GPUs and is used in

heterogeneous computing [30]. NVIDIA has developed

CUDA extensions that can be used with other languages,

such as FORTRAN and Python [31], which allows the

coder to use a language of their choice and decreases the

learning curve associated with parallel programming.

MATLAB users can also compile their complete

algorithms to run on any modern NVIDIA GPUs using the

Parallel Computing Toolbox (PCT) without having to use

CUDA programming [31]. In this paper, the PCT of

MATLAB is used to achieve a GPU acceleration of the

MVDR algorithm in a MIMO radar system. The MVDR

spectrum was run on the GPU using the gpuArray function.

When a gpuArray argument is supplied to any

GPU-enabled function, the function runs automatically on

the GPU. Figure 7 shows the code used for the GPU-based

MVDR spectrum. The GPU used to carry out the parallel

algorithm is a NVIDIA GeForce GTX TITAN which is

based on the Kepler Architecture [32]. The specifications

for this GPU can be found in Table 4 [33]. On the other

hand, the CPU simulation is performed using a

high-performance Linux computer with Intel Xeon CPU

E5-2660 operating at 2.60 GHz and 128 GB of RAM and

running a 64-bit operating system.

% copy the virtual array to the GPU

xrv_parallel = gpuArray(xrv);

% copy the virtual steering vector to the GPU

sv_parallel = gpuArray(sv);

% Compute the covariance matrix on the GPU

Rxx_parallel = transpose(xrv_parallel)* xrv_parallel;

% Compute the MVDR spectrum on the GPU.

S_parallel=transpose(sv_parallel)*(Rxx_parallel\sv_parallel);

Figure 7. GPU-based MVDR spectrum

Table 4. NVIDIA GeForce GTX TITAN operating specifications [33]

CUDA Cores 2688

Base Clock 837 MHz

Boost Clock 876 MHz

Memory Clock 6.0 Gbps

Memory Bandwidth 288.4 GB/sec

Computing Capability 3.5

Max Threads/Warp 32

Max Threads/Multiprocessor 2048

Max Blocks/Multiprocessor 16

Max Shared Memory/thread block 48 kilobytes

Max Registers/block 65536

Max X Grid Dimension 232-1

2.6. Simulation Results and Analysis

For simplicity, the MIMO radar system with only two

transmit elements were simulated. The number of

receivers was varied from four to 100 to determine how an

increased number of receivers will affect the speedups and

execution times. The CPU-based and GPU-based MVDR

spectrums with two transmitters and four receivers are

shown in Figure 8. Both spectrums are similar and clearly

show two independent targets represented by the azimuth

of both cars. Table 5 shows the CPU and GPU execution

time for a varying number of receiving elements, as well as

the speed up that was obtained by utilizing the GPU. It is

shown that as the number of receivers is increased the

overall speedup also is increased. This is an expected result

since large data sets will take longer to execute serially

than in a parallel operation. The strength of the GPU’s

parallel computing capability is highlighted once the

number of receivers is increased to 100, as the overall

speedup of the MVDR algorithm is increased to 7.26x.

(a)

24 MATLAB-Based GPU Acceleration for Multiple-Input Multiple-Output Radar Beamforming Algorithm

(b)

Figure 8. MVDR Spectrum for two transmitting elements and four

receiving elements: (a) CPU-based MVDR, (b) GPU-based MVDR

Table 5. CPU and GPU execution time and speedup for two transmit
antennas and different number of receive antennas

Number of

Receivers

CPU Execution

Time (ms)

GPU Execution

Time (ms)
Speedup

4 269.68 53.57 5.04

8 270.68 54.46 4.97

16 343.704 60.44 5.69

24 387.34 61.92 6.26

48 529.22 88.30 6.00

75 703.60 118.13 5.96

100 890.50 122.78 7.26

Overall, this simulation was a success and has proven

that a simulated MIMO radar system can be successfully

integrated with a GPU. However, with a bigger, more

complex system (thousands of TX/RX elements instead of

the hundred in this system), utilizing shared memory would

allow for an even more significant advantage. The faster

execution time associated with shared memory is a

well-documented property [20,32]. Unfortunately, this

possibility was not explored due to MATLAB’s

limitations.

3. GPU Acceleration of a Vector
Network Analyzer (VNA)-Based
MIMO Radar

GPU acceleration of the MIMO radar was also tested in

a laboratory setting using experimental data of a

VNA-based 4x4 monostatic MIMO radar system [15].

Figure 9 shows the diagram of the experimental MIMO

radar using the Keysight N5244A 4-port PNA-X VNA [16].

A four-element microstrip patch antenna array, with a

half-wavelength antenna spacing and operating at 8.925

GHz, is connected to a 4-ports VNA, which is connected to

a computer running MATLAB/SIMULINK. The VNA

measures the phase-coherent scattering (S) parameters

between each of its ports. The S-parameter data are then

saved in an I and Q format, which can be used as radar

returns and can be processed by Simulink to form a virtual

array and perform and beamforming so that range and

angle information from targets could be extracted. The

high-level Simulink model used to process the radar returns

is shown in Figure 10. In a laboratory setting, clutter may

be removed by performing two sets of measurements: one

with targets and another one with only the background.

Figure 9. System Overview of VNA MIMO radar [15].

 Universal Journal of Electrical and Electronic Engineering 7(1): 19-27, 2020 25

Figure 10. Simulink overview of the PNA-X MIMO radar [15].

Figure 11. MVDR spectrum of two targets at 4 m separated by 19o

The matrices of the PNA-X Data and Background

Measurement from Figure 9 are measured with the same

settings to ensure that they have the same matrix

dimensions. These two matrices are the input to the

Simulink model, which processes the data one sweep at a

time. The data from both matrices are sent to the

S-parameters block, which subtracts the background

measurement from the data with targets and converts the

received data from amplitude and phase to I/Q data. The

I/Q data are then sent to an IFFT block to convert the data

from the frequency domain to the time domain. An IFFT is

conducted on each S-parameter and then buffered over a

specified coherent integration interval. After the

S-parameter radar returns are converted to the time domain,

they are sent to the virtual array block for coherent

integration and to create a virtual array. It should be noted

that since a 4-element ULA is used in a monostatic scheme,

the received signals will be mapped to a 7-element virtual

array, which will be used to compute the CPU-based and

the GPU-based MVDR spectrums. Two cylindrical

metallic targets were placed at a range of 4 m then

separated in azimuth by 19o. Figure 11 shows the MVDR

spectrum that can distinguish between the two closely

spaced targets with a GPU execution time that is 5.00 times

faster than the CPU. This result concurs with the speedup

of 5.04 achieved with the 2 x 4 MIMO radar simulation

data that corresponds to an 8-element virtual array.

4. Conclusions

The GPU-based MVDR algorithm was tested using an

ACC MIMO-TDM radar system on board of an

autonomous car and using experimental data of a

VNA-based MIMO radar. The ACC MIMO-TDM radar

system was simulated using two transmit antennas and a

different number of receive antennas varying from four to

100. All these scenarios were successful at resolving the

two moving targets and reached a speedup of 7.26x when a

100-element array was used at the receiver. On the other

hand, the virtual array experimental data were extracted

from a VNA-based 4x4 monostatic MIMO radar system

26 MATLAB-Based GPU Acceleration for Multiple-Input Multiple-Output Radar Beamforming Algorithm

and used with the MVDR spectrum to distinguish between

two closely spaced targets with a GPU execution time that

is 5.00 times faster than the CPU. These experiments

proved that it is possible to integrate a GPU within a

MIMO radar system to accelerate the MVDR algorithm.

Acknowledgements

We are very grateful to the Canadian Microelectronics

Corporation (CMC) for providing the Heterogeneous

Parallel Platform to perform the MIMO radar CPU-GPU

Simulations.

REFERENCES

 J. Li, P. Stoica. MIMO Radar Signal Processing,
Wiley-IEEE Press, Hoboken, NJ, 2008.

 P. Sévigny. MIMO Radar: Literature survey of papers
between 2003 and September 2008, DRDC, Ottawa, ON,
TM 2008-333, Mar. 2009.

 E. Brookner. MIMO radars demystified; and their
conventional equivalents, IEEE International Symposium
on Phased Array Systems and Technology (PAST),1–10,
2016.

 P. W. Moo, Z. Ding. Tracking Performance of MIMO Radar
for Accelerating Targets, IEEE Trans. Signal Process, Vol.
61, No. 21, 5205–5216, 2013.

 I. Bekkerman, J. Tabrikian. Target Detection and
Localization Using MIMO Radars and Sonars, IEEE Trans.
Signal Process, Vol. 54, No. 10, 3873–3883, 2006.

 H. Sun, F. Brigui, M. Lesturgie. Analysis and comparison of
MIMO radar waveforms, International Radar Conference,
1–6, 2014.

 E. Fishler, A. Haimovich, R. S. Blum, L. J. Cimini, D.
Chizhik, and R. A. Valenzuela, “Spactial Diversity in
Radars-Models and Detection Performance,” IEEE Trans.
on Signal Processing, Vol. 54, Iss. 3, 823–837, 2006.

 A. M. Haimovich, R. S. Blum, and L. J. Cimini. MIMO radar
with widely separated antennas. IEEE Signal Processing
Magazine, Vol. 25, Iss. 1, 116 - 129, 2008.

 P. Stoica, J. Li. MIMO radar with colocated antennas, IEEE
Signal Processing Magazine, Vol. 24, No. 5, 106-114, 2007.

 J. Li, P. Stoica, L. Xu, W. Roberts. On parameter
identifiability of MIMO radar, IEEE Signal Process. Letter,
Vol. 14, No. 12, 968-971, 2007.

 P. Stoica, J. Li., Y. Xie. On probing signal design for MIMO
radar, IEEE Trans. Signal Processing, 55, 8, 4151-4161,
2007

 T. Aittomaki, V. Koivunen. Signal covariance matrix
optimization for transmit beamforming in MIMO radars. In
Proc. 38th Asilomar Conf. Signals, Syst. Comput., Pacific
Grove, CA, 182-186, 2007.

 Fuhrmann, D.R. ; San Antonio, G. Transmit beamforming
for MIMO radar systems using signal cross-correlation,
IEEE Trans. Aerospace and Electronic Systems, Vol. 44,
No. 1, 171-186, 2008.

 Automotive Adaptive Cruise Control Using FMCW
Technology, Online available from https://www.mathwork
s.com/help/phased/examples/automotive-adaptive-cruise-c
ontrol-using-fmcw-technology.html.

 M. Hefnawi, J. R. Bray, J. N. Bathurst, and Y. M.M. Antar.
MIMO Radar Using a Vector Network Analyzer,
Electronics 2019, Vol. 8, Iss. 12, 1447.
https://doi.org/10.3390/electronics8121447

 N5244A PNA-X Microwave Network Analyzer, 43.5
GHz|Keysight. Online available from http://www.keysight.
com/en/pdx-x201767-pn-N5244A/pna-x-microwave-netwo
rk-analyzer-435-ghz?cc=CA&lc=eng.

 J. Capon. High- Resolution Frequency-Wavenumber
Spectrum Analysis, Proceedings of the IEEE, Vol. 57, No.
57, No. 8, 1408–1418, Aug. 1969.

 J. Benesty, J. Chen, and Y. Huang. A Generalized MVDR
Spectrum, IEEE Signal Processing Letters, Vol. 12, No. 12,
Dec. 2005.

 S. A. Vorobyov. Principles of minimum variance robust
adaptive beamforming design, Signal Processing, Vol. 93,
No. 12, 3264–3277, Dec. 2013.

 D. B. Kirk and W. W. Hwu, Programming Massively
Parallel Processors, Third. Cambridge, MA, United State:
Elsevier, 2017.

 R. S. Perdana, B. Sitohang, and A. B. Suksmono. A survey
of graphics processing unit (GPU) utilization for radar
signal and data processing system, 6th International
Conference on Electrical Engineering and Informatics
(ICEEI), Langkawi, 1–6, 2017.

 M. Wu, Y. Sun, and J. R. Cavallaro. Reconfigurable
Real-time MIMO Detector on GPU, 43rd Asilomar Conf.
Signals, Systems, and Computers, Pacific Grove, CA,
USA, 2009, 690–694.

 J. Sanson, A. Gameiro, D. Castanheira, and P. P. Monteiro.
Comparison of DoA Algorithms for MIMO OFDM Radar,
15th European Radar Conference (EuRAD), 2018, 226–
229.

 T. Nylanden, J. Janhunen, O. Silven, and M. Juntti. A GPU
implementation for two MIMO-OFDM detectors,
International Conference on Embedded Comp. Systems:
Architectures, Modeling and Simulation, Samos, Greece,
2010, 293–300.

 T. Chen and H. Leib. GPU acceleration for fixed complexity
sphere decoder in large MIMO uplink systems, in 2015
IEEE 28th Canadian Conference on Electrical and
Computer Engineering (CCECE), Halifax, NS, Canada,
2015, 771–777.

 S. Roger, C. Ramiro, A. Gonzalez, V. Almenar, and A. M.
Vidal. Fully Parallel GPU Implementation of a
Fixed-Complexity Soft-Output MIMO Detector, IEEE
Transactions on Vehicular Technology, Vol. 61, No. 8,
3796–3800, 2012.

 Increasing Angular Resolution with MIMO Radars, Online

 Universal Journal of Electrical and Electronic Engineering 7(1): 19-27, 2020 27

available from https://www.mathworks.com/help/phased/e
xamples/increasing-angular-resolution-with-mimo-radars.h
tml.

 Phased Array System Toolbox, Online available from
https://www.mathworks.com/products/phased-array.html.

 Parallel Computing Toolbox, Online available from
https://www.mathworks.com/products/parallel-computing.
html.

 CUDA GPUs, NVIDIA Developer, Online available from
https://developer.nvidia.com/cuda-gpus.

 Numerical Analysis Tools, Online available from
https://developer.nvidia.com/numerical-analysis-tools.

 NVIDIA, NVIDIA CUDA C Programming Guide. Santa
Clara, CA, 2012.

 GeForce GTX TITAN | Specifications | GeForce. Online
available from https://www.geforce.com/hardware/desktop
-gpus/geforce-gtx-titan/specifications

