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THE APPLICATIONS OF CAUCHY-SCHWARTZ

INEQUALITY FOR HILBERT MODULES TO

ELEMENTARY OPERATORS AND I.P.T.I.

TRANSFORMERS

Dragoljub J. Ke£ki¢

We apply the inequality |〈x, y〉| ≤ ||x|| 〈y, y〉1/2 to give an easy and elemen-
tary proof of many operator inequalities for elementary operators and inner
type product integral transformers obtained during last two decades, which
also generalizes many of them.

1. INTRODUCTION

Let A be a Banach algebra, and let aj , bj ∈ A. Elementary operators,
introduced by Lummer and Rosenblum in [12] are mappings from A to A of the
form

(1) x 7→
n∑
j=1

ajxbj .

Finite sum may be replaced by in�nite sum provided some convergence condition.

A similar mapping, called inner product type integral transformer (i.p.t.i.
transformers in further), considered in [6], is de�ned by

(2) X 7→
∫

Ω

AtXBtdµ(t),
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where (Ω, µ) is a measure space, and t 7→ At, Bt are �elds of operators in B(H).

During last two decades, there were obtained a number of inequalities in-
volving elementary operators on B(H) as well as i.p.t.i. type transformers. The
aim of this paper is to give an easy and elementary proof of those proved in
[?, 8, 6, 9, 4, 21, 10] and [11] using the Cauchy Schwartz inequality for Hilbert
C∗-modules � the inequality stated in the abstract, which also generalizes all of
them.

2. PRELIMINARIES

Throughout this paper A will always denote a semi�nite von Neumann al-
gebra, and τ will denote a semi�nite trace on A. By Lp(A; τ) we will denote the
non-commutative Lp space, Lp(A; τ) = {a ∈ A | ‖a‖p = τ(|a|p)1/p < +∞}.

It is well known that L1(A; τ)∗ ∼= A, Lp(A; τ)∗ ∼= Lq(A; τ), 1/p + 1/q = 1.
Both dualities are realized by

Lp(A; τ) 3 a 7→ τ(ab) ∈ C, b ∈ Lq(A; τ) or b ∈ A.

For more details on von Neumann algebras the reader is referred to [13], and
for details on Lp(A, τ) to [15].

Let M be a right Hilbert W ∗-module over A. (Since M is right we assume
that A-valued inner product is A-linear in second variable, and adjoint A-linear in
the �rst.) We assume, also, that there is a faithful left action of A onM , that is, an
embedding (and hence an isometry) of A into Ba(M) the algebra of all adjointable
bounded A-linear operators on M . Hence, for x, y ∈M and a, b ∈ A we have

〈x, y〉 a = 〈x, ya〉 , 〈xa, y〉 = a∗ 〈x, y〉 , 〈x, ay〉 = 〈a∗x, y〉 .

For more details on Hilbert modules, the reader is referred to [14] or [16].
We quote the basic property of A-valued inner product, a variant od Cauchy-

Schwartz inequality.

Proposition 1. Let M be a Hilbert C∗-module over A. For any x, y ∈M we have

(3) | 〈x, y〉 |2 ≤ ‖x‖2 〈y, y〉 , | 〈x, y〉 | ≤ ‖x‖ 〈y, y〉1/2 ,

in the ordering of A.

The proof can be found in [14, page 3] or [16, page 3]. Notice: 1◦ the left
inequality implies the right one, since t 7→ t1/2 is operator increasing function;
2◦ Both inequalities hold for A-valued semi-inner product, i.e. even if 〈·, ·〉 may be
degenerate.

Finally, we need a counterpart of Tomita modular conjugation.

De�nition 1. Let M be a Hilbert W ∗-module over a semi�nite von Neumann
algebra A, and let there is a left action of A on M .
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A (possibly unbounded) mapping J , de�ned on some A submodule M0 ⊆M
with values inM , we call modular conjugation if it satis�es: (i) J(axb) = b∗J(x)a∗;
(ii) τ(〈J(y), J(x)〉) = τ(〈x, y〉) whenever 〈x, x〉, 〈y, y〉, 〈J(x), J(x)〉, 〈J(y), J(y)〉 ∈
L1(A, τ).

In what follows, we shall use simpler notation x instead of J(x). Thus, the
determining equalities become

(4) axb = b∗xa∗, τ(〈y, x〉) = τ(〈x, y〉).

We shall call the module M together with left action of A and the modular
conjugation J conjugated W ∗-module.

De�nition 2. Let M be a conjugated W ∗-module over A. We say that x ∈M0 is
normal, if (i) 〈x, x〉x = x 〈x, x〉, (ii) 〈x, x〉 = 〈x, x〉.

Remark 1. It might be a nontrivial question, whether J can be de�ned on an arbi-
trary Hilbert W ∗-module in a way similar to the construction of Tomita's modular
conjugation (see [18]). However for our purpose, the preceding de�nition is enough.

Examples of conjugated modules are following.

Example 1. Let A be a semi�nite von Neumann algebra, and let M = An. For
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ M , a ∈ A, de�ne right multiplication, left
action of A, the A-valued inner product and modular conjugation by

(5) xa = (x1a, . . . , xna), ax = (ax1, . . . , axn);

(6) 〈x, y〉 = x∗1y1 + · · ·+ x∗nyn, x = (x∗1, . . . , x
∗
n).

All required properties are easily veri�ed. The element x = (x1, . . . , xn) is normal
whenever all xj are normal and mutually commute.

We have

〈x, ay〉 =

n∑
j=1

x∗jayj ,

which is the term of the form (1).

There are two important modules with in�nite number of summands.

Example 2. Let A be a semi�nite von Neumann algebra. We consider the standard
Hilbert module l2(A) over A and its dual module l2(A)′ de�ned by

l2(A) =
{

(x1, . . . , xn, . . . )
∣∣∣ +∞∑
k=1

a∗kak converges in norm of A
}
.

l2(A)′ =
{

(x1, . . . , xn, . . . )
∣∣∣ ∥∥∥ n∑

k=1

a∗kak

∥∥∥ ≤M < +∞
}
.
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(It is clear that x ∈ l2(A)′ if and only if the series
∑
x∗kxk weakly converges.)

The basic operation on these modules are given by (5) and (6) with in�nite
number of entries.

The main di�erence between l2(A) (l2(A)′ respectively) and An is the fact
that x = (x∗1, . . . , x

∗
n, . . . ) is de�ned only on the subset of l2(A) consisting of those

x ∈M for which
∑
xkx

∗
k converges in the norm of A.

The element x = (x1, . . . , xn, . . . ) ∈M0 is normal whenever all xj are normal
and mutually commute.

Remark 2. The notation l2(A)′ comes from the fact that l2(A)′ is isomorphic to
the module of all adjointable bounded A-linear functionals Λ : M → A.

For more details on l2(A) or l2(A)′ see [16, �1.4 and �2.5].

Example 3. Let A be a semi�nite von Neumann algebra and let (Ω, µ) be a
measure space. Consider the space L2(Ω, A) consisting of all weakly-∗ measurable
functions such that

∫
Ω
x∗xdµ < +∞ weak-∗ converges. The weak-∗ measurability

is reduced to the measurability of functions ϕ(x(t)) for all normal states ϕ, since
the latter generate the predual of A.

Basic operations are given by

x(t) · a = x(t)a, a · x(t) = ax(t), 〈x, y〉 =

∫
Ω

x(t)∗y(t)dµ(t), x(t) = x(t)∗.

All required properties are easily veri�ed. The mapping x 7→ x is again
de�ned on a proper subset of L2(Ω, A). The element x is normal if x(t) is normal
for almost all t, and x(t)x(s) = x(s)x(t) for almost all (s, t).

Again, for a ∈ A we have

〈x, ay〉 =

∫
Ω

x(t)∗ay(t)dµ(t),

which is the term of the form (2).

Thus, norm estimates of elementary operators (1), or i.t.p.i. transformers (2)
are estimates of the term 〈x, ay〉.

In section 4 we need two more examples.

Example 4. Let M1 and M2 be conjugated W ∗-modules over a semi�nite von
Neumann algebra A. Consider the interior tensor product of Hilbert modules M1

and M2 constructed as follows. The linear span of x1 ⊗ x2, x1 ∈ M1, x2 ∈ M2

subject to the relations

a(x1 ⊗ x2) = ax1 ⊗ x2, x1a⊗ x2 = x1 ⊗ ax2, (x1 ⊗ x2)a = x1 ⊗ x2a,

and usual bi-linearity of x1⊗x2, can be equipped by an A-valued semi-inner product

(7) 〈x1 ⊗ x2, y1 ⊗ y2〉 = 〈x2, 〈x1, y1〉 y2〉 .
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The completion of the quotient of this linear span by the kernel of (7) is
denoted by M1 ⊗M2 and called interior tensor product of M1 and M2. For more
details on tensor products, see [14, Chapter 4].

If M1 = M2 = M , M ⊗M can be endowed with a modular conjugation by

x1 ⊗ x2 = x2 ⊗ x1.

All properties are easily veri�ed. Also, x normal implies x ⊗ x is normal and
〈x⊗ x, x⊗ x〉 = 〈x, x〉2.

Example 5. Let Mn, n ∈ N be conjugated modules. Their in�nite direct sum⊕+∞
n=1Mn is the module consisting of those sequences (xn), xn ∈ Mn such that∑+∞
n=1 〈xn, xn〉 weakly converges, with the A-valued inner product

〈(xn), (yn)〉 =

+∞∑
n=1

〈xn, yn〉 .

The modular conjugation can be given by (xn) = (xn). In particular, we
need the full Fock module

F =

+∞⊕
n=0

M⊗n,

where M⊗0 = A, M⊗1 = M , M⊗2 = M ⊗M , M⊗3 = M ⊗M ⊗M , etc.

For x ∈ M , ‖x‖ < 1 the element
∑+∞
n=0 x

⊗n ∈ F (where x⊗0 := 1) is well
de�ned. It is normal whenever x is normal. Also, for normal x, we have

(8)

〈
+∞∑
n=0

x⊗n,

+∞∑
n=0

x⊗n

〉
=

+∞∑
n=0

〈
x⊗n, x⊗n

〉
=

+∞∑
n=0

〈x, x〉n = (1− 〈x, x〉)−1.

We shall deal with unitarily invariant norms on the algebra B(H) of all
bounded Hilbert space operators. For more details, the reader is referred to [22,
Chapter III]. We use the following facts. For any unitarily invariant norm |||·|||, we
have |||A||| = |||A∗||| = ||| |A| ||| = |||UAV ||| = |||A||| for all unitaries U and V , as well
as ‖A‖ ≤ |||A||| ≤ ‖A‖1. The latter allows the following well known interpolation
Lemma, which we state with a proof.

Lemma 2. Let T and S be linear mappings de�ned on the space C∞ of all compact
operators on Hilbert space H. If

‖Tx‖ ≤ ‖Sx‖ for all x ∈ C∞, ‖Tx‖1 ≤ ‖Sx‖1 for all x ∈ C1

then

|||Tx||| ≤ |||Sx|||

for all unitarily invariant norms.
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Proof. The norms ‖ · ‖ and ‖ · ‖1 are dual to each other, in the sense

‖x‖ = sup
‖y‖1=1

| tr(xy)|, ‖x‖1 = sup
‖y‖=1

| tr(xy)|.

Hence, ‖T ∗x‖ ≤ ‖S∗x‖, ‖T ∗x‖1 ≤ ‖S∗x‖1.
Consider the Ky Fan norm ‖ · ‖(k). Its dual norm is ‖ · ‖](k) = max{‖ ·

‖, (1/k)‖ · ‖1}. Thus, by duality, ‖Tx‖(k) ≤ ‖Sx‖(k) and the result follows by Ky
Fan dominance property, [22, �3.4].

3. CAUCHY-SCHWARTZ INEQUALITIES

Cauchy-Schwartz inequality for ‖ · ‖ follows from (3), for ‖ · ‖1 by duality and
for other norms by interpolation.

Theorem 3. Let A be a semi�nite von Neumann algebra, let M be a conjugated
W ∗-module over A and let a ∈ A. Then:

(9) ‖ 〈x, ay〉 ‖ ≤ ‖x‖‖y‖‖a‖, ‖ 〈x, ay〉 ‖1 ≤ ‖ 〈x, x〉1/2 a 〈y, y〉1/2 ‖1;

(10) ‖ 〈x, ay〉 ‖2 ≤ ‖x‖‖a 〈y, y〉1/2 ‖2, and ‖ 〈x, ay〉 ‖2 ≤ ‖y‖‖ 〈x, x〉1/2 a‖2.

In particular, if A = B(H), τ = tr and x, y are normal, then

(11) |||〈x, ay〉||| ≤
∣∣∣∣∣∣∣∣∣〈x, x〉1/2 a 〈y, y〉1/2∣∣∣∣∣∣∣∣∣

for all unitarily invariant norms |||·|||.

Proof. By (3), we have ‖ 〈x, ay〉 ‖ ≤ ‖x‖‖ay‖ ≤ ‖x‖‖y‖‖a‖, which proves the �rst
inequality in (9).

For the proof of the second, note that by (4), for all a ∈ L1(A; τ) we have
τ(b 〈x, ay〉) = τ(〈xb∗, ay〉) = τ(〈ya∗, bx〉) = τ(a 〈y, bx〉). Hence for 〈x, x〉, 〈y, y〉 ≤ 1

‖ 〈x, ay〉 ‖1 = sup
‖b‖=1

|τ(b 〈x, ay〉)| = sup
‖b‖=1

|τ(a 〈y, bx〉)| ≤ sup
‖b‖=1

‖a‖1‖ 〈y, bx〉 ‖ ≤ ‖a‖1,

In the general case, let ε > 0 be arbitrary, and let x1 = (〈x, x〉+ ε)−1/2x and
y1 = (〈y, y〉+ ε)−1/2y. Then x1 = x(〈x, x〉+ ε)−1/2 and y1 = y(〈y, y〉+ ε)−1/2 (by
(4)). Thus

〈x1, x1〉 = (〈x, x〉+ ε)−1/2 〈x, x〉 (〈x, x〉+ ε)−1/2 ≤ 1,

by continuous functional calculus. Hence

‖ 〈x, ay〉 ‖1 =
∥∥∥〈(〈x, x〉+ ε)1/2x1, a(〈y, y〉+ ε)1/2y1

〉∥∥∥
1

=

=
∥∥∥〈x1, (〈x, x〉+ ε)1/2a(〈y, y〉+ ε)1/2y1

〉∥∥∥
1
≤(12)

=
∥∥∥(〈x, x〉+ ε)1/2a(〈y, y〉+ ε)1/2

∥∥∥
1
,
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and let ε→ 0. (Note ‖(〈x, x〉+ ε)1/2 − 〈x, x〉1/2 ‖ ≤ ε1/2.)

To prove (10), by (3) we have

(13) | 〈x, ay〉 |2 ≤ ‖x‖2 〈ay, ay〉 = ‖x‖2 〈y, a∗ay〉 .

Apply ‖ · ‖1 to the previous inequality. By (9) we obtain

‖ 〈x, ay〉 ‖22 ≤ ‖x‖2‖ 〈y, a∗ay〉 ‖1 ≤ ‖x‖2‖ 〈y, y〉
1
2 a∗a 〈y, y〉

1
2 ‖1 = ‖x‖2‖a 〈y, y〉

1
2 ‖22.

This proves the �rst inequality in (10). The second follows by duality

‖ 〈x, ay〉 ‖2 = ‖ 〈y, a∗x〉 ‖2 ≤ ‖y‖‖a∗ 〈x, x〉1/2 ‖2 = ‖y‖‖ 〈x, x〉1/2 a‖2.

Finally, if A = B(H), τ = tr and x, y normal. Then (11) holds for ‖·‖1 by (9).
For the operator norm, it follows by normality. Namely then x 〈x, x〉 = 〈x, x〉x and
we can repeat argument from (12). Now, the general result follows from Lemma
2

Corollary 4. If A = B(H) and M = l2(A)′ (Example 2), then (11) is [?, Theorem
2.2] (the �rst formula from the abstract). If M = L2(Ω, A), A = B(H), (11) is [6,
Theorem 3.2] (the second formula from the abstract).

Remark 3. The inequality (13) forM = B(H)n is proved in [21] using complicated
identities and it plays an important role in that paper.

Using three line theorem (which is a standard procedure), we can interpolate
results of Theorem 3 to Lp(A, τ) spaces.

Theorem 5. Let A be a semi�nite von Neumann algebra, and letM be a conjugated
W ∗-module over A. For all p, q, r > 1 such that 1/q + 1/r = 2/p, we have

(14) ‖ 〈x, ay〉 ‖p ≤
∥∥∥∥〈〈x, x〉q−1

x, x
〉1/2q

a
〈
〈y, y〉r−1

y, y
〉1/2r

∥∥∥∥
p

.

Proof. Let u, v ∈M0 and let b ∈ A. For 0 ≤ Reλ,Reµ ≤ 1 consider the function

f(λ, µ) =
〈

(〈u, u〉+ ε)−
λ
2 u(〈u, u〉+ ε)

λ−1
2 , b(〈v, v〉+ ε)−

µ
2 v(〈v, v〉+ ε)

µ−1
2

〉
.

This is an analytic function (obviously).

On the boundaries of the strips, we estimate. For Reλ = Reµ = 0

f(it, is) =
〈

(〈u, u〉+ ε)−
it
2 u(〈u, u〉+ ε)−

1
2 + it

2 , b(〈v, v〉+ ε)−
is
2 v(〈v, v〉+ ε)−

1
2 + is

2

〉
.

Since (〈u, u〉+ε)−it/2, (〈u, u〉+ε)it/2, (〈v, v〉+ε)−is/2 and (〈v, v〉+ε)is/2 are unitary
operators, and since the norm of u(〈u, u〉+ε)−1/2, v(〈v, v〉+ε)−1/2 does not exceed
1, by (9) we have

(15) ‖f(it, is)‖ ≤ ‖b‖.



8 D. J. Ke£ki¢

For Reλ = Reµ = 1

f(1+it, 1+is) =
〈

(〈u, u〉+ ε)−
1
2−

it
2 u(〈u, u〉+ ε)

it
2 , b(〈v, v〉+ ε)−

1
2−

is
2 v(〈v, v〉+ ε)

is
2

〉
.

By a similar argument, by (9) we obtain

(16) ‖f(1 + it, 1 + is)‖1 ≤ ‖b‖1.

For Reλ = 0, Reµ = 1, by (10) we have

f(it, 1+is) =
〈

(〈u, u〉+ ε)−
it
2 u(〈u, u〉+ ε)−

1
2 + it

2 , b(〈v, v〉+ ε)−
1
2−

is
2 v(〈v, v〉+ ε)

is
2

〉
,

and hence

(17) ‖f(it, 1 + is)‖2 ≤ ‖b‖2.

Similarly

(18) ‖f(1 + it, is)‖2 ≤ ‖b‖2.

Let us interpolate between (15) and (17). Let r > 1. Then 1/r = θ·1+(1−θ)·0
for θ = 1/r. Then (θ · (1/2) + (1− θ) · 0)−1 = 2r and hence, by three line theorem
(see [23] and [15]) we obtain

(19) ‖f(0 + it, 1/r)‖2r ≤ ‖b‖2r

Similarly, interpolating between (18) and (16) we get

(20) ‖f(1 + it, 1/r)‖ 2r
r+1
≤ ‖b‖ 2r

r+1

since 1/r = θ ·1+(1−θ)·0 for same θ = 1/r and (θ ·1+(1−θ)·(1/2))−1 = 2r/(r+1)

Finally, interpolate between (19) and (20). Then 1/q = θ · 1 + (1− θ) · 0 for
θ = 1/q and therefore (θ · r+1

2r + (1− θ) 1
2r )−1 = 1

2qr · (r + 1 + q − 1) = p. Thus

‖f(1/q, 1/r)‖p ≤ ‖b‖p.

i.e.∥∥∥〈(〈u, u〉+ ε)−
1
2q u(〈u, u〉+ ε)

1−q
2q , b(〈v, v〉+ ε)−

1
2r v(〈v, v〉+ ε)

1−q
2q

〉∥∥∥
p
≤ ‖b‖p.

After substitutions

u = x 〈x, x〉(q−1)/2
, v = 〈y, y〉(r−1)/2

, b = (〈u, u〉+ ε)1/2qa(〈v, v〉+ ε)1/2r,

we obtain∥∥∥〈x 〈x, x〉(q−1)/2
(〈x, x〉q + ε)(1−q)/2q, ay 〈y, y〉(q−1)/2

(〈y, y〉q + ε)(1−q)/2q
〉∥∥∥

p
≤

≤
∥∥∥∥(〈〈x, x〉q−1

x, x
〉

+ ε
)1/2q

a
(〈
〈y, y〉r−1

y, y
〉

+ ε
)1/2r

∥∥∥∥
p

which after ε → 0 yields (14), using the argument similar to that in [16, Lemma
1.3.9].
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Remark 4. In a special case A = B(H), τ = tr, M = l2(A)′, r = q = p formula
(14) becomes [8, Theorem 2.1] (the main result).

Also, for A = B(H), τ = tr,M = L2(Ω, A) formula (14) becomes [6, Theorem
3.3] (the �rst displayed formula from the abstract), there proved with an additional
assumption that Ω is σ-�nite.

In the next two section we derive some inequalities that regularly arise from
Cauchy-Schwartz inequality.

4. INEQUALITIES OF THE TYPE |1− 〈x, y〉 | ≥ (1−‖x‖2)1/2(1−‖y‖2)1/2

The basic inequality can be proved as

|(1− 〈x, y〉)−1| ≤
+∞∑
n=0

| 〈x, y〉 |n ≤
+∞∑
n=0

‖x‖n‖y‖n ≤

(
+∞∑
n=0

‖x‖2n
)1/2(+∞∑

n=0

‖y‖2n
)1/2

= (1− ‖x‖2)−1/2(1− ‖y‖2)−1/2.

Following this method we prove:

Theorem 6. Let M be a conjugated W ∗-module over A = B(H), let x, y ∈M0 be
normal, and let 〈x, x〉, 〈y, y〉 ≤ 1. Then∣∣∣∣∣∣∣∣∣(1− 〈x, x〉)1/2a(1− 〈y, y〉)1/2

∣∣∣∣∣∣∣∣∣ ≤ |||a− 〈x, ay〉|||
in any unitarily invariant norm.

Proof. We use examples 4 and 5.

Denote Ta = 〈x, ay〉. We have T 2a = 〈x, 〈x, ay〉 y〉 = 〈x⊗ x, a(y ⊗ y)〉 and by
induction T ka =

〈
x⊗k, ay⊗k

〉
. Suppose ‖x‖, ‖y‖ ≤ δ < 1. Then ‖x⊗k‖, ‖y⊗k‖ ≤ δk

and hence
∣∣∣∣∣∣T k∣∣∣∣∣∣ ≤ δ2k. Then

(21) (I − T )−1 =

+∞∑
n=0

T k.

Put b = (I − T )−1a. Then

|||b||| =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
+∞∑
k=0

T ka

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
+∞∑
k=0

〈
x⊗k, ay⊗k

〉∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ =

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
〈

+∞∑
k=0

x⊗k, a

+∞∑
k=0

y⊗k

〉∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤(22)

≤

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
〈

+∞∑
k=0

x⊗k,

+∞∑
k=0

x⊗k

〉1/2

a

〈
+∞∑
k=0

y⊗k,

+∞∑
k=0

y⊗k

〉1/2
∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣ .
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by (11) and normality of x and y. Invoking (8), inequality (22) becomes

(23)
∣∣∣∣∣∣(I − T )−1a

∣∣∣∣∣∣ ≤ ∣∣∣∣∣∣∣∣∣(1− 〈x, x〉)−1/2a(1− 〈y, y〉)−1/2
∣∣∣∣∣∣∣∣∣ .

Finally, note that the mappings I − T and a 7→ (1 − 〈x, x〉)−1/2a(1 − 〈y, y〉)−1/2

commute (by normality of x and y) and put (1−〈x, x〉)−1/2(a−Ta)(1−〈y, y〉)−1/2

in place of a, to obtain the conclusion.

If ‖x‖, ‖y‖ = 1 then put δx instead of x and let δ → 1−.

Remark 5. If M = L2(Ω, A) this is [6, Theorem 4.1] (the last formula from the
abstract). If M = B(H)×B(H), x = (I, A), y = (I,B) then it is [?, Theorem 2.3]
(the last formula from the abstract).

Remark 6. Instead of t 7→ 1−t we may consider any other function f such that 1/f
is well de�ned on some [0, c) and has Taylor expansion with positive coe�cients,
say cn. Then distribute

√
cn on both arguments in inner product in (22) and after

few steps we get ∣∣∣∣∣∣∣∣∣(f(x∗x))1/2a(f(y∗y))1/2
∣∣∣∣∣∣∣∣∣ ≤ |||f(T )||| .

For instance, for t 7→ (1 − t)α, α > 0 we have (1 − t)−α =
∑
cnt

n, where
cn = Γ(n+ α)/(Γ(α)n!) > 0 and we get

(24)
∣∣∣∣∣∣∣∣∣(1− 〈x, x〉)α/2a(1− 〈y, y〉)α/2

∣∣∣∣∣∣∣∣∣ ≤ |||(I − T )αa|||

in any unitarily invariant norm. For M = A = B(H), (24) reduces to

∣∣∣∣∣∣∣∣∣(1− x∗x)α/2a(1− y∗y)α/2
∣∣∣∣∣∣∣∣∣ ≤ ∣∣∣∣∣

∣∣∣∣∣
∣∣∣∣∣
+∞∑
n=0

(−1)n
(
a

n

)
x∗nayn

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ,

which is the main result of [11]. Varying f , we may obtain many similar inequalities.

Finally, if normality condition on x and y is dropped, we can use (14) to
obtain some inequalities in Lp(A; τ) spaces.

Theorem 7. Let M be a conjugated W ∗-module over a semi�nite von Neumann
algebra A, let x, y ∈M0, ‖x‖, ‖y‖ < 1 and let

(25) ∆z =

〈
+∞∑
n=0

z⊗n,

+∞∑
n=0

z⊗n

〉−1/2

, for z ∈ {x, y, x, y}.

Then

‖∆1−1/q
x a∆1−1/r

y ‖p ≤ ‖∆−1/q
x (a− 〈x, ay〉)∆−1/r

y ‖p,

for all p, q, r > 1 such that 1/q + 1/r = 2/p.
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Proof. Let b = (I − T )a. We have a = (I − T )−1b and hence

‖∆1−1/q
x a∆1−1/r

y ‖p =
∥∥∥∆1−1/q

x

+∞∑
n=0

〈
x⊗n, by⊗n

〉
∆1−1/r
y

∥∥∥
p

=

=
∥∥∥ +∞∑
n=0

〈
x⊗n∆1−1/q

x , by⊗n∆1−1/r
y

〉∥∥∥
p
≤ ‖ubv‖p,

by (14), where

u =

+∞∑
n=0

〈
+∞∑
n=0

〈
x⊗n∆1−1/q

x , x⊗n∆1−1/q
x

〉q−1

∆1−1/q
x x⊗n,∆1−1/q

x x⊗n

〉1/2q

.

After a straightforward calculation, we obtain u = ∆
−1/q
x and similarly v = ∆

−1/r
y

and the conclusion follows.

Remark 7. When A = B(H), τ = tr, this is the main result of [10], from which
we adapted the proof for our purpose. However, the application of Fock module
technique signi�cantly simpli�ed the proof.

Also, in [10], the assumptions are relaxed to r(Tx,x), r(Ty,y) ≤ 1, where r
stands for the spectral radius and Tx,y(a) = 〈x, ay〉. This easily implies r(Tx,y) ≤ 1.
First, it is easy to see that ‖Tz,z‖ = ‖z‖2. Indeed, by (9) we have ‖Tz,z‖ ≤ ‖z‖2. On
the other hand, choosing a = 1 we obtain ‖Tz,z‖ ≥ ‖Tz,z(1)‖ = ‖ 〈z, z〉 ‖ = ‖z‖2.
Again, by (9), we have ‖Tx,y‖ ≤ ‖x‖‖y‖ =

√
‖Tx,x‖‖Ty,y‖. Apply this to x⊗n

and y⊗n instead of x and y and we get ‖Tnx,y‖ ≤
√
‖Tnx,x‖‖Tny,y‖ from which we

easily conclude r(Tx,y)2 ≤ r(Tx,x)r(Ty,y) by virtue of spectral radius formula. (In
a similar way, we can conclude r(Tx,x) = ‖x‖ for normal x.)

Thus, if both r(Tx,x), r(Ty,y) < 1, the series in (25) converge. If some of
r(Tx,x), r(Ty,y) = 1 then de�ne ∆x = limδ→0 ∆δx = inf0<δ<1 ∆δx, etc, and the
result follows, provided that series that de�nes ∆x and ∆y are weakly convergent.

5. GRÜSS TYPE INEQUALITIES

For classical Grüss inequality, see [19, �2.13]. We give a generalization to
Hilbert modules following very simple approach from [20] in the case of Hilbert
spaces.

Theorem 8. Let M be a conjugated W ∗-module over B(H), and let e ∈ M be
such that 〈e, e〉 = 1. Then the mapping Φ : M ×M → B(H), Φ(x, y) = 〈x, y〉 −
〈x, e〉 〈e, y〉. is a semi-inner product.

If, moreover, e is central (i.e. ae = ea for all a) and x, y ∈ M0 are normal
with respect to Φ and some conjugation then

(26) |||〈x, ay〉 − 〈x, e〉 〈e, ay〉||| ≤
∣∣∣∣∣∣∣∣∣(〈x, x〉 − | 〈x, e〉 |2)1/2a(〈y, y〉 − | 〈y, e〉 |2)1/2

∣∣∣∣∣∣∣∣∣
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in any unitarily invariant norm.

Finally, if x, y belongs to balls with diameters [me,Me] and [pe, Pe] (m, M ,
p, P ∈ R), respectively, then

(27) |||〈x, ay〉 − 〈x, e〉 〈e, ay〉||| ≤ 1

4
|||a||| |M −m||P − p|.

(Here, x belongs to the ball with diameter [y, z] i� ‖x− y+z
2 ‖ ≤ ‖

z−y
2 ‖.)

Proof. The mapping Φ is obviously linear in y and conjugate linear in x. Moreover,
by inequality (3)

〈x, e〉 〈e, x〉 = | 〈e, x〉 |2 ≤ ‖e‖2 〈x, x〉 = 〈x, x〉 ,

i.e. Φ(x, x) ≥ 0. Hence Φ is an A-valued (semi)inner product.

If e is central it is easy to derive Φ(x, ay) = Φ(a∗x, y). Hence, if x, y are
normal, then, by (11) we obtain

(28) |||Φ(x, ay)||| ≤
∣∣∣∣∣∣∣∣∣Φ(x, x)1/2aΦ(y, y)1/2

∣∣∣∣∣∣∣∣∣
in any unitarily invariant norm. Writing down the expression for Φ we obtain (26).

Finally, for the last conclusion, note that Φ(x, x) = Φ(x− ec, x− ec) for any
c ∈ C (direct veri�cation), and hence Φ(x, x) ≤ 〈x− ec, x− ec〉, which implies
‖Φ(x, x)1/2‖ ≤ ‖x − ec‖. Choosing c = (M + m)/2, we obtain ‖Φ(x, x)1/2‖ ≤
(M −m)/2. Similarly, ‖Φ(y, y)1/2‖ ≤ (P − p)/2. Thus (28) implies (27).

Remark 8. Choose M = L2(Ω, µ), µ(Ω) = 1 and choose e to be the function
identically equal to 1. Then

Φ(x, ay) =

∫
Ω

x(t)∗ay(t)dµ(t)−
∫

Ω

x(t)∗dµ(t)

∫
Ω

ay(t)dµ(t),

and from (26) and (27) we obtain main results of [4].

Remark 9. Applying other inequalities from section 3, we can derive other results
from [4]. Also, applying inequality | 〈x, ay〉 |2 ≤ ‖x‖2 〈ay, ay〉 to the mapping Φ
instead of 〈·, ·〉 we obtain the key result of [9], there proved by complicated identities.

6. CONCLUDING REMARKS

Both, elementary operators and i.p.t.i. transformers on B(H) are special case
of

(29) 〈x, Ty〉

where x, y are vectors from some HilbertW ∗-moduleM overB(H) and T : M →M
is given by left action of B(H).
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Although there are many results independent of the representation (29), a
lot of inequalities related to elementary operators and i.p.t.i. transformers can be
reduced to elementary properties of the B(H)-valued inner product.
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tion and science, Republic of Serbia, Grant #174034.
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