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THE APPLICATIONS OF CAUCHY-SCHWARTZ
INEQUALITY FOR HILBERT MODULES TO
ELEMENTARY OPERATORS AND I.P.T.I.
TRANSFORMERS

Dragolyub J. Keckié

We apply the inequality |(z,y)| < ||z|| (y,y)"/* to give an easy and elemen-
tary proof of many operator inequalities for elementary operators and inner
type product integral transformers obtained during last two decades, which
also generalizes many of them.

1. INTRODUCTION
Let A be a Banach algebra, and let a;, b; € A. Elementary operators,

introduced by Lummer and Rosenblum in [12] are mappings from A to A of the
form

(1) x> Zaijj.
j=1

Finite sum may be replaced by infinite sum provided some convergence condition.

A similar mapping, called inner product type integral transformer (i.p.t.i.
transformers in further), considered in [6], is defined by

(2) X /Q A X Bydp(t),
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where (€2, 1) is a measure space, and t — A, B; are fields of operators in B(H).

During last two decades, there were obtained a number of inequalities in-
volving elementary operators on B(H) as well as i.p.t.i. type transformers. The
aim of this paper is to give an easy and elementary proof of those proved in
[?, 8, 6,9, 4, 21, 10] and [11] using the Cauchy Schwartz inequality for Hilbert
C*-modules — the inequality stated in the abstract, which also generalizes all of
them.

2. PRELIMINARIES

Throughout this paper A will always denote a semifinite von Neumann al-
gebra, and 7 will denote a semifinite trace on A. By LP(A;7) we will denote the
non-commutative L? space, LP(A;7) = {a € A | ||la|l, = 7(|a?)'/? < +00}.

It is well known that L1(A;7)* = A, LP(A;7)* = LI(A;7), 1/p+1/q = 1.
Both dualities are realized by

LP(A;7) 3 a v 7(ab) € C, be LI(A;7)orbe A

For more details on von Neumann algebras the reader is referred to [13], and
for details on LP(A,T) to [15].

Let M be a right Hilbert W*-module over A. (Since M is right we assume
that A-valued inner product is A-linear in second variable, and adjoint A-linear in
the first.) We assume, also, that there is a faithful left action of A on M, that is, an
embedding (and hence an isometry) of A into B%(M) the algebra of all adjointable
bounded A-linear operators on M. Hence, for z, y € M and a, b € A we have

(x,y)a=(x,ya), (za,y)=a"(z,y), (2,ay)= (a"z,y).

For more details on Hilbert modules, the reader is referred to [14] or [16].

We quote the basic property of A-valued inner product, a variant od Cauchy-
Schwartz inequality.

Proposition 1. Let M be a Hilbert C*-module over A. For any x, y € M we have

(3) ey P < el ), )| < llzll ()2,

in the ordering of A.

The proof can be found in [14, page 3] or [16, page 3]. Notice: 1° the left
inequality implies the right one, since t — t'/2 is operator increasing function;
2° Both inequalities hold for A-valued semi-inner product, i.e. even if (-, -) may be
degenerate.

Finally, we need a counterpart of Tomita modular conjugation.

Definition 1. Let M be a Hilbert W*-module over a semifinite von Neumann
algebra A, and let there is a left action of A on M.
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A (possibly unbounded) mapping J, defined on some A submodule My, C M
with values in M, we call modular conjugation if it satisfies: (i) J(axb) = b*J(x)a*;
(ii) T((J(y). I (x))) = 7((x,y)) whenever (z,a), {y.y), (J(2), J (@), (J(y),J(y)) €
LY(A, 7).

In what follows, we shall use simpler notation T instead of J(x). Thus, the
determining equalities become

(4) azb=0"7a",  7((7,7)) = 7((z,y)).

We shall call the module M together with left action of A and the modular
conjugation J conjugated W*-module.

Definition 2. Let M be a conjugated W*-module over A. We say that x € M, is
normal, if (i) (x,z) x = z (x,x), (i7) (z,z) = (T, T).

Remark 1. It might be a nontrivial question, whether J can be defined on an arbi-
trary Hilbert W*-module in a way similar to the construction of Tomita’s modular
conjugation (see [18]). However for our purpose, the preceding definition is enough.

Examples of conjugated modules are following.
Example 1. Let A be a semifinite von Neumann algebra, and let M = A™. For

x = (1,...,2n), ¥y = (Y1,---,Yn) € M, a € A, define right multiplication, left
action of A, the A-valued inner product and modular conjugation by

(5) za = (z1a,...,200), ar = (axy1,...,a%y);
(6) (z,y) = xiy1 + -+ + ) Yn, T=(z7,...,2}).
All required properties are easily verified. The element x = (z1,...,z,) is normal
whenever all x; are normal and mutually commute.
We have

n
(z,ay) = Z T;ay;,
j=1

which is the term of the form (1).
There are two important modules with infinite number of summands.

Example 2. Let A be a semifinite von Neumann algebra. We consider the standard
Hilbert module [2(A) over A and its dual module [2(A)" defined by

+oo
I’(A) = {(xl, N ‘ Za,ﬁak converges in norm of A}.
k=1

12(A) = {(xl,...,xn,...) ‘ H Zn:a;akH <M< +oo}.
k=1
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(It is clear that = € [?(A)" if and only if the series Y z}x), weakly converges.)

The basic operation on these modules are given by (5) and (6) with infinite
number of entries.

The main difference between 12(A) (12(A)" respectively) and A" is the fact
that T = (x%,...,2},...) is defined only on the subset of 2(A) consisting of those
x € M for which )" 2} converges in the norm of A.

The element © = (z1,...,Zyn,...) € My is normal whenever all z; are normal
and mutually commute.

Remark 2. The notation [2(A)" comes from the fact that [>(A)’ is isomorphic to
the module of all adjointable bounded A-linear functionals A : M — A.

For more details on [?(A) or [?(A)’ see [16, §1.4 and §2.5].

Example 3. Let A be a semifinite von Neumann algebra and let (Q,u) be a
measure space. Consider the space L?(£, A) consisting of all weakly-* measurable
functions such that fQ r¥*rdp < +00 weak-x converges. The weak-x measurability
is reduced to the measurability of functions ¢(z(t)) for all normal states ¢, since
the latter generate the predual of A.

Basic operations are given by
2(t)-a = w(t)a, WM®=M@7<%w=4xwwww@7f@=w®f

All required properties are easily verified. The mapping x — T is again
defined on a proper subset of L?(£2, A). The element z is normal if 2(¢) is normal
for almost all ¢, and z(t)z(s) = x(s)z(t) for almost all (s,t).

Again, for a € A we have

@@wzﬁaw@@ww,

which is the term of the form (2).

Thus, norm estimates of elementary operators (1), or i.t.p.i. transformers (2)
are estimates of the term (z, ay).
In section 4 we need two more examples.

Example 4. Let M; and M, be conjugated W*-modules over a semifinite von
Neumann algebra A. Consider the interior tensor product of Hilbert modules M;
and M, constructed as follows. The linear span of z1 ® xo, 1 € My, x9 € My
subject to the relations

a(z ® x2) = azq @ T2, 10 Q T2 = 1 ® axs, (x1 ® x2)a = x1 @ 220,
and usual bi-linearity of 1 ®x5, can be equipped by an A-valued semi-inner product

(7) (1 ®@ T2, Y1 ® Y2) = (T2, (¥1,Y1) Y2) -
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The completion of the quotient of this linear span by the kernel of (7) is
denoted by M; ® My and called interior tensor product of My and My. For more
details on tensor products, see [14, Chapter 4].

If My = Ms =M, M ® M can be endowed with a modular conjugation by
T1 QT2 = T2 X T7.

All properties are easily verified. Also, z normal implies x ® x is normal and
(z@z,z@z) = (z,5)°

Example 5. Let M,,, n € N be conjugated modules. Their infinite direct sum
t°° M, is the module consisting of those sequences (zn), x, € M, such that

n=1
2 (n, xn) weakly converges, with the A-valued inner product
“+oo
((@n), (yn)) = Z (TnsYn) -
n=1

The modular conjugation can be given by (z,) = (). In particular, we
need the full Fock module

+00
F=Mmer,
n=0

where M®% = A, M®' =M, M®2 =M@ M, M® =M @ M ® M, etc.
For x € M, ||z|| < 1 the element /%0 22" € F (where z®° := 1) is well
defined. It is normal whenever z is normal. Also, for normal x, we have

+oo +oo +oo +oo
(8) <Z @, Zm®"> = Z (x®", %) = Z (z, )" = (1 — (z,2))"".
n=0 n=0 n=0 n=0

We shall deal with wnitarily invariant norms on the algebra B(H) of all
bounded Hilbert space operators. For more details, the reader is referred to [22,
Chapter III]. We use the following facts. For any unitarily invariant norm ||-||, we
have A = |A*]| = 114l = lUAV]| = ||A| for all unitaries U and V, as well
as ||| < J|All < ||Allz- The latter allows the following well known interpolation
Lemma, which we state with a proof.

Lemma 2. Let T and S be linear mappings defined on the space C, of all compact
operators on Hilbert space H. If

ITx|| < ||Sz| for all x € Cx, ITx|1 < ||Sz|1 for all x € Cy

then
ITz]| < (ISl

for all unitarily invariant norms.
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Proof. The norms || - || and || - ||; are dual to each other, in the sense
el = sup |tr(zy)l,  [lzli = sup [tr(zy)].
lylla=1 lyll=1
Hence, |72 < |52, Tl < 15"
Consider the Ky Fan norm | - |- Its dual norm is | - [[f,, = max{]| -
I, (1/k)|l - [l1}. Thus, by duality, ||Tx[|x) < ||Sz||) and the result follows by Ky
Fan dominance property, [22, §3.4]. O

3. CAUCHY-SCHWARTZ INEQUALITIES

Cauchy-Schwartz inequality for || - || follows from (3), for || - |1 by duality and
for other norms by interpolation.

Theorem 3. Let A be a semifinite von Neumann algebra, let M be a conjugated
W*-module over A and let a € A. Then:

©  aay) | < llelliylllal, (@ ay) | < | @22 amg)" "

— _\1/2 — o 1/2

(10) (@ ap) 2 < 2llla @3 2, and | @, ap) |2 < [yl &) all>,
In particular, if A= B(H), T = tr and x, y are normal, then

(1) e, ay)l < || @)/ a (g,

for all unitarily invariant norms ||-||.

Proof. By (3), we have || {x,ay) || < ||z|llley]l < ||z||||y]|]|le|l, which proves the first
inequality in (9).

For the proof of the second, note that by (4), for all a € L*(A;7) we have
7(b(z,ay)) = T((xb", ay)) = 7((ya", b)) = 7(a (g, b7)). Hence for (7,7), (,7) <1

| (z,ay) [l = sup |7(b(x, ay))| = Sup |7(a (g, b7))| < sup lall [l (g, b) | < llally,

In the general case, let ¢ > 0 be arbitrary, and let 2, = ((Z,T) +¢) /%2 and
y1 = ((7,9) +¢)7"/?y. Then 717 = 7((z,7) +¢)~"/* and 71 = 5(7,7) +¢)~"/* (by
(4)). Thus

<$717 Tl> = ((.%‘, :U> + 5)_1/2 <:L‘7£L'> (<5L‘,.’L‘> + E)_1/2 <1,
by continuous functional calculus. Hence

<(<E,f> + )22y, a((7,7) +€)1/2y1>H1 _

H
(12) = (o1 (@2 + 9 2a((m7) + )21 |
H

IN

((7.7) +)/%a((7,7) +)'/

)
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and let £ — 0. (Note ||((Z,T) + )2 — (7, 7)"/? || < £1/2))
To prove (10), by (3) we have

(13) |z, ay) |” < ||=]1? (ay, ay) = ||z]* (y, a*ay) .

Apply || - ||1 to the previous inequality. By (9) we obtain

2 2 * < P e 2 — .\ 32
[ (@, ay) Iz < lz7ll (y, a”ag) (1 < =71 (7, %)% a”a @, 5)* |l = [|=]]"[la 7.5)* |I3-
This proves the first inequality in (10). The second follows by duality

* * = — 2 — 2
I (@, ay) [l = || (g, a*z) |2 < llylllla* @2 |2 = Iyl . 7)"* allo-

Finally, if A= B(H), 7 = tr and «, y normal. Then (11) holds for ||-||; by (9).
For the operator norm, it follows by normality. Namely then « (z,z) = (z,z) z and
we can repeat argument from (12). Now, the general result follows from Lemma
2 O

Corollary 4. If A= B(H) and M = I?(A)" (Ezample 2), then (11) is [?, Theorem
2.2] (the first formula from the abstract). If M = L*(Q, A), A= B(H), (11) is [6,
Theorem 3.2] (the second formula from the abstract).

Remark 3. The inequality (13) for M = B(H)" is proved in [21] using complicated
identities and it plays an important role in that paper.

Using three line theorem (which is a standard procedure), we can interpolate
results of Theorem 3 to LP(A,T) spaces.

Theorem 5. Let A be a semifinite von Neumann algebra, and let M be a conjugated
W*-module over A. For all p, q, 7 > 1 such that 1/q+ 1/r = 2/p, we have

1 1/2q —l_ _ 1/2r
w el < (@ me) o n)
P
Proof. Let u, v € My and let b € A. For 0 < Re A, Rep < 1 consider the function

FOum) = (@) +2) " ul(u, u) +2)°7b(@,7) +2) " Fo((v,0) +2)F ).

This is an analytic function (obviously).
On the boundaries of the strips, we estimate. For Re A =Reu =0

By

i

v

Fitsis) = (@) + 2)~ Fu((u,u) +2) M5 b((@,9) + &) Fo((v,0) +2) 745,

Since ((@, @) +¢) "2, ((u,u)+)*/2, ((T,7)+¢)**/? and ({v,v) +¢)?*/? are unitary
operators, and since the norm of u({u, u) +¢&)~1/2, v((v,v) +¢)~1/2 does not exceed

1, by (9) we have

(15) I[£(at,is)]| < [|b]]-
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For ReA=Rep=1

is

“2o((v,v) +¢€) > .

W=
Shs

Fit, 1is) = (((@,a) +2) "4 Fu(u,u) + ), b((5,7) + )~
By a similar argument, by (9) we obtain
(16) If(L+it, 1+ is) [l < [|b]]1.

For ReA =0, Rep =1, by (10) we have

£t 1+is) = (@@ + &)~ Ful(u,u) +2) 3 b(@,0) +6) 3 Fo((v,0) +2)F),

and hence

(17) [ £(it, 1 +is)[l2 < [|b]|2-
Similarly

(18) [ £(1+it,is)[l2 < [|b]|2-

Let us interpolate between (15) and (17). Let » > 1. Then 1/r = 6-14+(1—6)-0
for = 1/r. Then (- (1/2) 4+ (1 — ) - 0)~! = 2r and hence, by three line theorem
(see [23] and [15]) we obtain

(19) 1FO+it, 1/r) 2 < [[bll2r
Similarly, interpolating between (18) and (16) we get
(20) 1+ it /)] 2 < o] 2

since 1/7 = 6-1+(1—0)-0 for same §# = 1/r and (6-1+(1—0)-(1/2))"t = 2r/(r+1)
Finally, interpolate between (19) and (20). Then 1/g=6-1+(1—0) -0 for

6 = 1/q and therefore (6 - 5t + (1 —0)5.) "' = 507 - (r+ 1+ ¢ —1) = p. Thus

171/ a:1/m)llp < [bllp-

ie.
([(CAE,
After substitutions
u=ux (x,x>(q_1)/2 , U= (y,y>(7'_1)/2 . b= (w,w) +¢e)?a((v,7) +)V/?,

we obtain

H<x <m,x>(q_1)/2 (z,2)" + 6)(17q)/2q,ay (y,y>(q_1)/2 (ly, y)? + 6)(17q)/2q>‘ .

< H (<<x, 27T, §> + 5) 1/2q " (<<y, W), §> N 6) 1/2r

which after ¢ — 0 yields (14), using the argument similar to that in [16, Lemma
1.3.9]. 0

|~

1-g 1-gqg

ul{u,u) + )T H(E.T) +o)Fo((,) +0)'F )| < bl

|

<

p
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Remark 4. In a special case A = B(H), 7 = tr, M = [>(A), r = ¢ = p formula
(14) becomes [8, Theorem 2.1] (the main result).

Also, for A = B(H), 7 = tr, M = L?(Q, A) formula (14) becomes [6, Theorem
3.3] (the first displayed formula from the abstract), there proved with an additional
assumption that Q is o-finite.

In the next two section we derive some inequalities that regularly arise from
Cauchy-Schwartz inequality.

4. INEQUALITIES OF THE TYPE |1 — (z,9)| > (1 — ||=||*)/2(1 — ||y||*)'/?

The basic inequality can be proved as

+00 +oo
(L= {zy) < D Hay) " <D el yll" <
n=0 n=0

+0oo 2 /i 1/2
<Z |~’C||2"> (Z ||y||2"> = (1= [l 21 =yl ~2
n=0

n=0
Following this method we prove:

Theorem 6. Let M be a conjugated W*-module over A = B(H), let x, y € My be
normal, and let (x,x), (y,y) < 1. Then

[ = @ ent2a = (w2 < o - (@ a0l
in any unitarily invariant norm.

Proof. We use examples 4 and 5.

Denote T'a = (x, ay). We have T?a = (z, (z,ay) y) = (r ® z,a(y ® y)) and by
induction T%a = (%%, ay®"*). Suppose ||z|, [ly|| < & < 1. Then ||z®¥|, [|y®*|| < o*
and hence || 7" < 6%*. Then

(21) (I-17)"'= +ZOOT’“.
n=0

+oo +oo 1/2 +oo +oo
<Zm®k’zm®k‘> a<zy®k7zy®k>
k=0 k=0 k=0 k=0

Put b= (I —T) 'a. Then

+o00
Z T*a
=0

k=

(22) ol <

+oo
> (@ o)
k=0

+oo +oo
<Z $®k, [ Z y®k>
k=0 k=0

1/2

IN
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by (11) and normality of « and y. Invoking (8), inequality (22) becomes

(23) i =)l < [0 = G2 200 - (w5012
Finally, note that the mappings I — T and a — (1 — (z,z))~"2a(1 — (y,y))~'/?
commute (by normality of z and y) and put (1 — (z,z))""2(a—Ta)(1— (y,y)) />
in place of a, to obtain the conclusion.

If ||z||, lyll = 1 then put §z instead of z and let § — 1—. O

Remark 5. If M = L%*(Q, A) this is [6, Theorem 4.1] (the last formula from the
abstract). If M = B(H) x B(H), z = (I, A), y = (I, B) then it is [?, Theorem 2.3]
(the last formula from the abstract).

Remark 6. Instead of ¢t — 1—¢ we may consider any other function f such that 1/f
is well defined on some [0, ¢) and has Taylor expansion with positive coefficients,
say ¢,. Then distribute /¢, on both arguments in inner product in (22) and after
few steps we get

|2 a2 < 1@

For instance, for ¢ — (1 —¢)*, @ > 0 we have (1 — )7 = > ¢,t", where
¢n =T(n+ a)/(T(a)n!) > 0 and we get

(24) [0 = @,wer2a = )| < =Tyl

in any unitarily invariant norm. For M = A = B(H), (24) reduces to

:fu)” (2)amar

which is the main result of [11]. Varying f, we may obtain many similar inequalities.

)

S L E

Finally, if normality condition on x and y is dropped, we can use (14) to
obtain some inequalities in LP(A; 7) spaces.

Theorem 7. Let M be a conjugated W*-module over a semifinite von Neumann
algebra A, let x, y € My, ||z|, ||yl <1 and let

+o00 +00 —1/2
(25) A, = <Z 2%", Z z®"> , forze{z,y, Ty}
n=0 n=0

Then
ALY aaA Y|, < |AZY (@ — (2, ay)) AT,

v

for all p, g, v > 1 such that 1/q+ 1/r = 2/p.
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Proof. Let b= (I —T)a. We have a = (I —T)~'b and hence

—+o0
AL 1any =, = (ALY (@ by A
n=0

+oo
= [ 3 (aemat b= Ay | < fuboll,
n=0

by (14), where

+o0 /400 -1 1/29
wm 3o (35 (aonalovi gon Al va) ™ A agen Attvagen)

n=0 \n=0

After a straightforward calculation, we obtain u = A_ 1 and similarly v = Ag_ Lr
and the conclusion follows. O

Remark 7. When A = B(H), 7 = tr, this is the main result of [10], from which
we adapted the proof for our purpose. However, the application of Fock module
technique significantly simplified the proof.

Also, in [10], the assumptions are relaxed to r(T} z), r(Ty,) < 1, where r
stands for the spectral radius and T, ,(a) = (x, ay). This easily implies r(T} ,) < 1.
First, it is easy to see that || T% .|| = ||z||>. Indeed, by (9) we have || T} .| < ||z||>. On
the other hand, choosing a = 1 we obtain ||T% .|| > [|T%.(1)| = || (z,2) | = ||z]]*
Again, by (9), we have ||To[l < llzllllyll = /I Te2lTyyll- Apply this to 2="

and y®" instead of  and y and we get [T}, [ < \/[ITF,

[Ty, || from which we
easily conclude 7(7T}.,)* < 7(Ty.)r(T,,) by virtue of spectral radius formula. (In
a similar way, we can conclude (T} ;) = ||z|| for normal z.)

Thus, if both (T} z), r(Ty,) < 1, the series in (25) converge. If some of
r(Ts,2), 7(Ty,y) = 1 then define A, = lims_,0 A5, = infocs<1 Asz, ete, and the
result follows, provided that series that defines Az and Ay are weakly convergent.

5. GRUSS TYPE INEQUALITIES

For classical Griiss inequality, see [19, §2.13]. We give a generalization to
Hilbert modules following very simple approach from [20] in the case of Hilbert
spaces.

Theorem 8. Let M be a conjugated W*-module over B(H), and let e € M be
such that (e,e) = 1. Then the mapping ® : M x M — B(H), ®(z,y) = (x,y) —
(x,e) (e,y). is a semi-inner product.

If, moreover, e is central (i.e. ae = ea for all a) and z, y € My are normal
with respect to ® and some conjugation then

26) N ay) — (@.€) (e.an)l] < || () = | (@.0) ) al(9) = o) )|
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in any unitarily invariant norm.
Finally, if x, y belongs to balls with diameters [me, Me] and [pe, Pe] (m, M,
p, P € R), respectively, then

(27) [z, ay) = (2, ) (e, ay)[| < iI\IaHI [M —ml||P —pl.

(Here, x belongs to the ball with diameter [y, z] iff ||z — L22| < ||Z52]).)

Proof. The mapping ® is obviously linear in y and conjugate linear in z. Moreover,
by inequality (3)

(@,€) (e,x) = [ {e,x) |* < [lel® (z,2) = (@, ),

ie. ®(x,z) > 0. Hence ® is an A-valued (semi)inner product.
If e is central it is easy to derive ®(x,ay) = ®(a*z,y). Hence, if x, y are
normal, then, by (11) we obtain

(28) 2. a)ll < ||z, 2) 2y )2

in any unitarily invariant norm. Writing down the expression for ® we obtain (26).

Finally, for the last conclusion, note that ®(z,x) = ®(z — ec, z — ec) for any
¢ € C (direct verification), and hence ®(x,x) < (x — ec,z — ec), which implies
| ®(z,2)?|| < ||z — ec||. Choosing ¢ = (M + m)/2, we obtain |®(z,2)"?| <
(M —m)/2. Similarly, ||®(y,y)/?| < (P — p)/2. Thus (28) implies (27). O

Remark 8. Choose M = L*(Q,u), 1() = 1 and choose e to be the function
identically equal to 1. Then

Ba,ag) = [ o0 ayOau(t) = [ a0 aut) [ ayaus),

and from (26) and (27) we obtain main results of [4].

Remark 9. Applying other inequalities from section 3, we can derive other results
from [4]. Also, applying inequality | (z,ay)|*> < ||z||? (ay,ay) to the mapping ®
instead of (-, -) we obtain the key result of [9], there proved by complicated identities.

6. CONCLUDING REMARKS

Both, elementary operators and i.p.t.i. transformers on B(H) are special case
of

(29) (z,Ty)

where z, y are vectors from some Hilbert W*-module M over B(H)and T : M — M
is given by left action of B(H).
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Although there are many results independent of the representation (29), a

lot of inequalities related to elementary operators and i.p.t.i. transformers can be
reduced to elementary properties of the B(H)-valued inner product.
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