
Capillary Networks – Bridging
the Cellular and IoT Worlds

Oscar Novo, Nicklas Beijar, Mert Ocak, Jimmy Kjällman, Miika Komu, Tero Kauppinen
Ericsson Research

Jorvas, Finland
Email: firstname.lastname@ericsson.com

Abstract—The Internet of Things (IoT) represents a new
revolutionary era of computing technology that enables a wide
variety of devices to interoperate through the existing Internet
infrastructure. The potential of this era is boundless, bringing
in new communication opportunities in which ubiquitous devices
blend seamlessly with the environment and embrace every aspect
of our lives. Capillary networks will be a fundamental part of
the IoT development, enabling local wireless sensor networks to
connect to and efficiently use the capabilities of cellular networks
through gateways. As a result, a vast range of constrained devices
equipped with only short-range radio can utilize the cellular
network capabilities to gain global connectivity, supported with
the security, management and virtualization services of the
cellular network. This paper introduces a new Capillary Network
Platform and describes the rich set of functionalities that this
platform enables. To show their practical value, the functionalities
are applied to a set of typical scenarios. The aim of this paper is
to give the reader insight about the Capillary Network Platform
and illustrate how this work can be used to enhance existing IoT
networks and tackle their problems.

Keywords—M2M, Internet of Things, Capillary Networks,
Cloud Execution Environment, Self-organizing Networks.

I. INTRODUCTION

In recent years, the Internet of Things (IoT) [1] is becoming
a fundamental part of the Internet due to its ubiquitous
presence, having an accelerating influence in our society. With
the advent of IoT, we start to experience the proliferation
of new constrained devices around us, which encompass a
diverse group of new wireless technologies (e.g., Bluetooth
Low Energy [2], IEEE 802.11ah [3], IEEE 802.15.4 [4]).
The opportunities resulting from diversified connectivity will
enable the creation of new markets. This includes everything
from health, automotive, home automation or wearables. It is
expected that all these will introduce new requirements on the
supporting infrastructure, which will ultimately lead to new
feasible IoT platforms to facilitate the integration of IoT into
the current Internet.

Cellular communication technologies can play a crucial
role in the development and expansion of IoT. Cellular net-
works can leverage their ubiquity, integrated security, network
management and advanced backhaul connectivity capabilities
into IoT networks. In this regard, capillary networks [5]–
[7] aim to provide the capabilities of cellular networks to
constrained networks while enabling connectivity between
wireless sensor networks and cellular networks. Hence, a
capillary network provides local connectivity to devices using
short-range radio access technologies while it connects to the

Capillary  
Gateways 

Mobile 
Network Cloud Sensors, 

Actuators 

 
 

Capillary  
Networks 

Fig. 1. Capillary Networks

backhaul cellular network through a node called Capillary
Gateway (CGW). This architecture is shown in Figure 1.

The Capillary Network Platform (CNP) differs from to-
day’s typical over-the-top solutions in several ways. Our plat-
form does not only cover the gateway and cloud components,
but also enriches the functionality with support from the cellu-
lar network. An example of such functionality is application-
layer multicasting, which allows a vast number of devices to
easily be deployed, managed and configured in a scalable way.
The platform integrates the security and management of the
cellular network, offering an end-to-end solution for security
and connectivity. In addition to connectivity, the Capillary
Network Platform offers a multi-tenant PaaS (Platform as a
Service) solution on top of which multiple users, as well
as operators, can build and customize services according to
their own specific needs. As our distributed cloud spans all
the way out to the gateways, software can be deployed there
where bandwidth utilization and application latency need to be
optimized.

The key concepts of the Capillary Network Platform were
already introduced earlier [7]. However, the earlier work was
a conceptual study and it did not include any implementation
details. This paper presents a thorough description of the
architecture of our Capillary Network Platform, particularly
focusing on the main new features offered by the platform.
The paper also describes the technical solutions of our imple-
mentation, which was presented in the Mobile World Congress
20151.

1http://www.mobileworldcongress.com/



The paper is structured as follows. Section II analyses
the requirements of our platforms. Section III describes the
Capillary Network Platform architecture, while Section IV
explains the main functionalities of the architecture. Section
V presents details of our prototype implementation. Section
VI presents an analysis of applying the Capillary Network
Platform to typical IoT scenarios. The last section summarizes
the paper and outlines the directions for further work.

II. BACKGROUND

IoT platforms aim to support easy deployment of IoT
applications for networks of connected devices. Such platforms
support several types of nodes, communication protocols and
technologies, where the nodes can range from simple sensor
devices with limited capabilities to more powerful nodes,
which can act as gateways or aggregators. A comparison of
several IoT platforms is given by Mineraud et al [8].

Current IoT platforms have the ability to abstract away
implementation components at lower layers. This over-the-
top approach might be preferred for layer independence and
simplification in many cases. However, several situations re-
main where a network-aware infrastructure can improve the
efficiency and facilitate the interaction and capabilities of IoT
services.

Unlike the traditional IoT platforms, the Capillary Network
Platform is a network-aware platform, in which intelligence
is introduced at different levels to the network resulting in
a more flexible approach. Thus, the network is not only a
transparent pipe between a device and the data storage, but
provides support for higher-level services. The bottom layers
provide a gateway selection mechanism for load-balancing
and a virtualization mechanism for middleware services, the
middle layers provide an orchestration and a computational
data engine, and the top layer provides a device management
and service-enablement interface.

A. Requirements

Our vision of the Capillary Network Platform has been
designed to meet a set of fundamental requirements. The most
important ones are the following:

• Device Mobility: The network should be able to direct
the sensor devices to the optimal capillary gateway in
order to achieve a specific goal, such as to minimize
the delay, maximize the availability or to provide load
balancing, while considering the quality of the radio
connection.

• Scalable Management: The platform as a whole
should be able to address and manage multiple devices
in groups in order to reduce the complexity of device
management.

• Cloud-oriented Architecture: The functionalities of the
network should be implemented as virtual instances
in the cloud in order to improve flexibility and fast
deployment of IoT services.

• Automated, Fine Granularity Instantiation: The plat-
form should provide the possibility for automatic

deployment of IoT service instances in the cloud for
specific devices or gateways.

• Nearby Instantiation: While data centers are con-
nected with high-bandwidth links, their distant loca-
tion from the devices causes inherent latency. Running
some processing close to the device lowers the delay
and delay variation in the control loop, and minimizes
the amount of network transmission. Therefore, IoT
services should, in given cases, be placed as close as
possible to the device.

• Automatic Configuration: Typically, capillary network
deployments do not involve any network planning.
Capillary networks should be able to configure them-
selves and should be easy to deploy.

• Security: Highly constrained devices may need com-
munication security in some scenarios. Besides com-
munication security, the system should also consider
other related security issues, including authentication
and identification of gateways and devices.

III. ARCHITECTURE

The capillary network connects constrained devices via
multiple short-range radio technologies, such as Bluetooth
Low Energy [2], IEEE 802.15.4 [4] or IEEE 802.11ah [3],
to Capillary Gateways (CGW). CGWs provide connectivity
via a backhaul network (typically a 3GPP cellular network)
to the cloud, where data storage, processing and network
management is implemented. CGWs may be operated by an
operator or by a third party.

In order to enable wireless sensor networks to connect and
use the capabilities of cellular networks efficiently, we have
developed and implemented a high-level network architecture,
which is depicted in Figure 2. The architecture has been
designed for a cloud environment, so the boxes in the figure
indicate software components rather than physical elements.
The main target is to integrate the Capillary Network Platform
into a cloud-enabled operator network, thus, the operator
domain covers all the cloud components. The architecture
supports multiple tenants, which can run customized functions,
called IoT services, for data processing and to control of their
devices.

On a high level, the network is divided into logical entities
with the following responsibilities:

- Devices are constrained devices connected via a short-
range radio technology, such as IEEE 802.15.4 or
Bluetooth Low Energy, as mentioned above. The de-
vices expose a set of IPSO objects [9] for accessing its
sensors and actuators. Depending on the device type,
the devices provide a CoAP/LWM2M [10] interface,
or a HTTP interface for management, actuation and
data access.

- Capillary Gateways (CGW) provide connectivity be-
tween the short-range network and the cellular net-
work. The CGW contains software components for
registration of the CGW and the devices, a Local
Connectivity Manager for locally managing the con-
nectivity between devices and CGWs, and a proxy



HTTP!

Wireless Network 

Operator Domain 

Device 

CNM (per user) 

Capillary Gateway 

Virtualized middleware in Containers 
Connectivity 

Manager 

Connectivity Mgmt 

Registration GW 

Management Interface 

CNF (per operator) 

Subscribe Repo 

Access Ctrl 

HTTP!

HTTP!

HTTP!

HTTP!

HTTP!

HTTP!

Instantiator 

HTTP/ CoAP!

HTTP/CoAP  
Server HTTP!

HTTP!

Instantiation!

Instantiation!

Mgmt proxy 

Virtualization  
Agent 

Virtualization  
Agent 

Sensor 
Agent 

VGW VGW IoT Service 

Mgmt proxy 

LWM2M  
Client 

CoAP! HTTP!

HTTP!

 Orchestrator 

HTTP!

Control Path 

Data Path HTTP!

Management Path 

Web Application 
 Platform 

 

IoT-Portal 

WebSocket!

HTTP!

IoT-Framework 

HTTP!

Fig. 2. Logical Architecture of the Capillary Network Platform

for relaying and distributing management commands.
Furthermore, CGWs that participate in a distributed
cloud can run Sensor Agents, which are IoT service
instances specific to physical sensors. These sensor
agents are controlled by an Instantiator on the CGW.

- Capillary Network Function (CNF) is the operator’s
control function for capillary networks. It controls
the registration and authentication of both CGWs and
devices. It interfaces with the Operations & Support
System (OSS) for the 3GPP network and, in particular,
enforces management rules and policies based on
subscription data. CNF also orchestrates the cloud
instances and instantiates software images based on
the subscriber’s configuration.

- Capillary Network Management (CNM) includes tools
and services to support automatic configuration and
management of the capillary networks of a particu-
lar tenant. In particular, it contains the Connectivity
Management Server, which automates the decisions
related to connectivity between devices and CGWs,
supporting mobility of devices between all the tenant’s
CGWs.

- Management Interface (MINT) is the network-side
functionality that performs device management for the
devices and CGWs by interfacing with the network
manager. Device management includes configuration,
status reporting and actuation among other function-
alities.

- Virtualized Middleware in Containers is the virtual-
ization platform for IoT Services, which provides data
processing and actuator control functions in the cloud.
These IoT Services are instantiated and managed by
the IoT-Portal. A particular type of IoT Service, a
“Virtual Capillary Gateway”, can be automatically

created by the CNF for each physical CGW to provide
middleware functions in the cloud. One of the advan-
tages of such Virtual Capillary Gateways is that they
can provide an interface to the CGW, including access
to buffered data, even when a CGW is not currently
reachable.

- IoT-Framework [11] is a data store and a computa-
tional engine for quantitative information accumulated
by connected devices [12]. The IoT-Framework can
be provided by the operator, or alternatively by an
operator independent third party.

IV. FUNCTIONALITIES

This section identifies the major functionalities and ex-
plains their implementation using the above logical entities.

A. Bootstrapping and Security

Before a CGW can connect to the platform and start
communicating with an IoT Service, it must authenticate itself
to the CNF, where Access Controller function grants access to
the service. One particular authentication mechanism imple-
mented in this platform is based on the Generic Bootstrapping
Architecture (GBA) by 3GPP [13]. This method can be used by
CGWs (or devices) that have 3GPP credentials, i.e., a physical
SIM card or software-based SIM and a corresponding mobile
subscription.

Figure 3 depicts, on a high level, the process by which
CGWs are authenticated and registered to use cloud services.
Initially, a CGW connects to the GBA Network Application
Function (NAF), which is implemented by the CNF in our
platform. The NAF instructs the CGW to connect to a GBA
Bootstrapping Server Function (BSF), and the CGW2 performs

2The CGW has the role of a 3GPP User Equipment (UE) in this procedure.



a secure bootstrapping procedure based on GBA, which in-
cludes authentication and generation of shared keys [13], [14].
The keys can be utilized for establishing a secure communica-
tion channel between the CGW and CNF. Also communication
between the CGW and other cloud functions, e.g., the CNM or
the Virtualized Middleware in Containers can use this channel.

After this procedure, the CGW is able to register itself to
the IoT-Portal in the cloud, and obtains access to an existing
or newly-instantiated IoT Service. Finally, the CGW registers
itself to the IoT Service. Devices, in turn, register themselves
to the CGW, which forwards or translates the registration to
the IoT Service. The registration of the CGW and device is
also sent to the CNM, either directly from the CGW or via
the CNF.

Once the registrations are performed, devices can send data
to IoT Services. In this context, source authentication and
integrity protection of messages carrying data (or registration
information) sent from devices can be implemented by using
sufficiently lightweight but secure public key based signatures
(e.g., ECDSA), as described in more detail by others [14], [15].
On the other hand, we assume that the CGW, the CNF and the
CNM belong to the operator’s domain and data encryption is
not needed between them.

B. Connectivity Management

The connectivity management function implemented as
part of the CNM allows the connectivity of the devices to
be centrally managed. The goals for connectivity management
is defined using a policy, which may, for example, specify that
load balancing is the main objective for this particular network.
The CNM maintains a registry of all connected CGWs and
devices. It monitors the properties (e.g. the load level) of the
CGWs and the devices and, in particular, keeps track of which
CGWs are within the radio reach of each device, and to which
CGW the device currently is connected.

Based on the reported radio connectivity, the policy and the
CGW’s properties, the CNM calculates the optimal distribution
of devices between the available CGWs. In allocating devices
to CGWs, the properties of the CGWs are considered. For
example, CGWs with high bandwidth uplink can be preferred,
while battery-powered gateways with low remaining battery
power can be avoided. The network administrator controls
the connectivity management indirectly by defining a policy,
which specifies the relative weights of various CGW’s prop-
erties to be considered. The optimal distribution of devices is
calculated by iterating through all the devices to find a target
gateway for each device. To find the best gateway for a device,
a preference value p(g) is calculated for each gateway g that
is reachable from the device, and the gateway with the highest
preference is chosen for that device. The preference is based
on the weighted sum of the properties,

p(g) =
∑
c∈C

wcvc(g), (1)

where wc is the weight of the property c as defined in the
policy, and vc(g) is the value of the property c of gateway g.
The algorithm is described thoroughly by Beijar et al [16]. If a
new preferred gateway is found, the CNM automatically sends

Control Plane 

Data Plane 

GBA-based bootstrapping, authentication 
and key exchange 

Capillary Gateway 

Device 

Initiate 
Bootstrapping 

GBA NAF 
(CNF AC) 

GBA BSF 

IoT Portal IoT Service 

Register GW,  
request service 

Instantiate 
Service 

Register GW to Service 

Register Device to Service Register 

Fig. 3. Bootstrapping, Authentication, and Registration.

a management command to instruct the device to connect to
the preferred CGW.

Alternative algorithms can be implemented as plugin mod-
ules to the CNM. The CNM can, for example, estimate the
movement of a mobile device and provide a list of alternative
CGWs along the movement path in the order of preference,
which are used when the current CGW becomes unavailable.

The CNM is implemented as a software component that is
instantiated separately for each tenant. This allows tenants to
customize the management software with new functions and
gateway selection algorithms. The CNM interfaces with the
CNF for CGW registration and authentication, and with MINT
for retrieving policies.

Connectivity management is supported by a Local Con-
nectivity Manager process in the CGW, which unloads the
CNM from routine tasks performed locally in the capillary
network, e.g., polling the reachability of devices. While some
technologies (e.g. IEEE 802.11) provide information about
reachability from the device perspective, other technologies
(e.g. IEEE 802.15.4 [4] with RPL routing) provide reachability
information from the CGW’s side. As our CGW support
multiple technologies, it merges reachability information from
several interfaces. When the CGW detects changes in the
radio connectivity information (e.g. a new gateway within the
range of the device) or in the CGW properties (e.g. load level
changed), it sends an update to the CNM, which calculates
a new distribution and, if required, sends management com-
mands to enforce a device to switch to another CGW. The
management command is sent via the CGW to which the
device currently is connected and it contains the list of target
CGWs in the form of IPSO objects [9]. Once a device switches
to another CGW, it will register again to the new CGW.



C. Device and Gateway Management

The vast amount of devices and CGWs and their dis-
tribution throughout the network create challenges in device
management. The network manager requires an overview of all
devices and CGWs, and an intuitive interface to control them.
Device monitoring and control, capillary network monitoring
and management, device or resource identification and discov-
ery are some of the challenges for the Capillary Networks
architecture. To solve such challenges, a new network node
called the Management Interface (MINT) was introduced into
the architecture. MINT is a wrapper layer on top of all the CNP
components, i.e., it is the interface between all the network
nodes and the network manager as shown in Figure 2. Hence,
MINT incorporates different modules in order to provide a
complete view of the system.

The core of MINT is a web application server that co-
ordinates the communication between different entities of
the Capillary Network Platform (CNF, CNM, IoT-Framework
and virtualized middleware) and pub/sub servers, additionally
provides a user interface to the network manager. In order to
retrieve the management information and device data, as well
as to present it to the manager in a map-based interface as
shown in Figure 4, MINT communicates with the CNF, CNM,
IoT-Framework and virtualized middleware through a large set
of RESTful APIs:

- CNF to MINT: CNF provides the network topology
and management APIs to MINT, while CNF also dis-
patches device management information from MINT
to the CGW.

- CNM to MINT: MINT controls CNM features used
in Capillary Network Management such as the pol-
icy in the connectivity management and the gateway
property updates of the CGW. MINT also provides
configuration tools for CNM.

- Virtualized middleware in Containers to MINT: MINT
retrieves the meta data of CGWs and devices from vir-
tualized middleware instead of contacting the device
directly. This approach ensures data availability even
if the device is unreachable.

- IoT-Framework to MINT: IoT-Framework provides the
data collected from the devices to MINT. Semantic
search through device data is also provided by the
IoT-Framework.

RESTful APIs provide stateless response when the man-
ager requests the relevant data. However, a complete manage-
ment node is required to support real-time network informa-
tion to the manager. For this requirement, MINT includes a
publish/subscribe server. This publish/subscribe server notifies
the manager in real-time when an error is encountered in the
devices or CGWs, the network topology changes or a new
device joins the network. It additionally provides real-time logs
from CGWs and data streams from devices through the IoT-
Framework.

The direct management or actuation of constrained devices
is performed by using OMA DM Lightweight Machine-to-
Machine Device Management protocol (LWM2M) [10]. The
manager can send LWM2M commands to the device directly,

Fig. 4. MINT User Interface

for example, to perform an actuation on the device. Addi-
tionally, we extended LWM2M protocol to support scalable
management, i.e., application level group communication. In
order to provide group communication, a specific Group Object
is introduced to LWM2M protocol. Thus, the manager can
send a group message (e.g. turning on street lights of a
specific area) implemented as a unicast message by MINT
to the management proxy in CNF. Once the proxy receives
the message, it sends unicast messages to each LWM2M
client in the group using the list of group members stored
in it. LWM2M application level group communication [17]
offers advantages such as increased reliability and does not
have special requirement from the network equipment when
compared to IPv4/IPv6 multicast.

D. Distributed Cloud

In our system, the distributed cloud for IoT devices in-
cludes both data centers (DCs), where larger amounts of data
from different sources can be processed and where also man-
agement functions typically reside, as well as local compute
infrastructure, in particular within capillary networks. The
latter makes it possible to process data locally, for example, to
aggregate or filter sensor data, which can reduce the amount
of data that is sent upstream towards data centers. Moreover,
it enables also low-latency sensor-actuator control loops.

In particular, we use containers, such as Docker [18], for
packaging, deployment (including updates and new features),
and execution of software in our cloud. In general, containers
have a low overhead, which, in turn, allows a high density
of instances in DCs. Moreover, containers can be executed in
more constrained environments without hardware virtualiza-
tion support, such as in local CGWs.

The Orchestrator component of the CNF is the high-
level orchestration service, determining what software image
is deployed for a CGW or device when it registers. It also
determines whether the software should be deployed locally
on a CGW or in the Virtualized middleware.

The Virtualized middleware domain is managed by the
IoT-Portal. The IoT-Portal is a Docker orchestration service
that instantiates, configures and manages instances in the
virtualized middleware, i.e., IoT Services. We typically allocate
one IoT Service instance per CGW for initial data processing.

Nowadays, the Docker ecosystem provides a wide range
of orchestration solutions [19]. The IoT-Portal was created



due to a lack of mature IPv6 support in both Docker and in
the related orchestration tools at the time of implementing the
Capillary Network Platform. In order to support a potentially
vast number of devices, the IoT Service containers need to
have IPv6 connectivity in practice. IPv6 support in Docker
has earlier been immature, which has led us to enhance the
network functionality in the prototype’s Docker environment.
The IoT-Portal uses the IPv6 prefix of an underlying Docker
host and IPv6 Neighbor Discovery Proxy [20] functionality to
assign the container a unique IPv6 address that is routed to
the container without requiring the network administrator to
allocate an IPv6 prefix to each Docker host.3

Some of the CGWs support virtualization and can run
containers with data processing software near the device. We
call these instances Sensor Agents, since we typically allocate
one virtual counterpart per sensor device. The Orchestrator
communicates with an Instantiator on the CGW in order to
launch a new container. If the CGW to which the device is
connected does not support virtualization, the Sensor Agent
can be started in the data center instead.

The platform also supports launching of emulated devices
inside Docker containers in the virtualized middleware for
diagnosing and stress-testing the entire system. The emulated
sensors communicate using the same protocols as physical
sensor devices.

V. IMPLEMENTATION

We developed a prototype of the Capillary Network Plat-
form in order to test and evaluate the concept. The following
section provides additional details about our implementation,
in particular regarding the gateways, the devices and the
components in the cloud.

A. Gateways

Gateways are Linux based platforms running customized
software to add the features of a Capillary Gateway. The short
range radios and the mobile uplink are mainly provided with
USB dongles. We used two types of gateways:

- TP-Link TL-WR1043ND gateways are modified to run
the Linux based OpenWRT4 operating system. The
integrated access point serves an IEEE 802.11 based
short range network. The single USB port is used
either for the 3G modem or for serving an IEEE
802.15.4 short range network via a dongle5. The
OpenWRT platform does not currently support Docker
based virtualization.

- Raspberry Pi 1 Model B gateways run the Arch Linux6

operating system. Both IEEE 802.11 and 802.15.4
short-range radio interfaces, as well as the 3G modem,
are based on USB dongles. Arch Linux supports
Docker for the ARM platform, which enables virtual-
ization at the gateway.

3As an alternative solution, the IPVLAN driver [21], which is included
in recent Linux kernels, could potentially be utilized for sharing a Layer 2
network device on the host with containers.

4http://openwrt.org/
5A USB hub can be used to enable both simultaneously
6http://www.archlinux.org/

B. Devices

To show support of various kinds of devices, our imple-
mentation utilizes two very different types of devices:

- TMote Sky7 devices with the Contiki8 operating sys-
tem running 6LoWPAN [22] over an IEEE 802.15.4
interface with CoAP at the application layer. We base
our device implementation on the RPL (IPv6 Routing
Protocol for Low-Power and Lossy Networks) [23]
routing protocol between the gateway and the device.
RPL implements the messaging to allow the capillary
gateway and the device to detect each other. The
reachability information is obtained from the gate-
way’s perspective. The TMote Sky devices integrate
humidity, temperature, and light sensors but only the
temperature and humidity sensors were used in our
implementation.

- Libelium Waspmote9 devices are connected with IEEE
802.11b/g [3] and use HTTP for communication. The
devices perform a scan over all channels to find
the SSIDs of the surrounding gateways. Thus, they
provide a device centric view of the reachability. The
Waspmote devices are equipped both with sensors and
actuators in the prototype. Some of those actuators
are motors and lights. The actuators are connected to
the Waspmote devices through the general-purpose in-
put/output (GPIO) interface by controlling the voltage
from 0V to 3.3V. External sensors are connected to
the analogue input ports.

C. Cloud components

The cloud components are implemented as software run-
ning in Docker containers (CNF, CNM, IoT-Portal, IoT-
Framework) or in a virtual machine (MINT). These compo-
nents implement the functions described in section IV.

- CNF is implemented as a web service running on the
Apache server10 with MySQL11 data storage.

- CNM is implemented on the Twisted12 framework
with a Redis13 based data storage to save information
about gateways, devices, policies and reachability. The
CNM provides APIs as plugin modules for various
kinds of devices. The core of the CNM is the con-
nectivity management function that implements the
gateway selection algorithm.

- IoT-Portal is implemented using the Apache server
with MySQL as data storage.

- MINT is implemented as a web service consisting
of two separate servers, which are an Apache server
combined with MySQL storage and a Node.js14 server
as a publish/subscribe service for performing real-time

7http://www.moteiv.com/
8http://contiki-os.org/
9http://www.libelium.com/
10http://httpd.apache.org/
11http://www.mysql.com/
12http://twistedmatrix.com/
13http://redis.io/
14http://nodejs.org/



Fig. 5. The use cases implemented with the prototype

updates on the client. Data transfer between these two
servers are handled by local Redis data queues.

- IoT-Framework is a database implemented in Erlang
by utilizing the Elasticsearch engine15. The frame-
work has been implemented in collaboration with the
Swedish Institute of Computer Science and Uppsala
University and it is available as open source software
in GitHub [12], released under the Apache 2.0 license.

VI. USE CASE BASED EVALUATION

The Capillary Network Platform is focused on enabling a
wide range of cloud services for IoT devices as well as an easy
deployment and management of network elements. Our goal
with the prototype was to evaluate the different functionalities
of the platform by creating real-world use cases and testing
them empirically. This section describes how the platform
supports these use cases. The use cases are tested using a
miniature model setup shown in Figure 5, where sensor devices
are placed in a train’s containers and in an agriculture field,
while streetlights, greenhouse lights and an irrigation system
are controlled by actuator devices.

For the case of distributed cloud, a typical use case we
considered is a control process reading and analysing the data
from a sensor and, based on the analysis, performs some
actuation with the device. While data centers are connected
with high bandwidth links, their distant location from the
device can cause inherent latency. Running the processing
close to the device lowers the delay and the delay variation
in the control loop. In addition, placing the processing at
the CGW also improves reliability and gives a degree of
autonomy; if the uplink from the CGW goes down, the
control process can continue operating. Moreover, sensor data
typically has a high degree of redundancy. With filtering,
compression and aggregation performed on the CGW, the
amount of data transmitted over the wireless uplink can be
reduced. While this functionality could be performed with
traditional custom-built control software statically installed on

15http://www.elastic.co/products/elasticsearch

the CGW, running the software as part of a distributed cloud
provides flexibility, easier management and better interactions
with other systems. In the prototype, the distributed cloud is
demonstrated by running the software processing sensor data
in an agriculture use case, where actuation is performed with
a low latency when the software determines that an action is
needed based on sensor input.

The distributed cloud can further be used to offload a part
of the sensor software to the cloud. The sensor software is then
split into two parts: the firmware of the physical device and
the corresponding driver in the cloud, which may run, e.g., on
the CGW. When the device joins the network, the device type
is identified and the right driver is automatically instantiated
in the cloud. This saves memory and processing of the device,
lowering its price, and making it more generic.

In the group management use case, semantic information
about the devices is used to sort the different devices in
groups. Those groups could be defined based on any of the
attributes a device has, e.g., sensor type or manufacturer name.
When a manager creates a group, a logical relation is created
between a set of devices, which causes them to subscribe to the
messages for those groups. The information about the group
membership is stored in management proxies on several layers
in the network, e.g. in the cloud and in the CGW. This way,
when a message is sent to the group, it is sent via the proxies
in a efficient manner, with low overhead, it is aggregated and
prioritized according to importance. In the prototype, multiple
streetlights form a group that can be controlled and managed
without addressing individual devices. For example, a single
command can be sent to switch on all streetlights in the group.

The connectivity management use case [16] takes multiple
factors, such as the CGW load and battery level, into account
in order to select the optimal gateway for each device. If the
CGW load were the only property, the implemented algorithm
would choose the gateway with less load as the best candidate.
When several properties are available, the algorithm considers
all properties according to the weight specified in the policy
by the network manager. Our prototype considers the weight
and battery properties, but a real world implementation could
consider any property that can be given a numerical value, such
as the uplink bandwidth or reliability. Two types of devices
are evaluated in our implementation: IEEE 802.15.4 based
devices with RPL routing and IEEE 802.11b/g based devices.
The former obtain the reachability information from the CGW
sending the list of reachable devices to the CNM, while the
latter obtain that information from the devices sending the list
of the reachable CGWs to the CNM. In the prototype, this
scenario is demonstrated with sensors located on a train, which
can move between the radio range of multiple CGWs. The
platform connects the sensors to the optimal gateway among
the reachable ones based on the load and battery properties of
the CGW and the weight defined in the policy.

VII. CONCLUSIONS AND FUTURE WORK

This paper introduces the Capillary Network Platform
(CNP) for bridging the Internet of Things and the cellular
network. The platform provides backhaul cellular connectivity
to constrained networks and, unlike the traditional IoT plat-
forms, which abstract away the lower layer, adds intelligence



to the network at multiple levels resulting in a more flexible
and cross-layer approach. In particular, integrating connectivity
management, device management and security solutions of
both network domains enables an end-to-end solution with a
similar automatic configuration and easy deployment offered
to the IoT devices as we are used to in cellular devices today.
In addition, the Capillary Network Platform, by leveraging
distributed cloud technology, provides multiple users and op-
erators the opportunity to deploy their own software for data
processing and to customize the service to their own specific
needs.

Our goal was to provide a generic, scalable, and easily
manageable platform for IoT services. Hence, our implemen-
tation is heavily based on enabling distributed cloud services,
group management and load balanced connectivity, as pre-
sented in this paper. We argue that the Capillary Network Plat-
form is suitable for various typical IoT scenarios. The current
prototype implementation has served us well in multiple IoT
scenarios, and has been publicly demonstrated in the Mobile
World Congress 2015 to a large number of participants.

However, parts of this proposed architecture are still
subject for ongoing research. We are currently improving
orchestration, developing redundancy as well as integrating
distributed IoT data processing solutions, such as Calvin [24],
for aggregating, filtering and preprocessing data at the edge.
During our work, standardization activities have also been
ongoing, creating a need to flexibly to adopt new interfaces and
protocols, a task that can be met by the use of virtualization
and abstraction in the platform.

ACKNOWLEDGEMENT

The authors would like to thank Jari Arkko, Jan Melén,
Jaime Jiménez and Petri Jokela for their feedback on this
paper. This work was partly carried in the IoT SRA program
of Tivit (Finnish Strategic Centre for Science, Technology and
Innovation in the field of ICT), funded by Tekes.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of
Things (IoT): A Vision, Architectural Elements, and Future Directions,”
Future Gener. Comput. Syst., vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[2] “Bluetooth standards.” [Online]. Available: https://www.bluetooth.org/
en-us/specification/adopted-specifications

[3] “IEEE 802.11 standard.” [Online]. Available: http://www.ieee802.org/
11/

[4] “IEEE 802.15 standard.” [Online]. Available: http://www.ieee802.org/15
[5] S. Singh and K.-L. Huang, “A Robust M2M Gateway for Effective

Integration of Capillary and 3GPP Networks,” in 5th International
Conference on Advanced Networks and Telecommunication Systems
(ANTS). IEEE, 2011, pp. 1–3.

[6] V. Misic, J. Misic, X. Lin, and D. Nerandzic, “Capillary Machine-to-
Machine Communications: The Road Ahead,” in Ad-hoc, Mobile, and
Wireless Networks, 2012, vol. 7363, pp. 413–423.

[7] J. Sachs, N. Beijar, P. Elmdahl, J. Melen, F. Militano,
and P. Salmela, “Capillary network - a smart way to
get things connected,” in Ericsson Review, 2014. [Online].
Available: http://www.ericsson.com/res/thecompany/docs/publications/
ericsson review/2014/er-capillary-networks.pdf

[8] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “Connecting Internet-
of-Things Deployments Across Space and Time,” in IEEE IoT, 2013.

[9] “IP for Smart Objects Alliance.” [Online]. Available: http://www.
ipso-alliance.org/

[10] Lightweight Machine to Machine, Technical Specification, Open Mobile
Alliance (OMA), 2014.

[11] K. Vandikas and V. Tsiatsis, “Performance Evaluation of an IoT Plat-
form,” in Eighth International Conference on Next Generation Mobile
Apps, Services and Technologies (NGMAST), 2014.

[12] “IoT Framework.” [Online]. Available: http://github.com/
EricssonResearch/iot-framework-engine

[13] TS 33.220 - Generic Bootstrapping Architecture (GBA), 3GPP.
[Online]. Available: http://www.3gpp.org/DynaReport/33220.htm

[14] H. Mahkonen, T. Rinta-aho, T. Kauppinen, M. Sethi, J. Kjällman,
P. Salmela, and T. Jokikyyny, “Secure M2M Cloud Testbed,” in MO-
BICOM’13, 2013, pp. 135–138.

[15] M. Sethi, J. Arkko, and A. Keränen, “End-to-end Security for Sleepy
Smart Object Networks,” in LCN Workshops 2012. IEEE, 2012, pp.
964–972.

[16] N. Beijar, O. Novo, J. Jiménez, and J. Melen, “Gateway Selection
in Capillary Networks,” in The 5th International Conference on the
Internet of Things (IoT 2015), 2015, accepted for publication.

[17] D. D’Ambrosio, “A Group Communication Service for OMA
Lightweight M2M,” Master’s thesis, Universit degli Studi di Napoli
Federico II, Italy, 2014.

[18] “Docker Open Platform for Distributed Applications.” [Online].
Available: http://www.docker.com

[19] K. Subramanian, “Docker Ecosystem,” Mind Map, 2015. [Online].
Available: https://www.mindmeister.com/389671722/docker-ecosystem

[20] D. Thaler, M. Talwar, and C. Patel, “Neighbor Discovery Proxies (ND
Proxy),” RFC 4389 (Experimental), Internet Engineering Task Force,
Apr. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4389.txt

[21] M. Bandewar, IPVLAN Driver HOWTO, Linux Kernel Documentation,
2014. [Online]. Available: https://www.kernel.org/doc/Documentation/
networking/ipvlan.txt

[22] J. Hui and P. Thubert, “Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks,” RFC 6282 (Proposed Standard),
Internet Engineering Task Force, Sep. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6282.txt

[23] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” RFC 6550 (Proposed Standard),
Internet Engineering Task Force, Mar. 2012. [Online]. Available:
http://www.ietf.org/rfc/rfc6550.txt

[24] P. Persson and O. Angelsmark, “Calvin Merging Cloud and IoT,”
in 6th International Conference on Ambient Systems, Networks and
Technologies (ANT), 2015.


