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Abstract

New ways of producing information, knowledge, and culture through social,
rather than proprietary relations, are probably reponsible for the recent pro-
liferation of online communities. Many of these communities aim to collabo-
ratively create large multimedia databases. The context in which these sites
are growing and many of their important aspects are presented and discussed
in this work. From all of them, the retrieval issues of sound effects have been
selected as main focus of the thesis. Specifically, aspects concerning the anno-
tation of such large databases by means of collaborative tagging, and others
dealing with the study of alternative ways to retrieve audio content, such as
sound search by phonetic similarity.

The collaborative sound database Freesound.org has been chosen for the
experiments. First of all, an study about issues such as how users anno-
tate the sounds in the database, have been conducted, detecting some well–
known problems in collaborative tagging, such as polysemy, synonymy, and
the scarcity of the existing annotations. Then, a subset of sounds rarely or
scarcely tagged were selected for the experiments, where a content–based au-
dio similarity system aiming at automatically enhancing these annotations
have been proposed. The reported results show that 77% of the test col-
lection were enhanced using the recommended tags, with a high agreement
among the subjects.

We have also studied alternative interfaces that allow different criteria
when browsing and retrieving these databases, with the motivation that such
large repositories may have different levels of descriptions, and thus different
ways of browsing may be allowed. The proposed system attempts on ex-
tracting automatically timbre information at the phoneme level, by means of
phonetic similarity. Hence, the keyword-based search can be complemented,
allowing at the same time a more natural retrieval, since given that ono-
matopoeic representation of sounds are very common ways to describe them.
Promising results are reported, and even still further improvements have to
be considered in order to extend it to more sound categories with successful
performance.
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Chapter 1

Introduction

Profound changes in the way masses are using technology are contributing
to the creation and development of new models of production, which rather
than being based on hierarchy and control, they are based on community
and spontaneous collaboration of crowds. This is giving rise to the emer-
gence of online communities that serve as platform for large repositories,
created around these web sites, where users share high volumes of multime-
dia content. Developers of these new sites may provide the required tools
to ensure their success, based on four basic principles: openness, peering,
sharing and acting globally, (Wikinomics, [54]).

This thesis presents the framefork of the Semantic Web where online com-
munities are currently growing rapidly. Some of their main characteristics
and problems are described as well, selecting as main focus for the thesis the
retrieval of sound effects in large collaborative databases. Two different is-
sues have been addressed: the annotation of these large databases by means
of collaborative tagging, and a study in alternative sound interfaces based
on sound search by phonetic similarity.

Experiments have been performed in Freesound.org, a collaborative data-
base where users share and browse sounds by means of tags, and content–
based audio similarity search. A short description of it can be found in the
following sections. Section 1.1 presents an introduction to the annotation
of such large databases, followed by a short description of Freesound.org in
Section 1.2. Finally, Section 1.3 describes my personal motivation to carried
out this work.

1



CHAPTER 1. INTRODUCTION 2

1.1 Annotation of Collaborative Databases

Since 2004, collaborative tagging seems a natural way for annotating objects,
in contrast to using predefined taxonomies and controlled vocabularies. Inter-
net sites with a strong social component (e.g. last.fm, flickr, and del.icio.us),
allow users to tag web objects according to their own criteria. The tagging
process can improve then, content organization, navigation, search and re-
trieval tasks [23].

Audiovisual assets can be manually and automatically described. On
the one hand, users can organize their music collection using personal tags
like: late night, while driving, love. On the other hand, content–based (CB)
audio annotation can propose, with some confidence degree, audio related
tags such as: pop, acoustic guitar, or female voice. It is clear that both
approaches create a rich tag cloud representing the actual content. Still,
automatic annotation based solely on CB cannot bridge the Semantic Gap.
Hybrid approaches, exploiting both the wisdom of crowds and automatic
content description, are needed in order to close the gap.

In this sense, Freesound.org, a collaborative sound database, contains
both elements: it allows users to annotate and retrieve sounds based on tags
and community data, and it also allows to retrieve similar sounds to a given
one, according to audio similarity. A presentation of Freesound.org can be
found in the following lines.

1.2 Introduction to Freesound

Freesound.org1 is a collaborative sound database where people from differ-
ent disciplines share recorded sounds and samples under the Creative Com-
mons license, since 2005. The initial goal was to giving support to sound
researchers, who often have trouble finding large sound databases to test
their algorithms.

After three years since its inception, Freesound.org serves around 20,000
unique visits per day. Also, there is an engaged community—with more than
half million registered users—already accessing 54,000 uploaded sounds.

Users can navigate through the database and search sounds by means
of tags, full text descriptions, usernames or even filenames. When a user
finds an interesting sound, he/she can download it, add comments to it, rate
the sound, or even notify if it is an abusive or illegal sample. When a user
uploads a new sound to Freesound.org, she is asked to tag it and describe it in
order to make the sound searchable. Furthermore, by means of collaborative

1http://freesound.org/



CHAPTER 1. INTRODUCTION 3

tagging, other users can extend the sound annotation. There is also the
possibility to geotag a sample, or add it as part of a sample pack. Moreover,
in the forum users can ask or answer other users questions, or interact with
the community sharing different kinds of interests.

1.3 Personal Motivation

If I should summarize in just two words my personal motivation on this work,
these would be ’collaboration’ and ’sound’, which obviously includes music.
Moreover, research in topics that many people can benefit from it are also a
great motivation, combining it with my passion towards ’music’, which has
accompanied me since I was a child. These were my first main motivations
when I joined the Freesound Project. Carrying out this research within it has
made me understand (and develop) some of the principles that are driving
to imaginative new ways of innovation and success, conducting to a more
critical culture in a more equitable community of better-informed people. In
fact, this thesis has also been the result of constant collaboration of different
brilliant people, who have been motivating me for working very hard during
this year, being part of the Music Technology Group, a great place to learn
and touch a bit of the talent of its members.



Chapter 2

Definition of the Problem

Technological advances in computer hardware and software, networking tech-
nologies and the move to the Internet as platform for collective multimedia
creativity have caused, among others, the proliferation of online communi-
ties, where millions of people are connected sharing information and inter-
ests. The latest set of applications have transformed the Web from a mere
document collection into a social space [38].

All this is happening under the new developments of the Web 2.0, which
comes from the ideas of the Semantic Web and seen as an extension of the
first Web 1.0. A short description of this evolution is presented in Section
2.1.

Users are transforming the Web and placing new demands on businesses
daily. From open source to open content, new forms of organisation, produc-
tion and distribution are emerging [4]. In the present work, we are interested
in multimedia databases that have been created collaboratively around on-
line communities. Investigating the complex social-technological interactions
of these kind of systems is ’paramount to our ability of designing intelligent
information systems that can take advantage us through of the new online
universe’ [38]. With this purpose, a summary of the main characteristics and
their problems is presented in Section 2.2.

Finally, from all the points examined in Section 2.2, we focus on the re-
trieval issues of sound effects in large collaborative databases for the present
work (Section 2.3). Hence, two different aspects are covered. First, the
annotation of such databases by means of collaborative tagging, where the
Freesound.org Collection has been chosen for the experiments. Second, the
study of novel techniques for retrieving sounds effects. Large collections have
different levels of description, so there is a need of searching sounds at dif-
ferent levels of criteria. The proposed approach gives the user the possibility
of retrieving sounds by means of phonetic similarity and thus enriching or

4



CHAPTER 2. DEFINITION OF THE PROBLEM 5

complementing the keyword-based search of such large databases.

2.1 The Scope of the Semantic Web

The original architect and visionary of the Semantic Web, Tim Berners-
Lee, defined it in 1998 as ’the Web of data (and connections) with meaning in
the sense that a computer program can learn enough about what data means
to process it’ [5], using similar processes to human deductive reasoning. Then,
Semantic Web Technologies should organise and find information based on
meaning, not just text, for instance, systems that understand where words
and phrases are equivalent [26]. These technologies aim to provide formal
description of concepts needed to integrating information from heterogeneous
sources. For instance, the XML project (eXtensible Markup Language) was
initiated to provide an extensible, machine-interpretable language for stor-
ing, communicating, and interpreting information [42]. In combination to
XML, RDF (Resource Description Format), a language for defining metadata
vocabularies, has been largely used for enabling metadata, interoperability
and compatibility. Furthermore, Web Ontology Language (OWL) is also an
important element of the Semantic Web. It also aims on giving formal rep-
resentations of concepts, terms and relationships within a given knowledge
domain. Reasoning by computers is allowed thanks to this formal concep-
tualisation [19]. Hence, content may manifest as descriptive data stored in
Web-Accessible Databases.

The extension of the Sematic Web where users read and write content
in an active way has been called ’the participatory web’, ’Social Semantic
Web’ or better known as Web 2.0. This term became notable after the first
O’Reilly Media Web 2.0 Conference in 2004. It aims on enhancing creativity,
information sharing, and, mainly, collaboration among users where they not
only surf the web, but work the web [1].

Some of the features of the Web 2.0 are related to latest user-improved
versions of the World Wide Web, open source productions and ’end-to-end’
architectures. All these allow simultaneous and unco-ordinated innovation,
a basic tenet that has ensured a bottom-up, user-driven innovation [4].

Millions of people meet online to enjoy sharing information, conducting
online research or participating in online network communities. This have led
to the development and evolution of web-based communities and hosted ser-
vices, such as social-networking sites, multimedia sharing sites, wikis, blogs,
and folksonomies. Despite there is no accepted definition for the term online
community [45], it was defined by Howard Rheingold, an early pioneer, as
’cultural aggregations that emerge when enough people bump into each other
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often enough in cyberspace’ [48].
Members of these communities have a shared goal, interest or activity that

provides the primary reason for belonging to it [63]. Moreover, members have
often access to shared resources, such as multimedia content. This is the case
of Freesound, where its community users are around a collaborative sound
database. The following section summarizes some of the main characteristics
of these kind of collaborative databases in online communities.

2.2 Collaborative databases and Online Com-

munities

The recent proliferation of social communities that are around collaborative
multimedia databases, such as Flickr, Youtube or Freesound, have provoked
the demand for guidelines on how to build successful online communities. In
this section I have summarized some of the main characteristics and problems
that these communities can have, emphasizing the social and the retrieval
aspects. These are community-based, retrieval, content, intellectual property
(IP) and digital rights management and finally technical infrastructure issues.

Community-based issues

User communities are created around the repositories. In order to support
user communication, blogs, forums and newsletters can be very useful. Cul-
tural and social aspects are also important. Cultural barriers, such as
the language of the interface or specific content generated by certain users
can be problematic sometimes. In addition, user information is relevant
when understanding how the system should be changed aiming on improving
retrieval, recommendation, ontologies, etc.

Besides all that, ’instead of investing in expensive copyright protection
systems, information may be commodified through tried-and-tested methods,
but this is only possible if due respect is paid to the creative and generative
social character of an active user community’ [4].

Retrieval issues

Effective retrieval systems are essential in large multimedia databases in order
to find elements easily. As stated in [37], good retrieval begins with a sound
organization scheme for the data, but also depends on sophisticated user
interfaces. These ones may be designed to help the user understand the
data categorization and to meet his/her interests. Moreover, user usability
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and evaluation are important issues to take in consideration when designing
interfaces [25], as well as knowledge about the communities [11], such as the
motivation, interests and behavior of the main body of users, in order to
support creation, management and reuse of knowledge in a social context.

Large multimedia collections have different levels of description. Thus,
the content retrieval should consider different criteria. The management
of digital media needs semantic descriptors aiming at making metadata
easily searchable and reusable to support possible new users (including com-
puters) and applications [6]. Some sound categorization schemes have been
proposed in the literature, but still, none of the existing ones has been po-
sitioned as main reference. In this sense, the MPEG-7 can be mentioned,
since it offers a framework for the description of multimedia documents [33].
Other sound categorization schemes selected to present here are the ones
proposed by Schaeffer and Gaver. The approach proposed by the first one
was focused on attributes of the sound itself, without any reference to the
source causing it (e.g pitchiness, brightness), [41]. Gaver [13] introduced a
taxonomy of sounds, on the assertion that they are produced by means of
interaction of different materials.

Visualization such as the FOAF project (Friend-of-a-friend) is also se-
lected to mention here. The FOAF develops ways to describe both the prop-
erties of people (date of birth, age, nickname) and social relationships (inter-
ests, places of employment, group affiliations). The most interesting think
from a social viewpoint is the fact that one person ’knows’ another. In the
application of the FOAF relations studied in [42], the authors saw a very rich
structuring of the data that was not readily captured in ontologies and yet
which was closer to the meaning of social life of the online community they
studied.

Since users of the communities created around collaborative databases are
both producers and consumers, collaborative tagging plays a crucial role
concerning the annotation of the multimedia content and thus its retrieval.
It can be inferred that active users are influential in such annotation as well.

Retrieval of multimedia content in large databases is not a trivial task,
since sometimes it can be a more complex problem. For example, in the
case of Freesound, if the retrieval is not about concrete sounds, but group of
sounds. Sophisticated navigation systems should then be designed for such
purposes aiming at facilitate collective music creativity.

Finally, the effectiveness of the retrieval can be improved by means of
recommendation systems [47], such as collaborative filtering, (when
one person searches and he/she is provided with information which has been
useful to other people previously [17]), or even with collaborative retrieval
[3] for some Computer Supported Cooperative Work (CSCW) applications,
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to the case when many people search for the same information.

Content issues

Assessing the content quality and the authority of contributor are rele-
vant issues. For example, in Wikipedia1, an article is considered to be a good
one if its author is an authority in the subject area that the article belongs
to. In addition, the peer review model considers that a review from an
authority is valuable. Hence, by means of changing and making corrections
in the article, the expertise of reviewers improves the quality and serves to
show consensus among other users as well. However, there is some criticism
concerning reliability and content accuracy, as well as for its susceptibility
to vandalism, but the active Wikipedia community rapidly and effectively
repairs most damage [59].

In the case of Freesound, we can differentiate two main parts at this point:
sounds and metadata. Hence, content-based techniques can be applied in
order to measure some aspects concerning the quality of the sounds, such
as duration, bps, etc. rating system is also applied as a kind of quality
measure, but it is not effective when there is a lot of material unrated.

Moreover, input control is important to ensure the license of the content
when it is required. Each sound of the Freesound Collection has been passed
through a moderation stage that guarantees the Creative Commons License.

Since repositories are dynamic, content modification, update or removal
are also important issues in order to guarantee the usefulness of such databases.
How up to date and the ability to work collaboratively on the improvement
are relevant as well.

Intellectual property (IP) and digital rights management

Many of these communities choose Creative Commons attributions for
the authoring and creation of their multimedia content. ’Creative com-
mons thinking will have an impact on any cultural organisation at a number
of different levels. First, it brings its own culture to challenge yours. (...)
A new culture is emerging that is reshaping not only the ’who’ but also the
’how’ of cultural production, so that it is transnational, more egalitarian,
more transparent to its users, less deferential, much more diverse, and above
all, self-authored. (...) Cultural commons thinking prepares us for a mutual
world in which we will all be authors, publishers and real-time reporters’ [4].

Economical sustainability is an important aspect to consider, such as
business models, e-commerce systems, etc. for the creation and maintenance

1http://wikipedia.org
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of effective repositories in a mid-term sense. This can be achieved, for in-
stance, with models honoring the intellectual property rights of contributors
aiming on developing the resources needed to maintain the usefulness and
freshness of the repositories and their technical quality [37].

Technical infrastructure issues

Appropriate technical infrastructure is needed for the correct operation of
large on-line databases, for instance, security of the system, telecommuni-
cation capabilities, updates, operating and maintenance staff, etc. Data
management specifications are also important and they should be cov-
ered by the industry standards. In order to publish or get data from the
repositories, interoperability between semantic metadata standards (MPEG-
7, MPEG-21, XML, XOL, RDF, etc.) is demanded. In addition, metadata
extraction and ontology management can be time-consuming and re-
quire the services of both experts in ontology engineering and domain of
interest. Moreover, as usage changes, knowledge also changes, and there is
thus an evolution of ontologies to take in consideration[26].

Regarding technical capabilities such as bandwidth or quality, different
users may have different needs. Finally, the scalability of such databases is
important for the guarantee of effectiveness at higher volumes of content,
users, transactions, retrieval, etc. In addition, mirrowing approaches can be
a solution for that.

2.3 Issues on Retrieval of SFX Selected for

the Thesis

From all the points previously examined in Section 2.2, the retrieval issues
have been the focus for the present work. Specifically, those related to the
retrieval of sound effects in collaborative databases. In these repositories,
high volumes of content are generated and annotated in an heterogeneous
way. Since computers are still not sufficiently effective interpreting human
descriptions or annotations of this multimedia content, the effective manage-
ment of it is crucial for a correct retrieval and scalability. This is basically the
attempt of the first part of the thesis: study the strengths and weakness of
collaborative tagging and propose methods to enhance the retrieval of audio
content scarcely annotated. The second part of the thesis is in the context
of alternative interfaces. We believe that by means of phonetic similarity,
the keyword-based search can be complemented, allowing at the same time
a more natural retrieval.
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2.3.1 Collaborative Tagging in the Freesound Collec-
tion

As mentioned in Section 1.2, Freesound.org is a large collaborative sound
database accessible on the web. Since its inception, it has become very
popular within the audio community, for instance, being well-known for its
wide range of sounds. Due to its collaborative nature, it is an excellent tool
for the present study.

When analyzing this community, various problems have been detected.
Some of them derived by the fact that crowds are annotating multimedia
content without constraints. Computers should understand and interpret
human annotations in an intelligent way. But they are still far from that,
and thus retrieval tasks can be sometimes hard.

Related work can be found in Chapter 3, while Section 3.1 gives the
framework for semantic audio descriptions and Section 3.2 presents recent
work on Collaborative Tagging. Then, Chapter 4 analyzes tag characteris-
tics in Freesound.org, which has been chosen for the experiments presented
in section 4.2. However, after this study we have detected that there are
some sounds which are scarcely annotated, thus frustrating their retrieval
using keyword–based search. The main goal of the experiments are thus to
enhance semantic annotations in the Freesound.org sound collection, and to
evaluate whether using content–based audio similarity we can extend sound
annotations. Section 4.2 presents the approach used to ”autotag” sounds
based on the tags available in their most similar sounds. Finally section 4.3
presents the results and main findings, and section 6.1 draws conclusions and
outline future work.

2.3.2 Sound Search by Phonetic Similarity

Large audio collections have many different levels of descriptions. Hence,
there is a need to search sounds with different criteria. Specifically, in the
second part of the thesis, we address the case of sound search by phonetic
similarity. Onomatopoeias can be considered in the middle way between
words and sounds, since they try to convey a sound impression with words
or simply by phoneme concatenation, evoking thus the source producing it.
Furthermore, the use of onomatopoeia is considered a close approach to signal
level properties that a wide range of applications could take profit, such as
sound understanding, transcription, classification or retrieval. For instance,
when the application requires an exhaustive level of specification. Hence,
automatic techniques extracting information at the phonetic level could be
then useful.
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Chapter 3, specifically Section 3.3, presents existing related work in the
context of phonetic sound similarity, while Chapter 5 presents the research
conducted for the present thesis. Section 5.1.1 shows some problems found
when investigating how subjects understand sound by means of onomatopoeia.
Then, the proposed system to automatically extract sound information at the
phoneme level is presented in 5.2. The different Experiments and obtained
results are then described in 5.3. Finally, conclusions and future work for
this second part of the thesis is presented in 6.2.



Chapter 3

Research Context and Related
Work

Due to the proliferation of multimedia content on Internet and its availabil-
ity through online repositories, novel ways to annotate, index and retrieve it
are crucial for guaranteeing a satisfactory user interaction. By multimedia
content we understand text, such as blogs or wikis, images, video and au-
dio. Audiovisual assets can be manually and automatically described, and
both approaches can benefit from each other. In this Chapter 3 we present
some of the related work in the audio and music domain. First, Section
3.1 introduces existing related work in semantic audio descriptions, giving
thus a general research context. Then, Section 3.2 presents the limitations
and drawbacks of collaborative tagging. Finally, Section 3.3 presents the
specific case of phonetic sound description applied to audio understanding,
annotation, transcription and retrieval.

3.1 Automatic Extraction of Semantic Descrip-

tions in the Audio and Music Domain

In this section some related work that deals with automatically enhancing
semantic descriptions in the audio and music domain is presented.

In [58], the authors propose a query–by–semantic audio information re-
trieval system. The proposed system can learn the relationships between
acoustic information and words (tags) from a manually annotated audio col-
lection. The learning task is based on a supervised multiclass labeling model,
with a multinomial distribution of words over a predefined vocabulary.

Torres et. al propose a method to construct a musically meaningful vo-
cabulary [57]. By means of acoustic correlation using sparse canonical com-

12
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ponent analysis (sparse CCA), they can remove from the vocabulary those
noisy words (not related with the actual audio content) that have been in-
consistently used by human annotators.

The bag–of–frames (BOF) approach has been extensively used to de-
scribe timbrical properties of an audio signal. This approach consists on
using Gaussian Mixture Models (GMM) of Mel–Frequency Cepstrum Coeffi-
cients (MFCCs), in order to model local spectral features from signals. The
approach is used to extract mid–level descriptions from music signals, such
as their genre or instrument, but it is also used to perform timbre similarity
between songs. In [2], the authors find out that this approach tends to gen-
erate false positives songs which are irrelevantly close to many other songs.
These songs are called hubs, and the authors propose measures to quantify
the “hubness” of a given song. This property affects any system that uses
timbrical features to compute content–based audio similarity.

Cano has studied the strengths and limitations of audio fingerprinting,
and suggests that it can be extended to allow content–based similarity search,
such as finding similar sounds using query–by–example [6]. Moreover, the
author proposes a general sound effects classifier, capable of generating ver-
bose descriptions which combine both low–level and high–level semantic ap-
proaches (exploiting the synonyms information available from the Wordnet
lexical dictionary).

Similarly to the present approach (see 4.2), in [50] the authors propose
a non–parametric strategy for automatically tagging songs, using content–
based audio similarity to propagate tags from annotated songs to similar,
non–annotated, songs.

In [10], the authors present a method to recommend tags to unlabeled
songs. Automatic tags are computed by means of a set of boosted classifiers
(Adaboost), in order to provide tags to tracks poorly (or not) annotated.
This method allows music recommenders to include in a playlist unheard
music that otherwise would be missed, enhancing the novelty component of
the recommendations.

Last but not least, social tags are a promising way of exploring a music
collection [31]. Levy et. al exploit this idea using Correspondence Analysis
to visualise an effective low–dimensional semantic space defined by the tags.
This allows one, for instance, browsing the collection by moods.

3.2 Collaborative Tagging

Collaborative tagging can be seen as “feral hypertext” [61], as they are out
of control. Users are not constrained by a controlled vocabulary when anno-
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tating the content. According to Walker, one of the most interesting aspects
of collaborative tagging is that the whole community benefits from sharing
information [61]. However, as stated in [18], “collective tagging has also the
potential to aggravate the problems associated with the fuzziness of linguistic
and cognitive boundaries”. Users’ contributions produce a huge classification
system that consists in an idiosyncratically personal categorization. The
main problems concerning collaborative tagging are: polysemy, synonymy,
the basic level variation of the annotations, and data scarcity. Furthermore,
spelling errors, plurals and parts of speech also clearly affect a tagging sys-
tem.

Sometimes, polysemous tags can return undesireable results. For exam-
ple, in a music collection if one is searching using the tag love, the results
can contain both love songs, and songs that users like it very much (i.e. a
user that loves a death metal Swedish song, not related with the love theme).

Tag synonymy is also an interesting problem. Even though it enriches
the vocabulary, it presents also inconsistencies among the terms used in the
annotation process. For example, bass drum sounds can be annotated with
the kick drum tag; but these sounds will not be returned when searching for
bass drum. To avoid this problem, sometimes users tend to add redundant
tags to facilitate the retrieval (e.g. using synth, synthesis, and synthetic for
a given sound excerpt). Yet, there are some approaches to measure semantic
relatedness between tags [8]. These metrics could be used to decrease the
size of the vocabulary, and also for (automatic) query expansion to increase
the recall in the sound retrieval task.

Besides, there is a systematic variation across subjects concerning what
constitutes a basic level of an annotation. Basic level is related to the way
humans interact with the items to annotate. Categories are usually not well
defined, and their boundaries are vague [29]. Thus, users tag an item with
different levels of detail; experts in a concrete domain tend to annotate with a
level of greater specificity than those without domain expertise. For example,
a tagger may tag a guitar sound using guitar, chord whilst another user may
tag it with electric-guitar, C chord, fender-stratocaster, 1957. Finally, the
scarcity and inequality nature of a collaborative annotation process—where
usually a few sounds are well annotated, and the rest contain very few tags—
limits the coverage retrieval of a collection.
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3.3 Phonetic Sound Similarity for Sound Re-

trieval

Large audio collections have many different levels of descriptions. Hence,
there is a need to search sounds with different criteria. Moreover, there is
a wide range of applications which can take profit of phonetic sound simi-
larity, such as sound understanding, transcription, classification or retrieval.
Usually, the level of specification required by certain users or applications is
very exhaustive. For example, a woman runing with high-heels on wet sand
and that sounds like ’plof plof’ could be needed in a post-production movie.

This Section 3.3 deals with the last part of the example, some related
work on phonetic sound similarity, and its application to sound retrieval by
means of onomatopoeia, understood here as combination of phonemes or even
syllables. First of all, we are going to present some studies validating the use
of onomatopoeic representations of sound for sound annotation, transcription
or retrieval. It is worth to say that most of these studies are dealing with
Japanese onomatopoeia and are few.

3.3.1 Acoustic-Speech Correlations in Non-Speech Sig-
nals

Some studies attempt to take advantage of the semantic relations existing
within language in order to build novel techniques for retrieval. For instance,
Cano used in [6] semantic networks that complement content-based classifi-
cation, using the semantic dictionary WordNet1, which instead of organizing
words alphabetically, as traditional dictionaries do, WordNet organizes con-
cepts with several links between them. His system is a promising approach
towards high-level descriptors which are closer to human sound understand-
ing.

However, these techniques are still far from acoustic level properties that
directly affect source perception, as stated in [51], where the authors used
onomatopoeia as closer approach to signal level properties. The system con-
sisted on mapping the acoustic and semantic sound space by the following
approach. They represented onomatopoeia in a ”meaning space” by means
of an inter-word distance metric. Then, they tagged some audio sounds ac-
cording to the onomatopoeia. Finally, they could observe that the audio
within the same cluster shared both semantical and acoustic properties.

In [12] have determined some relationships between phonetic features of
onomatopoeia and tonal features of the auditory imagery impressions that

1http://wordnet.princeton.edu/
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subjects present in their study. For instance, the vowel /i/ was associated
with sharp impressions and vowels /u/ and /o/ were associated with dull
impressions. The obtained tendencies confirmed that some onomatopoeic
features reflected particular impressions of auditory imagery.

The same authors demonstrated in [35] the validity of onomatopoeic rep-
resentations for identifying acoustic properties of sound by using a classifica-
tion system based on the similarities of phonetic features using hierarchical
cluster analysis.

Our understanding of sound is a subjective and abstract concept, that
some studies have investigated in order to find common ways to describe
sounds. After the study carried out in [60], it was realised that human sound
representation use three basic types of verbal description:

• sound itself by means of onomatopoeia (or combination of syllables),
which describe the acoustical sound properties,

• sound situation which describe the context (what, where, when, and
how etc. produce it),

• the sound impression that produces on the listener, described usually
with an adjective, depending essentially on the subjectivity of each
person (e.g if a sound is pleasant, annoying, etc.).

They pointed out that sound situation was the most frequently used type,
although ’sound itself’ was used for the first description. Then, they proposed
a method for retrieving sounds by Japanese onomatopoeia, sound source
and adjective. In addition, they reported that retrieval was fast when user
had concrete knowledge of the sound. On the contrary, the the use of ono-
matopoeia was useful in such cases where the user had vague ideas of the
sound and furthermore could not specify the source sound.

3.3.2 Onomatopoeia and Environmental Sounds

Onomatopoeia has been considered very effective for situational communica-
tion as well as for environmental sounds ([7], [53], [24]).

For instance, Silva et al. [7] presented a preliminary study on acous-
tic analysis of environmental sounds based on Gaver’s sound classification
(Gaver, [13]). Similarities between sounds produced by objects with the same
type of material and interaction were found. Moreover, the onomatopoeia
representations proposed by the studied subjects shared similar phonetic fea-
tures.
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Besides that, Tanaka proposed the use of onomatopoeia to detect machine
errors [53].

In addition, the fact of imitating sounds by phonetic similarity or ono-
matopoeia was called ’sound-imitation words’ in [24]. They stated that the
main problem in automatic sound-imitation words is the ambiguity in de-
termining phonemes, since it is very subject-dependant. Moreover, they
designed a system based on Hidden Markov Models (HMM, [46]) with a
phoneme-group set for environmental sounds to automatically transcribe
them into Japanese onomatopoeia.

Onomatopoeia words are also a means of symbolic grounding, since sounds
are transformed into symbolic representations [24]. The same authors stated
that, ’in digital archives, onomatopoeia words may be used for annotations,
such as in MPEG-7 [33] is used for sound signals’. This study is specially
interesting since they attempt to automatically transform environmental
sounds into Japanese words, very similar to the present study. Moreover,
they also stated that ’Automatic speech recognition (ASR) systems [27] fail
to recognize non-speech sounds, in particular environmental sounds such as
friction, impact and electronic sounds’.

3.3.3 Drum Sound Recognition

Here some related work in Percussive Sound Recognition is introduced, since
it serves as context for the following Subsection 3.3.4. Many of the works in
music retrieval have been focused on melody or query by example, such as
query by humming based on melody or query by rhythm. However, in the
context of percussive sounds, melody is hardly present, different approaches
should be thus considered. Many studies in the literature have attempted to
classify drum sounds. P. Herrera [22] found a useful list of twenty features,
achieving classification rates above 90% within specific taxonomies. Tindale
published a survey of related work in beat detection and drum identification
[55]. He also investigated in [56] the classification of snare drum timbres
produced by different playing techniques, presenting a system that could
recognize subtle differences in timbre, which they believed this was the first
step towards a comprehensive system able to transcribe music and providing
information at the timbral level.

3.3.4 Voice Percussion Recognition

Reviewing the literature, different works have validated the use of voice
percussion recognition as promising approaches for music transcription or
composition ([40], [28], [20]). Drum sound recognition (see 3.3.3) looks for
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acoustic properties that are characteristic of the instrument, but in our case,
mapping between the input voice and target instrument sound is only in-
direct and metaphoric. Query-by-humming foucuses on pitch detection and
melodic feature extraction, but these have less relevance in voice percus-
sion recognition, which is primarily concerned with classification of timbre
and identification of articulation methods. Differences among individuals in
both vocal characteristics and the kinds of verbal expression used add fur-
ther complication to the task. Examples of these approaches can be found in
[36] where their system allows the user to retrieve sounds given their drum
pattern by means of voice percussion (beatboxing). Hence, the user search
for a sound by natural sounds such as ’ta pum pum ta’.

In [40] they used voice percussion recognition techniques for retrieving
drum patterns by means of classification of timbre and identification of ar-
ticualtion methods. This is an indirect and metaphoric approach, since as
they reported, ‘voice percussion is not a direct, faithful reproduction of the
acoustic properties of actual drum sounds’. So, they exploited the concept
of onomatopoeia by mimicking drum sounds by voice, in order to transcribe
them to their corresponding phonemic sequences by means of classical speech
recognition techniques. Then, they applied sequence matching for retrieving
the drum pattern with the highest likelihood score for the given user query.
The target drum patterns consisted on four beats of Bass Drum and Snare
Drum sounds with no simultaneous beats.

They obtained a recognition rate of about 70%. Finally, they invited for
further investigation to different languages and background cultures, since
one of the limitations of this work was the data used, which was only obtained
from Japanese speakers. Another limitation of this work was that they just
considered Bass and Snare drums, inviting to extend it for more percussive
instruments, as well as, more complex drum patterns.

Example of a Timbre-based Musical Instrument: the North Indian
Tabla

Pitch is the primary basis for sound categories in music, intervals and chords,
while timbre is for speech, vowels and consonants. Patel explains in [43] why
timbre contrasts are rarely the basis for musical sound systems, with some
excepcions such as the North Indian Tabla. Compairing music and speech,
two aspects emerge: temporal and spectral profile of a sound. While the
first one refers to the temporal evolution of the amplitude, spectral proile
refers to the frequency distribution, as well as their relative amplitudes. The
discussion is why timbre rarely serves as the basis for musical sound systems.
Physical reasons on the way that instruments are excited can answer partly
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this question; dramatic changes in timbre are difficult or impossible to handle.
Cognitive reasons are also important; there are no such timbre intervals,
ordered in terms of perceptual distances as in pitch.

However, there is a musical system certainly based on timbre: the North
Indian Tabla. The author in [44] studied the perceptual and acoustic re-
semblance between each stroke of the instrument and its associated vocable.
Empirical research was conducted to confirm this link, which is interesting
since drum and voice signals produce sounds in a very different way [43],
starting from the hypothesis that vocables are a case of sound symbolism
or onomatopoeia. So, the point was how timbral differences between drum
sounds were mapped onto linguistics. They demonstrated strong connections
between the musical and linguistic timbres of the North Indian culture, and
they encourage further investigations on similar empirical studies in other
cultures with rich percussive traditions, such as Africa and the african di-
aspora. Speciffically, they found correlations between acoustic properties
of drum sounds and the phonetic component of vocables, such as spectral
centroid, rate of amplitude envelope decay, duration between the releases of
consonanats, fundamental frequency and the aspiration on the balance of low
vs. high frequency energy in a vowel.

We find this study interesting since gives evidence of sound symbolism
in tabla, and this opens thus new ways of research in other instruments
or application contexts. One could think that this is culture dependent, and
difficult to generalyze, and in fact it is. However, they performed a perceptual
experiment with subjects who were non familiar with tabla drums. The
results were quite promising, since in most of the cases, these naive listeners
were able to match each vocable with the corresponding tabla sound.

Tabla vs. Drum North Indian Tabla has a well-defined set of onomato-
poeia, where each stroke of this instrument is mapped in a commonly ac-
cepted set of vocables. This is not the case for drum sounds, where there is
no such commonly accepted set of onomatopoeia for describing the different
sounds. In [14], Guillet and Richard pointed out that this could be explained
by the important role that oral tradition plays in non-western music cultures,
where the notation does not play an important role as in western popular
music does.

The same authors studied different classification approaches on a sim-
plified taxonomy of drum loops signals. The best result of 89.9% correct
recognition rate was achieved by a novel approach of SVM with context.
Since each drum loop signals exhibit temporal structure, their approach was
based on a sequence model or language model by analogy with large vo-
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cabulary speech recognition systems. It consisted on modeling each stroke
probability with the probabilistic output of the SVM classifier, as well as
adding context information coming from the previous stroke states, mod-
elled with a language model (the transition probabilities were estimated by
counting occurrences in each N-gram in the training database). The queries
were formulated by means of spoken onomatopoeia and the system com-
paired them to the rhythmic sequences in the database. They imposed a
set of onomatopoeia to the user, validated from a perception experiment
performed in [15], (it would be interesting to know the native languages of
the participants, since onomatopoeia is language-dependant). This approach
is limited to a speaker-dependent recognition and should be extended for
speaker-independent recognition.



Chapter 4

The Freesound Collection

This chapter presents the general characteristics of Freesound.org, the online
community where users share and browse audio files by means of tags, and
content–based audio similarity search already presented in previous chapters.

We performed two analyses of the sound collection. The first one (Section
4.1) is related to how users tag sounds. Some well–known problems that occur
in collaborative tagging systems were detected (i.e. polysemy, synonymy, and
the scarcity of the existing annotations). Moreover, we notice that more than
11% of the collection was scarcely annotated with only one or two tags, thus
frustrating the retrieval task. In this sense, the second analysis (Section 4.2)
focuses on enhancing the semantic annotations of these sounds. Then, the
results are presented in Section 4.3.

4.1 General Characteristics

In this section general characteristics of Freesound.org are introduced, as
well as the tag behavior in Subsection 4.1.1 and the different tag categories
present in the collection, Subsection 4.1.2.

Figure 4.1 depicts, in a log–log scale, all the sounds uploaded by the users.
The horizontal axis contains the 1,843 users that have uploaded one or more
sounds, ranked by the total number of sounds uploaded. The y-axis shows
the number of sounds added by each user. The shape of the curve follows
a power–law (x−0.87); a few dozens of users uploaded hundreds of sounds,
whilst the rest uploaded just a few. In fact, 80% of the users uploaded less
than 20 sounds, and only 5 users uploaded more than one thousand sounds
each. It is worth noting that these few users can highly influence the overall
sound annotation process.

21
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Figure 4.1: A log–log plot depicting all the uploaded sounds by the users.
Top–1 user has uploaded more than 3,000 samples. The curve follows a
power–law with x−0.87, with an exponential decay starting at x ≃ 400.

4.1.1 Tag behaviour

In this subsection we provide some insights about the tag behaviour and user
activity in the Freesound.org community. We are interested in analysing how
users tag sounds assets, as well as the concepts used when tagging. The
data, collected during February 2008, consists of 44,270 sounds annotated
with 12,420 different tags.

Figure 4.2 shows the number of tags used to annotate the audio samples.
The x-axis represent the number of tags used per sound. We can see that
most of the sounds are annotated using 3–5 tags. Also, around 5,000 sounds
are insufficiently annotated using only 1 or 2 tags. These sounds represent the
11% of the total collection. It would be desirable, then, to—automatically—
recommend relevant tags to these scarcely annotated sounds, enhancing their
descriptions. This is the main goal of the experiments presented in section
4.2.

Interestingly enough, in [6], the author analysed a sound effects database,
which was annotated by only one expert. A similar histogram distribution
to the one presented in Figure 4.2 was obtained. Specifically, most of the
sounds were annotated by the expert using 4 or 5 tags, as it is our case. This
could be due to human memory constraints when assigning words to sounds
or to any object, in order to describe them [39]. Based on Figure 4.2, we
classify the sounds in three categories, according to the number of tags used.
Table 4.1 shows the data for each class.

Tag frequency distribution is presented in Figure 4.3. The x-axis refers
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Figure 4.2: A lin–log plot depicting the number of tags per sound. Most of
the sounds are annotated using 3–5 tags, and only a few sounds are annotated
with more than 40 tags.

Table 4.1: Sound–tag classes and the number of sounds in each category.
Tags per sound Sounds

Class I 1–2 4,997
Class II 3–8 34,056
Class III ¿ 8 5,217

to the 12,420 tags used, ranked by descending frequency. The curve follows
a power–law, with x−0.84, with an exponential decay starting at x ≃ 103.
This decay is due to very infrequent or misspelled tags. On the one hand,
44% of the tags were applied only once. This reflects the subjectivity of
the tag process. Thus, retrieving these sounds in the heavy tail area is
nearly impossible using only tag–based search. To overcome this problem,
Freesound.org offers a content–based audio similarity search to retrieve audio
samples that sound similar to a given one. On the other hand, just 27 tags
were used to annotate almost the 70% of the whole collection.

The top–10 most frequent tags are presented in Table 4.2, and it gives an
idea about the nature of the sounds available in the Freesound.org collection.
All these frequent tags are very informative when describing the sounds, in
contrast to the photo domain in flickr.com, were popular tags are considered
too generic to be “useful” [49].
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Figure 4.3: A log–log plot showing the tag distribution in Freesound.org. The
curve follows a power–law with x−0.84, with an exponential decay starting at
x ≃ 103.

Table 4.2: Top–10 most frequent tags from Figure 4.3.
Rank Tag Frequency

1 field–recording 4,486
2 loop 4,227
3 noise 4,094
4 electronic 3,417
5 drum 2,916
6 synth 2,898
7 processed 2,482
8 ambient 2,424
9 bass 2,366
10 voice 2,155
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4.1.2 Tag categorization

In order to understand the vocabulary that the Freesound.org community
uses when tagging sounds, we mapped the 12,420 different tags to broad
categories (hypernyms) in the Wordnet1 semantic lexicon. In some cases, a
given tag matches multiple entries, so we bound the tag (noun or verb) to
the highest ranked category.

The selected Wordnet categories are: (i) artefact or object, (ii) organism,
being, (iii) action or event, (iv) location, and (v) attribute or relation. Figure
4.4 depicts the distribution of tags matched among the Wordnet categories
(20.3% of the tags in the collection remain unclassified, and are not presented
in the pie chart).

Most of the tags (38%) are related with objects (e.g. seatbelt, printer, mis-
sile, guitar, snare, etc.), or about the qualities and attributes of the objects
(30%); such as state attributes (analog, glitch, scratch), or magnitude rela-
tion characteristics (bpm). Then, some tags (19%) are classified as an action
(hiss, laugh, glissando, scream, etc.), whilst 11% are related with organisms
(cat, brass band, etc.). Finally, only a few tags were bound to locations (e.g.
iraq, vietnam, us, san francisco, avenue, pub, etc.). Therefore, we can con-
clude that the tags are mostly used to describe the objects that produce
the sound, and the characteristics of the sound. In this case, the wisdom
of crowds concords with the studies of Schaeffer [41], and Gaver [13]. The
first one focused on the attributes of the sound itself without referencing the
source causing it (e.g pitchiness, brightness). While the second one intro-
duced a taxonomy of sounds, on the assertion that they are produced by
means of interaction of materials.

4.2 Experiments

This section focuses on enhancing the semantic anotations of the sounds
scarcely annotated with only one or two tags. The dataset selected is ex-
plained in Subsection 4.2.1. Our goal is to evaluate the quality of the recom-
mended tags, for some specific sounds available in Freesound.org. By means
of content–based audio similarity, we use a k–NN classifier (Subsection 4.2.2)
that, given a sound, selects a set of candidate tags available from the most
similar sounds. Then, the evaluation process is based on human assessment in
order to evaluate the perceived quality of the candidate tags. The procedure
is described in Subsection 4.2.3. Three subjects validated each candidate tag
for all the sounds in the test dataset as it is explained in 4.2.4.

1http://wordnet.princeton.edu/
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Figure 4.4: Pie chart depicting the distribution in Wordnet categories for
around 10,0000 mapped tags.

4.2.1 Dataset

The sounds selected for the experiments were a subset of the Class I (see
Table 4.1). We selected those sounds whose tags’ frequency was very low
(i.e. rare tags, in the ranking of ∼ 104 in Figure 4.3). In fact, all the sounds
which were annotated with one tag whose frequency was equal to 1 were
selected. Also, for the sounds annotated with 2 tags, we selected those which
had at least one tag with frequency 1. The test dataset for the experiments
consists of 260 sounds. The goal, then, is to extend the annotation of these
sounds, unsufficiently annotated with one or two very rare tags.

4.2.2 Nearest–neighbor classifier

We used a nearest neighbor classifier (k–NN, k = 10) to select the tags from
the most similar sounds of a given sound. The choice of a memory–based
nearest neighbor classifier avoids the design and training of every possible
tag. Another advantage of using an NN classifier is that it does not need
to be redesigned nor trained whenever a new class of sounds is added to
the system. The NN classifier needs a database of labeled instances and a
similarity distance to compare them. An unknown sample will borrow the
metadata associated with the most similar registered sample [6].

The similarity measure used is a normalized Manhattan distance of audio
features belonging to three different groups: a first group gathering spectral
and temporal descriptors included in the MPEG-7 standard [33]; a second one
built on Bark Bands perceptual division of the acoustic spectrum, using the
mean and variance of relative energies for each band; and, finally a third one,
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composed of Mel-Frequency Cepstral Coefficients and their corresponding
variances [21]. The normalized Manhattan distance of the above enumerated
features is:

d(x, y) =
N

∑

k=1

|xk − yk|

(maxk − mink)
(4.1)

where x and y are the vectors of audio features, N the dimensionality of
the feature space, and maxk and mink the maximum and minimum values
of the k–th feature.

4.2.3 Procedure

Our technique for calculating the candidate tags consists on finding the 10–th
most similar sounds from the Freesound.org database, for a given seed sound
of the test dataset. Therefore, given a seed sound, we grab the available
tags from the similar sounds. A tag is proposed as a candidate if it appears
among the neighbors over a specific threshold. For example, a threshold of
0.3, means that a tag is selected as candidate when it appears at least in
3 sounds of the 10 nearest neighbors. In this manner, we select a set of
candidate tags for each sound in the test dataset.

The experiments have been computed using two thresholds: 0.3 and 0.4.
When using a threshold of 0.3 the number of candidate tags is, obviously,
higher than for 0.4, but also it can be more “noisy” tags, since it is using a less
constrained approach. Afterwards, all the candidate tags will be evaluated
by human assessment, so we compare the differences among both thresholds
in section 4.3.1.

4.2.4 Evaluation

In order to validate the candidate tags per test sound, we use human as-
sessment. It is worth noting that neither Precision nor Recall measures are
applicable as the test sound contains only two or less tags, and these are
very rare in the vocabulary. The aim is to evaluate the perceived quality of
the candidate tags. With this purpose, we performed a listening experiment
where the subjects were asked to listen to the sounds, and decide whether
they agreed or not with the candidate tags. For each candidate tag, they had
to select one of these options: Agree (recommend candidate tag), Disagree
(do not recommend), or Don’t know. Each sound was rated by three different
subjects.

Similar to [58], to evaluate the results we group human responses for each
sound s, and score them in order to compact them into a single vector per
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sound. The length of the vector is the number of candidate tags of s. Each
value of the vector, ws,ti , contains the weight of the subjects’ scores for a
candidate tag ti in sound s. If a subject agrees with the candidate tag, the
score is +1, −1 if disagrees, and 0 if she does not know. The formula for
calculating the weight of the candidate tag in s is:

ws,ti =
#(PositiveV otes) − #(NegativeV otes)

#Subjects
(4.2)

A candidate tag is recommended to the original sound if ws,ti is greater
than zero, otherwise, the tag is rejected (either because it is a bad recommen-
dation, or the subjects cannot judge the quality of the tag). For example,
given a candidate tag ti for s, if the three subjects scored, respectively, +1,
−1, +1 (two of them agree, and one disagree), the final weight is ws,ti = 1/3.
Since this value is greater than zero, ti is considered a good tag to be recom-
mended. Also, we use these weight values to compute the confidence agree-
ment among the subjects. First, we consider all the sounds where the system
proposed j candidate tags, Sj. We sum, for each sound s ∈ Sj, the weights
of all the candidate tags ti whose values were greater than zero. Then, we
divide this value with the total score that the candidate tags would had if
all the subjects would agree. The formula for calculating the agreement of
Sj sounds, Aj, is:

Aj =

∑

s∈Sj
[ws,ti > 0]

#Subjects ·
[

∑

s∈Sj
length (s)

] (4.3)

Similarly, to compute the agreement of the bad candidate tags, we use
the weights of candidate tags whose values were lesser than zero (ws,ti < 0),
in the numerator of the equation 4.3. Finally, to get the total agreement
for all the sounds in the test set, Atotal, we use the weighted mean of all Aj,
according to the number of sounds in Aj.

4.3 Results

4.3.1 Perceived quality of the recommended tags

Using 10–NN and the content–based audio similarity, and setting a threshold
of 0.3, the system proposed a total of 781 candidate tags, distributed among
the 260 sounds of the test dataset. Besides that, setting a threshold of 0.4
the system proposes 358 candidate tags, which represents almost the half
compared with a threshold of 0.3.
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Table 4.3: Percentage of recommended tags, with confidence agreement
among the subjects. The table shows the results using thresholds 0.3 and 0.4
(in parenthesis, it is shown the total number of candidate tags).

Threshold Recommend tag % Atotal

0.3 (781)
Yes 56.6% 0.74
No 31.59% 0.62

Don’t know 11.41% —

0.4 (358)
Yes 66.23% 0.78
No 23.11% 0.58

Don’t know 10.66% —

Table 4.3 shows the human assessment results. As expected, a slightly
higher percentage of candidate tags were recommended with a threshold of
0.4. Yet, using a threshold of 0.3, more than half of the candidate tags
(56.6%) were finally recommended to the original sounds, with an agreement
confidence of 0.74. This human agreement is sufficiently high to rely on
the perceived quality of the recommended tags. The rest of the candidate
tags (43.4%) were not recommended, either because the tags recommended
were not appropiated (31.59%), or the tags were not sufficiently informative
(11.41%). Even though with a threshold of 0.3 we get less percentage of
recommended tags, the absolute number of candidate tags is more than twice
the ones with a threshold of 0.4. Therefore, we can consider a threshold of
0.3 as a good choice for this task.

4.3.2 Recommended tags per category

On the one hand, using a threshold of 0.3, we have enhanced the annotation
of 200 sounds, which represent the 77% of the sounds in the test dataset used.
The rest of the sounds (60) from the test set did not get any plausible tags
to extend its current annotation. On the other hand, with the threshold of
0.4 we are able to enhance the annotation of half of the sounds (128 sounds
out of 260).

Table 4.4 shows the results using a threshold of 0.3, and it classifies the
sounds according to the categories defined in Table 4.1. We can observe
the number of sounds per class, after extending the annotation of those 200
sounds. Note that, after applying the recommended tags, most of the sounds
have 3 or more tags, and some even have more than 8 tags. However, there
are 20 sounds that still remain in Class I. This happens because before the
experiment they only had one tag, and now they have another one, the one
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Table 4.4: Number of sounds in each category after automatically extending
the annotations of 200 sounds from the test dataset.

Tags per sound Sounds

Class I 1–2 20
Class II 3–8 171
Class III > 8 9

recommended.

4.3.3 Analysis of the recommended tags

The results obtained so far look promising; using a simple classifier we were
able to automatically extend sound annotations that were difficult to retrieve.
However, we did not introduce yet the characteristics of the recommended
tags. E.g. are they popular tags (in terms of usage)? Or, are the recom-
mended tags too specific for the sound, thus not improving the search and
retrieval tasks?

First of all, there are some tags that the subjects could not easily evaluate
(i.e. they rate them as Don’t Know). These tags are related with how the
sound was created. They cope with different aspects of the sound creation.
E.g. a particular algorithm (subtractive synthesis), software products (Native
Instruments reaktor), or even a vintage synthesizer (ppg WAVE synthesizer),
probably recorded using its VST plug–in version. It seems reasonable that,
in these cases, the subjects could not assess the relevancy (and correctness)
of the candidate tags.

Furthermore, due to the classifier method used (k–NN), there is a strong
correlation among the more frequently proposed tags, and their frequency
of usage (rank position in Figure 4.3). Table 4.5 shows the most frequently
candidate tags, including how many times they have been proposed (sec-
ond column) in the 260 test sounds, and its overall ranking of usage by the
Freesound.org community (third column). The ten most proposed tags are
also in the top–15 ranking of frequency use. Although our approach is prone
to popular tags, it allows the users now to get a higher recall of those scarcely
annotated sounds, when doing a keyword–based search.

An example of a tag less useful for automatic tagging is multisample.
Specifically, this tag is very frequent in the Freesound.org collection, but it
has been used by only 11 very active users. All subjects during the evaluation
always marked multisample as a bad candidate tag. So, these few users had
a negative impact in the tag recommendation process. But this tag has a
clear sense in the context of a group of sounds. That is, when the same
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Table 4.5: Top–10 candidate tags with the number of times being proposed
(second column). Also, frequency usage (tag rank) in Freesound.org, is shown
in the third column.

Tag Frequency Rank

field–recording 60 1
loop 37 2
drum 27 5
noise 24 3
voice 24 10
bass 21 9
synth 21 6

electronic 18 4
ambient 15 8

percussion 16 15

sound is recorded at different pitches (C4, C5, C6). In this case, all the three
sounds are annotated with multisample. Obviously, this candidate tag has
no meaning to be recommended to a single sound.



Chapter 5

Sound Search by Phonetic
Similarity

5.1 Preliminary Assumptions

Onomatopoeia is the creation or use of words that sound like the items or
actions they name or refer to. Much onomatopoeia seems to fall into the
following categories [64]:

• Mechanical Onomatopoeia. Machine noises such as buzz, beep, whirr,
click, clack, clunk, clatter, clink. Notice the group of words that begin
with cl.

• Fast Motion Onomatopoeia. Words that convey the sound of speed
seem often to begin with the letter s or z. Boing, varoom/vroom,
whoosh, swish, swoosh, zap, zing, zip, and zoom are some examples.

• Musical Onomatopoeia. Some are associated with specific music in-
struments, such as the twang of a guitar, or the plunk for a keyboard.
Others imitate a metallic sound, often end in ng: ting, ding, ring, clang,
bong, brrring, jingle, and jangle. Then there are some that clearly
evoke wind instruments, like blare, honk, and toot; and another group
that seem percussive, like rap, tap, boom, rattle, and plunk. A person
making music without an instrument might hum or clap or snap.

• Food Preparation and Eating Onomatopoeia. Food may crackle or
sizzle and oil may splatter when cooking. Drinks when pouring may
go splash, kerplunk, or gush, but hopefully they wont drip, and when
we open a soft drink, it will probably fizz. When its time to eat, were
likely to nibble, munch, gobble, and crunch.

32
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• Fighting Onomatopoeia. Action words present in comic books during
fighting scenes are onomatopoetic: pow, bif, bam, whomp, thump,
smash, zowie, bang, and wham are some of them.

• Animal Onomatopoeia. In different parts of the world, words used for
animal sounds are quite different. Sheep do not universally go baa, nor
do ducks quack everywhere in the world.

Onomatopoeia words exist in every language, although they vary in each.
Onomatopoeias usually seem to have a tenuous relationship with the object
they describe [62]. Native speakers of a given language may not question the
relationship, but because they may differ considerably between languages,
non-native speakers might be confused. For instance, a dog goes woof-woof in
English, wau-wau in German, ouah-ouah in French, or guau-guau in Spanish.
In addition, not only each language has its own onomatopoeias, but also the
usage tradition even varies within speakers of a certain language, as it has
been seen after the online survey conducted for the present thesis.

5.1.1 Online Survey

An online survey was designed to understand how different people make use
of onomatopoeia when describing sounds. Moreover, it also served to verify
if there is sufficient onomatopoeia usage tradition. Another important as-
pect was to see the differences between people from different nacionalities.
Participants had to listen to a set of sounds and decide which onomatopoeia
corresponded to each sound. Some sounds had more than one onomatopoeia.
Hence, more than forty onomatopoeia (selected from the above categories)
could be answered in total. Twenty participants from six different national-
ities were asked to participate in the survey answering in English, even for
most of them this was not their native language.

Analyzing the responses, it was quite evident that an onomatopoeia usage
tradition was missing in many of the answers of non-english native speak-
ers. However, this was not the case of english natives, who usually answered
using established onomatopoeia words. Evidence of that can be the follow-
ing examples. Onomatopoeia words evoking movement, such as swoosh or
whoosh, seem to have no translation to i.e. Spanish. In such cases where
the participant did not know an exact onomatopoeia word, he/she tend to
imitate the sounds with phonemes, while english natives annotated with that
two onomatopoeia words. Some of the answers from spanish participants for
that were fiu, glush, suff, wham or zum. As it can be seen, the results from
the Spanish participants to a whoosh were too heterogeneous and difficult to
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evaluate with a single word-distance or string-matching technique. Similar
examples were found in other languages.

Another interesting point was that participants used onomatopoeia as
a way not only to symbolize sound timbre, but also rhythm. This is the
case of a horse gallop sound, where some answers were capatum, tacatac,
tacatan, tocotoc or trocotro. Even the phoneme concatenations are different,
the sequences suggest some kind of rhythm pattern similarity.

As summary, we can conclude that it seems not to be a commonly way
of onomatopoeia usage (at least in non-english langugages), even between
native speakers of the same language. Most participants, specifically non-
english natives, tend to imitate timbrically sounds by phoneme concatenation
instead of using an onomatopoeia word. Hence, the procedure would be
finding phonetic similarities at the phoneme-level, instead of word-level.

5.2 Proposed System

Figure 5.1 shows the proposed system to automatically extract information
of the sound timbre by phonetic similarity from non-speech signals.

It is basically an Automatic Speech Recognition Sytem (ASR), and specif-
ically it is based on the open source Julius Speech Recognition system [30].
It is composed by two models: the acoustic and the language model. On
one hand, the acoustic model contains the Hidden Markov Model (HMM)
and the Viterbi backtracking algorithm (Rabiner, [46]) for each phoneme. In
our case, each one has three states: attack, sustain and release. Hence, we
are considering ’context’: from where and to where is going each phoneme
is modeled as well. ASR systems usually use libraries of acoustic models
trained with large number of subjects within a certain language. We have
selected the Japanese AM library from the open source Julius Speech Recog-
nition system. The models are coded as text in the HTK format1. Since we
use Spanish phonetic symbols as output of the ASR system, the Japanese
acoustic models have been converted by using SAMPA2.

On the other hand, the language model contains the vocabulary and the
grammar to be recognized by the system. The vocabulary can be single
phonemes (e.g. /p/, /u/, /m/, /t/, /a/, etc.), syllables (e.g /pum/, /ta/,
/tum/, etc) or even words. Thanks to the grammar, we are able to allow loops
or concatenation of phonemes and words. We also allow silence between two

1Cambridge Universitys Hidden Markov Model Toolkit (HTK).
http://htk.eng.cam.ac.uk

2Speech Assessment Methods Phonetic Alphabet (SAMPA) is a computer-readable
phonetic script based on the International Phonetic Alphabet (IPA).
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Figure 5.1: Automatic speech recognition system applied to extract informa-
tion from non-speech sounds at the phoneme level.

consequetive phonemes or syllables when building the Finite State Network
(FSN) of each word in the vocabulary. The output state of a certain phoneme
has then two possible transitions, either silence or another phoneme.

When a sound is input into the system, vectors of 25 dimensions are cal-
culated for each frame observation. The extracted descriptors per frame are
the first twelve Mel-frequency cepstral coefficients (MFCC, [32]), their first
moments and the derivative of the Energy Signal. The sampling frequency
rate is set to 16 kHz and the window size in number of samples is 400. Clas-
sical Viterbi algorithm is then calculated; each node stores the cummulative
cost and its preceding node. Since it is backtracking, the best path is found
starting from the last frame.

The system output is then a sequence of phonemes (if we analyze it at
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the phoneme level) and a cost value indicating the cummulative cost above
explained when calculating the most likelihood sequence.

5.3 Experiments

5.3.1 First Experiment

The first experiment was conducted to validate the proposed approach for
recognizing phoneme sequences from non-speech signals without semantic
information.

Dataset The sound database used for this first experiment was a 300 per-
cussive sound database manually built with this purpose (containing bass
drums, snare drums, hi hats, cymbals, etc.). All sounds were extracted from
the Freesound.org Collection.

Language Model It has been built in a way that only single phonemes
and concatenation of them were allowed. Hence, the vocabulary is com-
posed of about 31 spanish phonemes transcribed to their respective SAMPA
representations.

Results Results showed that the present approach is able to recognize
phoneme sequences, suggesting onomatopoeic patterns in some cases. The
following table 5.1 shows some of these examples when the input were bass
and snare drum sounds respectively.

Table 5.1: This table shows some phoneme outputs for bass and snare drum
sound inputs. Note that some phoneme patterns are repeated among different
sounds (each row represent different sounds).

Bass Drums Snare Drums

poun peua
prumn pua

zlr pua
zrlamonmn spuaa

panmfu duaa
panmiam rua
cllynmn ruaj
cpomn pruaj
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Hence, some phoneme sequences were more frequent than others. For
instance, from a total of 80 snare drum sounds, the most frequent phonemes
were /a/ (frequence of 28%), /u/ (25%), /p/ (23%), /n/ and /m/ (both
with 19% of frequence). But still, these phoneme frequencies are not suffi-
ciently high to be able to generalize the results. Moreover, many sounds were
described with single phonemes, rather than with onomatopoeic sequences.

5.3.2 Second Experiment

This experiment served to inductively determine which onomatopoeia might
be the best for the concrete case of describing snare and bass drum sounds.
Gillet and Richard performed in [14] a listening experiment in order to deter-
mine the best onomatopoeia to describe drum sounds. Around 30 subjects
were asked to select, from a given list of onomatopoeia, the one they con-
sidered fit the best for each drum sound. Hence, Table 5.2 shows the results
for bass and snare drums. As we can observe, poom [pum], boom [bum] and
too [tu], were the most commonly used onomatopoeia for bass drums. Anal-
ogy, tcha [tSa], ta [ta], too [tu] and tss [ts] were the frequent ones for snare
drums. In addition, these are the onomatopoeia selected for the following
experiments.

Besides, they reported that [ta] and [tSa] are often used to denote the
mixture of snare drum and bass drum. This could be explained by the fact
that subjects tend to link the onomatopoeia to the most salient instrument.

Table 5.2: Results of the listening experiment conducted in [14]: the chosen
onomatopoeia are represented in bold which correspond to the most frequent
ones.

Sound Onomatopoeia Freq. Onomatoporia Freq.

Bass Drum [pum] 36 [bum] 16
[tu] 17 Non-significative 29

Snare Drum [tSa] 48 [dum] 11
[ta] 34 [pfit] 10
[tu] 18 [pum] 7
[ts] 14 [bum] 7
[ti] 12 [tck] 5
[S] 11 Non-significative 14

Bass Drum + [ta] 20 [ts] 7
Snare Drum Mixture [tSa] 17 Non-significative 12

Then, we designed a set of experiments to determine, from the most
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frequent onomatopoeia above chosen, which are the best to discriminate be-
tween snare and bass drum sounds by means of phonetic similarity.

Dataset The dataset chosen is composed of about 268 sounds (134 snare
drums and 134 bass drums). The sounds were isolated strokes extracted from
the Freesound.org Collection.

Language Model Since four sub-experiments have been performed, four
different vocabularies have been designed. These are shown in Table 5.3. The
grammar was the same for all of them: concatenation between vocabulary
was not allowed. The vocabulary allowed are different combinations of the
onomatopoeia selected after discussing the experiment conducted in [14].
Hence, for Exp. 1, given an input sound, the system is allowed to recognize
[pum], [bum], [ta] or [tSa].

Table 5.3: Vocabulary Model for each of the four sub-experiments.
Vocabulary Model

Exp. bass: [pum]/[bum]
1 snare: [ta]/[tSa]

Exp. bass: [pum]/[bum]/[tu]
2 snare: [ta]/[tSa]/[ts]

Exp. bass: [pum]/[bum]
3 snare: [ta]/[tSa]/[ts]/[tu]

Exp. bass: [pum]/[bum]/[tu]
4 snare: [ta]/[tSa]/[ts]/[tu]

Evaluation Each of the 134 bass and snare drum sound were input to the
system. For each of these sounds the system determined the most likelihood
onomatopoeia allowed in the vocabulary. For instance, if the output for a
certain bass drum sound in Exp. 1 is [pum], this sound would count as ’O.K’
(since [pum] is an onomatopoeia allowed for bass drums), but if the output
would have been [ta], this sound would have been count as ’K.O.’ (because
[ta] is considered correct for snare drums but not for bass drums, as it has
been decided at the begining of this subsection). Hence, by simply averaging
among all the ’O.K’ and ’K.O’ for all the 134 bass drum sounds, we obtain
a partial result of correctness for Exp. 1. Doing the same for the snare
drum sounds, we finally obtain the total value of correctness of our system
determining bass or snare sounds by phonetic similarity.
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Results Table 5.4 shows the results for all four sub-experiments. Experi-
ment 3 has the best results for the vocabulary model of ’SNARE’ (82.83%),
while for ’BASS’ is Experiment 2 (79.85%). This can be explained by the
presence of the onomatopoeia [tu] in both vocabularies. Hence, [tu] might
be good descripting both snare and bass drums, but it also means that it
would not be useful when the objective is to discriminate between both sound
instruments. Finally, Experiment 4 performs the best results since both vo-
cabularies have also their best combinations (81.34% for ’O.K’ and 18.64%
for ’K.O’). That is for bass drums the onomatopoeia [pum], [bum] and [tu];
for snare drums the onomatopoeia [ta], [tSa], [ts] and [tu] as well.

Table 5.4: Results for all four sub-experiments. Results are in percentages
(%). Best result is obtained in Exp. 4, where the system is able to discrimi-
nate between bass and snare drum sounds the 81.34% of the times by means
of phonetic similarity.

partial BASS partial SNARE TOTAL

Exp. O.K: 76.86 O.K: 58.2 O.K: 67.5
1 K.O.: 23.13 K.O: 41.79 K.O: 32.46

Exp. O.K: 79.85 O.K: 46.27 O.K: 63.06
2 K.O.: 20.15 K.O: 53.73 K.O: 36.94

Exp. O.K: 62.68 O.K: 82.83 O.K: 72.76
3 K.O.: 37.31 K.O: 17.16 K.O: 27.24

Exp. O.K: 79.85 O.K: 82.83 O.K: 81.34
4 K.O.: 20.15 K.O: 17.16 K.O: 18.64

5.3.3 Third Experiment

Initially given a certain onomatopoeia, the third experiment aims at finding
the most likelihood sound to it within an heterogeneous sound dataset.

Dataset An heterogeneous dataset of about 190 sounds were randomly
selected from the Freesound.org Collection. Different kind of sounds of dif-
ferent durations have been selected, such as animal sounds, field-recordings,
instruments sounds, music loops, etc.

Language Model Depending on the given onomatopoeia, the vocabulary
model is different. For instance, if the objective is to retrieve the most similar
sound to a bass drum, so then, the vocabulary model would be composed of
[pum], [bum] and [tu], (according to the results obtained in 5.3.2). Since in
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these experiments we are recognizing isolated words, loops are not allowed
between words of the same vocabulary model.

Evaluation Given an initial onomatopoeia, such as [pum], all the sounds
in the dataset are input to the proposed ASR system and their cost values
are then compared. The sound with the lowest cost value might be the most
similar one to the initial [pum].

Results First column in Table 5.5 shows the descending ranking of the
most similar sound to a bass drum, while second column shows the output
of the system. Hence, 34224 − HardPCM − Chip101 would be the most
similar sound to a bass drum, with output [tu]. In fact, it is perceptually
very similar to a bass drum. The second most similar sound is also a bass
drum, as the title indicates with ’bd’.

Table 5.5: This Table shows the results for the third experiment when looking
for the most similar sound to a bass drum, presented as descending ranking.
First column shows the sound title (under Freesound.org Collection nomen-
clature). Second column shows the system output.

Sound Title System Output

34224-HardPCM-Chip101 [tu]
34442-anbo-bd-a-normal [tu]

34208-acclivity-TongueClick1 [tu]
34249-pauliep83-agh [tu]

34532-digifishmusic-Scrape [pum]
34591-dobroide-20070506.rubber.duckies [bum]

34168-Glaneur-de-sons-electric-wire [tu]
34983-jonezy1476-Bell-2 [bum]

34330-marvman-hand-clap-comp [tu]
34242-HardPCM-Chip127 [tu]

5.3.4 Fourth Experiment

Once validated the ability of the proposed system for finding the most sim-
ilar sound in a dataset to an input onomatopoeia, the following was adding
temporal considerations. Hence, in this fourth experiment loops among vo-
cabulary are allowed. So then, phonetic evolution of sounds over time will
be evaluated by observing the output phoneme sequences.
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Two different sub-experiments have been performed. In he first one the
vocabulary units are onomatopoeia such as [pum], and in the second one are
single phonemes, adding thus a certain level of difficulty.

Dataset Some sounds of different databases have been evaluated. To
present here we have selected some of the ENST-drum database [16].

Language Model Sub-Exp. 1 uses as vocabulary the onomatopoeia se-
lected in the second experiment 5.3.2: [pum], [bum], [ta], [tSa], [ts] and [tu].
In Sub-Exp. 2, 23 single phonemes are the vocabulary units, as in experiment
5.3.1. Both grammars allow concatenation among respective vocabularies.

Evaluation The evaluation consisted on observing if the output sequence
follows similar temporal pattern of each input sound. For instance, if an
input sound consists on five strokes, observe if the system recognizes that by
means of the onomatopoeia allowed in the vocabulary model.

Results Table 5.6 shows the results for Sub-Exp. 1. The system is able to
recognize separated strokes (each [pum] or [ta bum] is separated by silence,
’|’) in most of the cases. Only six examples have been selected to show in
the following table.

Table 5.6: This Table shows the results for Sub-Exp. 1. First column in-
dicates the sound title according the ENST nomenclature. Second column
the number of strokes in each sound. Finally, third column shows the sys-
tem output according to the vocabulary model. Symbol ’|’ means ’silence’
between two recognized onomatopoeia.

Sound Title # Sytem Output

015-hits-snare-drum-no-snare-brushes-x3 3 pum|pum|pum
035-hits-snare-drum-rods-x5 5 pum|pum|pum|tu
005-hits-bass-drum-pedal-x5 5 pum|pum|pum|pum|pum

006-hits-bass-drum-no-snare-pedal-x5 5 ts|pum|pum|pum|pum|pum
001-hits-snare-drum-sticks-x5 5 pum|ta bum|pum|ta tcha|pum

28-hits-snare-drum-no-snare-mallets-x7 7 pum|ta bum|pum|pum|pum|pum|pum

Results in Sub-Exp. 2 are presented in Table 5.7. Note that the difficulty
has increased here towards Sub-Exp. 1, since the vocabulary units are 23
different single phonemes, instead of [pum], [bum], etc. As it can be ob-
served the following table, the system is able to recognize phonetic patterns
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that suggest onomatopoeic representations, following somehow the temporal
evolution of the sounds (compair the number of strokes and the number of
different onomatopoeia).

Table 5.7: This Table shows the results for Sub-Exp. 2. First column in-
dicates the sound title according the ENST nomenclature. Second column
the number of strokes in each sound. Finally, third column shows the sys-
tem output according to the vocabulary model. Symbol ’|’ means ’silence’
between two recognized strokes.

Sound Title # System Output

001-hits-snare-drum-sticks-x5 5 a|am|pam|pam|tam|pmam
020-hits-snare-drum-brushes-x5 5 um|bum|mum|u|m

022-hits-snare-drum-no-snare-mallets-x5 5 mu|mu|mu|pmu|pmu
016-hits-snare-drum-brushes-x7 7 pam|pt|pa|pam|buam|tmam|puam

028-hits-snare-drum-no-snare-mallets-x7 7 pmumu|am|m|mam|pmum|pbu|pmam

However, both approaches are still far from being used as classifiers of bass
drum sounds against snare drum sounds (according to what it was obtained
in 5.3.2), since results show that phonemes corresponding to both classes are
used indiscriminately.
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Conclusions and Future Work

New ways of producing information, knowledge, and culture through social,
rather than proprietary relations, are probably the main causes for the pro-
liferation of online or social communities, aiming to collaboratively create
multimedia databases. The context in which they are growing and many of
their important aspects has been presented and discussed in this work.

The thesis focuses on some retrieval issues of sound effects in collaborative
databases. In such repositories, high volumes of content are generated and
annotated in an heterogeneous way by prosumers, usually users of online
communities created around these databases.

Since it is impossible to automatically capture the way that humans per-
ceive sounds, due to its subjective nature, [9], and as computers are still not
sufficiently effective interpreting human descriptions or annotations of multi-
media content, the effective management of online repositories is crucial for
a correct retrieval and scalability.

This is basically the first attempt of the thesis: study the strengths and
weakness of collaborative tagging and propose methods that can enhance the
retrieval of audio content, specifically content which is scarcely annotated.
A paper [34] concerning this was accepted in the Seventh International Con-
ference on Machine Learning and Applications.

Alternative interfaces that allow different criteria when browsing and re-
trieving such large databases is the second focus of the thesis. Usually, large
multimedia databases have different levels of descriptions. Hence, differ-
ent users would then require different types of search, descriptions, etc of
the multimedia content. Specifically, we propose a system that attempts to
automatically extract timbre information at the phoneme level, by means
of phonetic similarity. The starting hypothesis is that onomatopoeia or ono-
matopoeic representations are common ways to describe sounds that retrieval
systems could take advantage. For instance, the keyword-based search can

43
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be thus complemented, allowing at the same time a more natural retrieval.
The following sections summarize the main conclusions of the thesis and

suggest future work in order to improve both approaches.

6.1 Conclusions of the Freesound Experiments

The first part of the present thesis presents an analysis of the Freesound.org
collaborative database, where the users share and browse sounds by means of
tags, and content–based audio similarity search. We studied, mainly quanti-
tatively, how users annotate the sounds in the database, and detected some
well–known problems in collaborative tagging, such as polysemy, synonymy,
and the scarcity of the existing annotations.

Regarding the experiments, we selected a subset of the sounds that are
rarely tagged, and proposed a content–based audio similarity to automati-
cally extend these annotations. Since the sounds in the test set contained
only one or two rare tags, neither precision nor recall were applicable, so we
used human assessment to evaluate the results. The reported results show
that 77% of the test collection were enhanced using the recommended tags,
with a high agreement among the subjects.

As future work, we are planning to extend the experiments using more
sounds. In this case, automatic evaluation is needed. A possible solution is
to select sounds belonging to similar sound categories (e.g all the percussive
sounds scarcely annotated), and follow the same procedure of finding similar
sounds from the Freesound.org database. So, the recommended tags should
also belong to the same sound category. We are also working on a hybrid
approach that combines textual similarity and content–based similarity to
improve the recommendations.

6.2 Conclusions of the Phonetic Similarity Ex-

periments

Sound search by phonetic similarity is the focus of the second part of the
thesis. The motivation is the need of different search criteria when browsing
large audio collections, since they may have many different levels of descrip-
tions. By means of onomatopoeic representation of sounds, keyword-based
search may be complemented, allowing at the same time a more natural
retrieval.

The experiments and results presented in Section 5.3 are very promising
although further research may be conducted in order to extend them to more
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sound categories, since percussive sounds have been the experiments focus,
specifically, snare and bass drum sounds. Even they are very preliminary
results towards a system that automatically captures phonetic similarity of
non-speech signals, some conclusions can be extracted.

Humans use onomatopoeia, understood here as phoneme sequences, as
a natural way to describe sounds. While semantic labels (such as guitar,
car or horse) exploit high-level descriptions between word categories and
the sounds they refer, onomatopoeic representations are related directly to
acoustic sound properties. Both approaches can take advantage of each other.
For instance, flexible interfaces could thus be designed, allowing different
criteria for the sound retrieval.

Some other studies use manual approaches to annotate sounds with ono-
matopoeia, such as [52]. Often, manual categorization is affected by human
subjectivity and thus such annotation can be error-prone and tedious, spe-
cially when databases are large. Hence, automatic techniques able to capture
information at the phoneme-level are challenging and promising as well.

A very similar approach to ours is the one conducted in [24], where the
authors first divided non environmental sounds into waveform chunks, under
the theory that each peak in the signal power envelope corresponds to a
onomatopoeic syllable. Then, each segment is analyzed by a HMM system,
as ours, but this one previously trained with environmental sounds and their
associated transcriptions (while ours is trained with an acoustic model of an
open source ASR system). Similar low-level features are then extracted from
each chunk and frame by frame. Finally, onomatopoeic representations are
also constructed from each segment according to certain requirements of the
Japanese language.

In contrast to other studies, we aim at designing a system which is lan-
guage independant. This explains the reason of taking phonemes as system
units (i.e. in the vocabulary model of the ASR system), instead of words.
Hence, we explore phoneme concatenation capabilities (i.e allowing loops in
the gramar of the ASR system) when describing timbre. Onomatopoeia ex-
pressions may vary due to cultural aspects, making thus hard their automatic
recognition by systems which are just content-based. Then, another stage
should be further included in order to map this acoustic-based information
with common cultural understanding of familiar acoustic properties.

In addition to improvements that can be done into the system, audio
segmentation could be applied. Examples that could benefit from this im-
provement would be those repetitive sounds where a single syllable is repeated
over the whole excerpt. Then, the output of the system could be something
like ’eight tik-tak’. Segmentation techniques could also help to refine the
onomatopoeic representations from better detected events.
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Finally, results suggest that the approach can be seen as a first stage
in an system aiming at validating the use of Automatic Speech Recognition
systems (ASR) for the automatic extraction of phoneme sequences in non-
speech sounds. Specifically, some experiments show certain ability of the
system to automatically extract timbre information by phonetic similarity in
some sounds analyzed, this being a very promising result towards bridging
the gap between acoustic and semantic sound descriptions.
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