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Abstract 
 
 

 
This work presents and puts into context the research contained in all 
publications in which the author has been involved so far. This set of 
gathered publications are mainly focused on the field of singing voice 

processing; more precisely, on spectral processing techniques and voice 
modeling for singing voice analysis, transformation and synthesis. The 

final goal of this work is to set the future directions of the research on top 
of which the final thesis work will stand.
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Chapter 1 
 
Introduction 
 
 
 
1.1 The work  
 
The present document gathers all the publications in which I have been involved so far 
since 1998. This collection includes a set of conference papers, a journal article, and a book 
chapter. 
 
In order to define the framework and the context in which the publications where 
published, the current work opens with a personal introduction of my trajectory as a 
researcher and goes on with two main chapters: Spectral Processing Techniques, and Voice 
Modeling and Synthesis. The aim of such chapters is to introduce the knowledge fields 
where the research has been carried out and explain the techniques that have sustained it. 
 
The Spectral Processing Techniques chapter introduces the already mentioned SMS and 
SPP techniques, and describes their corresponding analysis, transformation and synthesis 
methods. The Voice Modeling and Synthesis chapter introduces the voice acoustics theory, 
presents the peculiarities of the singing voice in comparison to normal speech, and 
introduces the EpR voice model and our singing voice synthesizer system. 
 
Next, all the publications are presented with its title, its abstract, and a description of my 
contribution to it. A conclusions chapter closes the work and presents which might be the 
basis and the directions to point out for the thesis work. Finally, the publications and 
patents that have resulted from my collaboration with Yamaha are annexed. 
 
1.2 The place 
 
The Music Technology Group (MTG) is a research group placed in Barcelona dedicated to 
sound processing and synthesis, audio identification, audio content analysis, classification 
and transformation, interactive systems, multimedia applications and other subjects related 
with audio technology research and experimentation. Inside the MTG, a reduced group of 
people conform the Singing Voice Processing Group. This group is in charge of the voice 
related projects and research. 
 
The MTG belongs to the Institut Universitari Audiovisual (IUA) of the Universitat Pompeu 
Fabra (UPF). The MTG was founded in 1994 by its current director Xavier Serra and 
actually has more than 30 researches working in it. The research is funded by private 
companies such as Yamaha (the world’s largest manufacturer of musical instruments and a 
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leader in digital audio) or SDAE (the Spanish digital authoring society), and by public and 
governmental institutions (Generalitat de Catalunya, Ministerio Español de Ciencia y 
Teconlogía and European Comissioin). On 2001, the MTG became a member of the 
Technology Innovation Network of the Generalitat de Catalunya. The Xarxa IT is a 
network of the research groups of the Catalan universities that was created to help them get 
closer to the industrial sector and to create technology transfer opportunities.  
 
1.3 The author 
 
Here is a brief summary of my academic trajectory. 
 
1992-1996  
I study Telecommunications engineering in the Escola d' Enginyeria Tècnica Superior de 
Telecomunicacions de Barcelona (ETSETB), Universitat Politecnica de Catalunya (UPC)  
 
1997-1999  
While already working with my graduate thesis inside the UPC’s voice processing group, I 
get a scholarship to join the Musical Technology Group (MTG) of the Institut Universitari 
Audiovisual (IUA ) of the Universitat Pompeu Fabra (UPF). 
 
1999 
Distinction in the graduate thesis "Singing Voice Morphing System based on SMS" 
presented in the UPC. 
I graduate as a Telecommunication Engineer specialized in Signal Processing at the 
ETSETB, UPC. 
 
1999-2000 
Researcher in the Music Technology Group of the IUA  
 
1999-2000 
Programming and Signal Processing teacher in the Informatics Engineering courses of the 
Enginyeria Superior en Informàtica (ESI) of the UPF. 
 
2000 
Synthesis and Audio Processing teacher in the Digital Arts Master courses of the UPF. 
 
2000-2001 
Ph.D. student in the Doctorate in Computer Science and Digital Communication at the UPF 
 
2001-2002 
Audio Effects teacher in the Digital Audio Master courses of La Salle, Universitat Ramon 
LLull, Barcelona. 
 
However, my academic curriculum is not the only responsible of ending up in the Musical 
Technology Group doing research on singing voice synthesis. My relationship with music 
has some relevance here. I have been a music passionate enthusiast since kid and though I 
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have not learned music in an academic way I started my amateur career as a musician and 
song-writer about ten years ago. All these years round I have been learning to play guitar, 
electric bass and keyboards and I have started singing as well. Unlike the rest of the 
instruments, the exercise of learning to sing brought me about a wide curiosity for all what 
was underneath singing and a wide interest for all it could be placed on top of it. 
 
1.4 The projects 
 
Here is a brief presentation of the projects I have been involved so far and in which I have 
carried out all the research presented in this work. The projects are presented in 
chronological order. 
 
1.4.1 Elvis 
 
Elvis was a collaboration project with Yamaha. The aim of the project was to develop an 
automatic singing voice impersonator for the Japanese karaoke customers. The system had 
to be able to change some voice characteristics in real-time in order to make the karaoke 
user’s singing resemble a famous pop-rock singer (as for example Elvis) while performing. 
To do so, a frame-based real-time singing voice analysis-transformation-synthesis engine 
was implemented.  
 
The analysis-transformation-synthesis engine was built on top of the Spectral Modeling 
Synthesis (SMS), an analysis by synthesis technique based on the sinusoidal plus residual 
decomposition of the sound. The analysis is in charge of parameterizing the voice. The 
transformation step is in charge of modifying the parameters obtained in the analysis. The 
synthesis step is in charge of generating the synthetic voice out of the modified 
parameterization. 
 
The transformation step is the critical step. There the user’s voice is morphed with the 
famous singer’s by interpolating their corresponding voice parameters. Morph is a 
technique by which out of two or more elements you can generate others with hybrid 
properties. In this context, we use morphing techniques to change the personality of the 
singing voice. Moreover, in order to have an appropriate morph, the performances of both 
the user and the famous singer have to be synchronized somehow so that the system will 
not morph a long sustained user’s vowel with a short nasal famous singer’s consonant. For 
this reason Automatic Speech Recognition (ASR) techniques were included in the system 
adapting them to the case of the singing voice, real-time, and since we know the lyrics that 
have to be sung, to the case of matching.  
 
Following a chronological order of the tasks that are involved in an automatic real-time 
singing-voice impersonation, the first thing is to record in a dry environment (that is 
without reverb and without any music accompaniment) a group of professional Japanese 
singers singing some of the most successful Japanese songs. All this audio is used to train 
our ASR system and build the 47 phonetic units models that make up the Japanese phonetic 
dictionary. The last task to do before the user takes the microphone in the karaoke place is 
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analyze, parameterize, segmentate in phonemes, and store the professional singer 
performance of the song the user will sing. 
 
The real-time processes start digitalizing the singing voice signal the system receives 
through the sound card of the computer. The digitalized signal is analyzed and 
parameterized with the SMS spectral based techniques. The analysis gives out two different 
types of parameters. One group (Mel coefficients, delta Mel coefficients , zero crossing, …) 
will feed the ASR system in order to perform the matching between user’s and professional 
singer’s performances, so the system knows which part of the song the user is singing, and 
more precisely, which phoneme is being uttered. Once located this phoneme, the other 
group (energy, fundamental frequency, spectral shape envelope) will be used to generate 
the synthetic hybrid voice by interpolating this attributes of the user’s voice with the 
professional singer’s, which were previously obtained and stored. The process concludes 
when the synthetic voice is sent to the sound card. All these real-time processes occur in 
less than 30 milliseconds. 
 
The prototype was implemented as a graphical interface using C++ on Linux. At that time 
Linux was improving Windows audio I/O latency in more than 40 milliseconds. The 
graphical interface, which emulates the classic karaoke interfaces, shows a score of the 
user’s performance with an Elvis animation, and allows the user control the morphing 
values of the synthesis in real-time with a set of sliders.  
 
The main research done for Elvis project has been published in [LCB99, CLB99, 
CLBBS00, BBCLS00]. 
 
1.4.2 SMSPerformer 
 
SMSPerformer was an MTG inside project. The aim of the project was to come out with a 
graphical interface for the real-time SMS synthesis engine that could work from already 
SMS analyzed sounds. Althought its use was originally focused to test in real-time all 
synthesis and morph parameters in the voice impersonator context (with the purpose of 
determining the most suitable parameter values), the sound manipulation possibilities of the 
SMSPerformer and the interest shown by some composers in using it leaded to an 
extension to its original purposes and turned the test-plattform into a composition tool. 
 
Since the program was going to be used as a composition and performance tool, it was 
decided it should include programmable time-varying transformations, MIDI control for the 
synthesis parameters, and performance loading and saving options. All these capabilities 
brought new possibilities to the SMS synthesis with real-time transformations and an 
improved graphical interface implemented with Visual C++ on Windows. 
 
Most of the research done in this project has been published in [LR98]. Moreover, the 
SMSPerformer was used by the argentinian composer Ricardo Ventura to perform his 
electro acoustic piece "Desnudo de mujer en sofá azul". The work was presented in a 
concert organized by Sala HAL in which the composer transformed a set of sounds in real-
time over a pre-recorded composition.  



 - 5 - 

 
1.4.3 Daisy 
 
Daisy was a collaboration project with Yamaha. The aim of the project was to develop a 
singing voice synthesizer, that is, a synthesizer in which the user would input the lyrics and 
the notes of a vocal melody and obtain a synthetic performance of a virtual singer. To 
synthesize such performance the system concatenates a chain of elemental synthesis units. 
These units are obtained by transposing and time-scaling samples from singers databases. 
These databases are created out of recording, analyzing, labeling and storing as many 
different musical and phonetic contexts as possible of the singer’s performances. 
 
The concatenation of the samples is performed by spreading out along a certain number of 
boundary frames the spectral shape and phase discontinuities. The expression of the singing 
is then applied using the Excitation plus Residual (EpR) singing voice model, built up on 
top of the Spectral Peak Processing (SPP). 
 
The EpR is a voice model based on an extension of the source / filter approach in which the 
differentiated glottal pulse response and the vocal tract response are modeled in frequency 
with a set of resonances, an exponential function, and a differential envelope. The SPP is a 
spectral modeling technique that considers the spectrum to be composed of spectral 
regions, each of which contains a harmonic spectral peak and its surroundings. Both SPP 
and EpR will be described in details along the following chapters of this work.   
 
For the prototype version, the singer database creation and the synthesis itself were 
implemented on top of the SMSTools2 graphical interface. The SMSTools2, despite of the 
name and despite it was originally conceived as the SMS software interface, has been used 
by the Singing Voice Processing group as the development platform for most of their try-
outs and improvements.  
   
Out of this collaboration project Yamaha has released a product named Vocaloid. Vocaloid 
was presented by Yamaha at the Musikmesse in Frankfurt, and at the 114th Audio 
Engineering Society (AES) Convention in Amsterdam. Their advertisement claims: “by just 
inputting the melody and words on their PCs, users can produce the vocal parts for their 
pieces with no further work overcoming a major hurdle composers have faced until now 
due to the limitations that technology has placed on their ability to freely create songs 
incorporating singing. The software runs on Windows-based PCs and synthesizes the sound 
from “vocal libraries” of recordings of actual singers, retaining the vocal qualities of the 
original singing voices to reproduce real-sounding vocals. The software also features 
simple commands that allow users to add expressive effects. Currently, Vocaloid can 
generate singing in Japanese and English.” 
 
The research carried out for Daisy is mainly described in [BL03, BLMK03, BCLOS01, 
BLCS01]. 
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1.4.4 Telefónica 
 
Telefónica was a collaboration project with the so called company, leader in 
telecommunication services in Spain and Latin America. The aim of the project was to 
evaluate the speech voice quality obtained from MTG’s synthesis techniques based on SPP 
and study the feasibility of porting them to Telefonica’s automatic text-to-speech machines.  
This evaluation was based on comparing the quality of the synthetic voices obtained from 
both Telefonica’s and MTG’s synthesis engines. 
 
Since the MTG had no previous experience on speech synthesis and since the only element 
to be evaluated was the synthesis technique, we defined an interface through which 
Telefonica transferred to the MTG all the information required to synthesize a sentence. 
These were the speaker’s database (segmented and labeled into phonetic units), the list of 
the phonetic units that conformed the utterance, and the prosody to be applied (syllable 
durations and intonation envelope). 
 
The database conversion and the synthesis process were implemented on top of the 
SMSTools2, using the authoring system that it had been developed for Daisy’s singers 
database creation. The evaluation was carried out through a web test questionnaire based on 
ITU-T P.85 standard that used php and MySQL as programming and management tools.  

 
Figure 1.1 Global scoring of different synthesis aspects (quality, pleasantness, 

intelligibility, understandability, clarity)  
 
Figure 1.1 shows the total scoring (obtained by summing the scores given to each sentence 
of the questionnaire) for both synthesis techniques and reveal that MTG’s synthesis and 
Telefonica’s highest quality synthesis were evaluated to be alike.  
 
1.4.5 Object Processing 
 
Object Processing was an MTG inside project. The aim of this project was to process a 
single audio object of a mix independently of the rest of the sound. With this we could 
modify the sound of a violin in an ensemble recording or we could apply transformations to 
the lead voice in a whole band recording.  
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The main steps to process a single audio object are: analyze the mixed audio using SPP 
analysis techniques, assign which peaks belong to each audio object, and process all the 
peaks that belong to the audio object to be modified. The project did not focus on how to 
discriminate which peaks belong to which instrument but on how to modify the 
characteristics of a certain instrument by modifying its corresponding peaks. 
 
The implementation of Object Processing was done on top of the SMSTools2, using Visual 
C++. 
 
1.4.6 Vocal Processor 
 
Vocal Processor is a collaboration project with YAMAHA. The aim of the project is the 
implementation of a real-time singing voice effect processor. This effect processor is not a 
generic-like processor with which you can apply distortion, delay or flanger to a singing 
voice but a specific processor able to modify the singing voice characteristics in terms of 
singing characteristic attributes such as timbre, vibrato, intonation, tuning, breathiness, 
roughness, harmonies, and others. 
 
The Vocal Processor uses the SPP technique and it is being implemented as a Virtual 
Studio Technology (VST) plug-in using the MTG’s CLAM (C++ Libraries for Audio and 
Music) libraries. 
 
Part of the research done for Vocal Processor is published in [ABLS01, ABLS02], and 
[ABLAV03].  
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Chapter 2 
 
Spectral Processing Techniques 
 
 
 
The aim of this chapter is to introduce the two main techniques on top of which the 
research presented in this work has been carried out: the Spectral Modeling Synthesis 
(SMS), and the Spectral Peak Processing (SPP).  
 
2.1 Introducing the techniques 
 
In this first section the background of such techniques (SMS and SPP) is introduced. 
 
2.1.1 Phase Vocoder 
 
The phase-vocoder [FG66] is a frequency-domain technique based on the Short Time 
Fourier Transform (STFT). The STFT characterizes the spectral behavior of a signal x(n) 
along time and can be written as: 
 

( ) ( ) N
mkjm

m
emnhmxknX

π2

),(
−∞=

−∞=

⋅−⋅= ∑ ,         k=0,1,…N-1      (2.1) 

 
where X( n, k) is the complex time-varying spectrum with the frequency bin k and time 
index n. At each time index, the input signal x(m) is weighted by a finite length window 
h(n-m) and then computed its spectrum. There is a more detailed explanation of the STFT 
in section 2.2.1. 
 
The most common understanding of the phase-vocoder technique is the filter bank 
interpretation. This filter bank is a parallel bank of N bandpass filters with the following 
impulse response 
 

( ) ( ) N
nkj

k enhnh
π2

⋅= ,         k=0,1,…N-1   (2.2) 
 
which means the same filter shape is shifted along frequency by 2π/N radians steps.  
 
The bandpass signal of band k, yk(n), is obtained by filtering the input signal x(n) with filter 
hk(n) as showed in the following expression 
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and the output signal y(n) is the sum of all bandpass signals 
 

( ) ( ) ( ) N
nkjNk

k
k

Nk

k
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π21

0

1

0

,)( 
−=

=
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Figure 2.1 Filter bank description of the short time Fourier transform. The frequency bands 

on the top show the displacement of each of the bandpass filters. 
 
Thus, for a certain time index n, y(n) will be defined by a N length vector containing an 
estimation of each band’s energy 
 

… … 

2π/N 2πk/N 2π(N-1)/N 2π 0 

h0 h1 hk hN-1 h0 

 
h0(n) = h(n) 

 
h1(n) = h(n)·ej2πn/N 

 
hN-1(n) = h(n)·ej2πn(N-1)/N 

 
hk(n) = h(n)·ej2πnk/N 

.. . 

.. . 

x(n) 
y(n) 
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Before synthesis, spectral modifications can be applied to the resulting analysis data. If we 
term the modified data ( )nyk

mod , the synthesis window w(n), the synthesis hop size H, and 
ym(n) is the Inverse Fourier Transform of the modified short time spectra 
 

( ) ( ) ( ) N
nkjNk

k

N
mHj

N
nkjNk

k
km ekmHXe

N
eny

N
ny

πππ 21

0

mod221

0

mod ,11
⋅⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
⋅=⋅= ∑∑

−=

=

−=

=

  (2.7) 

  
the resulting synthesis signal s(n) can be written as the overlap and add of the windowed 
ym(n)’s 

( ) ( ) ( )nyHmnwns m

m

m
⋅⋅−= ∑

∞=

−∞=

         (2.8) 

 
Improved phase vocoder techniques have appeared more recently [Puck95,LD99]. These 
new techniques try to solve the phase unwrapping problem. This problem is caused by the 
fact that the phase obtained for each bin k depends on a term that is multiple of 2π and that 
is not the same for all bins, see equation (2.6). These phase differences are dispersed and 
cause synthesis artifacts when applying spectral transformations. Out of these new 
techniques named phase-locked vocoders, a rigid phase locking method proposed by 
Laroche and Dolson called the identity phase locking, has an important relevance in this 
work.  
 
The identity phase locking vocoder it is based on spectrum peak detection and 
segmentation and on the assumption that spectrum peaks are sinusoids. In this technique a 
simple peak detection algorithm detects all spectra local maximums and considers them 
peaks. This series of peaks are then used to chop the spectrum into regions. Each of these 
regions contains one peak and sets the boundaries with the neighboring regions to the 
middle frequency between adjacent peaks or to the lowest amplitude between the two 
peaks. The proposal states that only the phases of the peaks are calculated while the phases 
of the rest of the bins are locked to their corresponding region peak.  
 
The identity locking asserts that the synthesis phases around a spectral peak are related with 
that peak’s phase in the same way they are in the analysis. So, being kp the bin index of the 
dominant peak, φs the synthesis phases, and φa the analysis phases, the phases of the bins k 
under the region of influence of peak kp will be  
 

( ) ( ) ( ) ( )paapss kkkk ϕϕϕϕ −+=  where ∈k Region(kp)        (2.9) 
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2.1.2 Signal Modeling  
 
The term signal modeling refers to the task of describing a signal with respect to its 
inherent characteristics and underlying structure - a model of the signal fundamental's 
behavior. In this context, analysis is the process of fitting such model to a particular signal 
and synthesis is the process by which a signal is reconstructed using the model and the 
analysis data. Among the numerous approaches that have appeared in the recent years, two 
model types are the most commonly used nowadays in musical sound generation: physical 
models and spectrum models. 
 
Physical models attempt to parameterize the process of the sound generation at its source, 
e.g. the excitation mechanism of a flute and the resulting self-sustained oscillation 
produced inside its bore. The purpose of the analysis is to derive a general physical 
description of the instrument in question. That physical description is used to construct a 
synthesis system that mimics the instrument behavior. In a guitar model, for instance, the 
model parameters derived form the analysis include the length, tension, and various wave 
propagation characteristics of the strings, the acoustic resonances of the guitar body, and 
the transfer properties of the string-body coupling. These physical parameters can be used 
to build a system that, when driven by a modeled excitation such as a string pluck, 
synthesizes a realistic guitar sound.  In speech processing, the classical examples of 
physical modeling are the human vocal tract models, which are source-filter approaches. 
The source mimics the glottal excitation while the filter models the shape of the vocal tract, 
meaning that the source-filter approach is designed to mirror the actual underlying physical 
system from which the speech signal originated.  
 
Spectrum models are not taking this physical sound generation into account but rather 
attempt to parameterize the sound itself, as it is perceived by the basilar membrane of the 
ear, discarding whatever information the ear seems to discard in the spectrum. Both SMS 
and SPP are based on spectrum models. 
 
2.1.2.1 The Sinusoidal Model 
 
Within the spectrum models there are the additive models, which are based on the basic 
idea that a complex sound can be constructed by a large number of simple sounds. These 
models try to represent the spectral characteristics of the sound as a weighted sum of basic 
components, so-called basis expansions. 
 

∑
=

=
J

j
jj ngnx

1
)()( α       (2.10) 

 
where gj(n) is the jth basis function and αj is its appropriate chosen weight. There is no 
restriction to their number J. A detailed discussion on the properties of these basis 
expansions can be found in [Good97].  
 
When the additive synthesis is the summation of time varying sinusoidal components 
rooting in Fourier's theorem, which states that any periodic waveform can be modeled as a 
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sum of sinusoids of various amplitudes and harmonic frequencies, we talk about sinusoidal 
modeling. The sinusoidal model and in general additive models have been under 
consideration in the field of computer music since its inception. 
 
One of the widely applied models in speech coding and processing, or audio analysis-
synthesis systems is the sinusoidal model as proposed by McAulay and Quatieri in 
[MQ86]. At this, the signal is modeled as a sum of sinusoids with time-varying amplitudes 
Ap(t), frequencies ωp(t), and phases θp(t). Therefore we estimate the signal as 
 

[ ]

[ ]∫

∑

++∂=

=
=

t

ppppp
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where P is the number of sinusoids, which can also be a function of time in some 
applications. Here, the index p denotes that the parameter belongs to one time-evolving 
sinusoid, called pth partial or track. The time-varying phase θp(t) contains the time-varying 
frequency contribution, a fixed phase offset ηp, which accounts for the fact that the sinusoid 
will generally not be in phase, and a time-varying frequency-dependent term [ ])(tpp ωφ . In 
the speech production model proposed in [MQ86], [ ])(tpp ωφ  is determined by the phase 
function of the vocal tract. 
 
Sinusoidal synthesis is accepted as perhaps the most powerful and flexible method. 
Because independent control of every component is available in sinusoidal synthesis, it 
allows the pitch and length of sounds to be varied independently, as well as it is possible to 
implement models of perceptually significant features of sound such as inharmonicity and 
roughness. Another important aspect is the simplicity of the mapping of frequency and 
amplitude parameters into the human perceptual space. These parameters are meaningful 
and easily understood by musicians. Recently, a new sinusoidal synthesis method based on 
spectral envelopes and Fast Fourier Transform has been developed [RD92]. The use of the 
inverse FFT reduces the computation cost by a factor of 15 compared to oscillators. This 
technique renders possible the design of low cost real-time synthesizers allowing 
processing of recorded and live sounds synthesis of instruments and synthesis of speech 
and the singing voice. 
 
This model makes strong assumptions on the behavior of the time-evolving sinusoidal 
components. Because of the fact that this system is a frame-based approach, the signal 
parameters are assumed to be slowly varying in time compared to the analysis frame-rate. 
In real-world signals, such as a musical note played by a flute, this assumption is almost 
suited by the property of pseudo-periodicity. These sounds consist mainly of stable 
sinusoids, which can be perfectly modeled by equation (2.11). But modeling audio signals 
only as a sum of sinusoids suffers from a major limitation. If the signal contains noisy or 
impulsive components, an excessive number of sinusoids are needed to model them. The 
resulting residual signal shows that these broadband processes are present in every natural 
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sound, e.g. the sound of the breath stream in a wind-driven instrument or the sliding of the 
bow against a string of a cello.  
 
2.1.2.2 The Deterministic plus Stochastic Model 
 
X. Serra and J.O. Smith proposed in [SS90] an extension of the sinusoidal model known as 
the deterministic-plus-stochastic decomposition. 
 
The use of the estimation of the signal )(ˆ tx  in equation (2.11) is to imply that the sum-of-
partials model does not provide an exact reconstruction of the signal x(t). Because of the 
fact that a sum of sinusoids is ineffective for modeling impulsive events or highly 
uncorrelated noise, the residual consists of such broadband processes, which correspond to 
musical important features, such as the turbulent streaming inside the bore of a flute. The 
stable sinusoids represent the main modes of the vibrating system, and the residual the 
excitation mechanism and non-linear behaviors. In the case of bowed strings the stable 
sinusoids are the result of the main modes of vibration of the strings and the noise is 
generated by the sliding of the bow against the string, plus by other non-linear behavior of 
the bow-string-resonator system. Since these features are needed to synthesize a natural 
sound, the additional stochastic component, the residual, should be included in the signal 
model [SS90,Ser97]. 
 

)()()( det txtxtx stoch+=        (2.12) 
 
The model assumes that the sinusoids are stable partials of the sound and that each one has 
a slowly changing amplitude and frequency. The deterministic part of the model is the same 
proposed by the sinusoidal model in equation (2.11).  
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By assuming that )(txstoch  is a stochastic signal, it can be described as filtered white noise, 
 

∫ ∂=
t

stoch uthtx
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)(),()( τττ          (2.14) 

 
where u(τ) is white noise and h(t,τ) is the response of a time varying filter to an impulse at 
time t . That is, the residual is modeled by the convolution of white noise with a time-
varying frequency-shaping filter. This deterministic-plus-stochastic decomposition has 
been discussed in several later works [Rod97,DQ97,Good97,VM98]. 
  
Using the terms deterministic and stochastic brings up the question about the theoretical 
distinction between these two kinds of processes. Deterministic signals are not only 
restricted to the sum of sinusoids. However, in this model the class of deterministic signals 
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considered is restricted to quasi-sinusoidal components and the stochastic part is likened to 
residual.  
 
2.1.3 Techniques employed  
 
2.1.3.1 Spectral Modeling Synthesis (SMS) 
 
The original SMS (Spectral Modeling Synthesis) System is based on the deterministic-plus-
stochastic decomposition and has been originally developed by X. Serra. Its basic features 
are described in [Ser97], but it is still part of the current work of the Music Technology 
Group (MTG). However, in this section we will present the original system. 
 
This system is restricted to model monophonic sounds and in this work, it will also be 
restricted to pseudo-harmonic modeling due to the nature of the singing voice approach 
explored in chapter 3. Both the analysis and synthesis are frame-based processes. 
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Figure 2.2 Block diagram of the SMS analysis process 
 
Figure 2.2 shows the block diagram of the basic SMS analysis. The input sound xin(n) is 
processed frame-by-frame at a fixed analysis-frame rate. First, a new section of the sound 
to be analyzed is multiplied with an analysis window adjusted to the estimated fundamental 
frequency f0 in order to achieve a good time-frequency trade-off in the analysis. The Fast 
Fourier Transform (FFT) obtains its spectrum and the prominent spectral peaks are detected 
in the magnitude. The relevance of this algorithm is that it detects the magnitude, frequency 
and phase of the partials present in the original sound. These parameters describe the 
deterministic part of the input signal. In the pseudo-harmonic case pitch detection is 
performed to set the window size (pitch-synchronous analysis) and to set also the 
frequencies of the guides used to find the time-evolving partials. Then, the detected peaks 
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are incorporated in the existing partial trajectories of the last analysis step by means of a 
peak continuation algorithm.  
 
To calculate the stochastic component xstoch(n) of the current frame, the deterministic 
component xdet(n) is first synthesized and then subtracted from the original input signal 
xin(n). This is possible because the phases of the original sound are matched and therefore 
the shape of the time-domain waveform preserved. The stochastic representation is then 
obtained by performing a spectral fitting of the residual signal. Newest versions of the 
system perform this subtraction in the frequency domain with a less precise but more 
efficient method. 
 

 
 

Figure 2.3 Block diagram of the SMS synthesis process 
 
In figure 2.3 the block diagram of the synthesis process is shown. The deterministic part of 
the signal xdet(n) results from the magnitude and frequency trajectories, or their 
transformation, by generating a sine wave for each trajectory and the superposition of these 
components (additive synthesis). This can either be done in time or frequency domain, 
using the inverse FFT approach.  
 
The synthesized stochastic signal xstoch(n) is the result of the inverse-FFT of the possibly 
modified spectrum. Then, the effects of the analysis window are undone and a triangular 
window is applied to each frame for a half overlap-add synthesis. Finally, the stochastic and 
deterministic parts are combined to the sum synthesized sound xsynth(n). 
 
2.1.3.2 Spectral Peak Processing (SPP) 
 
The Spectral Peak Processing (SPP) is a technique based on the rigid locked phase 
vocoders. As pointed out in section 2.1.1, this sort of technique can be somehow related 
with the sinusoidal models. The main difference with the rigid locked-phase vocoder is that 
in the SPP not all spectrum local maximums are considered to be peaks and thus sinusoids. 
SPP only considers as peaks those local maximums that the analysis classifies as harmonic 
peaks. However, mimicking the locked phase vocoders, the SPP approach considers the 
spectrum compounded of spectral peak regions each of which consist of a harmonic 
spectral peak and its surrounding spectra which we assume to contain all the non-perfect 
harmonic behavior information of the corresponding harmonic peak. The goal of such 
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technique is to preserve the convolution of the analysis window after transposition and 
equalization transformations. 
 
The analysis and synthesis procedures and dataflow are just the same as in the SMS except 
from those procedures that specifically regard the residual component, which do not exist 
here. Moreover, the SPP analysis includes spectrum segmentation into regions out of the 
harmonic spectral peaks as shown in figure 2.4.  
 

 
 

Figure 2.4 Block diagram of the SPP analysis process 
 
The synthesis in the SPP includes the STFT and the SPP spectral peak regions marks aside 
from the frequency, magnitude and phase of the harmonic spectral peaks. 
 

 
Figure 2.5 Block diagram of the SPP synthesis process 

 
Details on analysis, and transformation / synthesis processes are given in sections 2.2 and 
2.4 respectively. From now on, when talking about SPP, we will do it in the context of 
pseudo-harmonic monophonic sounds. 
 
2.2 Analysis techniques 
 
2.2.1 Magnitude and Phase Spectra Computation 
 
The first step in analyzing the input signal is the computation of the magnitude and phase 
spectra. This is done by applying a sliding time window to the input signal xin(n) and by 
performing the short time Fourier transform, STFT. This process isolates time-localized 
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parts of the signal, which are then analyzed using the Discrete Fourier Transformation. The 
STFT is mathematically defined as 
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where the DFT is of size K and w(m) is a time-domain window with zero value outside the 
interval [0,N-1]. The window and the DFT size do not have to be necessarily of the same 
size. 
  
The control parameters of the STFT (window size, window type, DFT size and frame rate) 
have to be chosen according to the characteristics of the sound that will be processed. First, 
a good frequency resolution is needed to detect the spectral peaks that correspond to the 
deterministic component. But the phase information is also required for the subtraction of 
the deterministic part from the original to get the residual.  
 
Figure 2.6 shows a portion of a cello sound before (a) and after applying a Kaiser-Bessel 
window (b), which is described in [Har78]. 
 

 
Figure 2.6 Original (a) and windowed (b) portion of a cello sound playing an A4 

 
The time-domain data should be centered on zero in order to obtain a spectrum free of any 
linear phase trend caused by the windowing process. Therefore, an odd-length window 
should be used to achieve this symmetry. Before centering, the data is zero-padded, so that 
its length is at least 4 times as long as its original length. It should also be a power of 2, so 
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that the fast algorithm of the DFT, the FFT, can be used. The reason for the zero padding is 
motivated by the precision of the peak detection and is explained in detail in the next 
section. 

 
Figure 2.7 Portion of a cello sound zero-padded and centered around zero 

 
The time-frequency compromise of the STFT is very important since it limits the precision 
of the detection, or even the detectability of partials or impulses in the frequency-domain as 
well as in the time-domain. For example, it is necessary to have enough frequency 
resolution if a time-evolving sinusoid should be resolved of the sound. Considering 
impulses in the stochastic part of the signal, the frequency resolution is not that important 
compared to the detection of the precise time position. This can be accomplished by using 
different FFT parameters for the deterministic and stochastic analysis.     
           

 
Figure 2.8 Magnitude (a) and phase (b) spectrum of a portion of a cello sound 

 
2.2.2 Peak Detection  
 
Once the spectrum of the current frame is computed, the next step is the detection of the 
prominent magnitude peaks as the ones observable in figure 2.6. A stable sinusoid has a 
well-defined frequency representation, depending on the window applied to the time-
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domain data before computing the DFT. To illustrate the explanation, we will suppose we 
use a Kaiser-Bessel window, with parameter α depending on the estimated fundamental 
frequency, for the deterministic analysis. This window is defined as 
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The parameter πα  is half of the time-bandwidth product. As presented in [Har78], the 
transform is approximately that of 
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Figure 2.9 Kaiser-Bessel window with α =2.0 (a) and its log-magnitude (b) and with α =3.0 

(c), (d) 
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This windows and their spectra for the parameters α=2.0 and α=3.0 are shown in figure 2.9 
and a stable sinusoid should ideally have the same spectral shape. However, in practice this 
is rarely the case since most of the sounds are not perfectly periodic and the spectrum of the 
window is not band limited, causing a superposition of the sidelobes of different sinusoidal 
components and thus violating the main-lobe shape. Due to this effect, it is difficult to rely 
on the shape of a peak as a criterion whether it is a stable sinusoid or not without tolerating 
some mismatch. On the other hand, a sinusoid without constant amplitude inside the frame 
boundaries widens this main-lobe significantly and adds an in- or decreasing trend to the 
corresponding phase. This can be easily shown for the simple case of a rectangular window. 
  
The rectangular window of the size N samples and its Fourier transform are given by 
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and a simple time-domain signal, such as a cosine function with time-varying amplitude, 
can be written as 
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and its spectrum as 
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where )(ΩA  is the Fourier transform of the time-varying modulation A(n). The windowing 
in the time-domain refers to a convolution in the frequency-domain, so that the windowed 
signal is given by 
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and its spectrum by 
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If A(n)=A=const., meaning that the signal is not amplitude modulated inside the frame 
boundaries, the spectrum of A(n) can be written as )(2)( Ω=Ω δπAA  and thus represents 
the ideal case where the main-lobe of the window is not widened. But if .)( constnA ≠ , 
then its appropriate Fourier transform )(ΩA  has a significant bandwidth that causes the 
widening due to the convolution process. )(ΩA  Also adds an in- or decreasing phase inside 
the main-lobe range of the peak.  
 
Figure 2.8 shows that the phase progression inside the main-lobe is not flat in every case 
and this indicates that the measured amplitude or frequency is not constant over the frame 
duration. This observation can also be used as a stability criterion for the estimated 
parameters. A practical solution to this problem is to detect as many peaks as possible, 
measure their main-lobe width, flatness of the phase, and delay the decision of what is a 
deterministic, stable sinusoid, to the peak continuation algorithm following the peak 
detection. 
 
The detection of peaks in the magnitude spectrum is very simple. A peak is defined as a 
local maximum in the magnitude spectrum, which is mathematically given by two 
conditions, the necessary condition 
 

|X'(kmax)|=0         (2.26) 
 
and the sufficient condition 

 
|X'(kmax)|=|X''(kmax)|=...=|X(n-1) (kmax)|=0,  |X(n) (kmax)| ≠ 0     (2.27) 

 
If n is odd, then |X(k)| has no local extremum. But if n is even and |X(n) (kmax)| <0, 

then |X(k)| has a strict local maximum. 
 
Due to the fact that |X(k)| is a vector of discrete elements, the difference between two 
values can be computed instead of the derivation. Figure 2.10 shows the magnitude and 
phase spectrum of the cello sound with the detected peaks at the bin indices max

ik . The 
amplitude )( max

ikA  can be directly written as  
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Due to the sampled nature of the spectra of the FFT, each peak is only accurate within half 
a sample. A spectral sample represents a frequency interval of Kf s /  Hz, where sf  is the 
sampling rate and K is the FFT size. Thus, if the frequency ef sin  of a sinusoid corresponds 
to a bin frequency Kfi s /⋅  with [ ]1,0 −∈ Ki , it can be perfectly identified and its 
magnitude and phase can be exactly extracted. In the off-bin case Kfif se /sin ⋅≠ , the peak 
suffers from spectral leakage and cannot be detected correctly. However, it is possible to 
refine the estimation accuracy of this peak by interpolation.  
 
First, an oversampled FFT, meaning K>N in equation (2.16), is one possibility to improve 
the accuracy of the detection. But to obtain a high frequency accuracy on the level of 0.1% 
of the distance from the top of an ideal peak to its first zero-crossing (in the case of the 
rectangular window), using only zero-padding, the required factor would be K/N≈1000 
[Ser97]. A practical solution to this problem is to zero-pad only enough so that quadratic 
spectral interpolation, using only samples surrounding the maximum-magnitude sample, 
suffices to refine to the required accuracy.  

 
Figure 2.10 Peaks detected in the magnitude of the cello sound 

 
Thus, the estimate is refined by quadratic interpolation, as given by 
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where )(kM  is the magnitude at the bin k  and α  denotes the point that should be 
interpolated. To calculate the appropriate max

iα  for the local maximum of each detected 
peak max

ik , the following equation must be solved, 
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Finally, the refined estimate can be written as 
 

maxmaxmaxˆ
iii kk α+=      (2.35) 

 
But it is important to notice that this spectral interpolation helps only identifying off-bin 
frequencies that are widely separated, but does not improve the resolution of closely spaced 
components. Two closely spaced sinusoids can only be resolved if their frequency 
difference is at least one bin in an N-point FFT, using a rectangular window. For the 
Kaiser-Bessel window with α =2.0, the main-lobe is about twice as wide, see figure 2.9 (a), 
as that of the rectangular window, and as a result, this Kaiser-Bessel window must span two 
signal periods, 2N samples, to achieve a resolution of harmonic components.  If α =3.0, the 
necessary number of signal periods increases to three. 
 
2.2.3 Pitch Detection  
 
The term fundamental frequency can be defined as the common divisor of the harmonic 
series that best explains the spectral peaks found in the spectrum. Pitch is the equivalent 
term in the psychoacoustics context. Thus pitch does not get its value from mathematical 
formulas but from perception based rules. However in this work we will refer to both terms 
indiscriminately mostly because our goal is to detect the pitch rather than the fundamental 
frequency. It is easy to understand the differences between these two terms when listening 
to a loud hoarse voice or to long note releases, where the pitch perceived differs from the 
fundamental frequency over 12 semitones.  
 



 - 24 - 

There have been different approaches to the problem of fundamental frequency estimation. 
Time-domain based techniques, frequency-domain techniques, and also other techniques, 
based on cepstrum or linear predictive coding, have been proposed. Because both SMS and 
SPP are based on the estimation of parameters in the frequency-domain, it is more efficient 
to use the results of the previous calculations in a frequency-domain approach. The Two-
Way Mismatch Procedure proposed by Maher and Beauchamp in [MB94] is such an 
algorithm, measuring the goodness of a possible fundamental frequency f0 by calculating a 
mismatch error between the estimated peak frequencies and the ones of the ideal harmonic 
series and vice versa. 

 
Figure 2.11 Error functions in TWM pitch detection procedure 

 
This two-way mismatch helps to avoid octave errors in the estimation by applying a penalty 
for partials that are present in the measured data but are not predicted, and also for partials 
whose presence is predicted but do not actually appear in the measured sequence. The 
predicted-to-measured error is defined as: 
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where ∆fn is the difference between a predicted and its closest measured peak fn,  and  an are 
the frequency and magnitude of the predicted peaks, and Amax is maximum peak magnitude.  
 
The measured to predicted error is defined as:  
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where ∆fk is the difference between a measured and its closest predicted peak fk,  and ak are 
the frequency and magnitude of the measured peaks, and Amax is maximum peak magnitude.  
 
The total error is:  

KErrNErrErr pmmptotal // →→ += ρ     (2.38) 
 
The values of the included parameters are proposed by Maher and Beauchamp to be p=0.5, 
q=1.4, r=0.5 and ρ=0.33 and proved to work optimally for most of the sounds. Figure 2.11 
shows the errors functions for the case of a cello playing an A4. It can be seen that the total 
error has a minimum at ≈0f 440 Hz, which is the fundamental frequency of the played 
note.  
 
On top of the TWM procedure several improvements and some modifications in order to 
adapt it to the case of the singing voice have been done. Some of these are described in 
[Cano98]. 
 
2.2.4 Peak Continuation  
 
The peak continuation algorithm is in charge of adding the detected spectral peaks to the 
incoming peak trajectories. One of the first continuation algorithms was proposed by 
McAulay and Quartieri in [MQ86]. It matches the closest spectral peak in frequency to 
each of the incoming trajectories of the last processed frame and thus maybe omitting the 
musical meaning of these time-evolving sinusoidal tracks. If, for example, a partial changes 
substantially in frequency from one frame to the next, this algorithm easily switches from 
the partial that it is tracking to another one, which at that point is closer in frequency. 
 
Restricting the analysis to monophonic sounds, the information of the fundamental 
frequency f0 can be used to set musical meaningful guides, advancing in time through the 
spectral peaks, looking for the appropriate ones (according to specific criteria) and forming 
trajectories out of them. Taking advantage of the pseudo-periodicity property of the 
processed signals, the guides can be set to the harmonic frequencies harm

if  of the estimated 
fundamental f0. 
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Figure 2.12 Illustration of the peak continuation process 

 
Now, each guide p searches the detected peak frequencies for a possible match according to 
the following criterion 
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where f∆  is the frequency range searched for a match. During this search, the algorithm 
also has to be aware of not matching peaks that already belong to other trajectories and of 
avoiding the crossing of trajectories as the result of the continuation process. The criterion 
in equation (2.40) can be refined by using also the magnitude information of the peak 
matched in the last frame to this trajectory because it makes no musical sense matching a 
peak that is close in frequency but with a totally different magnitude when searching for 
stable partials. The criterion can be extended to the following two conditions 
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with 
 

 )()( fXfM =         (2.42) 
 
where f∆  is the frequency range, and M∆  is the magnitude range searched for a match. 
M(f) is the log-magnitude spectrum. If no match is possible in the current frame, the 
trajectory is turned off in the sense of setting its amplitude to zero. But depending on the 
duration of this turned-off state, the trajectory can be considered as disappeared, or in case 
of a short dropout, as a failure in the detection process. If the duration of this dropout is 
shorter than a fixed duration, for example 30 ms [Vas96], it makes sense to repair this 
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trajectory by linear interpolation of its magnitude and an appropriate calculation of the 
phase for the missing frames, as given by 
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where the index i denotes the number of the perfect harmonic corresponding to the 
trajectory p, l the number of the current frame, k and m the appropriate last and next frame 
with a correctly detected set of estimates, and S the frame size in samples. If the trajectory 
can really be considered as disappeared, its duration is checked in order to keep only the 
trajectories that are stable partials and thus belong to the deterministic part of the signal. 
 
The algorithm presented here is one approach to the peak continuation problem the but 
different strategies and techniques can be applied to solve this problem (i.e. Hidden Markov 
Models [Gar92,DGR93]).  
 
2.2.5 SMS Specific: Stochastic Analysis  
 
The stochastic analysis in the SMS contains two steps, first, the calculation of the stochastic 
component, also called deterministic subtraction, and second, its modeling. In the 
deterministic subtraction the sinusoidal components of the estimated deterministic part are 
subtracted from the original sound in the time domain. The resulting residual can be used to 
measure how well the deterministic features in the sound have been extracted. If partials 
still remained in the residual, it should be reanalyzed, using other analysis parameter 
settings in order to help the algorithm to overcome its problems. This can be done, for 
example, by forcing the pitch detection to find the fundamental in a smaller frequency 
range or by changing the minimum duration of a trajectory that is considered as 
deterministic. This user interaction improves the analysis by using a-priori knowledge. If 
the sound was not recorded in the ideal situation, the residual will also tend to contain more 
than just the stochastic part of the sound, such as reverberation or background noise. But 
ideally, it should be as close as possible to a stochastic signal. 
  
The deterministic subtraction contains two steps, first, the synthesis of the deterministic 
part from the set of peak trajectories, and finally, the frame-by-frame subtraction. A series 
of sinusoids can be synthesized from the trajectories that reproduce the instantaneous phase 
and amplitude of the original partials. Thus, it is possible to obtain a residual part by 
subtracting the synthesized sinusoids from the original sound.  
 
One frame of the deterministic part is generated by 
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where P is the number of trajectories present in the current frame and S is the frame size. 
To avoid clicks caused by discontinuities at the frame boundaries, the frame-rate partial 
parameters  { pppA ϕω ˆ,ˆ,ˆ } are smoothly interpolated from frame to frame, resulting in 

oscillator control functions )(ˆ nAp  and )(ˆ npω for every trajectory. We interpolate by using 
low-order polynomial models, such as linear amplitude and cubic total phase. The 
instantaneous amplitude )(ˆ

, nA ip  can be obtained by calculating 
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where n=0,1,…S-1 is the time sample into the ith frame.  
 
Since frequency and phase values are tied together by the equation tf ∂∂= /ϕ , the 
instantaneous phase ip,θ̂  is given by 
 

ipipip n ,,, ˆˆˆ ϕωθ +=       (2.48)  
 
Given that four variables affect the instantaneous phase: ip,ω̂ , ip,ϕ̂ , 1,ˆ −ipω , 1,ˆ −ipϕ , we need 
three degrees of freedom for its control. A cubic polynomial interpolation function is used 
as proposed by McAulay and Quartieri in [MQ86]. This is mathematically given by 
 

32)(ˆ nnnn ζηκξθ +++=          (2.49) 
                                           
This equation can be solved as described in [MQ86] and only the results will be presented 
here. 

32
1,,, ˆ)(ˆ nnnn ipipip ζηωϕθ +++= −                 (2.50) 

 
where η and ζ  are calculated by using the beginning and end conditions at the frame 
boundaries,  
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This gives a set of interpolating functions depending on the value of L, among which we 
select the maximally smooth function by choosing L to be an integer closest to χ, where χ is 
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Including these oscillator control functions in the equations (2.47) and (2.49), the 
deterministic part can be written as 

[ ]∑
=

=
iP

p
ipip

i nnAnx
1

,,det )(ˆcos)(ˆ)( θ  with n=0,1,2,...,S-1          (2.54) 

This deterministic part is interpolated for every parameter set { 1,1,1, ˆ,ˆ,ˆ
−−− ipipipA ϕω } of one 

frame to the one { ipipipA ,,, ˆ,ˆ,ˆ ϕω } of the following frame in a smooth way. Once this 
deterministic component is calculated, it can be subtracted from the original sound to 
obtain the residual part. This is simply done by  
 

)()()( det nxnxnxstoch −=  with n=0,1,2,...,S-1          (2.55) 
 
For the example of the cello sound the deterministic component and the calculated residual 
are shown in figure 2.13. To obtain the spectrum, a window w(n) is applied to the stochastic 
component xstoch(n) and a FFT of the size N is calculated. This is mathematically given by 
 

))()(()()(ˆ det nxnxnwnxstoch −⋅=  with n=0,1,2,...,N-1  (2.56) 
 )}({)( nxDFTkX stochstoch =         with   k=0,1,2,...,K-1            (2.57) 

 
The window used in this approach is a Blackman-Harris 92dB as described in [Har78], and 
its size is N samples. The magnitudes of the deterministic and stochastic component can be 
seen in figure 2.14 (a), (b). The magnitude of the residual is very close to a white spectrum 
and the only components left in the residual are the magnitude peaks with frequencies 
greater than 18 kHz and a low frequent part, which are both not stable in time and thus 
considered to be not deterministic.  
 

 
Figure 2.13 Deterministic subtraction: deterministic part of a cello sound (a) and the 

residual (b) 
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In [SS90,Ser97] a stochastic approximation has been proposed that models the residual 
component as filtered white noise. Therefore, a line-segment approximation is fitted to the 
log-magnitude spectrum curve. Since then, other approximation techniques have been 
proposed to improve the modeling, such as a speech coding technique called MPLP 
[DQ97] or a parametric approach, using perceptual criteria in [Good97]. 
 

 
Figure 2.14 Magnitude of the deterministic part of a cello sound (a) and the residual (b) 

  
As already mentioned in section 2.1.3 the residual part of the sinusoidal plus stochastic 
decomposition can be computed in the frequency domain [Bon97]. Due to the windowing 
process in the time-domain the calculated spectrum suffers from limited resolution and the 
sinusoid is also not represented by an ideal Dirac impulse (this is correct for the continuous 
Fourier transform, but considering the sampled nature of the discrete Fourier transform, this 
would only be the case for a frequency lying on a bin-frequency) but rather by the 
modulated Fourier transform of the used window. In the case of the Blackman-Harris 
window the window spectrum can be written as 
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with the Dirichlet kernel 
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subject to constraint 
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For the Blackman-Harris 92 dB window the parameters ai are a1=0.35875, a2=0.48829, 
a3=0.14128 and a4 =0.01168, satisfying the condition (2.50). 
 

 
Figure 2.15 Spectral values of the main-lobe (a) and their effect in the superposition (b) 

 
The windowing process in the time-domain corresponds to a convolution in the frequency-
domain, so that the ideal spectrum is convolved with the spectrum of the window. The 
discrete convolution is mathematically given by 
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where W(n), X(n) and Xw(n) are the spectra of the window, the signal without and with the 
windowing effect, respectively. Assuming that a signal x(n) consists only of ideal sinusoids 
with different frequencies, the resulting spectrum will be a superposition of window spectra 
modulated with the different sinusoidal frequencies. 
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where K is the DFT size, fs is the sampling rate and iΩ the normalized frequency of the ith 
sinusoid. 
 
The Blackman-Harris 92dB window has a main-lobe width of 9 bins, as seen in figure 2.15 
(a), and their second lobes are -92 dB below. Thus, if we consider a sinusoid is represented 
in the spectrum by the main-lobe bins as in [RD92, GR94], we can subtract the sinusoidal 
component by just filling a spectrum buffer with the 9 main-lobe bins for each sinusoid and 
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then subtract this spectrum buffer from the original spectrum buffer. The phase of these 
sinusoids is set to the sinusoidal peak phase found in the analysis in all main-lobe bins. The 
subtraction operation is performed in the complex plane.  
 
2.2.6 SPP Specific: Spectrum Segmentation  
 
The outcome of the SPP analysis are the harmonic peaks (frequency, amplitude and phase), 
the STFT, and the SPP regions marks. Remember SPP divides the spectrum into a set of 
regions, each of which belongs to one harmonic spectral peak and its surroundings. 
 
Two different algorithms were introduced in section 2.1.1 to segmentate the spectrum into 
regions out of peaks information. These techniques can also be applied in the SPP case. The 
region boundary is set to be at the lowest local minimum spectral amplitude between two 
consecutive peaks as illustrated in figure 2.16(b). If there are no local minimums, then the 
boundary is set to be at the middle frequency between two consecutive peaks as illustrated 
in figure 2.16(a).   

 
Figure 2.16 SPP region boundaries computation techniques: (a) mid frequency value 
between consecutive harmonic peaks (b) min amplitude value between consecutive 

harmonic peak’s corresponding frequency 
 
2.3 Transformation techniques 
 
Voice transformation is a very popular issue nowadays and not only in the computer music 
community. An example of this popularity is the fact that it is hard to find these days a 
popular music production without any vocal alienation. In this chapter the methods used for 
voice transformation will be introduced.  
 
2.3.1 SMS based transformations 
 
For the SMS case, in the deterministic representation each function pair, amplitude and 
frequency, accounts for a partial of the original sound. The manipulation of these functions 
is easy and musically intuitive. In the stochastic representation we can change the shape of 
each of the envelopes and the time-varying magnitude or gain to modify the data. This 
corresponds to a filtering of the stochastic signal, whose manipulation is much simpler and 
more intuitive than the manipulation of a set of all-pole filters, such as those resulting from 
an LPC analysis. 
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2.3.2 SPP based transformations 
 
For the SPP case, the main drawback of the SMS technique, which is the critical 
discrimination between sinusoidal and residual (there are always remaining residual 
components in the sinusoidal part and vice versa) is avoided. This makes transformations 
using SPP technique more robust and consistent without losing SMS flexibility. With SPP 
the local behaviour of the peak region has to be preserved both in amplitude and phase. To 
do so, the delta amplitude relative to the peak’s amplitude and the delta phase relative to the 
peak’s phase are kept unchanged after spectral transformations. 
 
2.3.2.1 Equalization 
 
Equalizing entails timbre changing. From the SPP analysis we get a spectrum with the 
harmonic peaks and the regions marks. The harmonic peaks define the original spectral 
envelope which is shown with a continuous line in the figure 2.17. On the other hand, the 
desired spectral shape is drawn as a dashed line in same figure.  
 
The SPP equalization is done by calculating for each region the amount needed so that each 
harmonic’s amplitude matches the timbre envelope. Then these amounts (drawn as arrows 
in figure 2.17) are added to all the bins that belong to a region (amplitude dB addition). 
Therefore, the spectrum amplitude of a region is just shifted up or down and it keeps its 
local behavior.  

 
Figure 2.17 SPP equalization 

 
2.3.2.2 Transposition 
 
Transposition implies multiplying the harmonic’s frequencies by a constant value. This 
value is called transposition factor and from now on we will refer to it as transp. SPP 
transposition is accomplished by shifting the SPP regions in frequency. The amount of 
frequency shift Transpf∆ calculated for each harmonic peak is applied as a constant to its 
whole region (the linear frequency displacement for all the bins of a region is the same). 
Therefore, the local amplitude spectrum of each region is kept as it is, thus preserving the 
window convolution with each harmonic peak. For the ith harmonic peak, the new 
frequency value is 
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i
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i ftranspf ⋅=           (2.64) 
 
and the shift to be applied 
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iTransp           (2.65) 
 
In figure2.17 a transposition (with transp > 1) is illustrated. The original SPP spectrum is 
shown on the top, the arrows show the displacement in frequency that is applied to each 
harmonic, and at the bottom we can see the resulting spectrum. The gaps between SPP 
regions are filled with -200 dB constant spectral amplitude. In those cases in which transp 
< 1 (we are transposing to a lower pitch) the SPP regions overlap in the resulting spectrum. 
This overlapping is performed by adding the complex values at each spectral bin. 
 

       

Figure 2.17 Example of an SPP transposition with transposition factor > 1 preserving the 
original spectral shape 

It’s important to take care of the spectrum boundaries in the transposition process, because 
it’s possible that in a transposition to lower pitch the fundamental region overlaps with the 
negative frequency fundamental region. And a similar thing can happen with the high 
harmonics when we are transposing to a higher pitch. This is not yet contemplated in the 
current implementation of SPP in Daisy. Also, in most of the cases the frequency 
displacement will be a non integer value and therefore the spectrum will have to be 
interpolated. As pointed out in [LD99] time-limited interpolation is ideal, but this I highly 
impractical since it involves the convolution with a long impulse response. SPP technique 
uses a 3rd order spline interpolation to deal with that.  
 
After frequency shifting the SPP regions, there are a couple of things left to be done. One is 
to equalize the resulting spectra in order to preserve the original spectral shape; otherwise, 
the resulting transposition has the undesired smurf-like effect. The other is to correct the 
phase in order to preserve it. 
 
When one SPP region is shifted in frequency in a frame by frame process, the phase needs 
to be corrected in order to continue the harmonic quasi-sinusoidal waves. For a constant 
harmonic ith, the phase increment between two consecutive frames is 2i if tϕ π∆ = ∆ , where 
the time increment between frames is t∆ . If we transpose by a factor transp, then the ideal 
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phase increment should be 2 · ·i if transp tϕ π∆ = ∆ . Therefore, the amount of phase that 
should be added to the spectrum phase in order to continue the harmonic ith is 
 

( )2 · · 2 2 1i i i if transp t f t f transp tϕ π π π∆ = ∆ − ∆ = − ∆   (2.66) 
 
This phase increment is added to all the bins that belong to the ith region, as we can see in 
figure 2.18. This way we can preserve the local convolution of the window with the 
harmonic. 

 
Figure 2.18 Phase shift in SPP transposition 

 
2.3.2.3 Others 
 
Apart from transformations based on transposition and equalization, some other 
transformations can be applied on top of the SPP technique by taking profit of the different 
character of the two components that share the SPP region. On one side, the harmonic peak 
can be somehow labeled as the sinusoidal component of the SPP region. On the other side, 
the surrounding bins can be related with the noisy component. With such sinusoidal plus 
residual like decomposition inside the SPP region both elements can be treated separately.  
 
An example of such decomposition is the breathiness effect where, in order to give the 
voice a noisier and breathy character, the energy of the bins considered being the 
surroundings of the harmonic peak inside an SPP region is increased by a certain factor 
while the energy of the bins considered being the harmonic peak bins are lowered. 
 
2.4 Synthesis techniques 
 
2.4.1 SMS Synthesis 
 
2.4.1.1 Deterministic Synthesis  
 
The deterministic component is generated with additive synthesis, similar to the sinusoidal 
synthesis that was part of the analysis, with the difference that now the phase information is 
discarded. By not considering phase, this synthesis can either be done in the time domain or 
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in the frequency domain. We will first present the more traditional time domain 
implementation.  
 
The instantaneous amplitude )(ˆ mA  of a particular partial is obtained by linear interpolation,  
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where m=0,1,…,S-1 is the time sample in the lth frame.  
 
The instantaneous phase is taken to be the integral of the instantaneous frequency, where 
the instantaneous radian frequency )(ˆ mω  is obtained by linear interpolation,  
 

m
S

m
ll

l )ˆˆ(ˆ)(ˆ
1

1
−

− −
+=

ωωωω                                                 (2.68) 

 
and the instantaneous phase for the rth partial is  
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Finally, the synthesis equation becomes  
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where )(ˆ mA  and )(ˆ mθ  are the calculated instantaneous amplitude and phase.  
 
A very efficient implementation of additive synthesis based on the inverse-FFT [RD92, 
GR94] can be implemented in the frequency domain when the instantaneous phase is not 
preserved. While this approach looses some of the flexibility of the traditional oscillator 
bank implementation, especially the instantaneous control of frequency and magnitude, the 
gain in speed is significant. To generate a sinusoid in the spectral domain it is sufficient to 
calculate the samples of the main lobe of the window transform, with the appropriate 
magnitude, frequency and phase values. We can then synthesize as many sinusoids as we 
want by adding these main lobes in the FFT buffer and performing an IFFT to obtain the 
resulting time-domain signal. By an overlap-add process we then get the time-varying 
characteristics of the sound.  
 
The deterministic synthesis frame rate is completely independent of the analysis one. In the 
implementation using the IFFT we want to have a high frame rate, so that there is no need 
to interpolate the frequencies and magnitudes inside a frame. As in all short-time based 
processes we have the problem of having to make a compromise between time and 
frequency resolution. The window transform should have the fewest possible significant 
bins since this will be the number of points to generate per sinusoid. A good window choice 
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is the Blackman-Harris 92dB because its main lobe includes most of the energy. However 
the problem is that such a window does not overlap perfectly to a constant in the time 
domain. A solution to this problem [RD92] is to undo the effect of the window by dividing 
by it in the time domain and applying a triangular window before performing the overlap-
add process. This will give a good time-frequency compromise.  
 
2.4.1.2 Stochastic Synthesis 
 
The synthesis of the stochastic component can be understood as the filtering of white noise 
with the spectral envelopes of the stochastic representation. That is performing a time 
varying filtering of white noise with the envelopes that describe the frequency and 
amplitude characteristics of the residual. This is generally implemented by the time-domain 
convolution of white noise with the impulse response of the filter.. But in practice, the 
easiest and most flexible implementation is to generate the stochastic signal by an inverse-
FFT of the spectral envelopes. As in the deterministic synthesis, we can then get the time-
varying characteristics of the stochastic signal by an overlap-add process.  
 
Before the inverse-FFT is performed, a complex spectrum (magnitude and phase spectra) 
has to be obtained from each frequency envelope. We generate the magnitude spectrum by 
linear interpolating between the spectral envelope points to obtain an envelope curve of 
length N/2, where N is the FFT-size, and multiplying it by the average magnitude gain that 
was extracted in the analysis.  
 
There is no phase information in the stochastic representation, but since the phase spectrum 
of noise is a random signal the phase can be created with a random number generator. To 
avoid a periodicity at the frame rate, new values are generated at every frame.   
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Figure 2.19 Synthesis block diagram when deterministic and stochastic part share the FFT 

buffer 
 

By using the IFFT method for both the deterministic and the stochastic synthesis it is 
possible to use a single IFFT to generate both components as it is shown in figure 2.19. 
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That is, adding the two spectra in the frequency domain and computing the IFFT once per 
frame. Since in the noise spectrum there has not been any window applied and in the 
deterministic synthesis we have used a Blackman-Harris 92dB, we apply this window in 
the noise spectrum before adding it to the deterministic spectrum and perform the IFFT to 
the whole spectrum. 
 
2.4.2 SPP Synthesis 
 
The SPP synthesis method is based on the additive synthesis method proposed by [RD92] 
in which a spectrum buffer is filled and then its inverse FFT is computed. In the SPP case, 
the spectrum buffer is filled with the transformed harmonic peaks.  
 
The two main transformations processes that take place in the SPP technique are 
equalization and transposition, which means moving the SPP regions along the amplitude 
axis and along the frequency axis. When moving a region in any of these two spectrum 
directions, all the bins in the regions are treated as a block and shifted all in the same way. 
To exemplify a possible resulting spectrum built with transformed harmonic peaks, we can 
see figure 2.20 below. 
 

 
Figure 2.20 SPP transformed spectra example 

 
If no transformation has been applied, the synthesis spectrum will be exactly the same as in 
the analysis since SPP regions will be on its original position and no overlap, no gaps, and 
no discontinuities will appear in the synthesis spectrum buffer. If transformations have been 
applied, the SPP regions are placed on its corresponding new amplitude and frequency 
positions and the synthesis spectrum buffer is filled by summing their bins in complex. As 
in the SMS sinusoidal part, the IFFT is applied and the overlap-add gives out the resulting 
time domain varying signal. 
 
It is important to notice the synthesis buffer spectrum may not be showing a real spectrum 
since a real spectrum can not show discontinuities or gaps as the ones shown in the example 
illustrated in figure 2.20. The spectrum of a time-domain real signal can not have such 
discontinuities. Imagine we wanted to synthesize a simple sinusoid. What we would do is 
fill the spectrum buffer only with the main lobe bins of the window as shown in the figure 
2.21(a). 
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Figure 2.21 The spectrum of a single harmonic spectral peak in (a) the IFFT buffer and (b) 

the synthesized sound spectral view 
 
Such frequency finite signal corresponds to an infinite signal in time domain. Since we are 
not preserving this time-infiniteness because we are applying an IFFT and we are 
windowing to overlap, we are not preserving the finiteness of the signal in the spectrum 
domain. That’s why the real spectrum of the synthesized sound, see figure 2.21(b) would 
look like the figure 2.21(b) above.  
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Chapter 3 
 
Voice Modeling and Synthesis 
 
 
 
The aim of this chapter is to explain, once the spectral processing techniques have been 
introduced, our approach to voice modeling and singing voice synthesis problems. 
Although the singing voice model and synthesizer issues are already described in [BL03, 
BLMK03, BCLOS01, BLCS01], they are introduced here in order to have a coherent 
general view of the work. 
 
3.1 Introduction to Voice Production Acoustic Theory 
 
The voice is typically explained as a source / filter system, in which an excitation is filtered 
by the vocal tract resonances. The voice excitation can be rather voiced, unvoiced, or a 
combination of both. The unvoiced excitation corresponds to the turbulent airflow that 
arises from the lungs and the voiced excitation corresponds to the glottal pulses that 
originate the vocal fold vibrations. The voice filter is characterized by a set of resonances 
called formants that have their origin in the voice organs lengths and shapes (trachea, 
esophagus, larynx, pharyngeal cavity, velum, hard palate, jaw, nasal cavity, nostril, lip, 
tongue, teeth, and oral cavity). This filter modulates the timbre of the sound by dynamically 
moving the voice organs and thus changing the amplitude, center frequencies and 
bandwidths of the formants. 
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Figure 3.1 Schematic representation of the speech production system after Flanagan  
[Fla72] 
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3.1.1 The Speech Production Mechanism 
 
Both speech and singing voice sounds are generated from the same production mechanism. 
A simplified representation of the physiological speech production mechanism is shown in 
figure 1.1. Air enters the lungs via the normal breathing mechanism and when pushed out 
this air in the lungs excites the vocal mechanism. The muscle force pushes air out of the 
lungs and through the bronchi and trachea. When the vocal folds are tensed, the airflow 
causes them to vibrate, producing so-called voiced speech sound. In this case the airflow is 
chopped by the vocal folds into quasi-periodic pulses called phonation.  
 
Figure 1.2 shows a transversal view of the throat including the vocal folds in the opened 
and closed state. The resulting air-pressure function is shown in figure 1.4 (a) for a 
vibration rate of f0=30 Hz and in figure 1.5 (a) for f0=100 Hz. This rate at which the vocal 
folds open and close determines the harmonic frequencies of the spectrum S(f) of the glottal 
airflow and thus the perceived fundamental frequency f0 of the resulting speech sound.  
 

    
 

Figure 3.2 Transversal view of the throat with vocal folds opened (a) and closed (b) [h1] 
 
Two idealized source spectra of the glottal excitation are shown in figure 1.3. In this 
example the fundamental frequencies are f0=100 Hz (a) and f0=400 Hz (b). The magnitude 
of the harmonics gradually falls. For normal voicing this decrease is about -12 dB / octave 
[Kla80]. When the vocal folds are relaxed, in order to produce a noise, the airflow either 
must pass through a constriction in the vocal tract and thereby become turbulent, producing 
so-called unvoiced sound, or it can build up pressure behind a point of total closure within 
the vocal tract (e.g. the lips), and when the closure is opened, the pressure is suddenly 
released, causing a brief transient sound. The spectrum of such a turbulent noise source is 
stochastic with a slight magnitude decrease of -6 dB / octave [Kla80]. An example of this 
kind of source spectrum is shown in figure3.6.  

 
Figure 3.3 Glottal excitation S(f) with f0=100 Hz (a) and f0=400 Hz (b) 
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The produced source spectra S(f), regardless it is voiced and unvoiced, is then modulated in 
amplitude in passing through the pharynx (the throat cavity), the mouth cavity, and possibly 
the nasal cavity. Depending on the positions of the various articulators (i.e., jaw, tongue, 
velum, lips, mouth), different sounds are produced. This modification originated by the 
different cavities and articulators is called supralaryngeal filter [LB88] because it can be 
modeled as a linear system with a transfer function T(f), modifying the source spectrum 
S(f). 

 
Figure3.4 Air-pressure function for a glottal excitation of f0=30 Hz before (a) and after 

passing the supralaryngeal filter (b) 

 
 

Figure3.5 Air-pressure function for a glottal excitation of f0=100 Hz before (a) and after 
passing the supralaryngeal filter (b) 

 
Figure3.6 Unvoiced excitation 
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The modified spectrum U(f) can be written as 
 

 )()()( fTfSfU ⋅=       (3.1) 
 
During the production of human speech the shape of the supralaryngeal airway and thus the 
transfer function T(f) changes continually. This acoustical filter suppresses the transfer of 
sound energy at certain frequencies and lets maximum energy through at other frequencies. 
In speech processing the frequencies at which local energy maximum may pass through the 
supralaryngeal airway are called formant frequencies Fi. They are determined by the length 
(speaker dependent) and the shape of the vocal tract (more articulation than speaker 
dependent). The larynx including the vocal folds and the subglottal system has only minor 
effects on the formant frequencies Fi [Fla72]. Different vowels owe their phonetic 
difference, or so-called quality, to their different formant frequencies.  

 
 

Figure 3.7 Idealized transfer function T(f) of the vocal tract for the phoneme [u]  with 
f0=100 Hz (a) and f0=400 Hz (b) 

 
As an example, figure 1.7 shows an idealized transfer function of the supralaryngeal airway 
for the vowel [u] (the phoneme in ''shoe``) including a grid of the harmonic frequencies for 
f0=100 Hz (a) and f0=400 Hz (b). The first three formant frequencies of this vowel sound 
are F1=500 Hz, F2=900 Hz, and F3=2200 Hz. The bandwidth of each formant varies from 
60 to 150 Hz. The first three formants of vowels play a major role in specifying these 
sounds. Higher formants exist, but they are not necessary for the perception of vowel 
qualities [Fla72].  
 
The resulting spectrum )()()( fTfSfU ⋅=  describes the speech signal at the end of the 
airways of the vocal tract. Sound energy is present at each of the harmonics of the glottal 
source, but the amplitude of each harmonic will be a function of T(f) and S(f). Finally, the 
spectrum U(f) is modified by the radiation characteristic R(f) in a way that the resulting 
spectrum can be written as 
 

 )()()()( fRfTfSfP ⋅⋅=      (3.2) 
 
with the frequency f in Hz. The radiation characteristic R(f) models the effect of the 
directivity patterns of sound radiation from the head as a function of frequency. This effect 
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depends on the lip opening and can be modeled as a high-pass filter shown in figure 1.8 
[Kla80]. The resulting spectra P(f) of the previous examples of f0=100 Hz (a) and f0=400 
Hz (b) are shown in figure 1.9. 

 
Figure 3.8 Idealized radiation characteristic R(f) of the mouth 

 

 
 

Figure 3.9 Idealized spectrum P(f) for the phoneme [u] with f0=100 Hz (a) and f0=400 Hz 
(b) 

 
3.1.2 Vowels and Formants 
 
The most important class of voiced speech sounds is vowels.  
 
Vowels are produced by exciting an essentially fixed vocal tract shape with quasi-periodic 
pulses of air, caused by the vibration of the vocal folds (glottal excitation). The vocal tract 
has to be open enough for the pulsed air to flow without meeting any obstacle. The vocal 
tract shape modifies the glottal excitation and thus the vocal timbre in a manner that the 
appropriate vowel is perceived. If the vocal tract narrows or even temporarily closes, the 
airflow gives birth to a noise, so that a consonant is produced.  
 
The spectral qualities of different vowels are mainly caused by the glottal excitation 
(speaker dependent) and the vocal tract transfer function (depending on the type of vowel, 
the language, and the speaker). As introduced in section 3.1 the vocal tract transfer function 
can be characterized by formants, which are resonant peaks in the spectrum. 
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According to Sundberg [Sun87] the higher the formant frequency, the more its frequency 
depends on nonarticulatory factors, such as vocal tract length and the vocal tract dimension 
within and around the larynx tube. Good singers position and move the length and the 
shape of the vocal tract in a very precise way. These variations make the formants have 
different amplitudes and frequencies, which we perceive as different voiced sounds.  
 
The length of the vocal tract defined as the distance from the glottis to the lips can be 
modified up to a certain extent. The larynx can be raised or lowered increasing or 
decreasing respectively the length. Also the posture of the lips can cause fluctuations to the 
length of the vocal tract, if we protrude the lips we lengthen it and if we smile we reduce it. 
The longer the vocal tract, the lower the formant frequencies are. The shape of the vocal 
tract, on the other hand, is modified by what is referred as articulators. These articulators 
are the tools we can use to change the area function of the vocal tract and they can move in 
different ways and each of the movements has a different effect. A movement of any of the 
articulators generally affects the frequencies of all formants. Sundberg experiments have 
shown that the first three formants define the vowel type and differ less between different 
speakers, for example, between a male and a female, than the higher formants. The fourth 
and the fifth formant are relevant for perceiving the voice timbre, which is the personal 
component of a voice sound.  
 
The effects of different articulators (e.g. the tongue) and speaker dependent physiological 
characteristics on the different formants can be summarized as: 
 
First formant: sensitive to varying the jaw opening.  
Second formant: sensitive to changes of the tongue shape.  
Third formant: sensitive to the position of the tongue, particularly to the size of the cavity 
that is just behind the front teeth.  
Fourth formant: depends on the vocal tract dimensions within and around the larynx tube. 
Thus, the speaker has no explicit control of this formant frequency. 
Fourth and fifth formant: depend on the length of the vocal tract and thus are speaker 
dependent.  
 
A more detailed description of the dependency of formants on articulators or on 
physiological characteristics can be found in [Sun87, LB88]. 
 
The representation of the spectral shape of a singing voice depends highly on the 
fundamental frequency f0. If the glottal excitation is low pitched the idealized spectrum P(f) 
can be easily observed in the spectral envelope of the trajectories. But if the voiced source 
has a very high fundamental frequency f0 and the harmonic frequencies of the source 
spectrum S(f) are thus very wide spaced, then P(f) and the spectral envelope of the 
trajectories differ significantly. Figure 3.10 below illustrate such problem. 
 
The trajectories show only P(f) at special frequencies fi. In the case of an ideal analysis, fi 
can be written as 

0fif i ⋅=          i=1,2,3, …                      (3.3) 
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and thus the magnitudes M(fi) of the trajectories are equidistant samples of the spectrum 
P(f). It can occur that the voiced sound is too high pitched so that almost no similarity to 
the continuous spectrum P(f) can be found in the discrete spectral envelope of the 
sinusoidal trajectories. All these considerations show that visual formant detection from the 
spectral shape will only be possible when dealing with low pitched voices (approximately 
under 100Hz).  

 
 
Figure 3.10 Idealized spectrum P(f) of the phoneme [u] with f0= 100Hz (a) and f0=400 Hz 

(b) including the spectral envelope of the deterministic trajectories 
 
3.1.3 Speech and Singing Voice Particularities 
 
Although speech and singing voice sounds have many properties in common because they 
originate from the same production physiology, there are some important differences that 
make them different. In singing, the intelligibility of the phonemic message is often 
secondary to the intonation and musical qualities of the voice. Vowels are often sustained 
much longer in singing than in speech and independent control of pitch and loudness over a 
large range is required. A trained singer can sing an entire sequence of vowel sounds at the 
same pitch. These major differences are highlighted in the following brief list, which is not 
meant to lay claim to completeness but rather to point out some important differences 
between speech and singing voice processing: 
 
Voiced/unvoiced ratio: The ratio between voiced sounds, unvoiced sounds, and silence is 
about 60%, 25\%, and 15\% respectively in the case of normal speech. In singing, the 
percentage of phonation time can increase up to 95\% in the case of opera music. This 
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makes voiced sounds special important in singing because they carry most of the musical 
information. 
 
Vibrato: Two types of vibrato exist in singing, which differ in their production mechanism. 
The classical vibrato in opera music corresponds to periodic modulation of the phonation 
frequency. The regularity of this modulation is considered as a sign of the singer's vocal 
skill. It is characterized by two parameters, namely the rate and the extent of the 
modulation of the phonation frequency. In popular music, the vibrato is generated by 
variations in the subglottal pressure, implying an amplitude modulation of the voice source 
[Sun87]. In speech, no vibrato exists. The Vibrato adds certain naturalness to the singing 
voice and it is a very specific characteristic of the singing voice of a singer. 
 
Dynamic: The dynamic range as well as the average loudness is greater in singing than in 
speech. The spectral characteristics of a voiced sound change with the loudness [Sun87]. 
 
Singer's formant: This is a phenomenon that can be observed especially in the singing of 
male opera singers [Sun87]. The singer's formant is generated by clustering of the third, 
fourth, and fifth formant. The frequency separation of these formants is smaller in the sung 
than in the spoken vowel, resulting in one peak at approximately 2-3 kHz with a great 
magnitude value in the spectrum. A trained singer has the ability to move the formant 
frequencies in a manner in which already existing formants in speech occurring only in 
higher frequency regions are tuned down. As a result, the magnitude of the down-tuned 
formants increases towards lower frequencies due to the voice source spectrum.  
 
Modification of vowels: Singing at a very high pitch includes that the fundamental 
frequency f0 is greater than the one of the first formant. In order not to loose this 
characteristic resonance and thus important acoustic energy, trained singers move about the 
first formant in frequency to the phonation frequency. The gain of loudness increases as 
soon as the frequency of the first formant joins the fundamental f0.  Although the perceived 
vowel is slightly modified, an important ability to use a greater dynamically range is gained 
and thus it is a gain of musical expression. 
 
Fundamental frequency: In speech, the fundamental frequency variations express an 
emotional state of the speaker or add intelligibility to the spoken words. This is called 
prosody and distinguishes, for example, a question from a normal statement. The frequency 
range of f0 is very small compared to singing. Considering a trained singer, the minimum 
range is about two octaves and for excellent singers like Maria Callas it can be up to three 
octaves.  
 
3.2 The Excitation plus Residual (EpR) Model 
 
Our Voice Model is based on an extension of the well known source/filter approach 
[Chil94] we call EpR (Excitation plus Resonances). The EpR filter can be decomposed in 
two cascade filters. The first of them models the differentiated glottal pulse frequency 
response and the second the vocal tract (resonance filter).  
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3.2.1 The EpR Source filter 
 
The EpR source is modeled as a frequency domain curve and one source resonance. The 
curve is defined by a gain and an exponential decay as follows: 
 

( )· 1Slope f
dB dB dBSource Gain SlopeDepth e= + −     (3.4) 

 
It is obtained from an approximation to the harmonic spectral shape (HSS) determined by 
the harmonics identified in the SMS analysis  
 

( ) ( )[ ]0.. 1 , 20 logi n i iHSS f envelope f a= −=            (3.5) 
 

where i is the index of the harmonic, n is the number of harmonics, fi and ai are the 
frequency and amplitude of the ith harmonic. On top of the curve, we add a second 
resonance in order to model the low frequency content of the spectrum below the first 
formant. 

 
Figure 3.11 The EpR source resonance 

 
The source resonance is modeled as a symmetric second order filter (based on the Klatt 
formant synthesizer [Kla80]) with center frequency F, bandwidth Bw and linear amplitude 
Amp. The transfer function of the resonance R(f) can be expressed as follows 
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The amplitude parameter (Amp) is relative to the source curve. Notice that in equation (3.6) 
the resonance amplitude shape is always symmetrical respect to its center frequency. 
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3.2.2 The EpR vocal tract filter  
 
The vocal tract is modeled by a vector of resonances plus a differential spectral shape 
envelope. It can be understood as an approximation to the vocal tract filter. These filter 
resonances are modeled in the same way as the source resonance, see equation (3.6), where 
the lower frequency resonances are somewhat equivalent to the vocal tract formants.  
 

 
Figure3.12 The EpR filter resonances 

 
The differential spectral shape envelope actually stores the differences (in dB) between the 
ideal EpR model and the real harmonic spectral shape (HSS) of a singer's performance. We 
calculate it as a 30 Hz equidistant step envelope. 
 

( ) [ ]0.. 30 , (30 ) (30 )i dB dBDSS f envelope i HSS i iEpR i== −          (3.7) 
 

Thus, the original singer’s spectrum can be obtained if no transformations are applied to the 
EpR model. 
 
3.2.3 The EpR phase alignment 
 
The phase alignment of the harmonics at the beginning of each period is obtained from the 
EpR spectral phase envelope. A time shift is applied just before the synthesis, in order to 
get the actual phase envelope at the synthesis time (usually it will not match the beginning 
of the period). This phase alignment is then added to the voiced harmonic excitation 
spectrum phase envelope.  
 
The EpR spectral phase model assumes that each filter resonance (not the source 
resonance) produces a linear shift of π  on the flat phase envelope with a bandwidth 
depending on the estimated resonance bandwidth. Although this value has been obtained 
empirically, the symmetric second order resonance model itself has a phase shift under the 
resonance peak. The value of this phase shift depends on the center frequency and the 
bandwidth of the resonance. This phase model is especially important in order to get more 
intelligible sounds and more natural low pitch male voices.  
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Figure 3.13 The phase alignment is approximated as a linear segment, with a phase shift 

for each resonance 
 
3.3 Singing Voice Synthesis 
 
The synthesis of voice has been approached form many different directions and though it is 
a slack categorization, we can split synthesis models into two groups: spectral models, 
which are based on the perception of the sound, and physical models, which are based on 
the production of the sound.   

Both spectral and physical models have their own benefits and drawbacks [Cook98]. 
Physical models such as acoustic tube models uses the control parameters humans use to 
control their own vocal system and can generate time-varying behaviors by the model 
itself. On the other hand some parameters might not have intuitive significance and might 
interact in non-obvious ways. Spectral models such as those based on FM, FOFs, phase and 
channel vocoders or sinusoidal tracks have precise analysis / synthesis methods and work 
close to the human perception but their parameterization is not that suitable for study, 
manipulation, or composition since they don’t match any auditory system structure. 
 
Models such as the one used in formant synthesizers are considered to be pseudo-physical 
models because even though these are mainly spectral models they make use of the source / 
filter decomposition. The singing synthesizer we present would be placed in this model 
group. 
 
3.3.1 Applications 
 
It was in 1961 when Mathews’s Daisy first synthetic singing voice was heard in the Bell 
Laboratories [Puck01]. Since then, the computer has become a more virtuosic singer and 
nowadays quite a few singing voice systems use different techniques [Rod02,Cook96] to 
create your own synthetic voice lines. Not all of them, but maybe the most popular ones are 
listed below. 
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Chant 
Chant is a singing synthesizer developed at IRCAM by Xavier Rodet and Yves Potard. A 
review of the system can be found in [Rod85]. Chant uses an excitation resonance model. 
For each resonance, a basic response simulated with Formant Wave Functions (FOF) 
[Rod84], is associated. Chant produces the resulting sound by adding the FOF 
corresponding to each formant for a given pseudo-periodic source. 
Chant web page: http://www.ircam.fr/produits/technologies/chant-e.html 
 
SPASM 
SPASM is a physical model based singing synthesizer that uses a waveguide articulatory 
vocal tract model. The synthesizer was developed by Perry Cook at Stanford University and 
is described in [Cook91, Cook92]. 
SPASM web page: http://www.cs.princeton.edu/~prc/SingingSynth.html 
 

  
 

Figure 3.14 Perry Cook’s SPASM graphical interface [h2] 
 
Lyricos   
Lyricos is a singing synthesizer based on Analysis-by-Synthesis, Overlap-Add sinusoidal 
model (ABSOLA) [GS92]. A general overview of the system can be found at Macon’s 
work [MJOCG97]. 
The Lyricos project is closed but it has a descendent improved system called Flinger based 
on Macon’s singing synthesizer and on the Festival Speech Synthesis System, a general 
multi-lingual speech synthesis developed at the Centre for Speech Technology Research of 
the University of Edinburgh.  
Lyricos web page: http://cslu.cse.ogi.edu/tts/demos/index.html#sing 
Flinger web page http://cslu.cse.ogi.edu/tts/flinger/ 
 
VocalWriter  
Vocal Writer is a shareware singing synthesizer software for Macintosh. The interface 
looks like a typical MIDI sequencer interface with some functions added to edit the lyrics 
and some vocal controls such as brightness, vibrato, breath and others. 
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Vocal Writer web page: http://www.mccormicksnet.com/vocalwrt.htm 
 
Harmony's Virtual Singer  
Harmony-s virtual singer is an opera-like singing synthesizer from Myriad Software. The 
main differences from other synthesizer are the wide amount of languages in which the 
system can sing, and the RealSinger capability, which allows defining a Virtual Singer 
voice out of recordings of the user’s own voice.  
http://www.myriad-online.com/vs.htm 
 
Vocaloid 
Vocaloid has been released by YAMAHA and it is based on the research carried out in the 
MTG’s voice processing group under Daisy’s project. Some of their bases are described in 
next section.  
Vocaloid web page: http://www.global.yamaha.com/news/20030304b.html 
 
3.3.2 Our system 
 
Our system is a source-filter type singing synthesizer application based on the 
concatenation of samples and built on top of the SPP technique and the EpR model. The 
system generates a performance of an artificial singer out of the musical score and the 
phonetic transcription of a song. In the figure 3.15 we can see the general diagram of our 
singing voice synthesizer. The inputs of the system are the lyrics (the phonetic 
transcription), the melody to be sung and optionally some expression parameters. On the 
other hand, the system is also feed by a singer database. This database holds the voice 
characteristics and is created from analysis of recordings of a real singer 

 
Figure 3.15 Our singing voice synthesizer general diagram 

 
Since the system is a sample-based synthesizer, it synthesizes the virtual performance by 
concatenating the elemental synthesis units that are stored in the database. Although the 
database stores timbres, steady states, phonetic articulations, attacks, releases, vibratos, and 
note to note transitions, two main categories classify these elemental units: steady states 
and articulations. If these units (steady states and articulations) are concatenated among 
them as they are, spectral shape and phase discontinuities will appear. To avoid it, the 
discontinuities are spread out along a set of transition frames that surround the joint frame.  
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Figure 3.16 Segment concatenation 

 
The steady state segments are synthesized using both transposition and equalization SPP 
transformations. The main input of the steady state synthesis engine is the SPP steady state 
template that is compound of the SPP analysis of a steady state sung by the database singer 
(harmonic peaks, STFT spectrums, SPP region marks). These spectrums are transposed to 
the desired pitch and equalized to the desired timbre. The desired stationary timbre is 
defined by the timbre template EpR plus some resonance and excitation variations taken 
from the EpR estimation of a long steady state (EpR stationary variation template). The 
EpR stationary variation template is only used for pitch and resonance variations. These 
processes are represented in figure 3.17. 

 
Figure 3.17 SPP steady state synthesis engine 

 
The articulation segments are synthesized using both transposition and equalization SPP 
transformations as well. The main input of the articulation synthesis engine is the SPP 
Articulation (SPP analysis of a certain phonetic articulation sung by the database singer). 
The SPP articulation spectrums are processed trough the transposition and equalization 
modules. The target timbre in the equalization process is obtained from the 3rd order spline 
interpolation of the harmonics peaks found in the SPP articulation frame. Therefore, the 
transposition and equalization together can be considered like a transposition with timbre 
preservation process. Both equalization and transposition modules are only applied to the 
voiced regions. The unvoiced frames are synthesized without any transformation. In 
general, the articulation duration specified in the score will not match the articulation 
duration in the database and this will force us to apply some time-scaling technique. In the 
current implementation we have adapted the time-stretching algorithm described in 
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[Bon00] to the specific requirements of monophonic harmonic solo signals. Figure 3.18 
illustrates the articulation synthesis engine. 
 

 
Figure 3.18 SPP articulation synthesis engine 
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Chapter 4 
 
Research Contributions 
 
 
 
Since all publications have been written in collaboration with some of my colleagues 
from the Music Technology Group and YAMAHA Japan, I will try to point out clearly 
which has been my contribution to the final work for each of them. 
 
1 - Loscos, A., Resina, E. 
'SMSPerformer: A real-time synthesis interface for SMS' 
Proceedings of COST G6 Conference on Digital Audio Effects 
Barcelona 1998 
 
Abstract: SmsPerformer is a graphical interface for the real-time SMS synthesis engine. 
The application works from analyzed sounds and it has been designed to be used both as 
a composition and a performance tool. The program includes programmable time-
varying transformations, MIDI control for the synthesis parameters, and performance 
loading and saving options. 
 
My contribution to the work presented in this paper was mainly the implementation of the 
initial prototype. This implied designing a skeleton of the GUI, resolving the sound I/O 
issues, and porting the SMS transformation and synthesis engine to the SMSPerformer 
requirements. All the composition oriented features and the final design of the interface 
were implemented in close collaboration with the prestigious guitarist and composer 
Eduard Resina. 
 
2 - Loscos, A., Cano, P., Bonada, J.  
'Low-Delay Singing Voice Alignment to Text' 
Proceedings of International Computer Music Conference 
Beijing 1999 
 
Abstract: In this paper we present some ideas and preliminary results on how to move 
phoneme recognition techniques from speech to the singing voice to solve the low-delay 
alignment problem. The work focus mainly on searching the most appropriate Hidden 
Markov Model (HMM) architecture and suitable input features for the singing voice, and 
reducing the delay of the phonetic aligner without reducing its accuracy. 
 
My contribution to the work presented in this paper was to design an HMM architecture 
suitable for the requirements of the automatic singing voice impersonator. All the 
research and implementation was carried out in close collaboration with the co-writers.  
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3 - Cano, P., Loscos, A., Bonada, J.  
'Score-Performance Matching using HMMs' 
Proceedings of International Computer Music Conference 
Beijing 1999 
 
Abstract: In this paper we will describe an implementation of a score-performance 
matching, capable of score following, based on a stochastic approach using Hidden 
Markov Models. 
 
My contribution to the work presented in this paper was to conceive a way to design an 
HMM note model in which the tuning was somehow included. All the research presented 
in this paper was carried out in close collaboration with the co-writers. 
 
4 - Cano, P., Loscos, A., Bonada, J., de Boer, M., Serra, X  
'Voice Morphing System for Impersonating in Karaoke Applications' 
Proceedings of International Computer Music Conference  
Berlin 2000 
 
Abstract: In this paper we present a real-time system for morphing two voices in the 
context of a karaoke application. As the user sings a pre-established song, his pitch, 
timbre, vibrato and articulation can be modified to resemble those of a pre-recorded and 
pre-analyzed recording of the same melody sang by another person. The underlying 
analysis/synthesis technique is based on SMS, to which many changes have been done to 
better adapt it to the singing voice and the real-time constrains of the system. Also a 
recognition and alignment module has been added for the needed synchronization of the 
user’s voice with the target’s voice before the morph is done. There is room for 
improvements in every single module of the system, but the techniques presented have 
proved to be valid and capable of musically useful results. 
 
The aim of this paper was to present the Elvis prototype to the scientific community. 
Therefore the paper was presenting a general view of all the research and implementation 
involved in real-time singing voice impersonator. My contribution was especially 
relevant in the improvement of the SMS analysis-morph-synthesis procedures, and in the 
design of the alignment process. 
 
5 - de Boer, M., Bonada, J., Cano, P., Loscos, A., Serra, X.  
'Singing Voice Impersonator Application for PC' 
Proceedings of International Computer Music Conference 
Berlin 2000 
 
Abstract: This paper presents the implementation aspects of a real-time system for 
morphing two voices in the context of a karaoke application. It describes the software 
design and implementation under a PC platform and it discusses platform specific issues 
to attain the minimum system delay. 
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The aim of this paper was to give a more detailed explanation of the implementation of 
the Elvis prototype. My contribution in this work was collaborating in the design and 
testing of the prototype. 
 
6 - Bonada, J., Loscos, A., Cano, P., Serra, X.  
'Spectral Approach to the Modeling of the Singing Voice' 
Proceedings of 111th AES Convention 
New York 2001 
 
Abstract: In this paper we will present an adaptation of the SMS (Spectral Modeling 
Synthesis) model for the case of the singing voice. SMS is a synthesis by analysis 
technique based on the decomposition of the sound into sinusoidal and residual 
components from which high-level spectral features can be extracted. We will detail how 
the original SMS model has been expanded due to the requirements of an impersonating 
applications and a voice synthesizer. The impersonating application can be described as 
a real-time system for morphing two voices in the context of a karaoke application. The 
singing synthesis application we have developed generates a performance of an artificial 
singer out of the musical score and the phonetic transcription of a song. These two 
applications have been implemented as software to run on the PC platform and can be 
used to illustrate the results of all the modifications done to the initial SMS spectral 
model for the singing voice case.  
 
The aim of this paper was to present our works on singing voice to the AES scientific 
community. My contribution in the work presented in this paper was, besides the research 
and implementation carried out in the impersonator, all my inputs to the EpR voice model 
design. 
 
7 - Bonada, J., Celma, O., Loscos, A., Ortolà, J., Serra, X.  
'Singing Voice Synthesis Combining Excitation plus Resonance and Sinusoidal plus 
Residual Models' 
Proceedings of International Computer Music Conference 
Havana 2001 
 
Abstract: This paper presents an approach to the modeling of the singing voice with a 
particular emphasis on the naturalness of the resulting synthetic voice. The underlying 
analysis/synthesis technique is based on the Spectral Modeling Synthesis (SMS) and a 
newly developed Excitation plus Resonance (EpR) model. With this approach a complete 
singing voice synthesizer is developed that generates a vocal melody out of the score and 
the phonetic transcription of a song. 
 
My contribution to the work presented in this paper was my collaboration on the 
conception of the EpR model, the specification of the expressiveness module, and the 
design and implementation of the singer database.  
 
8 - Amatriain, X., Bonada, J., Loscos, A., Serra, X  
'Spectral Modeling for Higher-level Sound Transformation' 
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Proceedings of MOSART Workshop on Current Research Directions in Computer 
Music 
Barcelona 2001 
 
Abstract: When designing audio effects for music processing, we are always aiming at 
providing higher-level representations that may somehow fill in the gap between the 
signal processing world and the end-user. Spectral models in general, and the Sinusoidal 
plus Residual model in particular, can sometimes offer ways to implement such schemes. 
 
My contribution to the work presented in this paper is in the description of the FX and 
transformations catalog, as well as in the brief description of the real-time singing voice 
conversion.  
 
9 - Amatriain, X., Bonada, J., Loscos, A., Serra, X. 
'Spectral Processing' 
Udo Zölzer Ed., DAFX: Digital Audio Effects, p.554 John Wiley & Sons Publishers. 
2002 
 
Description: Digital Audio Effects (DAFX) is the name chosen for the European 
Research Project COST G6. DAFX investigates the use of digital signal processing, its 
application to sounds, and its musical use designed to put effects on a sound. The aim of 
the project and this book is to present the main fields of digital audio effects. It 
systematically introduces the reader to digital signal processing concepts as well as 
software implementations using MATLAB. Highly acclaimed contributors analyze the 
latest findings and developments in filters, delays, modulators, and time-frequency 
processing of sound. Features include chapters on time-domain, non-linear, time-
segment, time-frequency, source-filter, spectral, bit stream signal processing; spatial 
effects, time and frequency warping and control of DAFX. Also include MATLAB 
implementations throughout the book illustrate essential DSP algorithms for sound 
processing, and accompanying website with sound examples available. The approach of 
applying digital signal processing to sound will appeal to sound engineers as well as to 
researchers and engineers in the field of signal processing. 
  
My contribution to the chapter of the DAFX book was the section in which the basics of 
the real-time singing voice conversion system are presented, the supervision together 
with all the co-writers of the entire chapter, and the MATLAB implementation of all the 
SMS analysis, synthesis, and all transformations described in the chapter. Obviously this 
is not included in Appendix A. 
 
10 - Bonada, J., Loscos, A., Mayor, O., Kenmochi, H.  
'Sample-based singing voice synthesizer using spectral models and source-filter 
decomposition' 
Proceedings of 3rd International Workshop on Models and Analysis of Vocal 
Emissions for Biomedical Applications 
Firenze 2003 
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Abstract: This paper is a review of the work contained in the insides of a sample-based 
virtual singing synthesizer. Starting with a narrative of the evolution of the techniques 
involved in it, the paper focuses mainly on the description of its current components and 
processes and its most relevant features: from the singer databases creation to the final 
synthesis concatenation step.  
 
My involvement in the work presented in this paper is my contributions to the design and 
implementation of the singing voice synthesizer. 
 
11 - Bonada, J., Loscos, A., 2003.  
'Sample-based singing voice synthesizer by spectral concatenation' 
Proceedings of Stockholm Music Acoustics Conference 
Stockholm 2003 
 
Abstract: The singing synthesis system we present generates a performance of an 
artificial singer out of the musical score and the phonetic transcription of a song using a 
frame-based frequency domain technique. This performance mimics the real singing of a 
singer that has been previously recorded, analyzed and stored in a database, in which we 
store his voice characteristics (phonetics) and his low-level expressivity (attacks, 
releases, note transitions and vibratos). To synthesize such performance the systems 
concatenates a set of elemental synthesis units (phonetic articulations and stationeries). 
These units are obtained by transposing and time-scaling the database samples. The 
concatenation of these transformed samples is performed by spreading out the spectral 
shape and phase discontinuities of the boundaries along a set of transition frames that 
surround the joint frames. The expression of the singing is applied through a Voice 
Model built up on top of a Spectral Peak Processing (SPP) technique.  
 
My involvement in the work presented in this paper is my contribution to the EpR model, 
to the SPP technique, and above all, to the elemental unit phase and spectral shape 
concatenation.  
 
12 - Amatriain, X., Bonada, J., Loscos, A., Arcos, J., Verfaille, V.  
'Content-based Transformations' 
Journal of New Music Research Vol.32 .1 
2003 
 
Abstract: Content processing is a vast and growing field that integrates different 
approaches borrowed from the signal processing, information retrieval and machine 
learning disciplines. In this article we deal with a particular type of content processing: 
the so-called content-based transformations. We will not focus on any particular 
application but rather try to give an overview of different techniques and conceptual 
implications. We first describe the transformation process itself, including the main 
model schemes that are commonly used, which lead to the establishment of the formal 
basis for a definition of content-based transformations. Then we take a quick look at a 
general spectral based analysis/synthesis approach to process audio signals and how to 
extract features that can be used in the content-based transformation context. Using this 
analysis/synthesis approach we give some examples on how content-based 
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transformations can be applied to modify the basic perceptual axis of a sound and how 
we can even combine different basic effects in order to perform more meaningful 
transformations. We finish by going a step further in the abstraction ladder and present 
transformations that are related to musical (and thus symbolic) properties rather than to 
those of the sound or the signal itself.  
 
My contribution to the work presented in this journal article is the brief explanation of the 
real-time singing voice conversion system and my inputs to the text related with the 
analysis-synthesis processes, and basic and content based transformations. The article has 
not been included in Appendix A because of its considerable length. 
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Chapter 5 
 
Thesis Research Project 
 
 
 
In this work the main research in which I have been involved inside the MTG has been 
explained. This research goes in the direction of finding techniques and models for the 
singing voice processing.  
 
Concerning the techniques, the work has focused on spectral based ones. Both SMS and 
SPP have proven to be useful for analyzing, transforming and re-synthesizing pseudo-
harmonic sounds in a meaningful way but present some drawbacks. 
 
For the SMS, the main drawback is in the difficult discrimination between sinusoids and 
residual. This problem comes from the voice signal nature itself and not from the technique. 
The dual source character of the voice does not seem to match with the binary SMS 
categorization. Such problem can be noticed, for example, when synthesizing in Daisy, 
where the articulations, in which most of the times some sinusoidal components get 
partially masked by the residual, do not sound as good as the steady state parts.  
 
The SPP avoids the sinusoidal plus residual decomposition but still drags some problems 
that have to be improved and solved. These problems come mainly from the reallocation of 
the harmonic peaks and thus, the decontextualization of the SPP regions. For this reason 
efforts will to have to be invested in studying the inter harmonics relationships and solving 
the phase alignment preservation problem, which is a problem that comes from the phase 
unwrapping problem and that is present in the SMS as well. 
 
However, both SMS and SPP techniques are low level spectral techniques that are lacked of 
a higher level layer from which they could take profit of the peculiarities of the voice. A 
voice model is the one to bring such higher level view providing singing voice specific 
knowledge, such as formant information, to the techniques.  
 
The voice EpR model presented in this work has its origins in the classical voice models 
developed for speech processing and it goes in the direction of creating singing voice 
specific processing tools in which technique and model combine. With such combination 
we have already been able to implement a singing voice synthesizer and apply new 
transformations to the voice. Anyway, there is room for much improvement, especially in 
the EpR phase model, in the voice excitation curve model, and the modeling and estimation 
of the vocal tract resonances. 
 
The research that will be carried out from now on will explore how to combine spectral 
techniques and singing voice models to come out with a system with which all kind of 
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voice transformations can be accomplished resulting in a natural synthesized sound. The 
transformations to which we refer go from voice conversion to voice sample based 
synthesis and include transposition, voice character change such as roughness, breathiness, 
or whisper, timbre manipulation, and morph. 
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Abstract 
 

SmsPerformer is a graphical interface for the real-time SMS synthesis engine. The application 
works from analyzed sounds and it has been designed to be used both as a composition and a 
performance tool. The program includes programmable time-varying transformations, MIDI 
control for the synthesis parameters, and performance loading and saving options. 
 

 
1 Introduction 
 
The SMS synthesis is based on the combination of 
additive and subtractive synthesis [1]. The SMS 
analysis output is (1) a collection a frequency and 
amplitude values that represent the partials of the 
sound, (2) either filter coefficients and a gain value or 
spectral magnitudes and phases representing the 
residual sound and (3) a set of envelopes that 
represent high level attributes of the sound. From this 
representation an efficient synthesis can be 
implemented that offers many transformation 
possibilities. 
 
The SmsPerformer application is a continuation of the 
software implementation of SMS started by a C code 
program with a command line interface developed by 
X. Serra and followed by a Visual C++ code with 
graphical interface implemented by J. Bonada named 
SmsTools [2]. SmsPerformer brings new possibilities 
to the SMS synthesis with real-time transformations 
and a graphical interface. 
 
With the power of current general purpose processors 
it has become feasible to have software real-time 
implementations of additive synthesis and other 
musical research teams are developing similar 
programs [3][4][5].  
 
2 Real-time SMS 
 
Recent changes and optimizations to the SMS 
software have led to the current real-time 
implementation. 
 
One of the changes concerns disc access. Loading the 
analyzed sound file into cache memory rather than 
reading it from disc speeds up frame fetching.  
 

Interpolation between frames was one of the most 
stringent processes. Without frame interpolation, just 
taking the nearest, solves possible clicks in the output 
device buffer when morphing or time stretching. 
These problems are produced if the CPU spends more 
time in computing, synthesizing a given frame and 
writing it into the buffer, than the actual frame 
duration. 
 
The number of partials to synthesize is another 
stringent requirement for the system to run in real-
time as is the synthesis of the residual. In the analysis 
we can choose the residual of a frame to be 
represented as a magnitude spectral envelope, a 
complete complex spectrum, or a waveform. When 
kept as a magnitude spectral envelope, or a spectrum, 
the residual is deconvolved and added to the partials 
in the frequency domain. Once the spectrum of the 
current frame is filled, the IFFT is used to synthesize 
the waveform. When keeping the residual as a 
waveform, this is added in the time domain to the 
already synthesized partials, which is faster, but less 
flexible, than when keeping the residual in the 
frequency domain. 
 
There is another synthesis process that presents a 
trade-off between computation time and flexibility. 
This the high-level attributes to be transformed and 
added back to the low level SMS representation [6]. 
More powerful and intuitive musical transformations 
can be achieved by controlling the high-level 
attributes at the expense of more operations to be 
carried in the synthesis. 
 
3 Real-time under Windows 
 
SmsPerformer has been programmed under Windows 
NT with Visual C++ 5.0 and using the SMS class 
library.  



 

Because of the interactivity requirement we had to use 
two threads, one for the main synthesis process and 
the other for the graphical interface. The main 
window process creates the synthesis thread and 
sends new synthesis and transformation parameters to 
the thread each time a slider is scrolled. 

When threading a sound application, setting priorities 
is not very reliable. The system uses the base priority 
level of all executable threads to determine which 
thread gets the next slice of CPU time. When setting 
the synthesis thread to a higher priority, we found the 
slider-scroll update rate was too slow, so we had both 
threads running with the same priority level. 
 
SmsPerformer can run the synthesis and all available 
transformations in parallel and in real-time in a 
Pentium Processor 200 MHz, 32Mb RAM, under 
Windows 98 or NT, with 40 sinusoids, waveform 
residual, 85% of the system resources free. In terms 
of  latency, using ISA (Sound Blaster) and PCI (Aztec 
and Event) sound cards we obtained transformation 
response delays under 40 milliseconds. Different 
framework conditions have different limitations.  
 
3.1 Audio playback  
 
SmsPerformer has been implemented using both 
Microsoft Win32 application programming interface 
low-level API and DirectX DirectSound [7][8][9]. 
 
The API option presents some tricks once you have 
sent the sound data to the sound card (filling the 
lpData field of the WAVEHDR structure and using 
the waveOutPrepareHeader and waveOutWrite 
functions) and you have to unprepare the WAVEHDR 
making sure all sound data has already been written in 
the Output Audio Device buffer to reuse it (using the 
waveOutUnprepareHeader function). 

The waveOutGetPosition function retrieves the 
current playback position of the given waveform-
audio output device but it does it very inaccurately. 
This forced us to work with an error margin. On the 
other hand the WHDR_DONE flag of the dwFlags 
field of the WAVEHDR structure is set by the device 

driver to indicate that it is finished with the buffer and 
is returning  it   to   the  application,   but   this  setting 
has an important delay. So in both cases we need to 
increase the number of wave headers structures 
(SmsPerformer uses short sound data buffers). 
  
DirectSound provides low-latency mixing, hardware 
acceleration, and direct access to the sound device. Its 
circular view enables infinite streaming buffers; as the 
front of the buffer is being consumed, the rear of the 
buffer can be refilled [10][11]. 
 
The write cursor indicates the position at which it is 
safe to write new data to the buffer. The write cursor 
always leads the play cursor, typically by about 15 
milliseconds worth of audio data (shown in Figure 2). 
 
SmsPerformer implementation uses a streaming 
secondary circular buffer of 16 frames, located in 

 
Figure 1. SmsPerformer main window. 

Figure 2. Secondary buffer 
with current play and write 



 

system memory. DirectSound not only has a lower 
playback latency but also needs less sound buffers. 
 
4 SmsPerformer features 
 
SmsPerformer has many ways to control the 
synthesis-transformation of the sound: the main 
window sliders, a score file, a MIDI controller, or a 
set of graphical envelopes. 
 
4.1 Main window sliders 
 
The most immediate way to use the program is 
scrolling the main window sliders. You can configure 
which synthesis-transformation parameter controls 
each slider and set the maximum and minimum values 
of the parameter slider in a dialog window. 
  
You can also modify the sliders value by drawing 
with the mouse the configuration you want the sliders 
to have. This can done in the up-left panel of the main 
window shown in Figure 1. 
 
The sliders values can be modulated by a sinusoidal 
signal and also by a uniform random noise. When 
sinusoidal modulation is chosen you can control 
amplitude and frequency of the modulation with the 
sliders placed above. When noise modulation is 
chosen you can only control the amplitude of the 
modulation. 
 
4.2 External MIDI controls 
 
The application accepts MIDI messages for changing 
the transformation parameters from an external  MIDI 
controller. In this way you can get a better physical 
feeling (like playing an instrument) than using the 
main window sliders. It is also possible to change 
more than one parameter at a time. For this purpose 
we have used a Peavey MIDI Controller PC1600 
(shown in Figure 3). 
 
The MIDI controller sends channel pitch bend 
messages to the application. The status bit is used to 
specify the slider that has to receive the message and 
it is followed by data bytes that specify the position of 
the slider between the maximum and the minimum 
defined. The message is like 
 

First byte Second byte Third byte 
0xEn  LSB  MSB 

 
where n is the number of slider (channel) to control, 0 
for slider 1 and F for slider 16, and then data is 
specified with a 14-bit number, using two 7-bit bytes, 
least significant byte first [12].  
 

 
 

Figure 3. Peavey MIDI Controller PC1600. 
 
A dialog window helps you specify the MIDI device, 
the number of data bytes of the messages, and the 
update message rate. This message rate indicates how 
often the sliders values are updated (pitch bend MIDI 
messages between time lapses are dismissed). 
 
4.3 MIDI files 
 
You can save performances as MIDI files and play 
already saved performances by loading them. The 
MIDI file saves the value, the slider (channel)  and 
the time of a value change. When playing a MIDI file 
you can act on it modifying some parameter values at 
the time you hear the saved performance. 
 
4.4 Score files 
 
SmsPerformer can also read sms score files: synthesis 
files (*.syn) and hybridization files (*.hyb). These 
files are text files in which you can specify all sms 
synthesis and transformation parameters [2].  
 
SmsPerformer can hybridize two sounds and modify 
hybridization parameters while the sound is being 
played. To do so, once the two sounds have been 
analyzed and saved as sms files, you need a 
hybridization file in which the two sms files have 
been specified. This is an example of hybridization 
file: 
 
InputSmsFile violin.sms
InputSmsHybridFile trumpet.sms
Hybridize 1
 
4.5 Filters and presets 
 
There is a bank of configurable filters and presets. 
Filters refer to which sliders are active and which are 
not. Presets refer to the value of each slider. You can 
also disactivate a slider by clicking the checkbox 
above it.  
 
There are a number of preset options but you can 
create your own filters and presets and save them. 
You can see the filter and preset windows in the right 
upper side of  the main application window (shown in 
Figure 1).  
 



 

4.6 Envelope 
 
You can have a performance by defining an envelope. 
This envelope is defined in a x-time axis and y-preset 
axis as shown in Figure 4.  

 
Figure 4. Envelope window. 

 
You can define the presets you need and place them 
in the time axis. The values of the sliders are 
interpolated from one point to the next. You can 
modify both time and preset values of an envelope 
point while the sound is playing. 
 
4.7 Play modes 
 
The play modes in which you can work when 
performing with a given envelope, or with saved 
performances, are Normal, Loop and No-End.  
 
Normal play mode plays the sound only once. If the 
transformations defined, or saved, make reference to a 
time outside the actual sound duration, it does not use 
them. 
 
Loop play mode loops the sound until you click stop. 
This mode also loops transformations saved or 
defined whatever time duration they have. 
 
No-End play mode loops the sound but not the 
transformations. So the sound is modified until the 
last saved or defined transformation time and then 
keeps looping maintaining the last parameters values. 
Clicking stop breaks the loop. 
 
5 Conclusions  
 
SmsPerformer is the first application that makes use 
of the real-time possibilities of the SMS software. 
Despite the problems of the Windows operating 
system to support real-time audio applications, 
SmsPerformer has shown to be useful for music 
applications.  It is the first attempt of a performance 
tool and as such there is room for many 
improvements. 
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Abstract 
 

In this paper we present some ideas and preliminary results on how to move phoneme recognition 
techniques from speech to the singing voice to solve the low-delay alignment problem. The work 
focus mainly on searching the most appropriate Hidden Markov Model (HMM) architecture and 
suitable input features for the singing voice, and reducing the delay of the phonetic aligner without 
reducing its accuracy.  
 

 
1 Introduction 
 
An aligner is a system that automatically time aligns 
speech signals with the corresponding text. This 
application emerges from the necessity of building 
large time-aligned and phonetically labeled speech 
databases for Automatic Speech Recognition (ASR) 
systems. The most extended and successful way to do 
this alignment is by creating a phonetic transcription 
of the word sequence comprising the text and aligning 
the phone sequence with the speech using a Hidden 
Markov Model (HMM) speech recognizer [1].  
 
The phoneme alignment can be considered speech 
recognition without a large portion of the search 
problem. Since we know the string of spoken words 
the possible paths are restricted to just one string of 
phonemes. This leaves time as the only degree of 
freedom and the only thing of interest then is to place 
the start and end points of each phoneme to be 
aligned. For the case of aligning singing voice to the 
text of a song, more data is available out of the 
musical information: the time at which the phoneme is 
supposed to be sung, its approximate duration, and its 
associated pitch. 
 
We have implemented a system that can align the 
singing voice signal to the lyrics in real time. Thus, as 
the singer performs, the signal can be processed and 
different specific audio effects applied depending on 
which phoneme of the lyrics is currently being sung. 
This pursues the idea of content based processing. 
 
2 Singing voice to text aligner 
 
In this section, we consider the main differences 
between speech and singing voice, and present our 
proposal for the singing voice to text aligner by 
searching the most appropriate HMM architecture and 
suitable input features for the singing voice. Finally 

we show how to build the composite Finite State 
Network (FSN) of the song. 

2.1 Speech and Singing Voice 
 
Although speech and singing voice sounds have many 
properties in common because they originate from the 
same production physiology, there are some 
differences to bear in mind.  
 
-Voiced/unvoiced ratio: The ratio between voiced, 
unvoiced sounds, and silence is about (60%, 25%, 
15%) in the case of normal speech. In singing, the 
percentage of phonation time can increase up to 95% 
in the case of opera music.  
 
-Dynamic: The dynamic range as well as the average 
loudness is greater in singing than in speech. The 
spectral characteristics of a voiced sound change with 
the loudness [2]. 
 
-Fundamental frequency: In speech, the 
fundamental frequency variations express an 
emotional state of the speaker or add intelligibility to 
the spoken words. This frequency range of f0 is very 
small compared to singing where it can be up to three 
octaves.  
 
-Vibrato: Two types of vibrato exist in singing. The 
classical vibrato in opera music corresponds to 
periodic modulation of the phonation frequency, and 
in popular music the vibrato implies an amplitude 
modulation of the voice source [3]. In speech, no 
vibrato exists.  
 
-Formants: Because in singing the intelligibility of 
the phonemic message is often secondary to the 
intonation and musical expression qualities of the 
voice, in cases like high pitch singing, wide excursion 
vibratos, hoarse and aggressive attacks or very loud 



  
 

singing, there is an alteration of the formants position, 
and therefore the perceived vowel is slightly 
modified. 

2.2 HMM Architecture  
 
As the task of the alignment can be considered as 
simplified speech recognition, it is natural to adopt a 
successful paradigm of the ASR, namely HMM, for 
the alignment. Our approach attempts to use this 
model for the singing voice case and tune its 
parameters to make the model singing voice case 
specific. This tuning has to take into account the 
following considerations: 
 
(a) No large singing voice database is available to 

train the model.  
(b) The final system will have to align with the 

minimum possible delay. 
(c) The alignment will have phoneme resolution. 
 
The aligner will be a phoneme-based system (c). In 
this type of systems, contextual effects cause large 
variations in the way that different sounds are 
produced. Although training different phoneme 
HMMs for different phoneme contexts (i.e. 
triphonemes) would present better phonetic 
discrimination, this is not recommended in the case 
(a) no large database is available.  
 
HMMs can have different types of distribution 
functions: discrete, continuous, and semi continuous. 
Discrete distribution HMMs match better with small 
train database and are more efficient computationally 
[4]. Because of this and considerations (a) and (b), in 
this first approach, the nature of the elements of the 
output distribution matrix will be discrete.  
 
The most popular way in which speech is modeled is 
as a left-to-right HMM with 3 states. We also fit 3 
states to most of the phonemes (except for the 
plosives) as an approach to mimic the attack, steady 
state and release stages of a note. The plosives are 
modeled with 2 states to take into consideration 
somehow their intrinsic briefness, and the silence is 
modeled with 1 state as it is in speech. 

 2.3 Front-end Parameterization 
 
The function of this stage is to extract the features 
that will be used as the observations of the HMMs. 
To do so the input signal is divided into blocks and 
from each block the features are extracted. For the 
singing voice we keep the speech assumption that the 
signal can be regarded as stationary over an interval 
of a few milliseconds. Various possible choices of 
vectors together with their impact on recognition 
performance are discussed in [5]. Our choice of 

features to be extracted from the sound in the front-
end is the following: 
 
Mel Cepstrum: 12 coefficients 
Delta Mel Cepstrum: 12 coefficients 
Energy: 1 coefficient 
Delta Energy: 1 coefficient 
Voiceness: 2 coefficients  
 
With: 
 
Window Displacement: 5.8 ms 
Window Size: 20 ms 
Window Type: Hamming 
Sampling Rate: 22050 Hz 
 
To compute the Mel frequency cepstral coefficients 
(MFCC) the Fourier spectrum is smoothed integrating 
the spectral coefficients within triangular frequency 
bins arranged on the non-linear Mel-scale. The system 
uses 24 of these triangular frequency bins (from 40 to 
5000 Hz). In order to make statistics of the estimated 
speech power spectrum approximately gaussian, log 
compression is applied to the filter-bank output. The 
final processing stage is to apply the Discrete Cosine 
Transform to the log filter-bank coefficients.  
 
The voiceness vector consists of a Pitch Error 
measure and the Zero Crossing rate. The Pitch Error 
component is a byproduct from the fundamental 
frequency analysis, which is based on [6].  The zero 
crossing rate is calculated by dividing the number of 
consecutive samples with different signs by the 
number of samples of the frame.  
 
The acoustic modeling assumes that each acoustic 
vector is uncorrelated with its neighbors. This is a 
rather poor assumption since the physical constraints 
of the human vocal apparatus ensure that there is 
continuity between successive spectral estimates. 
However, considering differentials to the basic static 
coefficients greatly reduces the problem. This 
differential ponders up to two frames of the future and 
two frames of the past. 

2.4 Composite FSN 
 
The alignment process starts with the generation of a 
phonetic transcription out of the lyrics text. This 
phonetic transcription is used to build the composite 
song FSN concatenating the models of the phonemes 
transcribed. 
 
The phonetic transcription previous to the alignment 
process has to be flexible and general enough to 
account for all the possible realizations of the singer. 
It is very important to bear in mind the non-linguistic 
units silence and aspiration as they appearance cannot 
be predicted. Different singers place silences and 



  
 

aspirations in different places. This is why while 
building the FSN, between each pair of phoneme 
models, we insert both silence and aspiration models. 
In the transition probability matrix of the FSN, the 
jump probability aij from each speech phonetic unit to 
the next silence, aspiration or speech phonetic unit 
will be the same as shown in figure 1. 
 

 
Figure 1:  Concatenation of silences and aspirations 

in the FSN 

The aspiration is problematic since in singing its 
dynamic is more significant. This causes that the 
aspiration can be easily confused with a fricative. 
 
Moreover, different singers not only sing different but 
also, as in speech, pronounce different. To take into 
account these different pronunciations we modify the 
FSN to add parallel paths as shown in figure 2. 

 
Figure 2: Representation of a phonetic equivalence 

in the FSN 

The alignment resultant from the Viterbi decoding 
will follow the most likely path, so it will decide if it 
is more probable that it was phoneme [a] or phoneme 
[œ] the one sang. 

3 Low delay alignment 
 
In this section we modify the Viterbi algorithm to 
allow low-delay. To compensate the loss of 
robustness caused by this, some strategies on 
discarding phony candidates are introduced to 
preserve a good accuracy.   

3.1 Low-delay Viterbi decoding 
 
The usual decoding choice in the text to speech 
alignment problem is the Viterbi algorithm [7]. This 
algorithm gives as result the most probable path 
through the models, giving the points in time for 
every transition from one phoneme model to the 
following.  

 
Most applications perform the backtracking at the end 
of the utterance. In the case of a limited decoding 
delay, backtracking has to be adapted in order to 
determine the best path at each frame iteration. If we 
consider a decoding delay of ∆m frames, we will have 
to follow the backtracking pointers of the selected 
best path to determine the associated phone index in 
the FSN ∆m frames before. Strategies for low delay 
backtracking are discussed in [8] for the analogous 
case of recognition.  
 
In general, the best path at frame m will be different 
from the best path at the end of the utterance.  As a 
general rule, the reduction in the delay causes an 
important degradation in performance. However, 
since we want to be able to offer real time audio 
effects, we will work with the most extreme case, 
deciding for each input frame the current singer 
position in the lyrics with a decoding delay of ∆m=0. 
To avoid a large amount of jumps from one path to a 
complete different one, we introduce some strategies. 

3.2 Strategies for discarding candidates 
 
During the low-delay alignment we have several 
hypothesis on our location in the song with similar 
probability. We use heuristic rules as well as musical 
information from the score to discard candidates. 
 
An example of a knowledge based candidates 
discarding is that once we have decided we are in a 
certain fricative of the target, since the fricatives are 
recognized very reliably, the only candidates we 
consider are the fricative and the phonemes that 
comes next in the phonetic transcription of the target.  

 
Figure 3:  Function of the factor applied to the 

Viterbi probability 
 

We have also implemented routines that use the 
information that we have apart from the lyrics. Since 
we are aligning to a song, we know that the phoneme 
corresponding to a note in the score is supposed to 
have certain duration. Moreover, the user, 
supposedly, sings following the tempo so we take 
advantage of this fact to better choose a phoneme 



  
 

from the target by modifying the output Viterbi 
probabilities by the function shown in figure 3. 

 
In this figure 3 ts is the time at which the phoneme 
happens in the singer performance, tm is the time at 
which this phoneme happens in the song score, 
parameters a and b are tempo and duration dependent, 
and α has a very low value, nearly null. This function 
can be defined differently for the case in which the 
singer comes from silence and attacks the beginning 
of a word, and for the case the singer has already 
started a word, due to the very different behaviors of 
these two situations. 
 
4 Results 
 
The aligner has been tested over a set of songs and it 
has proved to be quite accurate and robust for all kind 
of singers. In order to check the performance of the 
system, we have implemented a graphical interface 
where the results of the alignments can be displayed 
as shown in figure 4.  
 

 
Figure 4:  View of the real-time alignment results in 

the graphical interface 

The Time Delay (TD) of the system has been 
computed from the formulation done in [8], in which 
only the intrinsic delay of the alignment algorithm is 
taken into account. Therefore, the following delays 
are considered: 10 ms due to the Window Size (WS), 
and 11.6 ms due the Window Displacement (WD) 
and the Delta Frames (DF). No delay is due to second 
derivatives, as we are not using acceleration feature 
computations (AF=0), neither any delay is introduced 
in the Viterbi decoding step (DD=0).  This is: 
 

 ) DD  AF  DF (  WD 
2

WS  TD ,,,>  

 
This makes a delay of 21 ms, which has to be added 
to the hardware delay to get the total delay of the 
system. 
 
5 Conclusions 
 
Certainly the system can be improved, especially in 
certain phone transitions. We believe taking into 
consideration the pitch information could bring about 
some improvements. In the system, the pitch 
information has been discarded so that singers could 

be aligned regardless in how in tune they sing. 
However, if we can rely on the singer’s pitch, this 
information can be very useful to improve the 
accuracy of the phone boundaries. We can even think 
of a hybrid system where two parallel alignments, 
phonetic and musical [9], would merge to 
complement each other. 
 
We believe that using context dependent phoneme 
models and using non-discrete symbol probability 
distributions would bring better results. This is why 
part of our efforts have to focus on building a large 
singing voice database, which at this point of time is 
22 minutes large.  
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Abstract 
 

In this paper we will describe an implementation of a score-performance matching, capable of 
score following, based on a stochastic approach using Hidden Markov Models.  

 
1 Introduction 
 
Linking notes in a musical performance to the 
corresponding notes in a score is called score-
performance matching. Proper matching algorithms 
are crucial for real-time composition and automatic 
accompaniment systems, where the computer has to 
find out where the musician is with respect to a 
known score, in order to make an appropriate musical 
response (like playing an accompaniment). In the 
context of musical performance research, matching 
algorithms are necessary to be able to measure timing: 
it has to be known which performance note relates to 
which score note to be able to extract expressive 
timing patterns, calculate tempo, pitch deviation 
patterns... Also audio effects can be applied 
depending on our location in the score. 
 
One category of algorithms focuses on real-time 
matching and they are often called score-following. 
Early work in score matching was performed by 
Dannenberg and Vercoe, both primarily interested in 
making real-time matchers. Dannenberg describes an 
algorithm solely based on pitch information, intended 
to robustly follow a monophonic instrument. Later 
these algorithms were extended to deal with 
polyphonic music and multiple instruments [1]. Most 
algorithms primarily match pitch, possibly in 
combination with time information. The method here 
presented focuses on monophonic music and can be 
seen as a continuation of Puckette’s work [2] moving 
from knowledge-based to stochastic models.  

2 Stochastic modeling 
 
The input features needed to make a decision when 
performing a match, namely fundamental frequency, 
notes duration, etc, are inherently uncertain. The 
uncertainty rises from the fact that instrument players 
or singers do not perform an ideal realization of what 
it is written in the score and the fundamental 
frequency algorithms are not absolutely reliable. 
Others algorithms can perform reasonably well with 
specific instruments like flute but they fail when the 
problem above stated is especially troublesome. This 

occurs very clearly with the singing voice in which 
the output does not resemble at all a sequence of 
discrete tempered pitches attained at well-defined 
times.  
 
Stochastic modeling is a flexible general method to 
situations like the above described. It consists of 
employing a specific probabilistic model for the 
uncertainty or incompleteness of the information. A 
music performance is a nonstationary process since its 
statistical parameters vary over time. Hidden Markov 
Models (HMM) are already used for statistical 
modeling of nonstationary stochastic processes such 
as speech.  
 
3 Hidden Markov Models 
 
A HMM is most easily understood as a generator of 
vector sequences. It is a finite state machine which 
changes state once every time unit and each time t 
that a state j is entered, a n acoustic speech vector yt is 
generated with probability density bj(yt). Furthermore, 
the transition from state i to state j is also probabilistic 
and governed by the discrete probability aij. In the 
figure below we show an example of this process 
where the model moves through the state sequence 
X=1,1,2,2,2,2,2,3,3,3 in order to generate the 10 
observation vectors of k-index model. 
 

 
Figure 1: Markov Process example 

The joint probability of a vector sequence Y and state 
sequence X given some model M is calculated simply 
as the product of the transition probabilities and the 
output probabilities. The joint probability of an 



  

acoustic vector sequence Y and some state sequence X 
= x(1), x(2), x(3),…,x(T) is: 
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In practice, of course, only the observation sequence 
Y is known and the underlying state sequence X is 
hidden. This is why it is called Hidden Markov 
Model.  
In our problem, the model M is the sequence of notes 
specified in the score script, Y the feature sequence 
extracted from the audio signal and X, the state 
sequence, which is actually what we aim for in this 
paper.  
 
4 Note models based in HMM 
 
In this section we present the features and the 
characteristics of the HMMs used to model the notes. 

4.1 Front-End Parameterization 
 
The function of front-end parameterization stage is to 
divide the input signal into blocks and to extract from 
each block relevant features. The six features that will 
be used for the observation sequence are:  
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Fundamental Frequency, and Fundamental 
Frequency Error, which is a measure of “goodness” 
of the F0 estimated. 
 
Obtaining fundamental frequencies is a popular 
subject of study. The particular algorithm we use is an 
adaptation of the Two-Way Mismatch [3]. In the 
procedure, the estimated F0 is chosen as to minimize 
discrepancies between measured partial frequencies 
and harmonic frequencies generated by trial values of 
F0. For each trial F0 mismatches between the 
harmonics generated and the measured partial 
frequencies are averaged over a fixed subset of the 

available partials. The predicted to measured error is 
defined as: 
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where Εfn is the difference between a predicted and its 
closest measured peak, fn and  are the frequency and 
magnitude of the predicted peaks, and Amax is 
maximum peak magnitude. The measured to 
predicted error is defined as:  
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where Εfk is the difference between a measured and 
its closest predicted peak, fk and ak are the frequency 
and magnitude of the measured peaks, and Amax is 
maximum peak magnitude. The total error is:  
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This pitch estimation method gives as then a temporal 
evolution of the F0. This envelope is then used to 
calculate some of the system’s input features.  

4.2 Note Model Architecture 
 
We have three left-to-right HMM models: a note, a 
no-note and a silence model. We model notes with 3 
states so as to mimic the note behavior of attack, 
steady state and release. The silence is modeled with 
only 1 state, since there is no temporal structure to 
exploit. The no-note, modeled with 3 states, aims to 
account for all the unpitched sounds that appear in the 
performance. This can include noisy spurious sounds 
or in the case of singing voice aspirations, fricatives, 
plosives… 
 
The choice of output probability function is crucial 
since it must model the intrinsic variability of the 
score realizations. Some HMM systems use discrete 
output probably functions in conjunction with a 
vector quantizer. Each incoming feature vector is 
replaced by the index of the closest vector in a 
precomputed codebook and the output probability 
functions are just look-up tables containing the 
probabilities of each possible VQ index. This 
approach is computationally very efficient but the 
quantization introduces noises, which limit the 
precision that can be obtained. Hence, it seems a 
better choice to use parametric continuous density 
output distribution, which model the feature vectors 
directly, for instance with multivariate mixture 
Gaussian 
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Where cjm is the weight of mixture component m in 
state j and N(j;ν,Τ) denotes a multivariate Gaussian of 
mean ν and covariance Τ. 
 
This method results in a system with too many 
parameters to train. Thus, in this work, we use the 
same large Gaussian codebook for all the states and 
only estimate different mixture weights for each state. 
 
We build a codebook with vectors that are composed 
of all the above features but the F0, which will be 
treated differently. To construct a codebook l, the Nl 
corresponding observations, yt~l are clustered into Ml 
subsets, being Ml the number of mixture components 
of the codebook. To do this clustering we use LBG 
algorithm. Then 
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The mixture coefficient cjm, for the case Njm vectors 
are assigned to the mth mixture of the codebook, 
results in 
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The output probability of the observation F0 is 
defined with two discrete symbols, one symbol when 
F0 is not defined and another one when F0 has been 
found. The discrete symbol in the states of note 
models is decomposed in a continuous density 
function whenever F0 has been found as shown in 
figure 2. 
 

 

Figure 2 F0 observation probability function 

The continuous density function is modeled as a 
mixture of gaussians whose input is: 
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The total output probability is the product of the five-
feature vector’s and the fundamental frequency’s. 

5 Model Training 
 
For the training of models we need labeled training 
set of musical phrases, where each sentence consists 
of the music waveform and its transcription into 
notes. According to the transcription we concatenate 
the HMMs of the musical units to build an extended 
finite-state network (FSN). It is important to realize 
that, even though, apart from silences and unvoiced 
sounds, most models are notes, each HMM note 
model differs from each other because they keep 
information of the fundamental frequency associated 
and also its duration. This information is needed to 
calculate some input features.   
 
Once a composite sentence FSN is created for each 
sentence in the training set, the training problem 
becomes one of estimating the unit model parameters 
that maximize the likelihood of the models for all the 
given training data. The maximum likelihood 
parameters can be solved for using either the forward-
backward procedure or the segmental k-means 
training algorithm. For our system we have chosen the 
Segmental K-Means [4] and we have implemented if 
as follows: 
 
1. Initialization: Linearly segment each training 
utterance into units and HMM states. 

 
2. Estimation: The transition probabilities are 
estimated by merely counting the number of times the 
transition is used and dividing it by the number of 
times the source state for the transition is used. This 
requires maintaining counters to track each transition 
and each output symbol during training. 
 
The mixture weights for the five-feature vector 
probability function are estimated for each state i as:  
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For the F0, the output probability function is 
estimated: 
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For the discrete symbol that expands to a continuous 
density function, we estimate this function the same 
way as the five-feature one but now it is only the 
states belonging to note models that share the 
codebook. This codebook has to be re-estimated 
every iteration.  

 
3. Segmentation: The updated set of unit models 
(based on the estimation of step 2) is used to re-
segment each training utterance into units and states 
(via Viterbi decoding). 
 



  

4. Iteration: Steps 2 and 3 are iterated until 
convergence. 
 
Since we wanted the system to be accurate in the 
definition of borders, we manually supervised the 
resulting segmentation and adjusted some note 
borders. By doing so, we got a growing parallel 
database where the notes are labeled and segmented 
fixed borders. These segmented sentences are used 
for the training then in a different way than the not 
segmented ones. Instead of linearly segmenting each 
training utterance into units and HMM states, for the 
note-segmented utterances, we only linearly segment 
the HMM states inside the unit borders. When we 
iterate, only these inside HMM states borders are 
allowed to reallocate, the note borders are left fixed. 
Doing this resulted in a more accurate alignment. 

6 Viterbi Decoding 
  
For alignment the trained models are concatenated 
and run against the feature vectors extracted from the 
sound using Viterbi decoding. As a result, the most 
probable path through the models is found, giving the 
points in time for every transition from one model to 
the following. 
 
The Viterbi algorithm is an efficient algorithm to find 
the state sequence that most likely produced the 
observations. Let γ j(t) represent the maximum 
likelihood of observing speech vectors y1  to yt and 
being in state j at time t. This partial likelihood can be 
computed using the following recursion 
 

| ∼ )()1(max)( tjijjij ybatt ¬.> γγ  

where 
1)1(1 >γ  

)()1( 11 yba jjj >γ  
 
for 1<j<N. The maximum likelihood P’(Y|M) is then 
given by 
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By keeping track of the state j giving the maximum 
value in the above recursion formula, it is possible, at 
the end of the input sequence, to retrieve the states 
visited by the best path, thus obtaining the time-
alignment of input frames with models states. 
 
It is possible to modify the algorithm to work on-line. 
To do so, the backtracking is adapted to determine the 
best path at each frame iteration instead of waiting 
until the end of the utterance. This adjustment implies 
a lost of robustness, some hints to overcome it can be 
found in [5]. 
  
The implementation for explicit note duration 
modeling by modifying the Viterbi algorithm [6] 

allows us to include the note duration information. 
The proposed modified Viterbi algorithm keeps track 
of the duration D(t) of each note n at time t and 
introduces a duration penalty P of making a transition 
from state i at time t to state j at time t+1 given by, 
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where ΕD(t)= D(t) - Dn is the difference between the 
duration of the model and the note duration, Dn, 
specified in the score, and l(u)=log p(u), p(.) is the 
probability density of ΕD and it is modeled by 
mixture gaussian densities. 
 
7 Conclusions 
 
The instrument we have mainly worked with is the 
singing voice. This choice is due not only to the fact 
that, from all instruments, the larger training database 
available for us is the singing voice one, but also 
because we believe this instrument is the most critic, 
and once solved the score-matching problem for the 
singing voice case, we will have solved it for any 
other harmonic instrument. There is still 
experimentation to be done to tune the different 
parameters but results are promising.  
 
Improvements can be achieved by considering 
context. We can train different note models 
depending on the notes that precede and follow them. 
In the case of the singing voice, using the lyrics [5] 
can add robustness to the alignment. This kind of 
information can also be used to improve accuracy. 
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Abstract 
In this paper we present a real-time system for morphing two voices in the context of a karaoke application. As 
the user sings a pre-established song, his pitch, timbre, vibrato and articulation can be modified to resemble 
those of a pre-recorded and pre-analyzed recording of the same melody sang by another person. The underlying 
analysis/synthesis technique is based on SMS, to which many changes have been done to better adapt it to the 
singing voice and the real-time constrains of the system. Also a recognition and alignment module has been 
added for the needed synchronization of the user’s voice with the target’s voice before the morph is done. There 
is room for imp rovements in every single module of the system, but the techniques presented have proved to be 
valid and capable of musically useful results.  
 

 
1. Introduction 
 
With different names, and using different signal 
processing techniques, the idea of audio morphing is well 
known in the Computer Music community (Serra, 1994; 
Tellman, Haken, Holloway, 1995; Osaka, 1995; Slaney, 
Covell, Lassiter. 1996; Settel, Lippe, 1996). The main 
goal of the developed audio morphing methods is the 
smooth transformation from one sound to another, thus, 
the combination of two sounds to create a new sound with 
an intermediate timbre. Most of these methods are based 
on the interpolation of sounds parameterizations resulting 
from analysis/synthesis techniques, such as the Short-time 
Fourier Transform (STFT), Linear Predictive Coding 
(LPC) or Sinusoidal Models.  
 
In this paper we present a very particular case of audio 
morphing. What we want is to be able to morph, in real-
time, a user singing a melody with the voice of another 
singer. It results in an “impersonating” system with which 
the user can morph his/her voice attributes, such as pitch, 
timbre, vibrato and articulation, with the ones from a 
prerecorded target singer. The user is able to control the 
degree of morphing, thus being able to choose the level of 
“impersonation” that he/she wants to accomplish. In our 
particular implementation we are using as the target voice 
a recording of the complete song to be morphed. A more 
useful system would use a database of excerpts of the 
target voice, thus choosing the appropriate target segment 
at each particular time in the morphing process. 
  
The obvious use of our technique is in Karaoke 
applications. In such a situation it is very common for the 

user to want to impersonate the singer that originally sang 
the song. Our system is capable to do that automatically.  
 
In order to incorporate to the user’s voice the 
corresponding characteristics of the “target” voice, the 
system has to first recognize what the user is singing 
(phonemes and notes), finding the same sounds in the 
target voice (i.e. synchronizing the sounds), then 
interpolate the selected voice attributes, and finally 
generate the output morphed voice. All this has to be 
accomplished in real-time.  
 
Next we present the overall system functionality, then we 
discuss the basic techniques used and finally we comment 
on the results obtained. In another paper (Cano, Loscos, 
Bonada, M. de Boer, Serra, 2000) the actual software 
implementation is discussed. 
 

Morph

Target Information

SMS-
Synthesis

SMS-Analysis

Alignment Analysis

Song Information

Analysis & Alignment

User Input

Voice
output

Morph & Synthesis

 
Figure 1. System block diagram. 
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2. The Voice Morphing System   
 
Figure 1 shows the general block diagram of the voice 
impersonator system. The underlying analysis/synthesis 
technique is SMS (Serra, 1997) to which many changes 
have been done to better adapt it to the singing voice and 
to the real-time constrains of the application. Also a 
recognition and alignment module was added for 
synchronizing the user’s voice with the target voice before 
the morphing is done.   
 
Before we can morph a particular song we have to supply 
information about the song to be morphed and the song 
recording itself (Target Information and Song 
Information). The system requires the phonetic 
transcription of the lyrics, the melody as MIDI data, and 
the actual recording to be used as the target audio data. 
Thus, a good impersonator of the singer that originally 
sang the song has to be recorded. This recording has to be 
analyzed with SMS, segmented into “morphing units”, 
and each unit labeled with the appropriate note and 
phonetic information of the song. This preparation stage is 
done semi-automatically, using a non-real time application 
developed for this task. 
 
The first module of the running system includes the real-
time analysis and the recognition/alignment steps. Each 
analysis frame, with the appropriate parameterization, is 
associated with the phoneme of a specific moment of the 
song and thus with a target frame. The 
recognition/alignment algorithm is based on traditional 
speech recognition technology, that is, Hidden Markov 
Models (HMM) that were adapted to the singing voice 
(Loscos, Cano, Bonada, 1999). 
 
Once a user frame is matched with a target frame, we 
morph them interpolating data from both frames and we 
synthesize the output sound. Only voiced phonemes are 
morphed and the user has control over which and by how 
much each parameter is interpolated. The frames 
belonging to unvoiced phonemes are left untouched thus 
always having the user’s consonants. 
 
3. Voice analysis/synthesis using SMS 
 
The traditional SMS analysis output is a collection of 
frequency and amplitude values that represent the partials 
of the sound (sinusoidal component), and either filter 
coefficients with a gain value or spectral magnitudes and 
phases representing the residual sound (non sinusoidal 
component) (Serra, 1997). Several modifications have 
been done to the main SMS procedures to adapt them to 
the requirements of the impersonator system.  
 
A major improvement to SMS has been the real-time 
implementation of the whole analysis/synthesis process, 
with a processing latency of less than 30 milliseconds and 
tuned to the particular case of the singing voice. This has 
required many optimizations in the analysis part, 

especially in the fundamental frequency detection 
algorithm (Cano, 1998). These improvements were mainly 
done in the pitch candidate's search process, in the peak 
selection process, in the fundamental frequency tracking 
process, and in the implementation of a voiced-unvoiced 
gate (Cano, Loscos, 1999). 
 
Another important set of improvements to SMS relate to 
the incorporation of a higher-level analysis step that 
extracts the parameters that are most meaningful to be 
morphed (Serra, Bonada, 1998). Attributes that are 
important to be able to interpolate between the user’s 
voice and the target’s voice in a karaoke application 
include spectral shape, fundamental frequency, amplitude 
and residual signal. Others, such as pitch micro variations, 
vibrato, spectral tilt, or harmonicity, are also relevant for 
various steps in the morphing process or to perform other 
sound transformation that are done in parallel to the 
morphing. For example, transforming some of these 
attributes we can achieve voice effects such as Tom Waits 
hoarseness (Childers, 1994). 
 
4. Phonetic recognition/alignment 
 
This part of the system is responsible for recognizing the 
phoneme that is being uttered by the user and also its 
musical context so that a similar segment can be chosen 
from the target information.  
 
There is a huge amount of research in the field of speech 
recognition. The recognition systems work reasonably 
well when tested in the well-controlled environment of the 
laboratory. However, phoneme recognition rates decay 
miserably when the conditions are adverse. In our case, 
we need a speaker independent system capable of working 
in a bar with a lot of noise, loud music being played and 
not very-high quality microphones. Moreover the system 
deals with singing voice, which has never been worked on 
and for which there are no available databases. It has to 
work also with very low delay, we cannot wait for a 
phoneme to be finished before we recognize it and we 
have to assign a phoneme to each frame. 
 

 
Figure 2. Recognition and matching of morphable units. 
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This would be a rather impossible/impractical problem if 
it was not for the fact that we know the words beforehand, 
the lyrics of the song. This reduces a big portion of the 
search problem: all the possible paths are restricted to just 
one string of phonemes, with several possible 
pronunciations. Then the problem reduces to locating the 
phoneme in the lyrics and placing the start and end points. 

 

Besides knowing the lyrics, music information is also 
available. The user is singing along with the music and 
hopefully according to a tempo and melody already 
specified in the score of the song. We thus also know the 
time at which a phoneme is supposed to be sung, its 
approximate duration, its associated pitch, etc. All this 
information is used to improve the performance of the 
recognizer and also to allow resynchronization, for 
example in the case that the singer skips a part of the song. 
 
We have incorporated a speech recognizer based on 
phoneme-base discrete HMM's that handles musical 
information and that is able to work with very low delay. 
The details of the recognition system can be found in 
another paper of our group (Loscos, Cano, Bonada, 1999). 
 
The recognizer is also used in the preparation of the target 
audio data, to fragment the recording into morphable units 
(phonemes) and to label them with the phonetic 
transcription and the musical context. This is done out of 
real-time for a better performance. 
 
5. Morphing 
 
Depending on the phoneme the user is singing, a unit from 
the target is selected. Each frame from the user is morphed 
with a different frame from the target, advancing 
sequentially in time. Then the user has the choice to 
interpolate the different parameters extracted at the 
analysis stage, such as amplitude, fundamental frequency, 
spectral shape, residual signal, etc. In general the 
amplitude will not be interpolated, thus always using the 
amplitude from the user and the unvoiced phonemes will 
also not be morphed, thus always using the consonants 
from the user. This will give the user the feeling of being 
in control. 
 
In most cases the durations of the user and target 
phonemes to be morphed will be different. If a given 
user’s phoneme is shorter than the one from the target the 
system will simply skip the remaining part of the target 
phoneme and go directly to the articulation portion. In the 
case when the user sings a longer phoneme than the one 
present in the target data the system enters in the loop 
mode. Each voiced phoneme of the target has a loop point 
frame, marked in the preprocessing, non-real time stage. 
The system uses this frame to loop-synthesis  in case the 
user sings beyond that point in the phoneme. Once we 
reach this frame in the target, the rest of the frames of the 
user will be interpolated with that same frame until the 

user ends the phoneme.  This process is shown in Figure 
3. 
 

user

target

attack steady release

normal morphing loop-mode morphing

Selected frame for
looping

Spectral Shape of the target's frame
Amplitude of the each me's frame
Pitch of the target's frame + delta pitch from table  

Figure 3. Loop synthesis diagram. 
 
The frame used as a loop frame requires a good spectral 
shape and, if possible, a pitch very close to the note that 
corresponds to that phoneme. Since we keep a constant 
spectral shape, we have to do something to make the 
synthesis sound natural. The way we do it is by using 
some “natural” templates obtained from the analysis of a 
longer phoneme that are then used to generate more target 
frames to morph with out of the loop frame. One feature 
that adds naturalness is pitch variations of a steady state 
note sung by the same target. These delta pitches are kept 
in a look up table whose first access is random and then 
we just read consecutive values. We keep two tables, one 
with variations of steady pitch and another one with 
vibrato to generate target frames. 
 
Once all the chosen parameters have been interpolated in a 
given frame they are added back to the basic SMS frame 
of the user. The synthesis is done with the standard 
synthesis procedures of SMS. 
 
6. Experiments 
 
The singing voice impersonator has been implemented on 
a PC platform (Cano, Loscos, Bonada, de Boer, Serra, 
2000). To check the feasibility of the real-time technology 
presented, that is the SMS based morph engine and the 
recognizer, the target data used was a complete song, as 
shown in Figure 2, instead of a database of target excerpts. 
Thus the search for the most appropriate morphing frame 
pairs becomes a simple process.  
 
Another simplification is that the system only morphs the 
voiced parts; the unvoiced consonants of the user are 
directly bypassed to the output. This is done because the 
morph engine deals better with voiced sounds and the 
results show that this restriction does not limit the quality 
of the impersonation. However, some audible artefacts 
may appear. One emerges from the fact the human voice 
organ produces all type of voice-unvoiced sounds and the 
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pitch-unpitch boundaries are, in most cases, uncertain. 
This makes the system sometimes fails in the boundaries 
of unvoiced-voiced transitions. The other problem appears 
when the interpolation factor for the spectral shape 
parameter is set to be around 50%. Since the shapes are 
linearly interpolated, the morphed spectral shape is too 
smoothed and looses the timbre character of the original 
voices. This is currently being solved by working on a 
more complex model for the spectral shape that takes into 
account the formants to do the interpolation.  
 
The HMM phonetic models were trained with a limited 
singing voice database. It is a fact that the recognition step 
works better when the user singer has been used to train 
the database. We believe that taking into account context 
and using non-discrete symbol probability distributions 
would bring better results but they require bigger 
databases. 
 
The system as a whole produces quite high quality sound. 
The delay between the sound input and the final sound 
output in the running system is less than 30 milliseconds. 
This delay is just good enough to make the user have the 
feeling of being in control of the output sound. 
 
7. Conclusions 
 
In this paper we have presented a singing voice morphing 
system. Obviously, there is room for improvements in 
every single module of the system, but the techniques 
presented have proved to be valid and capable of 
musically useful results.  
 
The final purpose of the system was to make an average 
singer sing any song like any professional singer. In fact, 
we would like the system to morph the user's voice with 
qualities of several singers, for instance a mixture timbre 
of Sinatra  and Tom Jones and the horseness of Tom 
Waits. However, at this point, and due to the limitations 
of our system, we need a clear recording of Tom Jones, or 
whomever the user wants to impersonate, singing the 
song. It is not easy to have this kind of popular 
professional singer to record songs for us and so in this 
project, we used professional impersonators’ recordings.  
However it is clear that is by no means efficient, not only 
because of technical issues like memory requirements, but 
also due to the cost of having professional singers 
recording every song of the system. To allow the user to 
sing any song with the voice and expression of whomever 
he wants without having a professional singer singing 
each song for each possible timbre, we will need a model 
for every desired target voice and also every type of 
singing style. In order to achieve this, techniques to 
perform the match of the phonemes, considering style and 
musical context, must be incorporated into the system. 
One approach for the case of the saxophone has been 
studied  (Arcos, Lopez de Mantaras, Serra, 1997). 
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Abstract 

This paper presents the implementation aspects of a real-time system for morphing two voices in the context of a 
karaoke application. It describes the software design and implementation under a PC platform and it discusses 
platform specific issues to attain the minimum system delay. 

 
 
1. Introduction 
Singing voice conversion can be defined as the conversion 
of the voice quality from one singer to another. The 
impersonator application we present in this paper makes 
use of a conversion that gives a specific individuality to 
the synthesized voice. The goal is to come up with a 
karaoke-type application for PC in which the user can sing 
like his/her favorite singers.  
 
In order to incorporate to the user’s voice the 
corresponding characteristics of the “target” voice, the 
“target” voice is recorded and analyzed beforehand. Then 
the system performs a real-time morphing between the 
user’s voice and the pre-stored analysis of the target voice. 
The user is able to control the degree of morphing, thus 
being able to choose the level of “impersonation” that 
he/she wants to accomplish. 
 
The application relies on two main algorithms that define 
and constrict the architecture: the Spectral Modeling 
Synthesis (SMS) (Serra, 1997) and a Speech Recognizer. 
This paper presents the practical implementation aspects 
of such an application. The theoretical background can be 
found in other papers (Cano, Loscos, 1999; Loscos, Cano, 
Bonada, 1999; Cano, Loscos, Bonada, de Boer, Serra, 
2000). 
 
2. Implementation 
The application has been implemented mostly in ANSI 
C++, in order to be easily portable to different operating 
systems. For some time, development has been focusing 
on the Windows platform only, but now it comp iles under 
Linux as well, thus adding a second development 
platform. One of the purposes was to compare latencies 
between Windows and Linux, using the same hardware, in 
non-real-time and real-time implementations. A flow 
diagram with the most important classes, structures, and 
procedures is shown in figure 1. 
 

On both platforms the application uses multi-threading. 
The approach shown in figure 1 turned out to be the most 
efficient, in terms of latency, as well as the least sensitive 
for underruns. The Sound Thread makes use of a tight 
loop in which the audio is read and written from the 
soundcard. This ensures that when the processing does not 
keep up with the sound input, something that occasionally 
happens, sound throughput continues. Every read buffer of 
input samples is passed to the Analysis Thread, and when 
a new frame has been analyzed, the Synthesis Thread is 
signaled, which writes into the output buffer, that has been 
prepared for playback. The GUI is running in a third 
thread with low priority, and can modify the synthesis and 
analysis parameters used by the Analysis Thread and 
Synthesis Thread. Thread priority for the Sound Thread, 
Analysis Thread and Synthesis Thread are set to 
maximum, and memory pages are locked. 
 
3. Graphical User Interface 
The graphical interface of the application has been 
thought as a test platform from which all relevant 
parameters could be modified in real time. As shown in 
figure 2, the application has got six main sections. The 
analysis section controls some of the analysis parameters 
such as the lowest and highest pitch, the analysis window 
size or the residual model used. 
 
In the morph section five sliders control the interpolation 
values of the attributes involved the main part in the 
morph. These are the pitch, the amplitude of the sinusoidal 
part, the amplitude of the residual part, the spectral shape 
of the sinusoidal part, and the spectral shape of the 
residual part. 
 
The sine and residual sections control the most important 
synthesis parameters of SMS and also include some 
graphic filtering capabilities. The two sections left, the 
harmonizer section and the IR section, were included to 
test some of the effects we were working on.



Figure 1. System architecture diagram.



 
Figure 2. GUI screenshot. 

 
 
4. Scoring of pitch and timing accuracy  
We included in our application one of the features that 
many karaoke systems have; a score indicator to show 
how well the user is singing at each instant. To do so the 
system measures the pitch and timing of the user, 
comparing it with some reference values. The pitch and 
timing chosen as reference are not from the target (the 
target singer does not necessarily sing perfect) but the 
ones included in the song's MIDI representation. 
 
In order to do the comparison, we have to know which is 
the note that the user is singing. The morph-alignment 
module tells us which region of the target the user is at. 
From there we should be able to find out the 
corresponding note information, by giving every region a 
note reference. Instead of doing this by hand, this is done 
automatically be adding the phonetic label found in each 
of the regions of the target to the MIDI file containing the 
correct melody. 
 
Representation of the regions with the corresponding 
phonetic transcription (the dot means silence): 
 

  
 
Note information from midi file: 
 
id begin (sec) duration (sec) pitch (Hz) 
0 0.20 0.23 174.61 
1 0.43 0.22 196.00 
2 0.65 0.22 207.65 
3 0.88 0.22 261.63 
4 1.11 1.04 349.23 
 
Add phonetic lyrics to the midi file: 
 
id begin 

(sec) 
duration 
(sec) 

pitch 
(Hz) 

transcription 

0 0.20 0.23 174.61 na 
1 0.43 0.22 196.00 ki 
2 0.65 0.22 207.65 na 
3 0.88 0.22 261.63 ka 
4 1.11 1.04 349.23 la 
  
The automated mapping matches regions and id's in the 
following way: 



  

 
  
From the analysis/synthesis loop, we obtain the user’s 
fundamental frequency and time, and the target region 
used for the morph. This target region contains a reference 
to a note (“note id”) with the pitch and timing information. 
A history of these note id's is kept, so when a certain 
number of the same note id’s has been reached, we 
presume that this is the note the user is singing (current 
note id). We use the time the current note id changes, as 
the begin time of the user note, and compare it with the 
reference note, and can compare the pitch continuously. 
The scoring is then calculated from the pitch difference in 
semitones: 
 

12%6log12 ??
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?
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?

?
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?
?

?
?
??
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user
semitones freq

freqDif  

 
When the timing error is within a 0.1 second, maximum 
score is assigned. If the error is bigger than that, score 
goes from 1 (0.1 sec) to 0 (0.5 sec). A lowpass filter is 
applied on these scores to filter out sudden changes that 
are likely to be caused by erroneous analysis.  Apart from 
this current score, also an overall score is kept. 
 
We tried to improve the visual presentation of the scoring. 
The presentation with sliders is neither visually attractive 
nor inspiring for the singer. Because of that we 
implemented an animation-style scoring indicator, with 
seven different levels of scoring, each with a small 
variation to make it less static. The character in the 
animation is an animation-style Elvis -alike figure that 
takes the role of the singer as shown in figure 3. The 
character is sad/desperate when the user is singing badly 
and happy when the singer is doing well.  
 

 
 
Figure 3. Animated-scoring indicator of the user’s performance. 
 
 

 
5. Conclusions 
The running system has been tested with several songs 
and many users. Even though there are still many 
improvements to be made, both in the algorithms and in 
the implementation, the application has proved to be 
musically useful.   
 
We have measured the hardware latency (with a SB 
AWE64 PCI), recording a stereo signal where one channel 
was the original sound, and the other channel was the 
sound through adc-dac read/write with small buffers (128 
samples, 22100 kHz, 16 bit, mono). The difference was 6 
ms, with constant throughput. To this, we have to add the 
latency that is inherent to the FFT's and pitch detection, 
which around 20 ms. Thus the delay between the sound 
input and the final sound output in the running system is 
less than 30 milliseconds. This delay is just good enough 
to make the user have the feeling of being in control of the 
output sound. 
 
Some underrun problems occur by unpredictable 
performance problems, when the analysis or synthesis 
takes longer than expected. This might be because of 
memory allocation. Since the occurrence of these kinds of 
underruns is very rare, it is not a real problem for the 
current set up.  
 
Currently, the scoring is only related to the pitch accuracy. 
We experienced that the timing accuracy is more difficult 
to translate to a significant scoring, at least to a 
continuously changing one. It is in some extend visualized 
with an extra image with the animation character looking 
at his watch.  
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ABSTRACT 

In this paper we present two different approaches to the modeling of the singing voice. Each of these approaches 
has been thought to fit in the specific requirements of two applications. These are an automatic voice 
impersonator for karaoke systems and a singing voice synthesizer. 

 
 
1. INTRODUCTION 
 
Singing voice synthesis has been an active research field for almost 
fifty years [Cook, 1996]. Most of the systems developed until now 
do not provide enough quality or do not meet the practical 
requirements to have found real-world commercial applications. 
Anyhow, it seems that one of the main issues behind singing voice 
synthesis is to offer not only quality but flexible and musically 
meaningful control over the vocal sound. In that sense, we may 
think of applications where impossible singing voices can be 
synthesized or where existing voices can be enhanced. 
 
In a broad sense, and according to whether the focus is put on the 
system or its output, synthesis models used in singing voice 
synthesis can be classified into two main groups: spectral models 
and physical models. Spectral models are based on perceptual 

mechanisms of the listener while physical models focus on 
modeling the production mechanisms of the original system. Any 
of these two models might be regarded as suitable depending on 
the specific requirements of the application or may even be 
combined for taking advantages of both approaches. 
 
The main benefit of using Physical models is that the parameters 
used in the model are closely related to the ones a singer uses to 
control his/her own vocal system. As such, some knowledge of the 
real-world mechanism can be brought on the design. The model 
itself can provide intuitive parameters if it is constructed so that it 
sufficiently matches the physical system. Conversely, such a 
system usually has a large number of parameters and the mapping 
of those quite intuitive controls of the production mechanism to the 
final output of the model, and so to the listener’s perceived quality, 
is not a trivial task. 
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Alternatively, spectral models are closely related to some aspects 
of the human perceptual mechanism. Changes in the parameters of 
a spectral model can be more easily mapped to a change of 
sensation in the listener. Yet parameter spaces yielded by these 
systems are not necessarily the most natural ones for manipulation. 
 
On this context, in this article we introduce two different 
applications related to singing voice synthesis. First, in section 2, 
we introduce the basis of the Spectral Modeling Synthesis 
technique, which has inspired many of the models characteristics. 
We then introduce a singing voice impersonator application that is 
able to morph the user’s voice with a professional singer’s version 
in real-time. We finish by outlining, in section 4, the basic 
approach towards a singing voice synthesizer that is currently 
being developed by our team. 
 
2. SPECTRAL MODELING SYNTHESIS 
 
The Spectral Modeling Synthesis (SMS) is a synthesis by analysis 
technique based on modeling the sounds as stable sinusoids 
(partials) plus noise (residual component). This sinusoidal plus 
residual model can be seen as a generalization of the STFT and the 
Sinusoidal representations as we can decide what part of the sound 
to model as sinusoidal and what part to leave as STFT. [Serra 
1996; Serra and Smith 1990]. 
 
The input sound s(t) is modeled by, 

( ) ( )[ ] ( )
1

( ) cos
R

r r
r

s t A t t e tθ
=

= +∑                 (1) 

where Ar(t) and θr(t) are the instantaneous amplitude and phase of 
the rth sinusoid, respectively, and e(t) is time-varying noise 
component. 
 
This estimation of the sinusoidal component is generally done by 
first computing the STFT of the sound, then detecting the spectral 
peaks (and measuring the magnitude, frequency and phase of each 
one), and organizing them as time-varying sinusoidal tracks. By 
using the fundamental frequency information in the peak 
continuation algorithm, we can identify the harmonic partials. 
 
The sinusoidal plus residual model assumes that the sinusoids are 
stable partials of the sound with a slowly changing amplitude and 
frequency. With this restriction, we are able to add major 
constraints to the detection of sinusoids in the spectrum and omit 
the detection of the phase of each peak. The instantaneous phase 
that appears in the equation is taken to be the integral of the 
instantaneous frequency ωr(t), and therefore satisfies 

( ) ( )
t

r ro
t dθ ω τ τ= ∫                             (2) 

where ω(t) is the frequency in radians, and r is the sinusoid 
number. When the sinusoids are used to model only the stable 
partials of the sound, we refer to this part of the sound as the 
deterministic component. 
 
The residual component is obtained by first generating the 
sinusoidal component with additive synthesis, and then subtracting 
it from the original waveform. This is possible because the 
instantaneous phases of the original sound are matched and 
therefore the shape of the time domain waveform preserved. A 
spectral analysis of this time domain residual is done by first 
windowing it, window which is independent of the one used to find 
sinusoids, and thus we are free to choose a different time-
frequency compromise. Finally, the FFT is computed.  

Within this model we can either leave the residual signal, e(t), to 
be the difference between the original sound and the sinusoidal 
component, resulting into an identity system, or we can assume 

that e(t) is a stochastic signal. In this case, the residual can be 
described as filtered white noise, 

( ) ( ) ( )
0

,
t

e t h t u dτ τ τ= ∫                      (3) 

where u(t) is white noise and h(t,τ) is the response of a time 
varying filter to an impulse at time t. That is, the residual is 
modeled by the time-domain convolution of white noise with a 
time-varying frequency-shaping filter.  
 
The calculation of the residual component can be optimized by 
subtracting the sinusoids directly in frequency domain (see figure 
1). This can be done subtracting the spectrum resulting of the 
convolution of each sinusoid with the transform of the same 
window used in the residual spectral analysis.  
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Fig 1 Block diagram of the SMS analysis 

From the output of the analysis techniques presented we can obtain 
several features of the input sound and its frequency-domain 
representation. These features are then used in the transformation 
block in order to modify the characteristics of the sound in a 
meaningful way. Transformations as the ones used in the 
applications here presented (such as morphing, pitch shifting, 
spectral shape modification...) can be performed using this 
approach. All these transformations can be done in the frequency 
domain. Afterwards, the output sound can be synthesized.   

The sinusoidal component is generated using some type of additive 
synthesis approach and the residual, if present, is synthesized using 
a subtractive synthesis approach using an IFFT approach, efficient 
implementations may be provided. Figure 2 shows a block diagram 
of the final part of the synthesis process. 
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Fig 2 Block diagram of the SMS synthesis  

Several modifications have been done to the basic SMS procedures 
to adapt them to the requirements of the applications outlined in 
this article. The major changes include the real-time 
implementation of the whole analysis/synthesis process with a 
processing latency of less than 30 milliseconds and the tuning of 
all parameters to the particular case of the singing voice. The later 
ones include the extraction of the most appropiate higher-level 
parameters for the case of the singing voice .  
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3 THE SINGING VOICE IMPERSONATOR 
 
Morphing is a technique with which, out of two or more elements, 
we can generate new ones with hybrid properties. With different 
names, and using different signal processing techniques, the idea 
of audio morphing is well known in the Computer Music 
community [Serra, 1994; Tellman, Haken, Holloway, 1995; Osaka, 
1995; Slaney, Covell, Lassiter. 1996; Settel, Lippe, 1996]. In most 
of these techniques, morph is based on the interpolation of sound 
parameterizations resulting from analysis/synthesis techniques, 
such as the Short-time Fourier Transform (STFT), Linear 
Predictive Coding (LPC) or Sinusoidal Models. 
 
3.1 The application 
 
The application we present here is a very particular case of audio 
morphing. What we want is to be able to morph, in real-time, two 
singing voice signals in order to control the resulting synthetic 
voice by mixing the characteristics of the two sources. In such a 
context, a karaoke-type application was developed in which the 
user can sing like his/her favorite singers [Cano, Loscos, Bonada, 
Boer, Serra, 2000; Boer, Bonada, Cano, Loscos, Serra, 2000]. The 
result is an automatic impersonating system that allows the user to 
morph his/her voice attributes (such as pitch, timbre, vibrato and 
articulations) with the ones from a prerecorded singer, which from 
now on we will refer to as target.  

In this particular implementation, the target's performance of the 
complete song to be morphed is recorded and analyzed beforehand. 
In order to incorporate the corresponding characteristics of the 
target's voice to the user’s voice, the system first recognizes what 
the user is singing (phonemes and notes), looks for the same 
sounds in the target performance (i.e. synchronizing the sounds), 
interpolates the selected voice attributes, and synthesizes the 
output morphed voice. All this is accomplished in real-time.  
 
Figure 3 shows the general block diagram of the voice 
impersonator system. The system relies on two main techniques 
that define and constrict the architecture: the SMS framework and 
a Hidden Markov Model based Automatic Speech Recognizer 
(ASR). The SMS implementation is responsible of providing a 
suitable parameterization of the singing voice in order to perform 
the morph in a flexible and musically meaningful way. On the 
other hand, the ASR is responsible for aligning the singing voice of 
the user with that of the target.  
 
Before we can morph a particular song, we have to supply 
information about the song to be morphed and the song recording 
itself (Target Information and Song Information). The system 
requires the phonetic transcription of the lyrics, the melody as 
MIDI data, and the actual recording to be used as the target audio 
data. Thus, a good impersonator of the singer that originally sang 
the song has to be recorded. This recording has to be analyzed with 
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SMS, segmented into morphing units (phonemes), and each unit 
has to be labeled with the appropriate note and phonetic 
information of the song. This preparation stage is done semi-
automatically, using a non-real time application developed for this 
purpose. 
 
Once we have all the required inputs set we can start processing 
the user's voice. The first module of the running system includes 
the real-time analysis and the recognition/alignment steps. Each 
analysis frame, with the appropriate parameterization, is associated 
with the phoneme of a specific moment of the song and thus with a 
target frame. Once a user frame is matched to a target frame, we 
morph them interpolating data from both frames and we synthesize 
the output sound. Only voiced phonemes are morphed and the user 
has control over which and by how much each parameter is 
interpolated. The frames belonging to unvoiced phonemes are left 
untouched, thus always having the user’s unvoiced consonants in 
the output. 

 
Therefore, depending on the phoneme the user is singing, a unit 
from the target is selected and then each frame from the user is 
morphed with a different frame from the target, advancing 
sequentially in time as illustrated in figure 4. The user has the 
choice to interpolate the different parameters extracted at the 
analysis stage, such as amplitude, fundamental frequency, spectral 
shape, residual signal, etc. In general, the amplitude will not be 
interpolated, always using the amplitude from the user. The 
unvoiced phonemes will not be morphed either, so we will have 
always the user's. This will give the user the feeling of being in 
control of the synthesis. 
 

 
Fig 4 Recognition and matching of morphable units 

In most cases, the durations of the user and target phonemes to be 
morphed will be different. If a given user’s phoneme is shorter 
than the one from the target, the system will simply skip the 
remaining part of the target phoneme and go directly to the 
articulation portion. In the case when the user sings a longer 
phoneme than the one present in the target data, the system enters 
in the loop mode. Each voiced phoneme of the target has a loop 
point frame, marked in the preprocessing, non-real time stage. The 
system uses this frame to loop-synthesis in case the user sings 
beyond that point in the phoneme. Once we reach this frame in the 
target, the rest of the frames of the user will be interpolated with 
that same frame until the user ends the phoneme. In these cases, in 
order to avoid unnaturalness, we apply pitch templates obtained 
from longer utterances to the last frame of the target. This process 
is illustrated in figure 5. 
 
Once all the chosen parameters have been interpolated for a given 
frame, they are added back to the basic SMS synthesis frame. 
Synthesis is done with the standard synthesis procedures of SMS. 

user

target

attack steady release

normal morphing loop-mode morphing

Selected frame for
looping

Spectral Shape of the target's frame
Amplitude of the each me's frame
Pitch of the target's frame + delta pitch from table

 

Fig 5 Synthesis loop diagram 

 
3.2 The aligner  
 
To solve the matching problem the system includes an ASR based 
on phoneme-base discrete HMM's. This ASR has been trained 
using a 22 minutes long Japanese singing database and the 
following front -end parameterization:  
 

Mel Cepstrum  12 coefficients 
Delta Mel Cepstrum 12 coefficients 
Energy  1 coefficient 
Delta Energy  1 coefficient 
Voiceness  2 coefficients  

 
The voiceness vector consists of a Pitch Error measure and the 
Zero Crossing rate. The Pitch Error component is a by-product 
from the fundamental frequency analysis, which is based on [Cano, 
98].  The zero crossing rate is calculated by dividing the number of 
consecutive samples with different signs by the number of samples 
of the frame. The differentials (deltas) ponder up to two frames of 
the future and two frames of the past. 
 
The alignment process starts with the generation of a phonetic 
transcription out of the lyrics text. This phonetic transcription is 
used to build the composite song Finite State Network (FSN) 
concatenating the models of the phonemes transcribed. 
 
The phonetic transcription previous to the alignment process has to 
be flexible and general enough to account for all the possible 
realizations of the singer. It is very important to bear in mind the 
non-linguistic units silence and aspiration, as their appearance 
cannot be predicted. Different singers place silences and 
aspirations in different places. This is why, while building the 
FSN, between each pair of phoneme models, we insert both silence 
and aspiration models. In the transition probability matrix of the 
FSN, the jump probability aij from each speech phonetic unit to the 
next silence, aspiration or speech phonetic unit will be the same, as 
shown in figure 6. 
 

Fig 6 Concatenation of silences and aspirations in the FSN 



BONADA ET AL.  MODELING THE SINGING VOICE 
 

 

AES 111TH CONVENTION, NEW YORK, NY, USA, 2001 SEPTEMBER 21–24 5 

The aspiration is problematic since in singing performance its 
dynamics are more significant. This causes the aspiration to be 
easily confused with a fricative. Moreover, different singers not 
only sing different but also, as in speech, pronounce different. To 
take into account these different pronunciations we modify the 
FSN to add parallel paths as shown in figure 7. 

 
Fig 7 Representation of a phonetic equivalence in the FSN 

The alignment resulting from the Viterbi decoding will follow the 
most likely path, so it will decide whether it is more probable that 
phoneme [a] or phoneme [œ] was sung. 
 
The ASR has been adapted to handle musical information and 
works with very low delay [Loscos, Cano, Bonada, 1999] since the 
system cannot wait for a phoneme to be finished before it is 
recognized. Moreover, a phoneme has to be assigned to each 
frame. This would be a rather impossible/impractical situation if 
the lyrics of the song were not known beforehand. This constraint 
reduces the search problem: all the possible paths are restricted to 
just one string of phonemes, with several possible pronunciations. 
The problem is cut down to the question of locating the phoneme 
in the lyrics and placing the start and end points. 
 
Besides knowing the lyrics, music information is also available. 
The user is singing along with the music, and hopefully according 
to a tempo and melody already specified in the score. Thus, we 
also know the time at which a phoneme is supposed to be sung, its 
approximate duration, its associated pitch, etc. All this information 
is used to improve the performance of the recognizer and also to 
allow resynchronization, for example in the case that the singer 
skipped a part of the song. The tempo information, for example, is 
used to modify the output Viterbi probabilities by the function 
shown in figure 8. 
 
ts is the time at which the phoneme happens in the singer 
performance, tm is the time at which this phoneme happens in the 
song score, parameters a and b are tempo and duration dependent, 
and alpha has a very low value, nearly null. This function can be 
defined differently for the case in which the singer comes from 
silence and attacks the beginning of a note/word, and for the case 
where the singer has already started a note/word, due to the very 
different behaviors of these two situations. 
 

1

f(|ts-tm|)

|ts-tm|
alpha

a b  
Fig 8 Function of the factor applied to the Viterbi probability 

 

3.3 The impersonator singing voice model 
 
The basic SMS analysis results in a simple parameterization 
appropriate for describing the inner properties of a sound, namely 
the instantaneous frequency, the amplitude and phase of each 
partial and the instantaneous spectral characteristics of the residual 
signal. Still, there are other useful instantaneous attributes that give 
a higher-level abstraction of the sound characteristics. These 
attributes are calculated at each analysis frame from the output of 
the basic sinusoidal plus residual analysis. [Serra, Bonada, 98] 
 
The attributes we use for this application are: the amplitude of 
sinusoidal component, the amplitude of residual component, the 
fundamental frequency, the spectral shape of sinusoidal 
component, and the spectral shape of the residual component. 
These attributes are extracted from the frame data, leaving a 
normalized frame. This way, we can morph by interpolating the 
high-level attributes and later add these back to the synthesis 
frame. By carrying out the morph at the high-level plane, we have 
a more intuitive and musical control of the process and we 
minimize crossed effects between interpolations of different 
attributes.   
 
The amplitude of the sinusoidal component is calculated as the 
sum of the amplitudes of all harmonics of the current frame 
expressed in dB, 


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10log20                         (4) 

 
where ai is the linear amplitude of the ith harmonic and I is the total 
number of harmonics found in the current frame. 
 
The amplitude of the residual component is calculated as the sum 
of the absolute values of the residual of the current frame 
expressed in dB. This amplitude can also be computed by adding 
the frequency samples of the corresponding magnitude spectrum, 
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where xR(n) is the residual sound, M is the size of the frame,  xR(k) 
is the spectrum of the residual sound, and N is the size of the 
magnitude spectrum. 
 
The fundamental frequency is defined as the frequency that best 
explains the harmonics of the current frame. This can be computed 
by taking the weighted average of all the normalized harmonic 
frequencies,
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where fi is the frequency of the ith harmonic. A more complete 
discussion on the issue of fundamental frequency in the context of 
SMS can be found in [Cano, 98]. 
 
The spectral shape of the sinusoidal component is expressed as an 
envelope described by the amplitudes and frequencies of the 
harmonics, or i ts approximation, 
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This set of points that define the spectral shape envelope is joined 
with a third order spline interpolation instead of linear 
interpolation. Spline interpolation gives a better approximation of 
the resonant character of the spectrum of the singing voice.  
 
For the sinusoidal component, we also store the phase envelope at 
the beginning of each period. This envelope is computed applying 
a time shift depending of the pitch found at each frame. This phase 
envelope is the one responsible of preserving the phase alignment. 
 
However, whenever the spectral shape is interpolated, and the 
morph factor is set around 50%, the resulting spectral shape is 
smoothed and looses much of its timbre characteristics. This 
problem can be solved if we include anchor points (i.e. resonances) 
in the spectral shape model and we take them into account in the 
interpolation step as shown in figure 9. 
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Fig 9 Anchor points in the sinusoidal spectral shapes 

 
By using anchor points we can preserve the maximums and the 
valleys of the spectrum so that when going from one timbre to 
another, resonances would not appear and disappear but move 
from one frequency to another.  

 
The spectral shape of the residual component is expressed as an 
approximation of the magnitude spectrum of the residual sound at 
the current frame. A simple function is computed as the line 
segment approximation of the spectrum, 

 { } ( )[ ]
1 2, , , , , max

N Mq R
k

Rshape e e e e X qM k= = +K K   (8) 

 
where k=-M/2,-M/2+1,…,…,M/2-1, and M is the number of 
frequency samples used for each calculation of a local maximum.  
 
For both the sinusoidal and residual components the magnitudes of 
the spectral shape envelope are interpolated whereas the phases are 
always taken either from the user or the target but never 
interpolated. 
 
3.4 Discussion 
 
In this section we have presented a singing voice morphing system. 
The final purpose of the system was to make an average singer 
sing any song like any professional singer. However the system 
has some weaknesses that arise from its specifications and disallow 
its practical commercialization.  
 
At this point of time, in order for a user to sing a song like 
somebody else's voice, we need to get before hand a dry recording 
of the target singer singing the selected song. Since it is not easy to 
afford dry recordings of the most probable candidates to be chosen 

as targets (i.e. Frank Sinatra or Aretha Franklin), in this project we 
have used recordings of professional impersonators. Anyhow, the 
requirement pointed out here makes the system by no means 
efficient. 
 
The inefficiency comes from two main intractable hitches. First, it 
entails an unreachable cost to have one popular singers or even his 
impersonator recording in a studio all the songs available in a 
karaoke database. Second, we need to analyze and store before 
hand the targets performances and this process generates such a 
huge amount of data it turns the database into something 
impossible to handle. 
 
There are many solutions that can be thought to solve these 
problems. For example, we could think of a system in which the 
user could only sing Elvis's songs like Elvis, and would not allow 
possibilities such as singing "Walk like an Egyptian" like John 
Lennon. This would not only reduce the recording requirements 
but also would open the possibility of coming to an agreement with 
some record labels in order to get dry recordings of their most 
well-known singers. Also all sorts of data-compression techniques 
could be applied to the system to reduce the amount of data stored 
in the database. 
 
Anyway, our future plan does not consider any of the mentioned 
propositions to be the one to concentrate on. We believe the 
solution implies accomplishing a more flexible system in which we 
would work with singer models rather than singer performances. 
The idea is to record the target singer singing all possible phonetics 
at different registers, with different intensities, in different emotion 
contexts, etcetera, sampling this way the space of all the possible 
phonetic and musical contexts. The analysis of these recordings 
would be the basis of a singer model from which we could later 
synthesize , out of the score and the lyrics of a song, a possible 
performance of the singer modeled. That is what brought us to the 
singing synthesizer application. 
 
4. THE SINGING VOICE SYNTHESIZER 
 
We have developed a source-filter type singing synthesizer 
application based on the sinusoidal plus residual decomposition of 
the sound. This system generates a performance of an artificial 
singer out of the musical score and the phonetic transcription of a 
song.  
 
Mimicking the performance of a singer using computer synthesis 
tools is a very ambitious and complex goal and there are many 
parameters at different levels that affect the naturalness of the 
resulting synthesized sound. The system we present takes care of it 
at two main levels: the expressiveness level and the synthesis level. 
The expressiveness level is the one in charge of reproducing the 
musical and emotional expressions. The synthesis level is in charge 
of reproducing the generation of a human singing voice signal. 
This synthesis level is the one we present next. 
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Fig 10 Frequency domain implementation of the EpR model 
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In figure 10 we can see the general diagram of our singing voice 
synthesizer. The inputs of the system are the lyrics (the phonetic 
transcription), the melody to be sung and optionally some 
expression parameters. On the other hand, the system is also feed 
by a singer database. This database holds the voice characteristics 
and is created from the analysis of singer's recordings. 
 
4.1 The EpR voice model 
 
Our singing voice synthesizer is based on an extension of the well 
known source/filter approach [Childers, 94] we call EpR 
(Excitation plus Resonances). The excitation can be either voiced, 
unvoiced, or a combination of both. Besides, in the case of a 
voiced phonation we model a harmonic source plus a residual 
source. In figure 11 we can see a graphic with the three types of 
excitation generated in our system and the corresponding filters. 
For the case of a voiced phonation, the filter applied to each 
excitation tries to mimic the singing voice spectral shape using a 
frequency domain filtering function that can be decomposed into 
two filters in cascade: an exponential decay curve plus several 
resonances. After filtering, the voiced residual excitation needs to 
be transposed because it is a filtered SMS residual  recording and 

has traces of the original pitch. Otherwise, in the case of an 
unvoiced phonation, we apply a filter that just changes the tilt 
curve and the gain of the STFT of an original recording. 
 
4.1.1 The EpR excitation 
 
Voiced harmonic excitation 
The inputs that control the voiced harmonic excitation generation 
are the desired pitch and gain envelopes. The resulting excitation 
signal is obtained by generating a delta train in the time domain 
thus allowing to achieve period resolution and to use some simple 
excitation templates. This can be useful to generate jitter or 
different types of vocal disorders. This delta train can be seen as a 
glottal source wave previous to a convolution with the 
differentiated glottal pulse.  
 
A fractional delay filter is needed to position the excitation deltas 
between samples, since we have to go beyond the sampling rate 
resolution. The filter is implemented using a windowed sinc like 
function situated at each pulse location with the offset subtracted 
[Smith, Gosset, 1984]. Finally the windowing and the fft are 

applied. The result is a spectrum approximately flat that contains 
the harmonics approximately synchronized in phase.  If  no 
excitation template is applied, the spectrum will be perfectly flat 
and the phase synchronization precise. 

 
Voiced residual excitation 
The voiced residual excitation is obtained from the residual of the 
SMS analysis of a long steady state vowel recorded from a real 
singer. The SMS residual is inverse-filtered by its short-time 
average spectral shape envelope to get an approximately flat 
excitation magnitude spectrum. 

 
Fig 13 The voiced residual excitation 
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Unvoiced excitation 
The excitation in the unvoiced parts is left unmodeled, using 
directly the original recording of a singer's performance.  
 
4.1.2 The EpR filter 
 
The EpR filter can be decomposed in two cascade filters. The first 
of them models the differentiated glottal pulse frequency response, 
and the second the vocal tract (resonance filter). 
 
The EpR source filter 
The EpR source is modeled as a frequency domain curve and one 
source resonance applied to the input frequency domain flat 
excitation described in the previous section. This source curve is 
defined by a gain and an exponential decay as follows: 

 ( )· 1Slope f
dB dB dBSource Gain SlopeDepth e= + −  (9) 

This curve is obtained from an approximation to the harmonic 
spectral shape (HSS) determined by the harmonics identified in the 
SMS analysis 

 ( ) ( )[ ]0.. ,20logi n i iHSS f envelope f a==  (10) 

where i  is the index of the harmonic, n is the number of 
harmonics, if and ia  are the frequency and amplitude of the thi  
harmonic.  

Fig 14 The EpR source curve 

On top of the source curve, we add a second resonance in order to 
model the low frequency content of the spectrum below the first 
formant. This resonance affects the synthesis in a different way 
than the vocal tract resonances, as will be explained later. 

Fig 15 The EpR source resonance  
 
The source resonance is modeled as a symmetric second order 
filter (based on the Klatt formant synthesizer [Klatt, 1980]) with 
center frequency F, bandwidth Bw and linear amplitude Amp. The 
transfer function of the resonance R(f) can be expressed as follows  
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The amplitude parameter (Amp) is relative to the source curve (a 
value of 1 means the resonance maximum is just over the source 
curve).  
 
The EpR vocal tract filter  
The vocal tract is modeled by a vector of resonances plus a 
differential spectral shape envelope. It can be understood as an 
approximation to the vocal tract filter. These filter resonances are 
modeled in the same way as the source resonance (see eq. 11), 
where the lower frequency resonances are somewhat equivalent to 
the vocal tract formants.  

Fig 16 The EpR filter resonances 

The EpR filters for voiced harmonic and residual excitations are 
basically the same, but just differ in the gain and slope depth 
parameters. This approximation has been obtained after comparing 
the harmonic and residual spectral shape of several SMS analysis 
of singer recordings. Figure 17 shows these differences. 

Fig 17 Differences between harmonic and residual EpR filters 

 
The differential spectral shape envelope actually stores the 
differences (in dB) between the ideal EpR model (iEpR) and the 
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real harmonic spectral shape (HSS) of a singer's performance. We 
calculate it as a 30 Hz equidistant step envelope. 

 

 ( ) [ ]0.. 30 , (30 ) (30 )i dB dBDSS f envelope i HSS i iEpR i== − (12) 

 
The EpR phase alignment 
The phase alignment of the harmonics at the beginning of each 
period is obtained from the EpR spectral phase envelope. A time 
shift is applied just before the synthesis, in order to get the actual 
phase envelope at the synthesis time (usually it will not match the 
beginning of the period). This phase alignment is then added to the 
voiced harmonic excitation spectrum phase envelope. The EpR 
spectral phase model states that each vocal tract resonance 
produces a linear shift of π  on the flat phase envelope with a 
bandwidth depending on the estimated resonance bandwidth. This 
phase model is especially important for the intelligibility and in 
order to get more natural low pitch male voices. 

  

 
The EpR filter implementation 
The EpR filter is implemented in the frequency domain. The input 
is the spectrum that results out from the voiced harmonic excitation 
or from the voiced residual excitation. Both inputs are supposed to 
be approximately flat spectrums, so we just need to add the EpR 
resonances, the source curve and the differential spectral shape to 
the amplitude spectrum. In the case of the voiced harmonic 
excitation we also need to add the EpR phase alignment to the 
phase spectrum. 
 
For each frequency bin we have to compute the value of the EpR 
filter. This implies a considerable computational cost, because we 
have to calculate the value of all the resonances. However, we can 
optimize this process by assuming that the value of the sum of all 
the resonances is equal to the maximum amplitude (dB) of all the 
filter and excitation resonances (over the source curve).  Then we 
can even do better by only using the two neighbors' resonances for 
each frequency bin. This is not a low-quality approximation of the 
original method because the differential spectral shape envelope 
takes care of all the differences between the model and the real 
spectrum. 
 
If we want to avoid the time domain voiced excitation, especially 
because of the computational cost of the fractional delay and the 
FFT, we can change it to be directly generated in the frequency 
domain. From the pitch and gain input we can generate a train of 
deltas in frequency domain (sinusoids) that will be convolved with 
the transform of the synthesis window and then synthesized with 
the standard frame based SMS synthesis, using  the IFFT and 
overlap-add method. However the voice quality may suffer some 

degradation due to the fact that the sinusoids are assumed to have 
constant amplitude and frequency along the frame duration. 

The EpR filter transformation 
We can transform the EpR by changing its parameters: 
 

• excitation gain, slope and slope depth 
• frequency, amplitude and bandwidth of the resonances 

 
However, we have to take into account that the differential spectral 
shape is related to the resonances position. Therefore, if we change 
the frequency of the resonances we should stretch or compress the 
differential spectral shape envelope according to the resonances 
frequency change (using the resonances center frequency as anchor 
points). 
 
4.2 The singer database 
 
The voice characteristics of a real singer are stored in a database. 
About one hour of recording is needed in order to build one singer 
database. All the audio data must be recorded in a dry and 
noiseless environment. The singer database is divided in two parts: 
timbre DB and voice DB. 
 
4.2.1 The Timbre DB 
 
The timbre DB stores the voice model (EpR) for each of the voiced 
phonemes. For each of these, we store several samples at different 
pitches and at different dynamics. When a phoneme with 
intermediate pitch or dynamics is required, the EpR parameters of 
the neighboring samples are interpolated. 
 
4.2.2 The Voice DB 
 
The voice DB represents and stores the time varying characteristics 
of the voice. It is divided in several categories: steady states, 
phonetic articulations, note attacks, note-to-note articulations, note 
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releases and vibratos. It is possible to have different templates at 
different pitches for each of them. 
 
Steady states 
There are steady states stored for each of the phonemes. They 
model the behavior of the stationary part. To do so, they store the 
time-varying evolution of the EpR parameters (if the phoneme is 
voiced) and the SMS residual along the steady state.  
 
Phonetic articulations 
All the articulations are segmented in two regions. If the regions 
are different in terms of voiceness, each of the regions is analyzed 
with different specific parameters. Otherwise, if both regions are 
voiced or unvoiced the segmentation is used in synthesis to know 
the onset of the articulation. The behavior of the EpR model is 
estimated only in the voiced part regions.  
 
Note attacks, note-to-notes and note releases 
They model the excitation behavior along their duration. They are 
phoneme independent since they do not model the EpR changes. 
They can be organized into different musical evocative 
classification. 
 
Vibratos 
They define the behavior of the source changes along a vibrato. In 
particular, they track the pitch, gain and source curve changes. 
Each of them is segmented into attack, body and release. There can 
be different template labels according to some musical or 
expression classification.  
 
4.3 Results 
 
A first prototype of the singing voice synthesizer has been 
implemented. In order to evaluate the prototype, the synthesis 
obtained from our system was compared with the synthesis 
obtained from commercial singing synthesizers. Although the 
synthesis obtained was not comparable with a real singer 
performance, it resulted more natural than the commercial software 
synthesis.    
 
However, the system presents important drawbacks. Unnatural 
artifacts appear in the synthesis, especially in the voiced 
consonants phonemes. These artifacts emerge from the fact our 
synthesis engine is built on top of a sinusoidal plus residual 
decomposition. For these phonemes, it is difficult to determine 
what should be included in the sinusoidal component and what not. 
The low register timbres of a male voice suffer from unnaturalness. 
This problem may come from the simplicity of the EpR phase 
model. Sharp attacks, specially the ones belonging to plosive 
phonemes are smeared. This is due to the fact the sinusoidal model 
can not deal with unstable partials in an accurate manner. Some 
solutions to this problem are proposed in [Fitz, Haken, 
Christensen, 2000; Verma, Meng, 2000].  
 
So there is room for improvement in every step of the system but 
presuming naturalness is the essential feature we take into account 
whenever we evaluate the quality of a singing synthesizer, results 
are promising and prove the suitability of our approach. 
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Abstract 

This paper presents an approach to the modeling of the singing voice with a particular emphasis on the 
naturalness of the resulting synthetic voice. The underlying analysis/synthesis technique is based on the 
Spectral Modeling Synthesis (SMS) and a newly developed Excitation plus Resonance (EpR) model. With 
this approach a complete singing voice synthesizer is developed that generates a vocal melody out of the 
score and the phonetic transcription of a song. 
 

 

1 Introduction 
The human voice is clearly the most flexible and fascinating 
of the musical instruments. All through the history of music, 
it has attracted the attention of composers and has captivated 
audiences. Already organ builders had the dream of 
imitating as faithfully as possible the sound of human voice, 
as we can hear in the Vox Humana stop in some organs. 
With the use of the new digital technologies and our current 
understanding of the voice, the possibility of synthesizing a 
natural singing voice has become more feasible. 
 
The work presented here is a continuation of an automatic 
singing voice impersonator system for karaoke [Cano, 
Loscos, Bonada, de Boer, Serra, 2000]. That system 
morphed the voice attributes of a user (such as pitch, timbre, 
vibrato and articulations) with the ones from a prerecorded 
singer in real time.  
 
The focus of our current work is to generate a performance 
of an artificial singer out of the musical score (melody) and 
the phonetic transcription (lyrics) of a song. To achieve such 
goal we have defined a quality evaluation criteria which 
takes naturalness as the fundamental consideration.  

2 Introduction to Singing Voice 
Synthesis  

Singing voice synthesis has been an active research field for 
almost fifty years [Cook, 1996]. Traditionally, the voice has 
been modeled as a linear system consisting of one or more 

sound sources and a set of filters which shape the spectrum 
of these sources. The sound source can be a periodic signal, 
a noisy signal, or a mixture of both, and the set of filters can 
be regarded as the vocal tract filters. The resulting spectrum 
is mainly characterized by resonant peaks called formants. 
Thus a vocal synthesizer has to allow the control of the 
resonant peaks of the spectrum and of the source parameters. 
 
With regard to the synthesis models used in singing voice 
synthesis, they can be classified into two groups: Spectral 
models, which can be viewed as based on perceptual 
mechanisms, and Physical models, which can be viewed as 
based on production mechanisms. Any of these two models 
might be suitable depending on the specific requirements of 
the application, or they may even be combined to take 
advantage of both approaches.   
 
The main benefit of using Physical models is that the 
parameters of the model are closely related to the ones a 
singer uses to control his/her own vocal system. As such, 
some knowledge of the real-world mechanism can be 
introduced in the design. The model itself can provide 
intuitive parameters if it is constructed with the intention 
that it sufficiently matches the physical system. Conversely, 
such a system usually has a large number of parameters. 
This turns the mapping of the controls of the production 
mechanism to the final output, and so to the listener’s 
perceived quality, into something not trivial. 
 
On the other hand, Spectral models are closely related to 
some aspects of the human perceptual mechanism. Changes 



in the parameters of a spectral model can be more easily 
mapped to a change of sensation in the listener. Yet 
parameter spaces yielded by these systems are not 
necessarily the most natural ones for manipulation.  The 
methods based on spectral models include Frequency 
Modulation, FOFs, Vocoder and sinusoidal models. 
Acoustic tube models are an example of physical models. 
Linear Predictive Coding (LPC) and formant synthesizers 
can be considered as spectral models and also as pseudo-
physical, not strictly physical because of the source/filter 
decomposition they use. 
 
Some commercial software products for singing synthesis 
have been released in recent years. For example, 
Vocalwriter [VOCALWRITER, 2000] for the English 
language and SmartTalk 3.0 for the Japanese language have 
to be mentioned [SMARTTALK, 2000]. However, the 
systems developed until now are far from providing enough 
quality to meet the practical requirements of  real-world 
commercial applications. 
 
The goal of a singing voice synthesis indistinguishable from 
a real human voice is still remote. Thus, there is a lot of 
room for improvement in this research area, and naturalness 
is one of the keywords for the work to be done.  Moreover, 
it seems that one of the main issues behind singing voice 
synthesis is to offer not only quality but flexible and 
musically meaningful controls over the vocal sound. In that 
sense, we may think of applications where impossible 
singing voices can be synthesized or where existing voices 
can be enhanced. 
 
In the next section we present the EpR voice model that we 
have developed and in the following ones we describe the 
complete voice synthesis system built around the model. 

3 The EpR voice model 
Our singing voice synthesizer is based on an extension of 
the well known source/filter approach [Childers, 1994] that 
we call Excitation plus Resonance (EpR). This EpR model 
is built on top of the sinusoidal plus residual representation 
obtained by the SMS analysis [Serra, 1990]. Thus the model 
parameters are extracted from real voice sounds that have 
been analyzed with SMS and in the synthesis stage the 
model parameters are converted to SMS parameters, from 
which the output sound is obtained. In this article we 
concentrate on the EpR model part of the method developed. 
 
Figure 1 shows a diagram with the three types of excitation 
used and the corresponding filters. For the case of a voiced 
phonation, the filter applied to each excitation generates the 
appropriate spectral shape by using a frequency domain 
filtering function that is decomposed into two cascaded 
operations: an exponential decay curve plus several 
resonances. After filtering, the voiced residual excitation 

needs to be transposed to the synthesis pitch because it is a 
filtered SMS residual recording and has traces of the 
original pitch. Otherwise, in the case of an unvoiced 
phonation, we apply a filter that just changes the tilt curve 
and the gain of the STFT (Short-time Fourier Transform) of 
an original recording. 

3.1 The EpR excitation 
Voiced harmonic excitation 
The inputs that control the voiced harmonic excitation 
generation are the desired pitch and gain envelopes. The 
actual excitation signal can either be generated in the time 
or the frequency domains. The most flexible excitation is 
obtained by generating a delta train in the time domain, thus 
allowing to achieve the best period resolution and to use 
some simple excitation templates. This can also be useful to 
generate jitter or different types of vocal disorders. This 
delta train can be seen as a glottal source wave previous to a 
convolution with the differentiated glottal pulse.  
 
A fractional delay filter is needed to position the excitation 
deltas between samples, since we have to go beyond the 
sampling rate resolution. The filter is implemented using a 
windowed sinc-like function situated at each pulse location 
with the offset subtracted [Smith, Gosset, 1984]. Then the 
signal is windowed and the FFT computed. The result is a 
spectrum approximately flat that contains the harmonics 
approximately synchronized in phase.  
 
When the harmonic excitation is generated directly is the 
frequency domain, which is good enough for many voiced 
sounds, the excitation spectrum will be perfectly flat and the 
phase synchronization precise. 
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Figure 1. The EpR voice model. 
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Voiced residual excitation 
The voiced residual excitation is obtained from the residual 
of the SMS analysis of a long steady state vowel recorded 
from a real singer. The SMS residual is then inverse-filtered 
by its short-time average spectral shape envelope to get an 
approximately flat excitation magnitude spectrum. 
 
Unvoiced excitation 
The excitation in the unvoiced parts of the sounds uses 
directly the original recording of a singer's performance.  

3.2 The EpR filter 
The EpR filter is the combination of two cascaded filters. 
The first of them models the differentiated glottal pulse 
frequency response, and the second the vocal tract 
(resonance filter). 

 
 

The EpR source filter 
The EpR source filter is modeled as a frequency domain 
curve and one source resonance applied to the input 
frequency domain flat excitation described in the previous 
section. 

 
This source curve is defined by a gain and an exponential 
decay as follows: 

( )· 1
dB dB dB

Slope fSource Gain SlopeDepth e= + −  (1) 
 

This curve is obtained from an approximation to the 
harmonic spectral shape (HSS) determined by the harmonics 
identified in the SMS analysis 
 
 ( ) ( )[ ]

0..
, 20 log

i n i i
HSS f envelope f a

=
=  (2) 

where i is the index of the harmonic, n is the number of 
harmonics, fi and ai are the frequency and amplitude of the 
ith harmonic.  
 
On top of the source curve, we add a second resonance in 
order to model the low frequency content of the spectrum 
below the first formant. This resonance affects the synthesis 
in a different way than the vocal tract resonances, as will be 
explained later. 
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Figure 2. The EpR voiced harmonic excitation. 

Figure 3. The voiced residual excitation. 
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The source resonance is modeled as a symmetric second 
order filter (based on the Klatt formant synthesizer [Klatt, 
1980]) with center frequency F, bandwidth Bw and linear 
amplitude Amp. The transfer function of the resonance R(f) 
can be expressed as follows: 
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The amplitude parameter (Amp) is relative to the source 
curve (a value of 1 means the resonance maximum is just 
over the source curve).  

The EpR vocal tract filter  
The vocal tract is modeled by a collection of resonances 
plus a differential spectral shape envelope. These filter 
resonances are modeled in the same way as the source 
resonance, where the lower frequency resonances are 
somewhat equivalent to the vocal tract formants.  

The EpR filters for voiced harmonic and residual excitations 
are basically the same, they just differ in the gain and slope 
depth parameters. This approximation has been obtained 

after comparing the harmonic and residual spectral shape of 
several SMS analysis of singer recordings. Figure 7 shows 
these differences. 

The differential spectral shape envelope actually stores the 
differences (in dB) between the ideal EpR model (iEpR) and 
the real harmonic spectral shape (HSS) of a singer's 
performance. We calculate it as a 30 Hz equidistant step 
envelope. 
 

( ) [ ]0.. 30 , (30 ) (30 )i dB dBDSS f envelope i HSS i iEpR i== −  (4) 

 
The EpR phase alignment 
The phase alignment of the harmonics at the beginning of 
each period is obtained from the EpR spectral phase 
envelope. A time shift is applied just before the synthesis, in 
order to get the actual phase envelope (usually it will not 
match the beginning of the period). This phase alignment is 
then added to the voiced harmonic excitation spectrum 
phase envelope. The EpR spectral phase model states that 
each vocal tract resonance produces a linear shift of π  on 
the flat phase envelope with a bandwidth depending on the 
estimated resonance bandwidth. This phase model is 
especially important for the intelligibility and in order to get 
more natural low pitched male voices. 

 
The EpR filter implementation 
The EpR filters are implemented in the frequency domain. 
The input is the spectrum that results from the voiced 
harmonic excitation or from the voiced residual excitation. 
Both inputs are approximately flat spectrums, so we just 
need to add the EpR resonances, the source curve and the 
differential spectral shape to the amplitude spectrum. In the 

frequency 

Amp voiced harmonic ideal EpR(f) 

voiced residual ideal EpR(f) 
voiced harmonic source curve 

voiced residual source curve 

voiced harmonic 

voiced residual 

Figure 6. The EpR filter resonances. 

Gain  

frequency 

Amp 
source resonance 

Figure 5. The EpR source resonance. 

Gain  

frequency 

Amp 
ideal EpR(f) 

frequency 

Amp 

filter resonances 

Figure 7. Differences between harmonic and residual 
EpR filters. 



case of the voiced harmonic excitation we also need to add 
the EpR phase alignment to the phase spectrum. 
 
For each frequency bin we have to compute the value of the 
EpR filter. This implies a considerable computational cost, 
because we have to calculate the value of all the resonances. 
However, we can optimize this process by assuming that the 
value of the sum of all the resonances is equal to the 
maximum amplitude (dB) of the whole filter and excitation 
resonances (over the source curve) at that bin.  Then we can 
even do better by only using the two neighboring resonances 
for each frequency bin. This is not a low-quality 
approximation of the original method because the 
differential spectral shape envelope, which is always kept,  
takes care of all the differences between the model and the 
real spectrum. 

If we want to avoid the generation of the time domain 
voiced excitation, especially because of the computational 
cost of the fractional delay and the FFT, we can generate it 
in the frequency domain. From the pitch and gain input we 
can generate a train of deltas in frequency domain 
(sinusoids) that will be convolved with the transform of the 
synthesis window and then synthesized with the standard 
frame based SMS synthesis, using  the IFFT and overlap-
add method. However the voice quality may suffer some 
degradation due to the fact that the sinusoids are assumed to 
have constant amplitude and frequency throughout the 
frame duration. 
 
The EpR filter transformation 
We can transform the EpR by changing its parameters: 
excitation gain, slope and slope depth frequency, amplitude 
and bandwidth of the resonances. However, we have to take 
into account that the differential spectral shape is related to 
the resonances position. Therefore, if we change the 
frequency of the resonances we should stretch or compress 
the differential spectral shape envelope according to the 

resonances frequency change (using the resonances center 
frequency as anchor points). 

 

4 System Overview 
From the synthesis model presented in the previous section 
we have developed a complete singing voice synthesizer. 
The inputs to the system are the melody and the lyrics (in 
English or Japanese language), with its phonetic 
transcription in SAMPA format [SAMPA, 2000]. The 
system is able to read standard MIDI files as well as 
METRIX files (an ascii text file format designed as a sound 
synthesis control language [Amatriain, 1998]). The output 
of the system is a wave file with the synthesized singing 
voice. 
 
The system is composed of two modules. The first one, 
Expressiveness module, controls the performance of the 
synthetic voice giving some expressiveness and naturalness 
to the input melody. The output of the Expressiveness 
module is a detailed musical score with all the needed 
features to characterize an expressive performance of a 
singer, which we call MicroScore. The second module, 
Synthesis module, is in charge of the actual synthesis 
process and uses a database containing the voice and timbre 
characteristics of a real singer. The analyzed voice data of 

Amplitude Phase 

Linear to dB 

Source 
Slope (dB) + 

Source 
Resonance 

+ 
Vocal tract 
Resonances 

Linear 
to 
dB 

+ 

+ 

Amplitude Phase 

dB to Linear 

ER F1 F2 F3 

ER F1 F2 F3 

Differential 
Spectral Shape 

(dB) + 

ER F1 F2 F3 

Frequency 

Frequency 

Frequency 

Frequency 

Gain

Gain

Gain 

Phase 

Voiced 
excitation spectrum 

Voice 
spectrum 

Figure 9. Frequency domain implementation of the EpR 
model. 

Figure 8. Phase alignment of the EpR resonances. 



the database is the result of the SMS analysis and the EpR 
modelization.  
 

5 Musical Controls 
To achieve naturalness on the output voice, the system 
defines a set of musically meaningful controls that are either 
related to individual notes (note parameters) or to the whole 
song (general control parameters). With these parameters 
the system attempts to cover as many situations as possible 
in a singing performance. In addition to the common 
musical parameters (pitch, duration and dynamics), the 
system uses other parameters to control vocal characteristics 
such as attack, release, vibrato, articulation between notes, 
etc. The specification of all these controls has been thought 
of with the end-user in mind, so as to be as easy as possible 
to control. 
 
The table below shows a list of the note parameters as well 
as the general controls. These parameters are defined in the 
MicroScore structure: 
 

Note parameters Observations 
Pitch Midi number (0-127) or G#3 
Begin Time of the note, in milliseconds 
Duration of the note, in milliseconds 
Loudness Normalized value [0, 1] 
Lyrics Syllable associate in a note 
Dynamic Envelope (time, normalized value)  
Pitch Envelope (time, cents) 
Attack Type {normal, sharp, soft, high} 
Attack Duration Normalized value [0, 1] 
Release Type {normal, soft, high} 
Release Duration Normalized value [0, 1] 

Transition Type {legato, staccato, marcato, 
portamento, glissando} 

Transition Duration Normalized value [0, 1] 
Vibrato Type --- 
Vibrato Depth Envelope (time, cents) 
Vibrato Rate Envelope (time, Hz) 
Opening of vowels Envelope 
Hoarseness Envelope 
Whisper Envelope 
  
Control parameters Observations 
Singer Type Change singer of the DB 
Gender Type Change gender (male/female) 
Transposition To transpose input melody 

5.1 Expressiveness Controls 
In order to obtain a good synthesis, it is essential to take into 
account the high-level expressive controls used by real 
performers. In our system, this is done by the 

expressiveness module, which is in charge of applying 
certain deviations to the input score with the purpose of 
making it more natural and expressive.  
 
Following the research made by Sundberg and Friberg on 
musical expressiveness [Friberg, 1991], we have 
implemented a very basic rule-based system for expressive 
control. These rules were designed as a general tool for any 
kind of instruments, and need adaptations and proper tuning 
to be suitable for the singing voice [Berndtsson, 1996]. So 
far, only a few rules have been successfully tested in our 
system. We still need more experimentation to include rules 
specific to  voice parameters such as vibrato, breathiness, 
hoarseness or special kinds of attack. 
 
An important contribution to the expressive control of sound 
synthesis systems has been made by Manfred Clynes 
[Clynes, 1987]. In view of the fact that the human ear is 
specially sensitive to the amplitude contour of a note, 
Clynes has developed a mechanism to shape individually 
the amplitude of each note to give more authenticity to the 
synthesis. In this method, called Predictive Amplitude 
Shaping, there is a global amplitude contour for every note 
within a musical fragment which is slightly modified for 
each individual note according to the pitch interval to the 
next note. This creates a sense of continuity and phrasing. 
We have implemented and tested this technique in our 
system, adapting the parametric controls to the human voice, 
with excellent results. 
 
The pitch contour of the singing voice has to be also 
carefully generated in order to obtain a faithful synthesis. So 
we have designed a mathematical model for reproducing the 
smooth pitch transitions between notes. This model allows 
us to control the transition duration and the tuning 
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deviations at the end and the beginning of the notes in 
accordance with the musical context. In the note to note 
transitions, the synchronization between phonetics and 
musical rhythm is assured by reaching always the target 
pitch at the onset of the vowel of each syllable.    
 

6 Singer Database 
The creation of the database is one of the critical steps in 
most speech and singing voice synthesizers. There are no 
singing voice databases available, thus we recorded our own 
samples by first defining a set of musical exercises to be 
performed by a singer (i.e. different type of attacks, releases, 
note to note transitions, etc). Needless to say, the voice had 
to be recorded in a dry and noiseless environment to get the 
best possible SMS analysis.  
 
In terms of what information is needed to be stored in the 
database, we can either attempt to record as many samples 
as possible (all possible pitches, attacks, …) or start from 
fewer samples and obtain the rest through transformations 
from the recorded/analyzed ones. This second approach 
gives more flexibility to the system at the possible expense 
of sound quality. Our approach has been this second one. 
 
In order to choose the most useful English phonetic 
articulations to be included in the database, we ordered all 
possible articulations according to its frequency of use in 
actual songs. A statistical analysis was made from 76000 
English songs, with close to three million words. With this 
information, now we know how many articulations are 
needed to cover a fixed percentage of all the possible 
articulations. 
 

Number of articulations Covered percentage 
71 50 % 

308 90 % 
395 95 % 
573 99 % 
785 99.9 % 

1129 100 % 
 
The database is organized into two parts; timbre and voice 
DB. 

6.1 Timbre DB 
The timbre database stores the voice model (EpR) for each 
of the voiced phonemes. For each of these, we store several 
samples at different pitches and at different dynamics. When 
a phoneme with intermediate pitch or dynamics is required, 
the EpR parameters of the neighboring samples are 
interpolated to synthesize the phoneme at the desired pitch. 

6.2 Voice DB 
The voice database includes analysis data from the time 
varying characteristics of the voice in the form of templates. 
It is divided into several categories: steady states, phonetic 
articulations, note attacks, note-to-note articulations, note 
releases and vibratos. It is also possible to have different 
templates for the different pitches of the same type of sound. 

Steady states 
There are steady states stored for each of the phonemes. 
They model the behavior of the stationary part of a note. To 
do so, we store the time-varying evolution of the EpR 
parameters (if the phoneme is voiced) and the SMS residual 
along the steady state.  

Phonetic articulations 
All the articulations are segmented in two regions, the end 
of the first sound and the beginning of the next. If the 
regions are different in terms of voiceness, each region is 
analyzed with different specific parameters. Otherwise, if 
both regions are voiced or unvoiced the segmentation is 
used in synthesis to control the onset of the articulation. The 
EpR parameters are estimated only in the voiced part 
regions.  

Vibratos 
The vibrato templates characterize the vibrato 
characteristics by  keeping the behavior of the voice 
excitation parameters. In particular, the fundamental 
frequency evolution, gain and source curve changes. Each 
time-varying function is segmented into attack, body and 
release. There can be different template labels according to 
some musical or expression classifications. 

Note attacks, note transitions and note releases 
These templates model the amplitude and fundamental 
frequency evolution at the note boundaries. They can easily 
be represented by a model (such as the one proposed for the 
amplitude by  Clynes [Clynes, 1987]) which will give a 
smoother time evolution of the synthetic vocal sound. These 
templates, or models, are phoneme independent since they 
do not model the EpR changes. They can be organized into 
different expression categories. 
 

7 Conclusions 
With the purpose of demonstrating the potential of our 
system, two small databases with a male singer and a female 
singer have been created. With the female voice, we have 
synthesized fragments of two different songs (“We’ve only 
just begun”, by The Carpenters, and “Natural woman”, by 
Carol King). With the male voice, we have also synthesized 



the same song by The Carpenters and some choruses for 
accompanying the female songs.  
 
The system evaluation was made by a group of musicians 
that had never heard about the project. Taking the 
Vocalwriter synthesizer as a comparison for the English 
synthesis, our demo songs were considered more intelligible 
and more natural. In contrast, our synthesis showed a lack of 
timbre uniformity. As the evaluation conclusion, although 
the synthesis obtained was not comparable with a real singer 
performance, the system was judged to be of a higher 
quality than the available commercial systems. 
 
From our evaluation the system still presents important 
drawbacks. The most important one are that unnatural 
artifacts appear in the synthesis, specially in the voiced 
consonants phonemes. Also the low register timbres of a 
male voice suffer from unnaturalness and sharp attacks, 
specially the ones belonging to plosive phonemes are 
smeared. We can think of some solutions to these problems 
by incorporating some recently proposed enhancements to 
the sinusoidal modeling of musical sounds [Fitz, Haken, 
Christensen, 2000;  Verma, Meng, 2000].  
 
The creation of a complete voice database is for now a 
demanding process that has to be supervised by a user. More 
automated ways have to be developed to facilitate and speed 
up the database creation process.  
 
Certainly there is room for improvement in every step of the 
system. Even so, assuming, naturalness as the essential 
feature  for evaluating the quality of a singing synthesizer, 
results are promising and prove the suitability of our 
approach. 
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Abstract 

This paper presents an approach to the modeling of the singing voice with a particular emphasis on the 
naturalness of the resulting synthetic voice. The underlying analysis/synthesis technique is based on the 
Spectral Modeling Synthesis (SMS) and a newly developed Excitation plus Resonance (EpR) model. With 
this approach a complete singing voice synthesizer is developed that generates a vocal melody out of the 
score and the phonetic transcription of a song. 
 

 

1 Introduction 
The human voice is clearly the most flexible and fascinating 
of the musical instruments. All through the history of music, 
it has attracted the attention of composers and has captivated 
audiences. Already organ builders had the dream of 
imitating as faithfully as possible the sound of human voice, 
as we can hear in the Vox Humana stop in some organs. 
With the use of the new digital technologies and our current 
understanding of the voice, the possibility of synthesizing a 
natural singing voice has become more feasible. 
 
The work presented here is a continuation of an automatic 
singing voice impersonator system for karaoke [Cano, 
Loscos, Bonada, de Boer, Serra, 2000]. That system 
morphed the voice attributes of a user (such as pitch, timbre, 
vibrato and articulations) with the ones from a prerecorded 
singer in real time.  
 
The focus of our current work is to generate a performance 
of an artificial singer out of the musical score (melody) and 
the phonetic transcription (lyrics) of a song. To achieve such 
goal we have defined a quality evaluation criteria which 
takes naturalness as the fundamental consideration.  

2 Introduction to Singing Voice 
Synthesis  

Singing voice synthesis has been an active research field for 
almost fifty years [Cook, 1996]. Traditionally, the voice has 
been modeled as a linear system consisting of one or more 

sound sources and a set of filters which shape the spectrum 
of these sources. The sound source can be a periodic signal, 
a noisy signal, or a mixture of both, and the set of filters can 
be regarded as the vocal tract filters. The resulting spectrum 
is mainly characterized by resonant peaks called formants. 
Thus a vocal synthesizer has to allow the control of the 
resonant peaks of the spectrum and of the source parameters. 
 
With regard to the synthesis models used in singing voice 
synthesis, they can be classified into two groups: Spectral 
models, which can be viewed as based on perceptual 
mechanisms, and Physical models, which can be viewed as 
based on production mechanisms. Any of these two models 
might be suitable depending on the specific requirements of 
the application, or they may even be combined to take 
advantage of both approaches.   
 
The main benefit of using Physical models is that the 
parameters of the model are closely related to the ones a 
singer uses to control his/her own vocal system. As such, 
some knowledge of the real-world mechanism can be 
introduced in the design. The model itself can provide 
intuitive parameters if it is constructed with the intention 
that it sufficiently matches the physical system. Conversely, 
such a system usually has a large number of parameters. 
This turns the mapping of the controls of the production 
mechanism to the final output, and so to the listener’s 
perceived quality, into something not trivial. 
 
On the other hand, Spectral models are closely related to 
some aspects of the human perceptual mechanism. Changes 



in the parameters of a spectral model can be more easily 
mapped to a change of sensation in the listener. Yet 
parameter spaces yielded by these systems are not 
necessarily the most natural ones for manipulation.  The 
methods based on spectral models include Frequency 
Modulation, FOFs, Vocoder and sinusoidal models. 
Acoustic tube models are an example of physical models. 
Linear Predictive Coding (LPC) and formant synthesizers 
can be considered as spectral models and also as pseudo-
physical, not strictly physical because of the source/filter 
decomposition they use. 
 
Some commercial software products for singing synthesis 
have been released in recent years. For example, 
Vocalwriter [VOCALWRITER, 2000] for the English 
language and SmartTalk 3.0 for the Japanese language have 
to be mentioned [SMARTTALK, 2000]. However, the 
systems developed until now are far from providing enough 
quality to meet the practical requirements of  real-world 
commercial applications. 
 
The goal of a singing voice synthesis indistinguishable from 
a real human voice is still remote. Thus, there is a lot of 
room for improvement in this research area, and naturalness 
is one of the keywords for the work to be done.  Moreover, 
it seems that one of the main issues behind singing voice 
synthesis is to offer not only quality but flexible and 
musically meaningful controls over the vocal sound. In that 
sense, we may think of applications where impossible 
singing voices can be synthesized or where existing voices 
can be enhanced. 
 
In the next section we present the EpR voice model that we 
have developed and in the following ones we describe the 
complete voice synthesis system built around the model. 

3 The EpR voice model 
Our singing voice synthesizer is based on an extension of 
the well known source/filter approach [Childers, 1994] that 
we call Excitation plus Resonance (EpR). This EpR model 
is built on top of the sinusoidal plus residual representation 
obtained by the SMS analysis [Serra, 1990]. Thus the model 
parameters are extracted from real voice sounds that have 
been analyzed with SMS and in the synthesis stage the 
model parameters are converted to SMS parameters, from 
which the output sound is obtained. In this article we 
concentrate on the EpR model part of the method developed. 
 
Figure 1 shows a diagram with the three types of excitation 
used and the corresponding filters. For the case of a voiced 
phonation, the filter applied to each excitation generates the 
appropriate spectral shape by using a frequency domain 
filtering function that is decomposed into two cascaded 
operations: an exponential decay curve plus several 
resonances. After filtering, the voiced residual excitation 

needs to be transposed to the synthesis pitch because it is a 
filtered SMS residual recording and has traces of the 
original pitch. Otherwise, in the case of an unvoiced 
phonation, we apply a filter that just changes the tilt curve 
and the gain of the STFT (Short-time Fourier Transform) of 
an original recording. 

3.1 The EpR excitation 
Voiced harmonic excitation 
The inputs that control the voiced harmonic excitation 
generation are the desired pitch and gain envelopes. The 
actual excitation signal can either be generated in the time 
or the frequency domains. The most flexible excitation is 
obtained by generating a delta train in the time domain, thus 
allowing to achieve the best period resolution and to use 
some simple excitation templates. This can also be useful to 
generate jitter or different types of vocal disorders. This 
delta train can be seen as a glottal source wave previous to a 
convolution with the differentiated glottal pulse.  
 
A fractional delay filter is needed to position the excitation 
deltas between samples, since we have to go beyond the 
sampling rate resolution. The filter is implemented using a 
windowed sinc-like function situated at each pulse location 
with the offset subtracted [Smith, Gosset, 1984]. Then the 
signal is windowed and the FFT computed. The result is a 
spectrum approximately flat that contains the harmonics 
approximately synchronized in phase.  
 
When the harmonic excitation is generated directly is the 
frequency domain, which is good enough for many voiced 
sounds, the excitation spectrum will be perfectly flat and the 
phase synchronization precise. 
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Figure 1. The EpR voice model. 
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Voiced residual excitation 
The voiced residual excitation is obtained from the residual 
of the SMS analysis of a long steady state vowel recorded 
from a real singer. The SMS residual is then inverse-filtered 
by its short-time average spectral shape envelope to get an 
approximately flat excitation magnitude spectrum. 
 
Unvoiced excitation 
The excitation in the unvoiced parts of the sounds uses 
directly the original recording of a singer's performance.  

3.2 The EpR filter 
The EpR filter is the combination of two cascaded filters. 
The first of them models the differentiated glottal pulse 
frequency response, and the second the vocal tract 
(resonance filter). 

 
 

The EpR source filter 
The EpR source filter is modeled as a frequency domain 
curve and one source resonance applied to the input 
frequency domain flat excitation described in the previous 
section. 

 
This source curve is defined by a gain and an exponential 
decay as follows: 

( )· 1
dB dB dB

Slope fSource Gain SlopeDepth e= + −  (1) 
 

This curve is obtained from an approximation to the 
harmonic spectral shape (HSS) determined by the harmonics 
identified in the SMS analysis 
 
 ( ) ( )[ ]

0..
, 20 log

i n i i
HSS f envelope f a

=
=  (2) 

where i is the index of the harmonic, n is the number of 
harmonics, fi and ai are the frequency and amplitude of the 
ith harmonic.  
 
On top of the source curve, we add a second resonance in 
order to model the low frequency content of the spectrum 
below the first formant. This resonance affects the synthesis 
in a different way than the vocal tract resonances, as will be 
explained later. 
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Figure 2. The EpR voiced harmonic excitation. 

Figure 3. The voiced residual excitation. 
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The source resonance is modeled as a symmetric second 
order filter (based on the Klatt formant synthesizer [Klatt, 
1980]) with center frequency F, bandwidth Bw and linear 
amplitude Amp. The transfer function of the resonance R(f) 
can be expressed as follows: 
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The amplitude parameter (Amp) is relative to the source 
curve (a value of 1 means the resonance maximum is just 
over the source curve).  

The EpR vocal tract filter  
The vocal tract is modeled by a collection of resonances 
plus a differential spectral shape envelope. These filter 
resonances are modeled in the same way as the source 
resonance, where the lower frequency resonances are 
somewhat equivalent to the vocal tract formants.  

The EpR filters for voiced harmonic and residual excitations 
are basically the same, they just differ in the gain and slope 
depth parameters. This approximation has been obtained 

after comparing the harmonic and residual spectral shape of 
several SMS analysis of singer recordings. Figure 7 shows 
these differences. 

The differential spectral shape envelope actually stores the 
differences (in dB) between the ideal EpR model (iEpR) and 
the real harmonic spectral shape (HSS) of a singer's 
performance. We calculate it as a 30 Hz equidistant step 
envelope. 
 

( ) [ ]0.. 30 , (30 ) (30 )i dB dBDSS f envelope i HSS i iEpR i== −  (4) 

 
The EpR phase alignment 
The phase alignment of the harmonics at the beginning of 
each period is obtained from the EpR spectral phase 
envelope. A time shift is applied just before the synthesis, in 
order to get the actual phase envelope (usually it will not 
match the beginning of the period). This phase alignment is 
then added to the voiced harmonic excitation spectrum 
phase envelope. The EpR spectral phase model states that 
each vocal tract resonance produces a linear shift of π  on 
the flat phase envelope with a bandwidth depending on the 
estimated resonance bandwidth. This phase model is 
especially important for the intelligibility and in order to get 
more natural low pitched male voices. 

 
The EpR filter implementation 
The EpR filters are implemented in the frequency domain. 
The input is the spectrum that results from the voiced 
harmonic excitation or from the voiced residual excitation. 
Both inputs are approximately flat spectrums, so we just 
need to add the EpR resonances, the source curve and the 
differential spectral shape to the amplitude spectrum. In the 
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case of the voiced harmonic excitation we also need to add 
the EpR phase alignment to the phase spectrum. 
 
For each frequency bin we have to compute the value of the 
EpR filter. This implies a considerable computational cost, 
because we have to calculate the value of all the resonances. 
However, we can optimize this process by assuming that the 
value of the sum of all the resonances is equal to the 
maximum amplitude (dB) of the whole filter and excitation 
resonances (over the source curve) at that bin.  Then we can 
even do better by only using the two neighboring resonances 
for each frequency bin. This is not a low-quality 
approximation of the original method because the 
differential spectral shape envelope, which is always kept,  
takes care of all the differences between the model and the 
real spectrum. 

If we want to avoid the generation of the time domain 
voiced excitation, especially because of the computational 
cost of the fractional delay and the FFT, we can generate it 
in the frequency domain. From the pitch and gain input we 
can generate a train of deltas in frequency domain 
(sinusoids) that will be convolved with the transform of the 
synthesis window and then synthesized with the standard 
frame based SMS synthesis, using  the IFFT and overlap-
add method. However the voice quality may suffer some 
degradation due to the fact that the sinusoids are assumed to 
have constant amplitude and frequency throughout the 
frame duration. 
 
The EpR filter transformation 
We can transform the EpR by changing its parameters: 
excitation gain, slope and slope depth frequency, amplitude 
and bandwidth of the resonances. However, we have to take 
into account that the differential spectral shape is related to 
the resonances position. Therefore, if we change the 
frequency of the resonances we should stretch or compress 
the differential spectral shape envelope according to the 

resonances frequency change (using the resonances center 
frequency as anchor points). 

 

4 System Overview 
From the synthesis model presented in the previous section 
we have developed a complete singing voice synthesizer. 
The inputs to the system are the melody and the lyrics (in 
English or Japanese language), with its phonetic 
transcription in SAMPA format [SAMPA, 2000]. The 
system is able to read standard MIDI files as well as 
METRIX files (an ascii text file format designed as a sound 
synthesis control language [Amatriain, 1998]). The output 
of the system is a wave file with the synthesized singing 
voice. 
 
The system is composed of two modules. The first one, 
Expressiveness module, controls the performance of the 
synthetic voice giving some expressiveness and naturalness 
to the input melody. The output of the Expressiveness 
module is a detailed musical score with all the needed 
features to characterize an expressive performance of a 
singer, which we call MicroScore. The second module, 
Synthesis module, is in charge of the actual synthesis 
process and uses a database containing the voice and timbre 
characteristics of a real singer. The analyzed voice data of 
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the database is the result of the SMS analysis and the EpR 
modelization.  
 

5 Musical Controls 
To achieve naturalness on the output voice, the system 
defines a set of musically meaningful controls that are either 
related to individual notes (note parameters) or to the whole 
song (general control parameters). With these parameters 
the system attempts to cover as many situations as possible 
in a singing performance. In addition to the common 
musical parameters (pitch, duration and dynamics), the 
system uses other parameters to control vocal characteristics 
such as attack, release, vibrato, articulation between notes, 
etc. The specification of all these controls has been thought 
of with the end-user in mind, so as to be as easy as possible 
to control. 
 
The table below shows a list of the note parameters as well 
as the general controls. These parameters are defined in the 
MicroScore structure: 
 

Note parameters Observations 
Pitch Midi number (0-127) or G#3 
Begin Time of the note, in milliseconds 
Duration of the note, in milliseconds 
Loudness Normalized value [0, 1] 
Lyrics Syllable associate in a note 
Dynamic Envelope (time, normalized value)  
Pitch Envelope (time, cents) 
Attack Type {normal, sharp, soft, high} 
Attack Duration Normalized value [0, 1] 
Release Type {normal, soft, high} 
Release Duration Normalized value [0, 1] 

Transition Type {legato, staccato, marcato, 
portamento, glissando} 

Transition Duration Normalized value [0, 1] 
Vibrato Type --- 
Vibrato Depth Envelope (time, cents) 
Vibrato Rate Envelope (time, Hz) 
Opening of vowels Envelope 
Hoarseness Envelope 
Whisper Envelope 
  
Control parameters Observations 
Singer Type Change singer of the DB 
Gender Type Change gender (male/female) 
Transposition To transpose input melody 

5.1 Expressiveness Controls 
In order to obtain a good synthesis, it is essential to take into 
account the high-level expressive controls used by real 
performers. In our system, this is done by the 

expressiveness module, which is in charge of applying 
certain deviations to the input score with the purpose of 
making it more natural and expressive.  
 
Following the research made by Sundberg and Friberg on 
musical expressiveness [Friberg, 1991], we have 
implemented a very basic rule-based system for expressive 
control. These rules were designed as a general tool for any 
kind of instruments, and need adaptations and proper tuning 
to be suitable for the singing voice [Berndtsson, 1996]. So 
far, only a few rules have been successfully tested in our 
system. We still need more experimentation to include rules 
specific to  voice parameters such as vibrato, breathiness, 
hoarseness or special kinds of attack. 
 
An important contribution to the expressive control of sound 
synthesis systems has been made by Manfred Clynes 
[Clynes, 1987]. In view of the fact that the human ear is 
specially sensitive to the amplitude contour of a note, 
Clynes has developed a mechanism to shape individually 
the amplitude of each note to give more authenticity to the 
synthesis. In this method, called Predictive Amplitude 
Shaping, there is a global amplitude contour for every note 
within a musical fragment which is slightly modified for 
each individual note according to the pitch interval to the 
next note. This creates a sense of continuity and phrasing. 
We have implemented and tested this technique in our 
system, adapting the parametric controls to the human voice, 
with excellent results. 
 
The pitch contour of the singing voice has to be also 
carefully generated in order to obtain a faithful synthesis. So 
we have designed a mathematical model for reproducing the 
smooth pitch transitions between notes. This model allows 
us to control the transition duration and the tuning 
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deviations at the end and the beginning of the notes in 
accordance with the musical context. In the note to note 
transitions, the synchronization between phonetics and 
musical rhythm is assured by reaching always the target 
pitch at the onset of the vowel of each syllable.    
 

6 Singer Database 
The creation of the database is one of the critical steps in 
most speech and singing voice synthesizers. There are no 
singing voice databases available, thus we recorded our own 
samples by first defining a set of musical exercises to be 
performed by a singer (i.e. different type of attacks, releases, 
note to note transitions, etc). Needless to say, the voice had 
to be recorded in a dry and noiseless environment to get the 
best possible SMS analysis.  
 
In terms of what information is needed to be stored in the 
database, we can either attempt to record as many samples 
as possible (all possible pitches, attacks, …) or start from 
fewer samples and obtain the rest through transformations 
from the recorded/analyzed ones. This second approach 
gives more flexibility to the system at the possible expense 
of sound quality. Our approach has been this second one. 
 
In order to choose the most useful English phonetic 
articulations to be included in the database, we ordered all 
possible articulations according to its frequency of use in 
actual songs. A statistical analysis was made from 76000 
English songs, with close to three million words. With this 
information, now we know how many articulations are 
needed to cover a fixed percentage of all the possible 
articulations. 
 

Number of articulations Covered percentage 
71 50 % 

308 90 % 
395 95 % 
573 99 % 
785 99.9 % 

1129 100 % 
 
The database is organized into two parts; timbre and voice 
DB. 

6.1 Timbre DB 
The timbre database stores the voice model (EpR) for each 
of the voiced phonemes. For each of these, we store several 
samples at different pitches and at different dynamics. When 
a phoneme with intermediate pitch or dynamics is required, 
the EpR parameters of the neighboring samples are 
interpolated to synthesize the phoneme at the desired pitch. 

6.2 Voice DB 
The voice database includes analysis data from the time 
varying characteristics of the voice in the form of templates. 
It is divided into several categories: steady states, phonetic 
articulations, note attacks, note-to-note articulations, note 
releases and vibratos. It is also possible to have different 
templates for the different pitches of the same type of sound. 

Steady states 
There are steady states stored for each of the phonemes. 
They model the behavior of the stationary part of a note. To 
do so, we store the time-varying evolution of the EpR 
parameters (if the phoneme is voiced) and the SMS residual 
along the steady state.  

Phonetic articulations 
All the articulations are segmented in two regions, the end 
of the first sound and the beginning of the next. If the 
regions are different in terms of voiceness, each region is 
analyzed with different specific parameters. Otherwise, if 
both regions are voiced or unvoiced the segmentation is 
used in synthesis to control the onset of the articulation. The 
EpR parameters are estimated only in the voiced part 
regions.  

Vibratos 
The vibrato templates characterize the vibrato 
characteristics by  keeping the behavior of the voice 
excitation parameters. In particular, the fundamental 
frequency evolution, gain and source curve changes. Each 
time-varying function is segmented into attack, body and 
release. There can be different template labels according to 
some musical or expression classifications. 

Note attacks, note transitions and note releases 
These templates model the amplitude and fundamental 
frequency evolution at the note boundaries. They can easily 
be represented by a model (such as the one proposed for the 
amplitude by  Clynes [Clynes, 1987]) which will give a 
smoother time evolution of the synthetic vocal sound. These 
templates, or models, are phoneme independent since they 
do not model the EpR changes. They can be organized into 
different expression categories. 
 

7 Conclusions 
With the purpose of demonstrating the potential of our 
system, two small databases with a male singer and a female 
singer have been created. With the female voice, we have 
synthesized fragments of two different songs (“We’ve only 
just begun”, by The Carpenters, and “Natural woman”, by 
Carol King). With the male voice, we have also synthesized 



the same song by The Carpenters and some choruses for 
accompanying the female songs.  
 
The system evaluation was made by a group of musicians 
that had never heard about the project. Taking the 
Vocalwriter synthesizer as a comparison for the English 
synthesis, our demo songs were considered more intelligible 
and more natural. In contrast, our synthesis showed a lack of 
timbre uniformity. As the evaluation conclusion, although 
the synthesis obtained was not comparable with a real singer 
performance, the system was judged to be of a higher 
quality than the available commercial systems. 
 
From our evaluation the system still presents important 
drawbacks. The most important one are that unnatural 
artifacts appear in the synthesis, specially in the voiced 
consonants phonemes. Also the low register timbres of a 
male voice suffer from unnaturalness and sharp attacks, 
specially the ones belonging to plosive phonemes are 
smeared. We can think of some solutions to these problems 
by incorporating some recently proposed enhancements to 
the sinusoidal modeling of musical sounds [Fitz, Haken, 
Christensen, 2000;  Verma, Meng, 2000].  
 
The creation of a complete voice database is for now a 
demanding process that has to be supervised by a user. More 
automated ways have to be developed to facilitate and speed 
up the database creation process.  
 
Certainly there is room for improvement in every step of the 
system. Even so, assuming, naturalness as the essential 
feature  for evaluating the quality of a singing synthesizer, 
results are promising and prove the suitability of our 
approach. 
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Abstract 

When designing audio effects for music processing, we are always aiming at providing higher-
level representations that may somehow fill in the gap between the signal processing world and 
the end-user. Spectral models in general, and the Sinusoidal plus Residual model in particular, can 
sometimes offer ways to implement such schemes.  

 

1 Introduction 
When dealing with digital audio effects, we are 
looking for representations of sound signals and 
signal processing systems that can give us ways to 
design sound transformations in a variety of music 
applications and contexts.  

The basic idea of spectral processing is that we can 
analyze a sound to obtain alternative frequency 
domain representations, which can then be 
transformed and inverted to produce new sounds (see 
Figure 1). Most of the approaches start by developing 
an analysis/synthesis system from which the input 
sound is reconstructed without any perceptual loss of 

sound quality.  Then, the main issue is what the 
intermediate representation is and what parameters 
are available for applying the desired 
transformations.  

By understanding the basic concepts of frequency 
domain analysis, we will be able to acquire the tools 
to use a large number of effects processors and to 
understand many types of sound transformations 
systems. Moreover, being the frequency domain 
analysis a somewhat similar process than the one 
performed by the human hearing system, it yields 
fairly intuitive intermediate representations. 

Perceptual or musical concepts such as timbre or 
pitch are clearly related to the spectral characteristics 
of a sound. Some common processes for sound 
effects are also better explained using a frequency 
domain representation. We usually think on the 
frequency axis when we talk about equalizing, 
filtering, pitch shifting, harmonizing... In fact, some 
of them are specific to this signal processing 
approach and do not have an immediate counterpart 
on the time domain. Another issue is whether or not 
this approach is the most efficient, or practical, for a 
given application. The process of transforming a time 
domain signal into a frequency domain representation 
is, by itself, not an immediate step. Some parameters 
are difficult to adjust and force us to take several 

compromises. Some settings, such as the size of the 
analysis window, have little or nothing to do with the 
high-level approach we intend to favor, and require 
the user to have a basic signal processing 
understanding. 

In that sense, when we talk about higher level 
spectral processing we are thinking of an 
intermediate analysis step in which relevant features 
are extracted or computed from the spectrum. These 
relevant features should be much closer to a musical 
or high-level approach. We can then process the 
features themselves or even apply transformations 
that keep some of the features unchanged. For 

Fig 1. Block diagram of a simple spectral analysis 
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example, we can extract the fundamental frequency 
and the spectral shape from a sound and then modify 
the fundamental frequency without affecting the 
shape of the spectrum. [Serra and Bonada 98] 

Assuming the fact that there is no single 
representation and processing system optimal for 
everything, our approach will be to present a set of 
complementary spectral models that can be combined 
to be used for the largest possible set of sounds and 
musical applications. 

In the next sections, we introduce two spectral 
models: Sinusoidal and Sinusoidal plus Residual. 
These models already represent a step up on the 
abstraction ladder and, from either of them, we can 
identify and extract higher-level information of a 
sound, such as: harmonics, pitch, spectral shape, 
vibrato, or note boundaries, that is Higher Level 
Features. This analysis step brings the representation 
closer to our perceptual understanding of a sound. 
The complexity of the analysis will depend on the 
type of feature that we want to identify and the sound 
to analyze. The benefits of going to this higher level 
of analysis are enormous and open up a wide range of 
new musical applications. 

In section 3 we will provide a set of basic audio 
effects and transformations based on the implemented 
Sinusoidal plus Residual analysis/synthesis. We will 
finish with an explanation of content dependant 
processing implementations: a real-time singing voice 
conversion application that has been developed for 
use in Karaoke applications, and a nearly loss less 
Time Scaling algorithm.  

2 Spectral Models 
The most common approach for converting a time 
domain signal into its frequency domain 
representation is the Short-Time Fourier Transform 
(STFT). It is a general technique from which we can 
implement loss-less analysis/synthesis systems. Many 
sound transformation systems are based on direct 
implementations of the basic algorithm.  

In this section, we will briefly mention the Sinusoidal 
Model and will concentrate in the Sinusoidal plus 
Residual Model. Anyhow, the decision as to what 
spectral representation to use in a particular situation 
is not an easy one. The boundaries are not clear and 

there are always compromises to take into account, 
such as: (1) sound fidelity, (2) flexibility, (3) coding 
efficiency, and (4) computational requirements. 
Ideally, we want to maximize fidelity and flexibility 
while minimizing memory consumption and 
computational requirements. The best choice for 
maximum fidelity and minimum compute time is the 
STFT that, anyhow, yields a rather inflexible 
representation and inefficient coding scheme. Thus 
our interest in finding higher-level representations as 
the ones we present in this section. 

2.1 Sinusoidal Model 

Using the output of the STFT, the Sinusoidal model 
represents a step towards a more flexible 
representations while compromising both sound 
fidelity and computing time. It is based on modeling 
the time-varying spectral characteristics of a sound as 
sums of time-varying sinusoids. The input sound   is 
modeled by, 

(1) [ ]∑
=

=
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where A tr ( )  and θ r t( )  are the instantaneous 

amplitude and phase of the thr  sinusoid, 
respectively. [McAulay and Quatieri 86; Smith and 
Serra 87].  

To obtain a sinusoidal representation from a sound, 
an analysis is performed in order to estimate the 
instantaneous amplitudes and phases of the sinusoids. 
This estimation is generally done by first computing 
the STFT of the sound, then detecting the spectral 
peaks (and measuring the magnitude, frequency and 
phase of each one), and finally organizing them as 
time-varying sinusoidal tracks. 

Fig 2. Block diagram of a higher-level spectral processing framework 
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It is a quite general technique that can be used in a 
wide range of sounds and offers a gain in flexibility 
compared with the direct STFT implementation.  

2.2 Sinusoidal plus Residual Model 

The Sinusoidal plus Residual model can cover a wide 
“compromise space” and can in fact be seen as the 
generalization of both the STFT and the Sinusoidal 
models. Using this approach, we can decide what part 
of the spectral information is modeled as sinusoids 
and what is left as STFT. With a good analysis, the 
Sinusoidal plus Residual representation is very 
flexible while maintaining a good sound fidelity and 
the representation is quite efficient. In this approach, 
the Sinusoidal representation is used to model only 
the stable partials of a sound. The residual, or its 
approximation, models what is left, which should 
ideally be a stochastic component. This model is less 
general than either the STFT or the Sinusoidal 
representations but it results in an enormous gain in 
flexibility  [Serra 96; Serra and Smith 90]. 

The input sound s t( ) is modeled by, 

(2) [ ]s t A t t e tr r
r

R
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where A tr ( )  and θ r t( )  are the instantaneous 
amplitude and phase of the r th  sinusoid, respectively, 
and e t( ) is the noise component at time t  (in 
seconds). 

The sinusoidal plus residual model assumes that the 
sinusoids are stable partials of the sound with a 
slowly changing amplitude and frequency. With this 
restriction, we are able to add major constraints to the 
detection of sinusoids in the spectrum and omit the 
detection of the phase of each peak. The 
instantaneous phase that appears in the equation is 
taken to be the integral of the instantaneous 
frequency ωr t( ) , and therefore satisfies 

(3) ( )θ ω τ τr r

t
t d( ) = ∫0  

where ω( )t  is the frequency in radians, and r is the 
sinusoid number. When the sinusoids are used to 
model only the stable partials of the sound, we refer 
to this part of the sound as the deterministic 
component. 

Within this model we can either leave the residual 
signal, e t( ) , to be the difference between the original 
sound and the sinusoidal component, resulting into an 
identity system, or we can assume that e t( )  is a 
stochastic signal. In this case, the residual can be 
described as filtered white noise, 

(4) ( ) ( )e t h t u d
t

( ) ,= ∫ τ τ τ
0

 

where u t( ) is white noise and h t( , )τ is the response 
of a time varying filter to an impulse at time t . That 
is, the residual is modeled by the time-domain 
convolution of white noise with a time-varying 
frequency-shaping filter.   

The implementation of the analysis for the Sinusoidal 
plus Residual Model is more complex than the one 
for the Sinusoidal Model. Figure 3 shows a simplified 
block- diagram of this analysis.  
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Fig 3. Block diagram of the Sinusoidal plus residual 

analysis. 

  

The first few steps are the same than in a sinusoidal-
only analysis. The major differences start on the peak 
continuation process since in order to have a good 
partial-residual decomposition we have to refine the 
this process in such a way as to be able to identify the 
stable partials of the sound.  

The residual component is obtained by first 
generating the sinusoidal component with additive 
synthesis, and then subtracting it from the original 
waveform. A spectral analysis of this time domain 
residual is done by first windowing it using a window 
which is independent of the one used to find 
sinusoids, and thus we are free to choose a different 
time-frequency compromise. Then the FFT is 
computed and the resulting spectrum can be modeled 
using several existing techniques.  

The original sinusoidal plus residual model has led to 
other different spectral models that still share some of 
its basis. [Ding and Qian, 97; Fitz, Haken and 
Christensen, 00; Verma,00] 

 

2.2.1 Feature analysis 

The accomplishment of a meaningful 
parameterization for sound transformation 
applications is a difficult task. We want a 
parameterization that offers an intuitive control over 
the sound transformation process, with which we can 
access most of the perceptual attributes of a sound. 
The analysis techniques described so far result in a 
simple parameterization, appropriate for describing 



the lower physical characteristics of the sound. In the 
Sinusoidal plus Residual model, these parameters are 
the instantaneous frequency, amplitude and phase of 
each partial and the instantaneous spectral 
characteristics of the residual signal.  

There are other useful instantaneous attributes that 
give a higher-level abstraction of the sound 
characteristics. For example we can describe 
fundamental frequency, amplitude and spectral shape 
of sinusoidal component, amplitude and spectral 
shape of residual component, and overall amplitude. 
These attributes are calculated at each analysis frame 
from the output of the basic Sinusoidal plus Residual 
analysis. Afterwards, some of them can be extracted. 

From a digital effects designer point of view, the 
extraction of such attributes allows us to implement 
transformations that modify only one of those 
features without affecting the rest. A clear example is 
illustrated in Fig 2 where the fundamental frequency 
is extracted, multiplied by a scaling factor, and then 
incorporated back to the original spectral data. 

Apart from the instantaneous, or frame, values, it is 
also useful to have parameters that characterize the 
time evolution of the sound. The time changes can be 
described by the derivatives of each one of the 
instantaneous attributes computed as follows: 

(5) 
SR

H
lVallVal )1()( −−

=∆  

where )(lVal is the attribute value for the current 
frame, )1( −lVal is the attribute value for the previous 
one, H is the hop-size and SR the sampling rate. 

Another important step towards a musically useful 
parameterization is the segmentation of a sound into 
regions that are homogeneous in terms of its sound 
attributes. Then we can identify and extract region 
attributes that will give higher-level control over the 
sound. For our purposes it is very valuable as a way 
to apply region dependent transformations. For 
example, a time stretching algorithm would be able to 
transform the steady state regions, leaving the rest 
unmodified. 

Once a given sound has been segmented into regions 
we can compute the attributes that describe each one. 
Most of the interesting attributes are the mean and 
variance of each of the frame attributes for the whole 
region.  

Global attributes that can characterize attacks and 
releases make use of the average variation of each of 
the instantaneous attributes, such as average 
fundamental frequency variation, average amplitude 
variation, or average spectral shape change. In the 
steady state regions it is important to extract the 
average value of each of the instantaneous attributes 

and measure other global attributes such as time-
varying rate and depth of vibrato.  

Some region attributes can be extracted from the 
frame attributes in the same way that these were 
extracted from the Sinusoidal plus Residual data. The 
result of the extraction of the frame and region 
attributes is a hierarchical multi-level data structure 
where each level represents a different sound 
abstraction. 

From the basic sinusoidal plus residual representation 
it is possible to extract some of the attributes 
mentioned above. The critical issue is how to extract 
them while minimizing interferences, thus obtaining 
significant high level attributes free of correlations 
[Serra and Bonada 98]. The general process will be to 
first extract instantaneous attributes and their 
derivatives, then segment the sound based on that 
information, and finally extract region attributes.  

2.2.2 Synthesis 

From the output of the analysis techniques presented 
we can synthesize a new sound. The similarity with 
respect to the original sound will depend on how well 
the input sound fits the implicit model of the analysis 
technique and the settings of the different variables 
that the given technique has. In the context of this 
paper we are interested in transforming the analysis 
output in order to produce a specified effect in the 
synthesized sound. 

All these transformations can be done in the 
frequency domain. Afterwards, the output sound can 
be synthesized using the techniques presented in this 
section.  The sinusoidal component will be generated 
using some type of additive synthesis approach and 
the residual, if present, will be synthesized using 
some type of subtractive synthesis approach. 

Thus, the transformation and synthesis of a sound is 
done in the frequency domain; generating sinusoids, 
noise, or arbitrary spectral components, and adding 
them all to a spectral frame. Then, we compute a 
single IFFT for each frame, which can yield efficient 
implementations. 

Fig 4 shows a block diagram of the final part of the 
synthesis process. Previous to that, we have to 
transform and add all the High Level Features, if they 
have been extracted, and obtain the lower level data 
(sine and residual) for the frame to be synthesized. 
Since the stored data might have a different frame 
rate, or a variable one, we may also have to generate 
the appropriate frame by interpolating the stored 
ones. 
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Fig.4. Diagram of the spectral synthesis. 

 

3 FX and Transformations 

In this section we intend to give a brief catalog of 
effects that can be implemented using the Sinusoidal 
plus Residual model and a transformation scheme 
like the one depicted in Figure 3.  

3.1 Filtering with arbitrary resolution 

Filters are probably the paradigm of a “classical” 
effect. Many different implementations are provided 
in the general DSP literature. Here we introduce a 
different approach that differs in many aspects from 
the classical one. 

For our “filter” implementation, we take advantage of 
the sinusoidal plus residual model in order to modify 
the amplitude of any arbitrary partial present in the 
sinusoidal component.  

For example, we can implement a band-pass filter 
defined by (x,y) points where x is the frequency 
value in Hertzs and y is the amplitude factor to apply. 
Thus, our filter does not need to be characterized by a 
traditional transfer function, and a more complex 
function can be defined by summing delta-functions. 
The transfer function is the defined by: 

(6) ∑ ⋅= ii gffH )()( δ  

where gi is the gain applied to the ith partial of 
frequency fi.  

Many applications derive from this sort of filtering 
scheme. For instance, we can filter out the even 
partials of a sound with a broadband spectrum, like a 
vocal sound, converting it to a clarinet-like sound. 

3.2 Partial dependent frequency scaling 

Another possible related effect that arises from the 
particularities of our model is the possibility to apply 
a frequency scaling to the sinusoidal components of 
our modeled sound, being able to process the residual 
or noisy component in a completely different way.  

We can, for example, introduce a frequency shift 
factor to all the partials of our sound (see formula 7). 
Note, though, that if a constant is added to every 
partial of a harmonic spectrum, the resulting sound 
will be inharmonic. 

(7) kff ii +=  

In the same way, we can scale all the partials 
multiplying them by a given scaling factor. Note that 
this effect will act as a pitch shifter without timbre 
preservation. 

(8) kff ii ⋅=  

Another effect we can implement following this same 
idea is to add a stretching factor to the frequency of 
every partial. The relative shift of every partial can be 
computed, for exaple, depending on its original 
partial index, following the formula: 

(9) ( )1−⋅= i
ii fstretchff  

 

with i=1..N where N is the number of sinusoids. This 
kind of stretching can be observed in a real piano 
sound. Thus, if we ever intended to create a piano 
synthesizer we could make use of this transformation.  

3.3 Pitch Transposition with Timbre 
Preservation 

Pitch transposition is the scaling of all the partials of 
a sound by the same multiplying factor. Here we 
introduce the concept of timbre preservation by 
leaving the spectral shape unmodified. For that 
reason we scale the frequency of each partial 
applying the original spectral shape. 

The spectral shape of the sinusoidal component is the 
envelope described by the amplitudes and frequencies 
of the harmonics, or its approximation, 

(10) ( )( ) ( ){ }NN afafafSshape ,...,, 2211=  

 

And so, the resulting sinusoidal spectrum ( )fX transp  

after a transposition of value k will be of the form: 

(11) ( ) ( )∑ ⋅⋅⋅= iitransp fkSshapefkfX )(δ
 

formula that obviously implies that we must be able 
to find intermediate points of the spectral shape using 
some interpolation algorithm. 

An overall more realistic effect is accomplished if we 
comb filter the original residual using the new pitch 



before we merge it with the transposed sinusoidal 
part. 

3.4 Pitch Discretization to Temperate 
Scale 

An interesting effect can be accomplished by forcing 
the pitch to take the nearest frequency value of the 
temperate scale. It is indeed a very particular case of 
pitch transposition where the pitch is cuantified to 
one of the 12 semitones in which an octave is 
divided. This effect is widely used on vocal sounds 
for dance music and is many times referred to with 
the misleading name of vocoder effect. 

For a perfectly harmonic sound we have:  

(12) iffi ⋅= 0  

with i=1..N where N is the number of sinusoids. The 
frequency of the ith harmonic is just i times the 
frequency of the fundamental 0f . To find the new 
fundamental frequency, we apply the following 
formula: 
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where 55 is the frequency in Hz that corresponds to 
an A0. From this new fundamental '0f , we can 
compute the transposition factor, defined as: 

(14) 
0

0 '
f
fk =  

Finally, we only need to apply the pitch transposition 
algorithm defined in the previous section. 

3.5 Vibrato and Tremolo 

Vibrato and tremolo are common effects used in 
different kinds of acoustical instruments, including 
the human voice. Both are low frequency 
modulations: vibrato is applied to the frequency and 
tremolo to the amplitude of the partials.  

In fact, vibrato  usually implies a tremolo modulation. 
Both  modulations share in this case the resonating 
frequency mf . For example, to apply a 
vibrato with tremolo effect, we can modulate the 
fundamental frequency 0f  (as shown in formula 15):  

(15) ( ))2sin1(' 00 mfcff ⋅⋅+⋅= π  

where c is the vibrato depth (usually around 75 cent). 
This would give us a transposition factor (formula 
14) and we would apply the corresponding 
transposition with timbre preservation. For the 
tremolo we could apply the following modulation to 
each of the siunoids amplitude ai:  

(16) ( )
2

12sin)(' −⋅
⋅+= m

ii
fitaa π  (dB) 

the modulation depth t(i) would apply different 
depths at different frequencies emulating the spectral 
tilt variations suffered in a real tremolo sound. This 
curve could be a sampled version of the curve shown 
in Fig.5 where SR is the sampling rate.  

Fig. 5.  t(f) curve 

 

3.6 Spectral Shape Shift 

Many interesting effects can be accomplished by 
shifting the spectral shape or spectral envelope of the 
sinusoidal component of a sound. This shift is 
performed in such a way that no new partials are 
generated, just the amplitude envelope of the 
spectrum is modified.  

Such transformation results in a sinusoidal spectrum 
( )fX shifted  such as: 

(17) ( ) ( )∑ −⋅= DfSshapeffX iishifted )(δ
 

where D is the spectral shift in Hz (positive if we 
move the spectrum to the right and negative if we 
move it to the left) and Sshape is the original spectral 
shape and it is defined as in equation 10. 

3.7 Gender Change 

Using the results of 3.3 and 3.6 we can change the 
gender of a given vocal sound. Note how by 
combining different “basic” effects we are able to 
step higher in the level of abstraction and get closer 
to what a naive user could ask for in a sound 

SR / 2 

3

t(f) (dB)

f 



transformation environment, such as: imagine having 
a gender control on a vocal processor... 

We apply two transformations in order to convert a 
male voice into a female one. The first one is a pitch 
transposition an octave higher. The other one is a 
shift in the spectral shape. The theoretical explanation 
to this effect is that women change their formant 
(resonant filters) frequencies depending on the pitch. 
That is, when a female singer rises up the pitch, the 
formants move along with the fundamental. 

To convert a female into a male voice we also apply a 
pitch transposition and a shift in the spectral shape. 
This shifting has to be applied in a way the formants 
of the female voice remain stable along different 
pitches 

3.7 Harmonizer 

In order to create the effect of a harmonizing vocal 
chorus, we can add pitch-shifted versions of the 
original voice (with the same timbre) and force them 
to be in tune with the original melody. 

So for a number H of harmonies we have that the 
resulting sinusoidal spectrum can be described as: 

(18) ( ) ( ) ( )∑
=

+=
H

h
transp hfXfXfX

1
,'  

where ( )hfX transp , is the original sinusoidal 

spectrum transposed (with timbre preservation) by a 
factor that depends on h.  

3.8 Hoarseness 

Although hoarseness is sometimes thought of as a 
symptom of some kind of vocal disorder, this effect 
has been widely used by singers in order to resemble 
the voice of famous performers (Louis Armstrong or 
Tom Waits, for example). We can accomplish a 
similar effect through a very basic transformation by 
just applying a gain to the residual component of our 
analysis. 

3.9 Morphing 

Morphing is a transformation with which, out of two 
or more elements, we can generate new ones with 
hybrid properties. 

Most of the interpolation techniques are based on the 
interpolation of sound parameterizations resulting 
from analysis/synthesis techniques, such as the Short-
time Fourier Transform (STFT), Linear Predictive 
Coding (LPC) or Sinusoidal Models.  

A first approach to such transformation could consist 
in interpolating two sinusoidal spectral shapes to 
obtain the hybrid ( )fX ' : 

(19) ( ) ( ) ( ) ( )fXfXfX 21 1' ⋅−+⋅= αα  

However, more musical meaningful results can be 
achieved in a more flexible way by moving the 
interpolation to a higher-level features plane, in 
which we could, for example interpolate between 
pitches:  

(20) ( ) 20100 1' fff ⋅−+⋅= αα  

In both examples (equations 19 and 20) α  would be 
the interpolation factor and would take values 
between 0 and 1. 

4 Content dependent processing 
The hierarchical data structure that includes a 
complete description of a given sound offers many 
possibilities for sound transformations. Modifying 
several attributes at the same time and at different 
abstraction levels achieve, as it has already been 
pointed out in the previous section, most musically or 
end-user meaningful transformations.   

Higher-level transformations can refer to aspects like 
sound character, articulation or expressive phrasing. 
These ideas lead to the development of front ends 
such as graphical interfaces or knowledge-based 
systems [Arcos 98] that are able to deal with the 
complexity of this sound representation.  

In this section we introduce two applications that 
have been developed with these ideas in mind: an 
automatic singing voice conversion application and a 
time scaling module. 

4.1 Real-Time Singing Voice Conversion 

Our automatic voice conversion application 
implements a very particular case of audio morphing, 
pursuing the possibility of morphing, in real-time, 
two singing voice signals in such a way we can 
control the resulting synthetic voice by mixing some 
characteristics of the two sources. Whenever this 
control is performed by means of modifying a 
reference voice signal matching its individuality 
parameters to another, we can refer to it as voice 
conversion. 

In such a context, a karaoke-type application, in 
which the user can sing like his/her favorite singers, 
was developed [Cano et al 00]. The result is basically 
an automatic impersonating system that allows the 
user to morph his/her voice attributes (such as pitch, 
timbre, vibrato and articulations) with the ones from 



a prerecorded singer, which from now on we will 
refer to as target.  

In this particular implementation, the target's 
performance of the complete song to be morphed is 
recorded and analyzed beforehand. In order to 
incorporate the corresponding characteristics of the 
target's voice to the user’s voice, the system first 
recognizes what the user is singing (phonemes and 
notes), looks for the same sounds in the target 
performance (i.e. synchronizing the sounds), 
interpolates the selected voice attributes, and 
synthesizes the output morphed voice. All this is 
accomplished in real-time.  

Fig 6 shows the general block diagram of the voice 
impersonator system. The system relies on two main 
techniques that define and constrict the architecture: 
the SMS framework (see 2.2) and a Hidden Markov 
Model based Speech Recognizer (SR). The SMS 
implementation is responsible of providing a suitable 
parameterization of the singing voice in order to 
perform the morph in a flexible and musical-
meaningful way. On the other hand, the SR is 
responsible of matching the singing voice of the user 
with the target.  
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Fig.6. System block diagram 

4.2 Time scaling 

Time-scaling an audio signal means changing the 
length of the sound without affecting other perceptual 
features, such as pitch or timbre. Many different 
techniques, both in time and frequency domain, have 
been proposed to implement this effect. Some 
frequency domain techniques yield high-quality 
results and can work with large scaling factors. 
However, they are bound to present some artifacts, 
like phasiness, loss of attack sharpness and loss of 
stereo image. In this section we will present a 
frequency domain technique for near loss-less time-
scale modification of a general musical stereo mix 
[Bonada 00]. 

The general block diagram of the system is 
represented in Fig 7. First, the input sound is 
windowed and goes through the FFT giving as a 

result the analysis frame (AFn), that is, the spectrum 
bins and the amplitude and phase envelopes. Then the 
time-scale module generates the synthesis frame 
(SFm) that is fed to the inverse FFT (IFFT). Finally, 
the Windowing&Overlap-Add block divides the 
sound segment by the analysis window and multiplies 
it by the overlap-add window, to reconstruct the 
output sound.  
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Time
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AFn SFm 

 

Windowing
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Fig. 7.  General diagram 

It is important to remark that the frame rate used in 
both the analysis and synthesis modules is the same, 
as opposed to the most broadly used time-scale 
techniques in which a change of frame rate in 
synthesis is used in order to achieve the effect. The 
window size and type must also be the same in both 
processes. 

In some cases, an analysis frame is used twice (or 
more) while on other cases some frames are never 
used. This technique will not add any artifacts, 
provided the frame size we use is small enough and 
the sound does not present abrupt changes in that 
particular region. In the case of a percussive attack, 
though, a frame repetition or omission can be noticed 
regardless the analysis frame size. Therefore, some 
knowledge of the sound segment features is needed 
to decide where this technique can or cannot be 
applied. 

In Fig 8, a more detailed block diagram of the time-
scale module is depicted. The analysis frames (AFn), 
containing the spectrum amplitude and phase 
envelopes, are fed to the time-scaling module. This 
module performs a peak detection and a peak 
continuation algorithm on the current and previous 
(Z-1) amplitude envelopes. Then, only the peaks that 
belong to a sinusoidal track are used as inputs to the 
spectrum phase generation module. Note that the 
time-scale module only changes the phase, leaving 
the spectral amplitude envelope as it is. 
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Fig. 8.  The time-scale module 

The phase of each peak is computed supposing that 
the frequency varies linearly between two 



consecutives frames and that there is some phase 
deviation. The usage of the same frame rate in 
analysis and synthesis allows us to suppose that the 
phase variation between two consecutives frames is 
also the same.  

 

5 Conclusions 
Throughout this paper, we have shown how the use 
of higher-level spectral models can lead to new and 
interesting sound effects and transformations. We 
have also seen that it is not easy nor immediate to get 
a good spectral representation of a sound, so the 
usage of this kind of approach needs to be carefully 
considered bearing in mind the application and the 
type of sounds we want to process. 

For example, most of the techniques here presented 
work well only on monophonic sounds and some rely 
on the pseudo-harmonicity of the input signal. 

Nevertheless, the use of spectral models for musical 
processing has not been around too long and it has 
already proven useful for many applications, as the 
ones presented in this paper. Under many 
circumstances, higher-level spectral models, such as 
the Sinusoidal plus Residual, offer much more 
flexibility and processing capabilities than more 
immediate representations of the sound signal.  

In general, higher-level sound representations will 
offer more flexibility at the cost of a more complex 
and time-consuming analysis process. It is important 
to remember that the model of the sound we choose 
will surely have great effect on the kind of 
transformations we will be able to achieve and on the 
complexity and efficiency of our implementation.  
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Figure 2: The EpR model 
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Abstract: This paper is a review of the work contained 
in the insides of a sample-based virtual singing 
synthesizer. Starting with a narrative of the evolution 
of the techniques involved in it, the paper focuses 
mainly on the description of its current components 
and processes and its most relevant features: from the 
singer databases creation to the final synthesis 
concatenation step. 

 
I. INTRODUCTION 

 
The voice generation is typically explained as a 

source/filter system, in which a voiced/unvoiced 
excitation is filtered by the vocal tract resonances. The 
voiced excitation corresponds to the glottal pulses that 
originate the vocal fold vibrations whether the unvoiced 
excitation corresponds to the turbulent airflow that arises 
from the lungs. The voice filter is characterized by a set 
of resonances called formants that have their origin in the 
voice organs lengths and shapes (trachea, esophagus, 
larynx, …). This filter modulates the timbre of the sound 
by dynamically changing the amplitude, center 
frequencies and bandwidths of the resonances by moving 
the voice organs. 

Some of the singing synthesizers developed since the 
beginnings of such discipline have focused in the 
source/filter decomposition (physical models based); 
others, rather than focusing on how the sound is 
produced, have focused on the perception of the sound 
(spectral models based); and others, such as the 
synthesizer we present in this paper, have tried to 
combine both models. 

The system can be roughly described by a singer 
database, an input, an expression module and a synthesis 
engine (see Fig. 1). The input contains the melody and 

the lyrics of the song plus some expression controls. The 
expression module converts this input into an internal 
low-level synthesis score, and the synthesis engine reads 
this synthesis score, fetches the required samples from the 
singer database and transforms and concatenates them to 
obtain the synthetic output signal. 

 
II. VOICE AND SPECTRAL MODELING 

 
Since our system is a sample based synthesizer in 

which samples of a singer database are transformed and 
concatenated along time to compose the resulting audio, 
we have always considered the task of finding the most 
appropriate and the highest quality transformation 
techniques a crucial issue.  

We initially used SMS [1] as the basic transformation 
technique with the addition of a time domain delta-based 
excitation to mimic the singer’s voiced excitation [2]. 
SMS had the advantage of decomposing the voice into 
harmonics and residual. Both components were 
independently transformed, so the system yielded a great 
flexibility. But although the results were quite 
encouraging in voiced sustained parts, in transitory parts 
and consonants, especially in voiced fricatives, harmonic 
and residual components were not perceived as one.  

Intending to improve our results, we moved to a 
spectral technique based on the phase-locked vocoder [3] 
where the magnitude spectrum is segmented into regions, 
each of which contains a spectral peak and its 
surroundings. These regions can be then freely shifted in 
amplitude and frequency. Regarding the phase spectrum, 
the relation between harmonics found at the beginning of 
each glottal period is kept after transformations [4]. On 
top of this technique we developed a frequency domain 
voice model that consists of an excitation curve, a set of 
resonances and a residual envelope. We call it EpR 
(Excitation plus Resonances) [2]. The excitation curve 
models the voiced source using an exponential decay 
function and a low frequency resonance. The vocal tract 
is modeled using the rest of the resonances and the 
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residual envelope stores the differences between the 
model and the spectral shape defined by the harmonics 
(see Fig. 2). 

 
III. SINGER DATABASE 

 
About two hours of dry singer performance 

recordings are required to build a database. The singer is 
asked to follow a detailed recording script that covers 
most possible phonetic contexts and several expression 
aspects [5]. These recordings are then segmented and 
analyzed using the spectral analysis algorithms. In order 
to speed up this process two free software toolkits [6, 7] 
are used as phonetic aligners between the audio files and 
the recording scripts. The resulting data fills the phonetic 
and the expression libraries and is stored in a set of files 
organized in tree structured folders. 

The phonetic database contains timbres, steady-states 
and articulations. The timbre section stores the voice 
model (EpR) of different vowels at different pitches and 
dynamics, the steady-state section contains long sustained 
vowels at different pitches, and the articulation section 
contains an organized list of diphonemes samples at 
different pitches. 

The expression database contains note and vibrato 
templates intended to keep some basic expression aspects 
of the singer’s voice and therefore increase the 
naturalness of the synthesis. Note templates model 
singer’s attacks, releases and transition behaviors in 
different musical and intentional contexts. These contexts 
are described by a set of meaningful labels, like sharp 
attack, legato transition or sexy release. Each template 
stores a set of controls (pitch, loudness, EpR excitation 
curve, breathiness, roughness) obtained from the analysis 
of the sample, each of which can be later used in 
synthesis to reproduce the voice excitation changes for 
each expressive context. Vibrato templates store the 
singer’s excitation behavior for different types of vibrato 
and tremolos; basically they keep the pitch and the EpR 
excitation curve. Each template is segmented into attack, 
body and release parts. The body segment is mirror-
looped at synthesis if needed.  
 

IV. INPUT SCORE 
 

The input score is an ASCII text file based on the 
METRIX control language [8] that contains the score of 
the song. Not only lyrics and notes can be specified, but 
also high level controls and all the possible music 
information that the system is capable to interpret. To 
achieve naturalness in the synthetic voice, the system 
defines some musically meaningful controls [5]. The idea 
is to cover the maximum situations that can appear in a 
real singing performance in order to avoid a lack of 
expression control that could bring about non-natural 
results.  

The input score contain the so-called note parameters 
and control parameters. The note parameters refer to a 
specific note of the score and describe note attributes 
such as pitch, duration, loudness, lyrics, dynamics, 
vibrato, attack / release types, roughness, etc., while the 
control parameters refer to the whole song and describe 
song attributes such as singer, tempo, etc. Below you can 
see an example of input score where the lyrics are fly me. 

 
V. BUILDING THE SYNTHESIS SCORE 

 
The expression module generates an internal low-

level score (synthesis score) out of the input METRIX. 
This score is structured into several tracks and control 
envelopes, some of which are shown in Fig. 3. The 
phonetic track shows the articulations and steady-states to 
be fetched from the DB and their corresponding 
durations, which are calculated trying to make them as 
close to the original database sample durations as 
possible. The note and vibrato tracks contain information 
on the note and vibrato templates that must be applied at 
synthesis and their corresponding durations. The 
envelope controls (vibrato depth and rate, pitch, pitch 
var, loudness, etc) express their behavior along the 
performance with a time-varying function. 

In addition to the note and vibrato templates, several 
models have been created to cover a wide variety of 
possibilities. However, templates extracted from real 
recordings are preferable to get a more authentic 
expressivity, although they may not sound natural when 
the synthesis context in which they are applied is far from 
the template context. 

The phonetic track is filled out taking into account 
that the vowel onset should match the begin time of the 
note. Besides, as already mentioned, taking the original 
sample duration is preferable since this way we avoid 
time-scaling transformations, but this is not always 
possible because all required articulations must fit into 
the note segment. On the other hand, whenever the added 
duration of the articulations is less than the target note 
segment duration, a steady-state is added to fill out what 
is left. 

Score_Info
{ 
 Tempo: 90 
 Meter: 4/4 
} 
InstrumentInfo { Robert } 
 
begin 
   t1   Robert NoteNumber: Ab2 
    Duration: t0.5 
    Lyrics: "f l aI" 
    Loudness: 0.6 
    AttackType: "soft" 
   t1.5  Robert NoteNumber: G2 
    Duration: t1 
    Lyrics: "m I" 

Loudness: 0.3 
    VibratoType: "wet" 
    VibratoRate: [(0,1)(1,0.6)] 
    VibratoDepth: [(0,0) (0.5,1)(1,0.7)] 
    ReleaseType: "long" 
end



In the synthesis score there are two envelope controls 
that specify the output synthesis pitch. The first envelope 
(Pitch) stores the absolute pitch values that come out 
from the notes specified by the input score. On the other 
hand Pitch var stores relative pitch variations due to 
changes originated by some phonetic combinations, such 
as certain voiced consonant - vowel combinations (b-a) in 
which the pitch decreases during the consonant sound. 

In synthesis, the relative values of the pitch var 
envelope and the expression templates are added together 
to the absolute pitch values. In the case that an attack or 
release template is specified, the pitch variations of this 
template are applied when synthesizing to obtain a pitch 
curve similar to the one in the template. In the case of 
note transitions, the process is the same but whenever no 
template is specified, a pitch model is applied that 
overwrites the absolute pitch track of the score, like 
shown in Fig. 3, so to avoid pitch discontinuities. This 
pitch model has to be carefully generated to obtain a 
natural sounding pitch curve in the output synthesis. A 
mathematical model has been designed to produce 

smooth pitch transitions between notes and allow the 
control of some parameters like duration, shape and 
synchronization to phonetics and musical rhythm. This 
synchronization is basically attained by reaching the 
target pitch at the onset of the vowel of each syllable. In 
Fig. 4 we can see a more detailed drawing of this pitch 
model. The distance between begin pitch and max pitch, 
as well as between min pitch and end pitch, depends on 
the note interval (the bigger the interval, the bigger the 
distance, but with some limitations for big intervals). On 
the other hand, the transition curvature depends on both 
the note interval and the transition duration and its slope 
is restricted to a maximum value in order to guarantee 
smooth pitch variations in short transitions. 
 

VI. SYNTHESIS ENGINE 
 
A. Sample transformations 

 
The synthesis engine reads the synthesis score and 

retrieves the required samples and templates from the 
singer database selecting those units that are closer to the 
synthesis context (mainly pitch is considered). Once we 
have retrieved the samples, some transformations [4] are 
applied to match the synthesis score: transposition, 
equalization, time-scaling, loudness modification, vibrato 
and voice excitation based transformations. Finally, the 
transformed samples are concatenated to compose the 
resulting synthetic performance. 

Transposition is applied to match the synthesis score 
pitch. Therefore, the transposition factor is calculated as 
the synthesis pitch divided by the sample pitch. This 
factor is calculated frame by frame. In terms of the 
spectral technique, harmonic peak’s regions are shifted in 
frequency and harmonic peak’s phases are corrected 
without altering the phase synchronization between 
harmonics. 

Equalization is used to obtain transformations on 
timbre. When transposing, it is used to keep the original 
timbre but it can be applied as well to get generic timbre 
transformations. Equalization is achieved by shifting in 
amplitude the harmonic peak’s regions so to match the 
desired timbre envelope. 

Time-Scaling is applied to samples in order to match 
their durations with the synthesis score durations. The 
time-scale ratio is sometimes applied in a non-uniform 
way so that the synchronization between control 
parameters, phonetic and note tracks is not altered. For 
example, the phonetic articulation that contains the vowel 
onset should not change the timing of the vowel onset. 
Besides, in the case of abrupt phonetic changes, these 
should not be smoothed so not to degrade the 
intelligibility. The transformation is obtained by repeating 
or dropping some frames and interpolating them [9]. 

For loudness modification, database samples are 
considered to be sung at normal loudness, unless 
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otherwise specified. Thus, sample loudness is changed to 
match the synthesis score value. The transformation can 
be achieved by applying an equalization filter obtained 
from a recorded template where the singer sang a 
crescendo or a decrescendo. This filter represents the 
timbre envelope differences between the sample 
estimated loudness and the target loudness. 

For vibrato transformation, the pitch and EpR 
excitation changes enclosed in the vibrato template are 
applied to the audio samples. The little nuances of the 
singer’s vibrato are kept even after altering its depth and 
rate, and the EpR voice model allows the harmonics to 
follow the resonances as their frequency is modified, thus 
emulating the real situation.  

Besides, some voice excitation based transformations 
can be applied to improve the naturalness and 
expressiveness of the synthetic voice, such as roughness, 
whisper and breathiness. Roughness is obtained by 
adding sinusoids to the spectrum in a way that glottal 
periods become irregular. Whisper comes out of 
equalizing an unvoiced excitation with the timbre 
envelope. Finally, breathiness is succeeded by adding 
together whisper and equalization effects and lowering 
the harmonic’s peak adjoining bins.   
 
B. Sample concatenation 

 
The last step in the synthesis engine is the 

concatenation of samples. Once we have transformed the 
samples, we have to deal with the spectral shape and 
phase discontinuities that appear when connecting them. 
With the aim of minimizing such discontinuities, 
amplitude and phase corrections are spread out along a 
set of transition frames that surround the boundary [4]. 
The results are quite smooth and good enough in most 
cases. Sometimes, however, a gap in brightness can be 
heard, especially when connecting samples that have 
been transposed with rather different factors, due to the 
fact that although there are no harmonic peak’s amplitude 
or phase discontinuities, there do exist harmonic peak’s 
regions amplitude and phase shape gaps. This problem is 
inherent to only consider harmonic peak’s discontinuities 
when connecting samples, thus our algorithm should be 
expanded to consider inside region characteristics. 

 
VII. CONCLUSION 

 
The system we present is able to generate synthetic 

performances with quite successful results. However, the 
more different from the database the synthesizer is asked 
to sing, the more artificial synthesis gets (it is difficult to 
make the system sing hip-hop using an opera singer 
database). Some of this difficulty arises from the fact that 
the synthesizer has been thought to preserve not only the 
timbre personality of the singer from which the database 
is created but also his/her expressivity. 

 In this sense, work has to be done to improve 
transformations naturalness, especially when the 
synthesis context is far from the original context in which 
the sample that is being transformed was recorded.  

Other improvements directions include working on 
expression dependent timbre transformations and getting 
into a higher level transformation description in which 
the system could generate an expressive performance 
automatically out of the melody, the lyrics, the singer, 
and an expressive label such as sweet or aggressive. 
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ABSTRACT 

The singing synthesis system we present generates a performance 
of an artificial singer out of the musical score and the phonetic 
transcription of a song using a frame-based frequency domain 
technique. This performance mimics the real singing of a singer 
that has been previously recorded, analyzed and stored in a 
database. To synthesize such performance the systems 
concatenates a set of elemental synthesis units. These units are 
obtained by transposing and time-scaling the database samples. 
The concatenation of these transformed samples is performed by 
spreading out the spectral shape and phase discontinuities of the 
boundaries along a set of transition frames that surround the joint 
frames. The expression of the singing is applied through a Voice 
Model built up on top of a Spectral Peak Processing (SPP) 
technique.  

1. INTRODUCTION 

The voice is considered to be the most flexible, rich and powerful 
of all instruments and it has always been an inexorable source of 
inspiration for musicians, sound designers and audio 
programmers. Music computer people have been interested in 
vocal sound manipulation and synthesis ever since the appearing 
of the very first techniques that allowed such sort of processing. 
Nowadays this interest has spread to most of the music 
communities reaching a point in which it is hard to find a popular 
musical production without any vocal alienation.  

The synthesis of voice has been approached form many different 
directions and though it is a slack categorization, we can split 
synthesis models into two groups: spectral models, which are 
based on the perception of the sound, and physical models, which 
are based on the production of the sound.   

Both spectral and physical models have their own benefits and 
drawbacks [1]. Physical models such as acoustic tube models use 
the control parameters humans use to control their own vocal 
system and can generate time-varying behaviors by the model 
itself. On the other hand some parameters might not have intuitive 
significance and might interact in non-obvious ways. Spectral 
models such as those based on phase vocoders or sinusoidal tracks 
have precise analysis / synthesis methods and work close to the 
human perception but their parameterization is not that suitable 
for study, manipulation, or composition since they don’t match 
any auditory system structure. 

Models such as the one used in formant synthesizers are 
considered to be pseudo-physical models because even though 
these are mainly spectral models they make use of the source / 
filter decomposition. The singing synthesizer we present would be 
part of this model group. 

2. SYSTEM DESCRIPTION 
The system is composed of two modules: the expression module, 
which is in charge of giving expressiveness and naturalness to the 
input melody, and the synthesis module, which is in charge of the 
synthesis process itself. 

The indispensable inputs of the expression module are the lyrics 
and the musical score of the voice melody, that is to say, the 
phonetics and the fundamental frequency, dynamics and quantized 
duration values of each note. Out of these, the synthesizer can 
generate a virtual performance with default expression 
parameters. However, user control parameters can also be inputted 
to modify the expression through specifications on different types 
of note attacks, note transitions, vibratos, etcetera. The output of 
the expression module is a detailed musical score that 
characterizes the expressivity of the virtual singer performance 
through an ordered list of temporal events, each of which 
describes the local expression of the performance through the 
control parameters. This score is called Microscore. 

The inputs of the synthesis module are the Microscore and the 
singer database. The synthesis module reads the Microscore 
information and synthesizes the virtual performance by taking the 
corresponding samples from the database, transforming them 
according to the inputted score and concatenating them [2]. 

3. VOICE AND SPECTRAL MODELING 

In this section we will introduce both EpR Voice Model and 
Spectral Peak Processing (SPP) technique on which the system is 
based. 

MicroScore 

Singing Voice 
melody 

synthesis module 

synthetic voice 

expression 

Singer DB 

lyrics user controls 

Figure 1: General system diagram 
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Figure 2: The EpR model 
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3.1. Voice Model (EpR) 

Our Voice Model is based on an extension of the well known 
source/filter approach [3] we call EpR (Excitation plus 
Resonances). The EpR filter can be decomposed in two cascade 
filters. The first of them models the differentiated glottal pulse 
frequency response and the second the vocal tract (resonance 
filter). 
The EpR Source filter 
The EpR source is modeled as a frequency domain curve and one 
source resonance. The curve is defined by a gain and an 
exponential decay as follows: 

( )· 1Slope f
dB dB dBSource Gain SlopeDepth e= + −  

It is obtained from an approximation to the harmonic spectral 
shape (HSS) determined by the harmonics identified in the SMS 
analysis  

( ) ( )[ ]0.. 1 , 20 logi n i iHSS f envelope f a= −=  

where i is the index of the harmonic, n is the number of 
harmonics, fi and ai are the frequency and amplitude of the ith 
harmonic. 
On top of the curve, we add a resonance in order to model the low 
frequency content of the spectrum below the first formant. This 
source resonance is modeled as a symmetric second order filter 
(based on the Klatt formant synthesizer [4]) with center frequency 
F, bandwidth Bw and linear amplitude Amp, which is relative to 
the source curve.  
The EpR vocal tract filter  
The vocal tract is modeled by a vector of resonances plus a 
differential spectral shape envelope. It can be understood as an 
approximation to the vocal tract filter. These filter resonances are 
modeled just like the source resonance, where the lower frequency 
resonances are somewhat equivalent to the vocal tract formants.  

The differential spectral shape envelope actually stores the 
differences (in dB) between the ideal EpR model and the real 
harmonic spectral shape (HSS) of a singer's performance. We 
calculate it as a 30 Hz equidistant step envelope. 

( ) [ ]0.. 30 , (30 ) (30 )i dB dBDSS f envelope i HSS i iEpR i== −  (1) 

Thus, the original singer’s spectrum can be obtained if no 
transformations are applied to the EpR model. 

3.2. Spectral model (SPP) 
Spectral Peak Processing (SPP) is used as the sample 
transformation tool. It performs a frame based spectral analysis of 
audio, giving as output the STFT, the harmonic peaks and the 
pitch. This technique is based on the phase-locked vocoder [5], 
but spectral peaks are calculated by parabolic interpolation [6] and 
a pitch analysis is performed. SPP considers the spectrum as a set 

of regions, each of which belongs to one harmonic peak and its 
surroundings. The goal of such technique is to preserve the local 
convolution of the analysis window after transposition and 
equalization transformations. A basic diagram can be seen in 
Figure 3. 

4. SINGER DATABASE 

The singer databases are created from dry and noiseless 
recordings of real singers. These databases hold both phonetic and 
expression information about the singer.  

The phonetic database represents and stores the time varying 
phonetic characteristics of the singer so it stores the singer timbres 
in most representative phonetic contexts. It contains steady-states 
and articulations at different pitches. 

The expression database characterizes the low level expression of 
the singer so it tries to retain the singer expressivity in different 
musical contexts. This database includes vibratos and note 
templates, which model attacks, releases and note transitions at 
different pitches. They are considered phoneme independent and 
organized into a musical meaningful classification [7].  

5. TRANSFORMING SAMPLES 
Basically, three kinds of transformation are applied to the 
samples: transposition, equalization and time-scaling. Time-
scaling issues are described in detail in [8]. 

5.1. Transposition 
Transposition means to multiply the harmonic’s frequencies by a 
constant value. In terms of SPP, this operation can be done by 
shifting SPP regions in frequency. The linear frequency 
displacement for all the bins of each region will be the same. In 
most cases, this frequency displacement will be a non integer 
value. Thus we interpolate the spectrum with a 3rd order spline. 
This might not be the best method but it is a good compromise 
between quality and computational cost.  

Amp fi

iϕ
i iϕ ϕ+ ∆

fi·Transp 

f

f
Figure 4: Phase shift in SPP transposition 
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In Figure 4, we can see an example of transposition to a higher 
pitch. In this case, the SPP regions will be separated in the 
resulting spectrum by gaps. Whenever transposing to a lower 
pitch, the SPP regions overlap in the resulting spectrum. This 
overlapping is computed by adding the complex values at each 
spectral bin. 

Phase correction 

When a SPP region is shifted in frequency in a frame by frame 
process, the phase needs to be corrected in order to continue the 
harmonics. For the ith harmonic, assuming linear frequency, the 
ideal phase increment between two consecutive frames is 

2i if tϕ π∆ = ∆  

where the time increment between frames is t∆ . If we transpose a 
sample by a factor transp, then the ideal phase increment should 
be 

2 · ·i if transp tϕ π∆ = ∆  
Therefore, the amount of phase that should be added to the 
spectrum phase in order to continue the ith harmonic is 

( )2 · · 2 2 1i i i if transp t f t f transp tϕ π π π∆ = ∆ − ∆ = − ∆  

This phase increment is added to all the bins that belong to the ith 

region (see Figure 4). This way we can preserve the phase 
consistency across bins, i.e. the vertical phase coherence [5]. 

The phase increment applied to each harmonic is added to an 
accumulated phase frame by frame. This accumulated phase is the 
phase we finally add to each SPP region. However, this 
implementation results in the loss of the harmonic phase 
alignment after several frames because the frequencies do not 
follow a perfect harmonic scale. This loss of phase alignment 
produces some phasiness and loss of presence in the synthesized 
voice, especially for low pitches. To solve such problem, we 
consider the voice as perfectly harmonic. In that case, the equation 
of the phase increment will be  
 ( )( )2 · · 1 1i pitch i transp tϕ π∆ = + − ∆  (2) 

where i is the index of the harmonic (0 for the fundamental) and 
pitch is the estimated fundamental frequency (different from f0). 

5.2. Equalization 
Equalization means timbre change. On one hand the SPP analysis 
outputs a spectrum with the harmonic peaks and the SPP regions. 
On the other hand we have an envelope that defines the desired 
timbre. The SPP equalization is done by calculating for each 
region the amplitude amount needed to match the timbre 
envelope, and adding it to all the bins that belong to the region. 
Therefore, the spectrum amplitude of a region will be just shifted 
up or down and the phase will not be changed. 

6. CONCATENATING SAMPLES 
When connecting transformed samples there will appear spectral 
shape and phase discontinuities. In order to minimize them, phase 
and amplitude corrections can be spread out along a set of 
transition frames that surround the joint frame.  
6.1. Phase concatenation 
In order to avoid phase discontinuities at the segment boundaries, 
we have come out with a phase continuity condition that takes 

care of the boundary phases and the possibly different 
transposition factors applied to each segment. In Figure 5 we can 
see the joint frames, where frame n-1 is the last frame of the left 
segment and frame n is the first frame of the right segment. fn-1  
and fn refer to the frequencies of the ith harmonic. 

The basic condition for phase continuity comes from the 
assumption that the frequency of each harmonic varies linearly 
between these two consecutive frames. In that case the phase 
relation between both frames should be  

1
1 2

2

i i
i i n n
n n

f f
tϕ ϕ π −

−

+
= + ∆  

where 
i
nϕ  and 1

i
nϕ −  are the phases of the ith  harmonic at the right 

and left frame respectively. Thus, the desired phase for the left 
frame 1

i
nφ − should be 

1 1
1 2

2

i i
i i n n
n n

f f
tϕ πφ − −

−

+
= ∆−  

But in fact we are not just concatenating two segments, but also 
transposing them with different transposition factors (transpn-1 and 
transpn). We should distinct then between the original frequency 
of each segment (fn-1 and fn) and the transposed ones (f´n-1 and f´n), 
where f´n-1=fn-1·transpn-1 and f´n=fn·transpn. The basic condition 
should be applied to the transposed frequencies and phases. This 
can be expressed as 

( ) ( )

11
1 2

2
2 1 1

n n

n n

i i
i i nn

nn
f transp f transp t

i t pitch transp

ϕ π

π

φ −−
−

⋅ + ⋅
= − ⋅ ⋅ ∆

+ + ∆ ⋅ ⋅ −

 

by using the transposition phase correction equation (2) and 
taking into account that the phase correction due to transposition 
is accumulated frame by frame. This correction is applied either to 
the left or to the right segment around the boundary, and spread 
along several frames in order to get a smooth transition. We can 
rewrite the previous equation as 

 1
i i

n cn ϕ ϕφ − = − ∆  (3) 

where cϕ∆  is the phase correction that guarantees the phase 
continuation of the ith harmonic. In Figure 6 we can see an 
example where this phase correction is spread along 5 frames on 
the left part of the boundary. 

Since the impulsive periods of left ant right segments are not 
aligned, we will often have big phase correction values. Therefore 
it’s better if we calculate how much we should move the right 
segment ( ∆ tsync) in order to align the beginning of both periods, 
so that the phase correction to be applied is minimized. We could 
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approximate this time shifting by assuming that the beginning of 
the periods will be aligned if the phase of the fundamental is 
continued. This can be expressed as 

 
2 ·

c
sync

n n

t
pitch transp

ϕ

π

−∆
∆ =  (4) 

where cϕ∆  is calculated as in equation (3) for the particular case 
of i=0 (the fundamental). Finally, if we combine equations (3) and 
(4) we obtain  

( )

( ) ( )

1

1

1

2 1 ·

2
2

2 1 1

n n sync

n n

n n

i i
n n

i i
n n

i pitch transp t

f transp f transp
t

i t pitch transp

ϕ π

π

π

φ

−

−

−

= + + ⋅ ∆

⋅ + ⋅
− ⋅ ⋅ ∆

+ + ∆ ⋅ ⋅ −

 

6.2. Spectral shape concatenation 
In order to avoid spectral shape discontinuities at the segment 
boundaries we make use of the EpR model. First we estimate the 
EpR of the boundary frames. The left EpR then is stretched using 
the resonance frequencies as mapping points (F0left to F0right, F1left 
to F1right,…) and it is subtracted from the right EpR. The 
differential envelope obtained accounts for the spectral shape 
differences between the two joint frames. 

For each one of the transition frames at the left of the boundary, a 
frequency mapping function is obtained from the interpolation 
between the above resonance frequency mapping and the identity 
mapping (y=x) with a factor 1-SSIntp which stands for the 
distance from the frame to the boundary (SSIntp is 0 at the 
beginning of the interpolation zone and 1 at the boundary). This 
mapping is applied to each transition frame spectral shape and 
finally the differential envelope (weighted by SSIntp) is added to 
it (see Figure 7). 

Notice that the spectral shape interpolation is spread along several 
frames in a similar way to the phase concatenation, but with the 
addition of the spectrum stretching.  

7. CONCLUSIONS 
The singing synthesizer we have presented in this paper has 
proven to comprise suitable methods and techniques for the 
generation of synthetic vocal tracks.  

The SPP has brought a significant improvement in comparison to 
our previous analysis / synthesis technique [7] based on sinusoidal 
plus residual decomposition [6]. SPP avoids the tricky sinusoids / 
noise decomposition and preserves accurately and consistently the 
voice quality of the original singer. The preservation of the voice 
quality is a very valued feature when it comes to create databases 
of singers with vocal disorders such as hoarseness or breathiness. 

Even tough the system is in a stage in which a synthetic voice is 
distinguishable from a real voice the quality is good enough to use 

it for backing vocals with no synthetic voice perception at all. 
Anyway we believe we will not have to wait that long to hear 
synthesized lead vocals that sound indistinguishable from a 
human singer. 
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  Figure 7: The sample transformation 
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 Figure 6: Phase spreading in concatenation
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[Pat4]  JP2001117578 Device and method for adding harmony sound. Inventors: 
Nakagawa, T., Cano, P., Loscos, A., Bonada, J. Applicants: Yamaha Corp., Univ. Pompeu 
Fabra. Publication date: 2001-04-27. 
 
[Pat5] JP2001117568 Singing Evaluation device and karaoke device. Inventors: Kageyama, 
Y., Cano, P., Loscos, A. Applicants: Yamaha Corp., Univ. Pompeu Fabra. Publication date: 
2001-04-27. 
 
[Pat6] EP1291846 Voice synthesizing apparatus capable of adding vibrato effect to 
synthesized voice. Inventors: Loscos, A., Yoshioka, Y., Applicants: Yamaha Corp. 
Publication date: 2003-03-12. 
 
[Pat7] JP2003076387 Method and device for voice synthesis and program. Inventors: 
Yoshioka, Y., Loscos, A. Applicants: Yamaha Corp. Publication date: 2003-03-14. 
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