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Abstract. Weconsider the problem of an active adversary physically ma-
nipulating computations of a cryptographic device that is implemented in
circuitry. Which kind of circuit based security can ever be guaranteed if
all computations are vulnerable towards fault injection? In this paper, we
define physical security parameters against tampering adversaries. There-
fore, we present an adversarial model with a strong focus on fault injection
techniques based on radiation and particle impact. Physical implementa-
tion strategies to counteract tampering attempts are discussed.
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1 Introduction

Active implementation attacks can be classified as fault analysis, physical ma-
nipulations and modifications. Fault analysis aims to cause an interference with
the physical implementation and to enforce an erroneous behavior that can re-
sult in a vulnerability of a security service or even a total break. The terms
manipulation and modification stem from definitions of physical security, e.g.,
from ISO-13491-1 [1] and address similar attacks. Physical manipulation aims at
changing the processing of the physical implementation so that it deviates from
the specification. Physical modification is an active invasive attack targeting the
internal construction of the cryptographic device.

If a cryptographic device is used in an hostile environment special properties
for the device are required to ensure a certain level of physical security for the
storage and processing of cryptographic keys. For the theoretical perspective we
refer to the concepts on Read-Proof Hardware and Tamper-Proof Hardware as
given in [11]. Read-Proof Hardware prevents an adversary from reading internal
data stored and Tamper-Proof Hardware prevents the adversary from changing
internal data. Moreover, we use the term of Tamper-Resistant Hardware as a
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relaxed term of Tamper-Proof Hardware, e.g., the hardware is resistant to tam-
pering to a certain extent. Such bounds are made more precise in this work.

In a tamper-proof implementation, fault injections are not feasible per defini-
tion. However, in real life, practical experiments have shown that approaches to-
wards tamper resistance are hard. Many contributions (e.g., [16, 4, 24, 5, 23, 25])
have reported that semiconductor circuits are vulnerable against fault injections.
Such findings are related to the development of devices for the use in aerospace
and high-energy physics which have to tolerate particle radiation impact during
operation [18, 19]. In contrast to applications developed for safety and reliabil-
ity reasons, security applications have to withstand an active malicious adver-
sary. Prior to the first scientific contribution [9] on fault analysis the FIPS-140
standard already required a cryptographic algorithm test (“known-answer test”)
[12] to be implemented in cryptographic modules during start-up. Moreover, in
an error state, according to [12], the use of cryptographic algorithms shall be
inhibited.

We recollect previous fault induction techniques to build an unified adver-
sarial model based on [17] as first step towards bridging the gap between the
theoretical framework of [11] and real-world experiences. In our model we cover
fault analysis against physical cryptographic devices. We assume that each kind
of data memory can be tampered with in a probabilistic sense and that the
adversary is able to induce faults at any internal state and computation of the
physical device. By doing so, we are able to model the manifold nature of faults
as well as to include Differential Fault Analysis ([8, 22]) more adequately in case
of physical devices.

As discussed in Section 1.1 the Algorithmic Tamper-Proof (ATP) security
model [11] does only partly give a framework for existing attacks. In this paper
we deal with the problem which kind of implementation based security can be
guaranteed in an extended ‘real-life’ model against tampering. Therefore, we
present a physical model with a strong focus on fault injection techniques based
on radiation and particle impact. Physical security parameters are outlined and
result in implementation strategies to prevent and detect tampering attempts.

1.1 Related Work: ATP Security

The model of Algorithmic Tamper-Proof (ATP) Security was introduced in [11].
It assumes that devices are built by using two different components; one being
tamper-proof but readable, and the other being read-proof yet tamperable. Only
data that is considered to be universally known (i.e., public data) is tamper-proof
beyond the reach of the tampering adversary. Other data is subject to tamper-
ing, i.e., fault induction. ATP Security defines a powerful tampering adversary
who is able to initiate three commands: Run(·), i.e., the cryptographic com-
putation, Apply(·), i.e., the fault injection, and Setup(·). The adversary knows
all construction details: especially, the adversary knows each bit-position in the
device’s memory. It is concluded in [11] that a component is needed which is
both read-proof and tamper-proof to achieve general Algorithmic Tamper-Proof
(ATP) Security.
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The main limitation of [11] is caused by the fact that the command Run(·)
itsself is assumed to be not vulnerable to fault injection. In practice, there is
no reason that the adversary does not attack Run(·) itself. Actually, standard
scenarios of Differential Fault Analysis (DFA) apply faults during the crypto-
graphic computation [8, 22]. Such a setting becomes especially important in case
of tampering at memory-constrained devices as, e.g., a modification prior to
Run(·) can hardly affect only the last round of DES. In [11], tamper-proofing
a signature (or decryption) scheme is part of the command Run(·) which first
checks whether the storage has integrity using a verification algorithm. If so, the
signature (or decryption) algorithm is computed yielding an output as result.
Otherwise, self-destruction of the device is invoked. In case the verification algo-
rithm is subject to fault injection, too, the tamper-proofing solution of the ATP
model does not hold anymore.

Reference [11] also discusses restrictions of the model assuming that the ad-
versary is limited, for instance, it is only feasible for the adversary to perform a
probabilistic flipping of bits in the device’s memory. The type of DFA discussed
in [11] requires the strong assumption that the memory type is significantly
asymmetric. For this type of DFA, [11] argues that checking for faults can be
sufficient for ATP security, even if the device is not equipped with a self-destruct
capability. As recently shown, one can even precisely induce faults, e.g., by opti-
cal fault induction, as reported in a recent survey on hardware security analysis
[25]. Therein, it is demonstrated that any individual bit of SRAM memory could
be changed to a definitive state by light injection. Both the targeting state ‘0’
and ‘1’ could be set, just by a lateral adjustment of the light spot.

2 An Overview of Fault Analysis

Fault analysis against cryptographic primitives has become a new research area
initiated by [9]. Besides targeting cryptographic primitives there are other ap-
plications of fault induction that target generic (non-cryptographic) building
blocks.

2.1 Cryptographic Building Blocks

A recent survey on fault analysis against cryptographic primitives can be found
in [26].

A Generic Attack: If the memory type used for key storage has the special
property that flipping a bit from one state to the other is impossible (e.g., from
state ‘1’ to state ‘0’), all key bits finally accumulate in one state (e.g., state ‘1’)
after repetitive fault injections. Assuming the adversary owns cryptograms for
each intermediate state, e.g., after each successive induced state transition, the
adversary can iterate backwards recursively [7], starting at the known final state,
yielding finally the original key value.

Block Ciphers (AES and DES): Fault attacks against block ciphers are
differential attacks that require both a correct cryptogram and some faulty ones
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for the analysis. In [8] Differential Fault Analysis (DFA) has been introduced
against DES. The original attack assumed that faults occur randomly in all
rounds of DES and required about 50-200 faults in this model. If precise fault
injection is possible, the number can be reduced to about three faults [26]. For
AES, some scenarios are presented in [26]. Among them, the most promising one
[22] requires two faults for recovering the AES key.

Stream ciphers: In [13] fault analysis techniques are presented targeting the
linearity of LFSRs which are typical building blocks of stream ciphers. Another
approach has been presented in [6] for the stream cipher RC4. This approach
exploits the forced induction of impossible states.

Asymmetric primitives: Fault injection against an RSA-CRT implementa-
tion requires only one fault injection with very low requirements on the concrete
fault occurrence [9]. Modular exponentiation which is used at RSA as well as
ElGamal, Schnorr and DSA signature schemes can be also attacked by fault
injection successively [9].

2.2 Non-cryptographic Building Blocks

Here, we use the notion of a security service as a general term for any security
relevant or security enforcing building block of the cryptographic device.

Modification of Security States: For cryptographic devices, it is necessary
to maintain security states by storing attributes, e.g., related to authorizations
and privileges achieved. A fault injection against such a security state may end
up in a more privileged state.

Modification of a Security Service: Modification of a security service itsself
can be invoked by fault injection. By-passing checks of parameter bounds as
presented by [3] is one example for this kind of threat.

Denial of Service: Fault injection can result in a permanent mal-function or
destruction of circuit components used by a security service. For example, the
destruction of a physical random generator might be attractive.

3 Adversary Model

The adversary model presented is an extended version of [17]. By assumption
the physical device D is encapsulated. Especially, it does not offer a logical nor a
physical interface to modify the internal memory or the internal construction of
D. The set-up for fault analysis based attacks consists of i) the physical device
D under test, ii) a reader device for the data communication interface, and iii)
a fault injection set-up. Additionally, iv) a monitoring set-up can be used by
the adversary to analyze the fault induction process and its effects, e.g., by
measuring side channel leakage. The set-up as well as the information flow is
illustrated in Fig. 1 and described in more detail below.
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Fig. 1. Information Flow at a Fault Analysis Set-Up

We denote the adversary by A. By assumption A has physical access to the
physical device D under attack and can run a high number of instances of a
security service S. Each instance is initiated by a query Qi of A and D fin-
ishes after some computational time at time Ti returning a response Ri where
i ∈ {1, . . . , N}. A applies a probabilistic physical interaction process aiming
at disturbing the intended computation of S. A may be able to monitor the
effects caused by physical interaction using auxiliary means, e.g., by observ-
ing the instantaneous leakage Ii,t of the implementation at a monitoring set-up
at time t. If necessary, A applies cryptanalytical methods for a final analysis
step.

Moreover, we assume that A is able to perform multiple fault injections at
a fault injection set-up that are bounded by M , where M is a small number.
Let L be a small number of spatially separated fault injection set-ups that can
be operated in parallel. The distinct fault injections during one invocation of S
are numbered as Fi,l,m with l ∈ {1, . . . , L} and m ∈ {1, . . . , M}. These fault
injections occur at the times {ti,1,1, . . . , ti,L,M} with ti,1,1 ≤ · · · ≤ ti,L,M ≤ Ti.

A is an active adaptive adversary, i.e., both the queries Qi as well as the
parameters of Fi,l,m can be chosen adaptively. We point out that the leakage
Ii,t is typically not yet available for the configuration of Fi,l,m at the same
instantiation of S unless a more demanding real-time analysis is applied.

For the physical device D we consider an implementation in circuitry. The
target circuit C that is part of D consists of interconnecting Boolean gates and
memory cells 1. Each spatial position within C is uniquely represented in three
dimensional co-ordinates x = (x, y, z). Processing of C is modelled by the tran-
sition states of the circuit at time t, i.e.,by using four dimensional co-ordinates
(x, t). The state of the circuit st at time t is given by the contents of the memory

1 In a refined model one may distinguish different types of memory elements such as
flip-flops, RAM, flash and EEPROM.
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cells. Faults affecting Boolean gates cause computational faults by introducing
glitches or short circuits. Such faults can result in erroneous states stored at
memory cells. Faults affecting memory cells cause a direct transition from mem-
ory contents st to f(st) with st �= f(st). Fault induction itsself is a probabilistic
process with a certain success probability that depends on the circuit C, the
underlying physical process P used for fault injection, and the configuration of
the fault analysis set-up Fi,l,m.

Summarizing, the information channels are

1. the Query Channel modelling A sending the query Qi to D,
2. the Response Channel modelling A receiving the response Ri of D,
3. the Fault Channel modelling A applying physical fault injection processes

Fi,l,m targeting D, and
4. the Monitoring Channel modelling A receiving physical leakage of D.

Informally speaking (we will give a more precise definition below in case of a
digital signature scheme), an adversary A is successful, if the insertion of faults
either i) yields access to a security service S without knowledge of the required
secret or ii) yields partial information about the secret.

3.1 Objectives of the Adversary

As introduced in Section 2, manifold attack scenarios for fault analysis have been
already proposed. At the core of all these scenarios there is a loop including
both an instantiation of the security service S and a sequence of fault injection
processes Fi,l,m. A classification into three main categories, namely Simple Fault
Analysis (SFA), Successive Simple Fault Analysis (SSFA) and Differential Fault
Analysis (DFA), can be found in [17].

For concreteness, we consider a digital signature scheme that is defined as a
triple of algorithms (Gen, Sig, V er) with key generation algorithm Gen, signing
algorithm Sig and verifying algorithm V er. Let (pk, sk) be public and secret key
of the signing algorithm Sig that is implemented as security service S of D in
the circuit C.

In our model, fault injection can both be done prior and during the compu-
tation of a digital signature. Fault injection may modify the computation of C
(resulting in wrong intermediate data of the computation) as well as the actual
memory contents of C. It is mi included in Qi the chosen message used for sig-
nature generation and si part of Ri such that si ← Sigsk(mi). If V erpk(mi, si)=
yes, the computation of the signature generation is correct, otherwise it is not.

As shown in Fig. 2, A invokes N instantiations of the signature computation.
For each run, A configures Fi,l,m, chooses mi and runs the signature computa-
tion Sigsk(mi). Though configuration of Fi,l,m may be done before the signature
computation, fault injection of Fi,l,m may also be effective during signature com-
putation. A stores (mi, si, V erpk(mi, si)) for the analysis step. A is successful
with N instantiations of Sigsk(mi), if A succeeds in generating a valid signa-
ture s for a new message m which was not been used before during the training
step. In practice, fault analysis against digital signature schemes may be even
stronger: as result, A then outputs sk.
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H ← {}; I ← {}; State ← ε;
for i = 1 . . . N

(State,Fi,l,m, mi) ← A(State, pk, H)
I ← I ∪ {(mi)}
(si) ← Sigsk(mi)
H ← H ∪ {(mi, si, V erpk(mi, si))}

(m, s) ← A(pk, H)
m /∈ I and V erpk(m, s) = yes

Fig. 2. Tampering Attack against a Digital Signature Scheme based on adaptive chosen
messages

3.2 Physical Means of the Adversary

In this Section we detail on the physical modelling of the circuit C and the
physical interaction process P . Let assume a strong adversary A who is given
a map of C including a behavioral simulation for each time t. A is then able
to configure the setup Fi,l,m for fault injection accordingly to the known circuit
layout and processing times.

Interaction Range. According to FIPS 140-2 [2] we introduce the concept
of the cryptographic boundary that encloses all security relevant and security
enforcing parts of an implementation. Additionally, we define a second boundary
that we call the interaction boundary that is specific for each physical interaction
process. If the adversary does not pass the interaction boundary, the physical
interaction is not effective at the cryptographic device. The interaction boundary
can be an outer boundary of the cryptographic boundary, as, e.g., in case of
temperature which affects the entire cryptographic module. Interaction with
light is only feasible if a non-transparent encapsulation is partially removed,
e.g., the chip is depackaged. Because of the limited range of the interaction,
interaction processes using particles with non-zero mass may require the removal
of the passivation and other layers which breaches the cryptographic boundary.

The means of A can be manifold. In our view the main limitations are caused
by the technical equipment available. Because of this we distinguish the non-
invasive adversary, the semi-invasive adversary, and the invasive adversary that
are defined according to earlier work (e.g., [24, 17]) on fault induction.

Let A choose a physical interaction process P . A uses non-invasive means
if the interaction boundary of P is an outer boundary of the cryptographic
boundary. We denote the non-invasive adversary by Anon−inv. A uses invasive
means if the interaction boundary of P is an inner boundary of the cryptographic
boundary. We denote the invasive adversary by Ainv . A semi-invasive adversary
Asemi−inv uses light or electromagnetic fields as the interaction process and is a
special case of Anon−inv.

In circuitry, modifications of charges, currents and voltage levels may cause
faults of the implementation. Modification of charges can be invoked by injecting
charged particles or photons. For example, the underlying physical process for
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optical fault induction is the photoelectric effect whereat injected photons are
absorbed by the electronic semiconductor that in turn excites electrons from the
valence band to the conduction band. Modification of currents can result from
manipulating at the electrical circuit or by electromagnetic fields. Modifications
of internal voltage levels within the cryptographic boundary are feasible by mi-
croprobing or the use of more sophisticated equipment, as focused ion beams.
Note that often cumulative effects are needed to induce a fault, e.g., sufficient
free carriers have to be generated or driven to load or unload a capacitance of
the circuit. In the general case, multiple fault injections can not be considered
as stochastically independent single fault injections, especially if their effects
overlap in time or space.

Table 1. Physical Means according to the interaction range of an adversary

Adversary Physical Means
Anon−inv glitches at external interfaces, changes of the environmental conditions
Asemi−inv light, electromagnetic radiation

Ainv active probes, charged particle beams

Spatial Resolution. If a special volume dV of the circuit C is targeted by
the adversary then optimizing success rate requires that the physical interaction
process needs to be injected into the cryptographic device with a good resolution
in space. The following considerations are most suited for light, electromagnetic
fields, and charged particles as interaction process.

We use F (x, E, t) to model the spatial, energetic and temporal density2 of
identical physical particles3 as a function of a three-dimensional position vector
x = (x, y, z), energy E and time t. Before impact on C the movement of the
density is given by the three-dimensional velocity vector v = (vx, vy, vz). For
example, F (x, E, t) may describe a mono-energetic4 light beam of photons that
is injected into the circuit for a short amount of time.

Without loss of generality the circuit C is assumed to be in line with the
two-dimensional x − y plane (as seen in Fig. 3) at z = 0. The z-axis with z ≥ 0
gives the penetration depth. An interaction process P of F (x, E, t) with the
composition of electronic semiconductor material at position x is described by
a differential cross section dσ(x), defined as dσ(x) = dN(x)

N(x) , wherein dN(x) is
the number of interacting particles per time unit dT and N(x) is the number
of particles that cross the area dA per time unit dT . Assuming that dA lies
in a x − y plane on the surface of C (z = 0), N(x) is derived by N(x) =
∫ vz ·dT

0 dz
∫

dA
dx dy

∫ ∞
0 dE F (x, E, t).

Next, we consider the question of success probability to hit a target volume
dV of C that is located at depth z with depth extension dz and spans an area
2 The number of particles per space unit, per energy unit and per time unit.
3 Correspondingly, one may consider a movement of a wave.
4 The energy distribution can be modelled with the δ-function δ(E − E0), i.e., all

particles have energy E0.
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Fig. 3. Impact of the particle beam into the circuit

dA. During transfer through the circuit incident particles are partly absorbed,
partly reflected and partly transmitted. Interaction processes with matter cause
a decrease and spread of the energetic and spatial distribution of F (x, E, t)
with increasing penetration range in C. The interrelationship of F (x, E, t) as
a function of penetration depth z is complex and does typically not solely de-
pend on one interaction process. We assume that F (x, E, t) can be predicted
for z > 0, e.g., by using a Monte-Carlo simulation of particles’ movement by
including the most important interaction processes as well as the circuit layout.
The spatial spread of particles due to interactions shall be bounded by ΔA(z)
in each x− y plane within C. Accordingly, the energetic spread shall be bounded
by ΔE(z) in each x − y plane within C. In the general case, also the differen-
tial cross section depends on the energy E, so that we consider dσ(x, E) from
now on.

Then, NdV =
∫ z+dz

z dz′
∫

dA dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′) is the

number of interacting particles in dV = dz dA. Let ΔV of C be the overall volume
that is affected by the physical interaction process. Accordingly, in the volume
ΔV it is NΔV =

∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′) with

Δz being the thickness of C. The probability to cause an interaction process
within the volume dV that is located between depth z to z + dz with area
extension dA given the overall affected volume ΔV with NΔV �= 0 is

pV =
NdV

NΔV
=

∫ z+dz

z
dz′

∫
dA

dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′)

∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t) dσ(x′, E′)

(1)

Example 1. Mono-energetic beam with exponential attenuation in homogeneous
material: F (x′, E′, t) = F0 δ(E′ − E0) e−az′

with a = (10μm)−1, ΔA(z′) =
10μm2, Δz = 100μm, dA = 0.02μm2, dz = 0.1μm, z = 20μm and σ(x′, E′) =
σ0. Then, it is pV = NdV

NΔV
= dA e−a z(1−e−a dz)

ΔA (1−e−a Δz) =⇒ pV ≈ 2.69 · 10−6.
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Spatial and Timing Resolution. So far, we considered spatial resolution.
Often additionally timing resolution is required, e.g., the physical interaction
process has to be induced at a specific time frame dt of the computation of the
implementation, i.e., within the time interval [t, t + dt].

When considering timing resolution in addition to spatial resolution (1) the
corresponding probability is

pV T =

∫ t+dt

t dt′
∫ z+dz

z dz′
∫

dA dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t′) dσ(x′, E′)

∫ ∞
−∞ dt′

∫ Δz

0 dz′
∫

ΔA(z′) dx′ dy′ ∫ ΔE(z′)
0 dE′ F (x′, E′, t′) dσ(x′, E′)

. (2)

Example 2. Continuing the previous example with

F (x′, E′, t′) =

{
F0 δ(E′ − E0) e−az′

, if t ≤ t′ ≤ t + ΔT

0, otherwise
with dt = 10ns and ΔT = 100ns =⇒ pV T ≈ 2.69 · 10−7.

Immediate Consequences

– If F (x, E, t′) does not reach the target area dV it is pV T = 0.
– If F (x, E, t′) is uniform in space and time and dV

ΔV 	 1 and dt
ΔT 	 1 then

pV T 	 1 (e.g., in case of thermal radiation). It follows, that for Anon−inv it
is pV T 	 1.

Sensitive and non-sensitive volumes of a circuit. We distinguish ‘sensitive’
and ‘non-sensitive’ volumes of the circuit C during computation of S. A sensitive
volume of the circuit at time t is composed of Boolean gates and memory cells
that are used during computation of the security service S at the time t. The
complementary set of volumes in C at time t is defined as non-sensitive volume
of the circuit. As a consequence, physical interaction processes in non-sensitive
volumes do not lead to a computational fault of S, whereas physical interaction
processes in sensitive volumes can have an impact on the computation of S.
In a refined version of (2) this fact can be included by neglecting non-sensitive
volumes of the circuit at time t.

4 Physical Security Bounds

As already outlined, we assume a strong adversary A who is given a map of C
including a behavioral simulation that also indicates sensitive and non-sensitive
volumes of a circuit C for each time t. Given these means, A is able to perform
a vulnerability analysis of C and to identify tampering attack paths of C.

For security notions, metrics are needed to quantify physical properties of C.
Defining such quantities for a circuit C is strongly dependent on the concrete
layout and has to consider all feasible attack paths, i.e. the set of all admissible
events for A. Suitable metrics of C could be, but are not limited to (i) the size
of target gates, (ii) the attacking time frame for target gates, (iii) the smallest
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Euclidean distance between target gates and the cryptographic boundary of C,
and (iv) the smallest Euclidean distance between target gates and other sensitive
volumes of C.

A circuit C implementing a security service S is said to be statistically secure in
the average case against an (N, L, M)-limited tampering adversary if for all phys-
ical interaction processes P there exists a negligible function negl(C, N, L, M)
such that the success probability of a fault analysis scenario is bounded by
negl(C, N, L, M). For concreteness, if event E is the fault analysis scenario
against a Digital Signature Scheme based on adaptive chosen messages of Fig.
2, then Pr(E) ≤ negl(C, N, L, M) for the given circuit C. As previously said,
the function negl(C, N, L, M) depends on the concrete circuit layout. It is still
an open question whether physical quantities can be formally tied to security
notions in a realistic physical model for tampering.

4.1 Countermeasure Strategies

We consider generic passive and active physical defense strategies that result
from physical means detailed in Section 3.2. Passive defense strategies aim at
significantly reducing the success probability for fault injection (fault preven-
tion). Active defense strategies require that D is capable to detect computa-
tional errors resulting from faults (error detection) or the presence of abnormal
conditions that may lead to faults (fault detection). In any case, reliable de-
fense strategies have to be part of the construction of D. Combinations of these
defense strategies are feasible, especially as most strategies have an impact on
different parameters in (2). The decision whether or not the device shall enter a
permanent non-responsive mode in case of error or fault detection depends on
the concrete impact probability as well as the concrete security service. It is a
matter of risk evaluation.

Table 2. Passive and Active Defense Strategies

Strategy Impact on Parameter Security Objective
Shrinking dA, dz and N fault prevention

Passive Encapsulation z and dσ(x, E) fault prevention
Timing Modifications t, dt and N fault prevention
Error Detection Codes L and N error detection
Physical Duplication L and N error detection

Repeating Computations M and N error detection
Sensors ΔA(z) and N fault detection

Shrinking: Due to the shrinking process, integrated circuits become more and
more compact. Shrinking decreases the target volume dA · dz. Upcoming chip
technology is based on 90 nm structures. For comparison, a focus of a laser beam
on the chip surface of 1 μm was reported in [24] at an optical fault injection setup.
Due to the limited spatial resolution, multiple faults at neighboring gates are
much more likely to occur than single faults at the target resulting in an increase
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of N . Note that shrinking may enhance the sensitivity of the circuit so that less
free carriers or currents are needed for fault injection.

Passive Encapsulation: Passive encapsulation aims that the interaction pro-
cess is absorbed or reflected before its effects reach the target area, i.e., F (x, E, t)
should not reach the target area dV at depth z resulting in pV T = 0 in (2). Such
an encapsulation has to be constructed within the cryptographic boundary of the
device to prevent it from the reach of Anon−inv and Asemi−inv . One approach
includes shields that are non-transparent in a broad light spectrum and prevent
throughpassing of photons, i.e., aiming at high values of dσ(x, E) within the
shield. A simpler design aim is to place security critical parts in center of the
chip to prevent both attacks from the front as well as from the back-end side of
the chip. If considering different physical interaction processes P , the range of
F (x, E, t) in semiconductor materials has to be evaluated, i.e., the average value
of the depth to which a particle will penetrate in the course of slowing down
to rest. This depth is measured along the initial direction of the particle. For
high energy particles these data can be found at [21]. However, against invasive
adversaries the effectiveness of passive encapsulation is quite limited.

Timing Modifications: This strategy can be useful if timing is crucial in a
concrete fault analysis scenario. The objective is to randomly embed the relevant
time interval dt within a larger time interval which leads to an enhancement of
N . A possible realization includes delaying and interrupting the processing of
C, e.g., according to the value of a randomized internal counter. If the physical
leakage of C can not be analyzed in real-time, an adversary is not able to adapt
to the randomized timing. Instead, the source of randomness in the circuit may
become an attractive target. Similarly, increasing the clock frequency of the
circuits may help to increase N .

Error Detection Codes: Error detection codes of data items are well known
for software implementations. For implementation in circuitry, [15] introduced
parity based error detection at a substitution-permutation network based block
cipher. In [20] error detection techniques based on multiple parity bits and non-
linear codes are evaluated. Among them, r-bit non-linear codes are the most
promising, but at cost of an area overhead that is nearly comparable to duplica-
tion. As result, error detection codes lead to an enhancement of L which in turn
typically increases N .

Physical Duplication: The objective is to duplicate critical target volumes of
the circuit. In the context of asynchronous circuits, [10] has already proposed this
idea to improve tamper resistance. These circuits make use of redundant data
encoding, i.e., each bit is encoded onto two wires. Such dual-rail coding offers the
opportunity to encode an alarm signal that can be used for error detection by the
physical device. For memory cells, a ‘dual flip-flop dual-rail’ design is proposed.
The main idea is that an error state on any gate input is always propagated to
the gate output. In case of area duplication, the number of locations for fault
injection is typically doubled, i.e., L is enhanced and precise control over the
fault injection process is needed to prevent an error detection.
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Repeating Computations: Repeating computations of the circuit and com-
parison of results is another strategy for error detection. However, this method
is not reliable if a permanent fault is present in the circuit. In case of transient
errors, repeating leads to an enhancement of M .

Sensors: Here, a network of short-distance sensors is spanned at critical parts
of the circuit. The mean distance between sensors then gives an upper bound on
the area ΔA(z) at which fault injection may not be detected by the sensors. It
is aimed that an adversary has to precisely focus only on the target volume dV
which establishes a hard problem for Anon−inv and Asemi−inv . Alarm detection
may be deployed at an active encapsulation within the cryptographic boundary
of the device. Again, this encapsulation should be out of the reach of Anon−inv

and Asemi−inv . A different approach is given in reference [10]: the authors suggest
to include small optical tamper sensors within each standard cell. These sensors
consist of one or two transistors and enforce an error state if illuminated.

5 Conclusion

Implementation security is different from algorithmic security: for the assess-
ment of implementation security, properties of the concrete layout and timing
of the circuit are needed. In this contribution we initiate an approach towards
the evaluation of physical security against tampering adversaries. We consider
manipulating computations in circuitry and give a physical model on fault in-
jection based on radiation and particle impact. We assume that fault injection
can be both applied prior and during computations of a physical security service
which is a realistic assumption that should be also included in provable security
models. We hope that this framework is useful to both map concrete impact
probabilities of a given circuit as well as to improve the circuits’ layout.
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