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Abstract 
In dynamic environments, people should learn faster, adjusting their beliefs more in response to 
new evidence, either when that new evidence is more surprising and indicative of a likely change 
in the state of the environment or when their beliefs are more uncertain due to a lack of 
information about the current environmental state. Here we identified a pattern of whole-brain 
functional connectivity that changed dynamically over time, being more strongly expressed 
under conditions of high surprise or uncertainty, and being enhanced in individuals that adapted 
their learning and belief updating more appropriately in response to these factors. The key 
features of this whole-brain pattern of functional connectivity involved stronger connectivity, or 
functional integration, between the fronto-parietal and other functional systems. Our results 
provide new insights regarding the association between dynamic adjustments in learning and 
dynamic, large-scale changes in functional connectivity across the whole brain.  
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Introduction 
Human decisions are guided by beliefs about the current environment. However, the 

underlying state of the environment is usually not directly observable and therefore people need 
to infer it from observable evidence that can be noisy. For example, deciding to go to a restaurant 
relies on your belief about the quality of the restaurant, which you infer based on past 
experiences at that restaurant. Furthermore, how much people update their beliefs in response to 
new evidence can depend on the uncertainty they have about their current beliefs and the extent 
to which the new evidence is surprising. If you have a lot of experience with a restaurant, and 
therefore less uncertainty in your beliefs about its quality, you may be more likely to discount a 
new experience that was better or worse than expected, compared to if you have little experience. 
Also, if a new experience is particularly surprising, it might indicate a fundamental change in the 
restaurant (e.g., a new chef) and subsequently spark a larger update in your belief. Past studies 
have shown that in dynamic environments people adaptively update their beliefs in a manner that 
depends on uncertainty and surprise1, 2, 3. As both uncertainty and surprise increase, people 
update their beliefs in a way that weights current evidence more and discounts past experience to 
a greater degree. On the neural level, many studies have shown that such uncertainty and surprise 
in a dynamic environment was represented as univariate and multivariate activity in medial and 
lateral fronto-parietal networks1, 4, 5, 6.  

However, changes in belief updating may be reflected not only in changes in neural 
activity in single brain regions of fronto-parietal networks, but also in changes in functional 
connectivity between these brain regions. Functional connectivity reflects statistical 
dependencies between regional activity time series7 and provides a different perspective to 
understand the brain function8, 9, 10. Recent studies have shown that network neuroscience 
approaches provide complementary measurements of the neural changes that occur during 
human learning11. These studies focused on brain network reconfigurations that occur between 
naïve and well-learned phases in various domains such as motor, perceptual, category, spatial or 
value learning11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21. In these cases, functional connectivity associated with 
fronto-parietal network decreased as learning progressed and this change in connectivity was 
associated with individual learning or performance11, 18, 21. In dynamic environments, however, 
people progressively learn the current state and re-initialize learning once the state changes. Thus, 
we expect more rapid reconfigurations in functional connectivity, as learning shifts between 
slower and faster updating in response to changes in uncertainty and surprise.  

In the current study, we aimed to identify such rapid reconfigurations in functional 
connectivity during adaptive belief updating. For this aim, we use an unsupervised machine 
learning technique known as non-negative matrix factorization (NMF)22. NMF decomposes the 
whole-brain network into subgraphs, which describe patterns of functional connectivity across 
the entire brain, and the time-dependent magnitude with which these subgraphs are expressed. 
Recently, NMF has been used to identify network dynamics during rest and task states23, 24, and 
to determine how these dynamics vary across development25. Here we extend the use of this 
technique to examine changes in network dynamics linked to task variables and individual 
differences. We hypothesized that uncertainty and surprise (which drive the adjustment of 
learning) are related to the temporal expression of specific patterns of functional connectivity 
(i.e., specific subgraphs) involving the fronto-parietal network. We also expected that the 
dynamic modulation of these patterns of functional connectivity (i.e., subgraph expression) are 
associated with individual differences in learning. 
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Results 

Participants performed a predictive-inference task during fMRI (Fig. 1a). In this task, 
participants positioned a bucket to catch a bag that drops from an occluded helicopter. The 
location of the bag was sampled from a Gaussian distribution with a standard deviation (noise) 
and a mean (the location of the helicopter). The noise level was set to either high or low in each 
120-trial run. The location of the helicopter usually remained stable but occasionally shifted 
suddenly and unpredictably (with an average probability of change of 0.1 across trials), with the 
new location sampled from a uniform distribution. Additionally, whether the bag (if caught) was 
rewarded or neutral was randomly assigned on each trial and indicated by color. This task 
challenged participants to form and update a belief about a hidden process (the location of the 
helicopter) based on noisy evidence (i.e., the location of dropped bags). 

As described in our previous report1, participants’ predictions were influence by both 
normative and non-normative factors. In a theoretical model approximating the Bayesian ideal 
observer, beliefs should be updated based on a delta-rule (Fig. 1b), with a learning rate (𝛼") 
determined by two factors: change-point probability (CPP; i.e., the likelihood that a change-point 
has happened) and relative uncertainty (RU; i.e., the reducible uncertainty regarding the current 
state relative to the irreducible uncertainty due to environmental noise) (Fig. 1c). Namely, CPP 
and RU indicated belief surprise and belief uncertainty, respectively. Participants’ learning 
increased as the values of these normative factors (CPP and RU) increased. Whether the outcome 
was rewarded, which is not a feature of the normative model, also influenced learning rates. We 
have previously reported how univariate and multivariate brain activity varies with CPP, RU and 
reward, and the relationship between univariate activations and individual differences1, 6. In the 
current study, we investigated how the dynamics of whole-brain functional connectivity are 
related to these factors and to individual differences in belief updating.  

 
Decomposing functional subgraphs 

We used NMF to decompose whole-brain dynamic functional connectivity into specific 
patterns of functional connectivity, called subgraphs, and the expression of these patterns over 
time. We first identified regions of interest (ROIs) based on the parcellation in Power et al. 
(2011)26 (Fig. 2a) and extracted blood-oxygenation-level-dependent (BOLD) time series for each 
ROI (Fig. 2b). For every ROI pair, we calculated the Pearson correlation coefficient between the 
BOLD time series in each 10-TR (25 seconds) time window. Consecutive time windows were 
offset from one another by 2 TRs, leading to 80% overlap between time windows. The 
correlation matrix in each time window (Fig. 2c) was then unfolded into a one-column vector. 
We concatenated these vectors from all time windows in all participants (Fig. 2d). The values of 
this matrix are required to be strictly positive for NMF, and, to ensure that our approach did not 
give undue preference to either positively or negatively weighted functional connectivity, we 
separated this matrix into two thresholded matrices. The full data matrix was divided into two 
halves, with one half containing the positive correlation coefficients (zero if the coefficient was 
negative) and one half containing the absolute values of negative correlation coefficients (zero if 
the coefficient was positive)24. We applied NMF to this matrix to identify functional subgraphs 
and their expression over time. The full data matrix was decomposed into a matrix W, which 
reflected the strengths of edges for each subgraph, and a matrix H, which reflected the time-
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dependent expression of each subgraph (Fig. 2d). The process of NMF was implemented through 
minimizing the residual error ( 𝑨 −𝑾𝑯 '

( ) with the control of three parameters: the number of 
subgraphs (k), the subgraph regularization (𝛼) and the expression sparsity (𝛽) (Supplementary 
Fig. 1; see Methods). Through NMF, we reduced whole-brain dynamic functional connectivity 
into several subgraphs, which reflected patterns of functional connectivity over the whole brain, 
as well as the temporal expression of these subgraphs.  
 

Properties of subgraphs 
 We summarized the properties of ten subgraphs we identified through NMF. Each 
subgraph was formed as edges between nodes (ROIs). We then converted these edges between 
nodes into edges between functional systems. We used 13 putative functional systems26. Edges 
between nodes were categorized according to the corresponding system of each node. To 
estimate the diagonal entries in the system-by-system matrix, we averaged the weights of all 
edges within a given system (Fig. 3a). To estimate the off-diagonal entries of the system-by-
system matrix, we averaged the weights of all edges linking a node in one system with a node in 
another system. In line with common parlance, we refer to the edges between two different 
systems as between-system edges whereas we refer to the edges within the same system as 
within-system edges. To demonstrate the connectivity pattern of each subgraph, we ordered them 
according to the strength of within-system edges relative to that of between-system edges (Fig. 
3b, Supplementary Fig. 2a-c). For temporal expression, due to highly negative relationships 
between positive and negative expression (all r<-0.61, all p<0.001), we used the relative 
expression (which is the difference between positive and negative expression) as the subgraph 
expression24. Across subgraphs, the average expression was strongly correlated with relative 
strength of within- versus between-system edges (Supplementary Fig. 2d-f). That is, higher 
within-system strength was associated with greater temporal expression of the subgraph. 

 
Modulation of temporal expression by factors that drive learning 

 We investigated the influence of learning factors on the temporal expression of each 
subgraph, and identified one subgraph in particular (subgraph 4) where expression was 
dynamically modulated by factors that should normatively drive learning. We focused on the two 
normative factors: CPP and RU. Theoretically, learning is dynamically driven by these two 
factors. We also included two other factors: reward and residual updating (i.e., belief updating 
not explained by the other factors). Through multiple regression, we estimated the influence of 
these four factors on trial-by-trial expression of each subgraph. Regression coefficients were 
fitted within each participant and each subgraph. Then, significance of these coefficients was 
tested at the group level for each subgraph (Supplementary Fig. 3). Among the ten subgraphs, 
these factors explained the most variance in the temporal expression of subgraph 4, and therefore 
we focused on this subgraph (Supplementary Fig. 2g). CPP (mean±s.e.m.=0.202±0.053; t31=3.78, 
p<0.001), RU (mean±s.e.m.=0.392±0.077; t31=5.11, p<0.001) and residual updating 
(mean±s.e.m.=0.177±0.079; t31=2.23, p=0.033) all positively modulated the time-dependent 
expression of subgraph 4 (Fig 4a). Investigating the structure of this subgraph in more detail, its 
strongest edges involved the fronto-parietal task control system (Fig. 4d). No other subgraph 
showed such robust effects for both CPP and RU. These effects were unchanged when we 
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covaried for the influence of motion (indexed as the relative root-mean-square (RMS) of the six 
motion parameters) in the regression model.  

 
The relationship between individual differences in learning and subgraph expression 

The expression of subgraph 4 reflected individual difference in normative learning. First, 
we examined the relationship between normative learning and the dynamic modulation of 
subgraph expression by normative factors (Supplementary Fig. 4). For normative learning, we 
estimated the influence of CPP and RU on trial-by-trial belief updates through multiple 
regression and used the sum of the regression coefficients of CPP and RU as an index of 
normative learning for each participant1 (see Methods). Similarly, we used the sum of regression 
coefficients of CPP and RU in the previous analyses (Supplementary Fig. 3) as the index of the 
dynamic modulation of subgraph expression by normative factors. For subgraph 4, there was a 
positive correlation between normative learning and dynamic modulation by normative factors 
across participants (r=0.448, p=0.006; Fig. 4b). Second, we examined the relationship between 
normative learning and the average subgraph expression (Supplementary Fig. 5). There was also 
a significantly positive correlation between normative learning and average expression of 
subgraph 4 across participants (r=0.332, p=0.032; Fig. 4c). These results show that participants 
with the highest average expression of subgraph 4, and for whom the normative factors account 
for the most variance in the expression of subgraph 4 across time, tended to update their beliefs 
in a manner more consistent with the normative model. Again, these effects were not changed 
when we covaried for the influence of motion (i.e., the relative RMS of the six motion 
parameters) in the regression model. 

 
Contribution of specific edges to task and individual difference effects 

 Since subgraph 4 is characterized by balanced strength of within-system and between-
system edges (Supplementary Fig. 2a-c), we evaluated the different contribution of within-
system and between-system edges to the effects identified above. First, we determined the 
relative contribution of within-system and between-system edges to the dynamic modulation of 
subgraph expression by learning factors. We estimated the effects of CPP, RU, reward and 
residual updating on the expression of the full subgraph versus reduced subgraphs with only the 
within-system or between-system edges (Fig. 5a). Removing the between-system edges (Within 
versus All) reduced the size of the estimated effects of CPP (mean±s.e.m.=-0.155±0.042; t31=-
3.73, p<0.001), RU (mean±s.e.m.=-0.300±0.062; t31=-4.82, p<0.001), and residual updating 
(mean±s.e.m.=-0.140±0.053; t31=-2.63, p=0.013), while removing the within-system edges 
(Between versus All) led to no significant changes in these effects. Further, in a direct 
comparison of the reduced subgraphs with only within- or between-system edges, the effects 
estimated with between-system edges only were stronger for CPP (mean±s.e.m.=0.151±0.042; 
t31=3.63, p<0.001), RU (mean±s.e.m.=0.290±0.063; t31=4.63, p<0.001), and residual updating 
(mean±s.e.m.=0.139±0.048; t31=2.91, p=0.007). Therefore, the effect of task factors on the 
temporal expression of subgraph 4 involved primarily between-systems connectivity.  

The relationship between individual difference in normative learning and the dynamic 
modulation of subgraph 4 expression appeared to primarily involve within-system edges, while 
that with the average expression of subgraph 4 appeared to primarily involve between-system 
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edges, though neither of these conclusions was as statistically robust as that regarding task 
factors on subgraph expression (Fig. 5b). For the relationship between individual differences in 
normative learning and dynamic modulation, removing the within-system edges (Between versus 
All) slightly reduced the correlation (difference = 0.048, p=0.006). However, there was no 
significant difference for the direct comparison between between-system edges only and within-
system edges only. On the other hand, for the relationship between individual differences in 
normative learning and average expression, there were no significant differences in any 
comparison, though the between-system edges seem to contribute more due to a weak reduction 
in the correlation after removing these edges (Within versus All) and a higher correlation when 
directly compared between-system edges only with within-system edges only. 

We also investigated the contribution of the edges involving different functional systems 
or of specific system-by-system edges to the effects identified above. That is, we conducted 
similar analyses by removing all edges of one functional system (Supplementary Fig. 6) or 
removing one system-by-system edge (Supplementary Fig. 7). The strongest edges in subgraph 4 
involve the fronto-parietal, memory retrieval, dorsal attention and salience systems (Fig. 4d). 
Removing edges associated with these systems led to significant reductions in the effects of CPP 
and RU on temporal expression of the subgraph (Supplementary Fig. 6-7). A similar, though 
weaker, relationship held for the contribution of specific systems/edges to the correlation 
between individual differences in normative learning and the dynamic modulation or average 
expression of the subgraph (Supplementary Fig. 6-7).  

  
Robustness Checks 

  To determine the sensitivity of these results to the time window used to identify 
functional connectivity, we repeated the entire procedure after decomposing functional 
subgraphs using a shorter (8-TR/20 seconds window with 6-TR/15 seconds overlap; 
Supplementary Fig. 8-11) or longer time window (12-TR/30 seconds window with 10-TR/25 
seconds overlap; Supplementary Fig. 12-15). In both shorter and longer time windows, we 
identified ten subgraphs. To delineate the similarities between these subgraphs and the identified 
subgraphs in the main analysis, we estimated the Pearson correlation coefficient between the 
edge strengths of these subgraphs and the edge strengths of their corresponding subgraphs in the 
main analysis. We repeated this analysis for edges between nodes and edges between systems. 
We found that these subgraphs were highly similar to those in the main analysis for both shorter 
(edges between nodes: all r>0.81; edges between systems: all r>0.80) and longer time windows 
(edges between nodes: all r>0.98; edges between systems: all r>0.98). The expression of 
subgraph 4 still showed the relationship to task factors (CPP and RU) and to individual 
differences in normative learning when identified with a longer time window; these effects were 
also present but weaker when identified with a shorter time window. 
 

Relationship between univariate activation and functional connectivity 
The nodes most strongly involved in subgraph 4 spatially overlapped regions where 

univariate activity was modulated by CPP and RU in our previous report. We calculated the edge 
strength of each ROI by averaging the interaction strength between this ROI with other ROIs in 
subgraph 4. Moreover, we extracted the z-statistic of the modulation effect of CPP and RU on 
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activation from our previous study1. Across all ROIs, there was a positive correlation between 
edge strength and activation for CPP (r=0.193, p<0.001; Fig. 6a) and between edge strength and 
activation for RU (r=0.394, p<0.0001; Fig. 6b). We also compared the thresholded activation 
maps for CPP and RU with the map of normalized edge strength for subgraph 4 (Fig. 6c). 
Regions that show stronger increases in activation for increases in CPP and RU tended to also 
have high edge strength in subgraph 4, and vice versa. 

Though there are strong associations between univariate activation and edge strength, our 
functional connectivity results are not entirely due to coordinated activations across regions that 
can be captured in univariate analyses. For each ROI, we constructed a time series of predicted 
BOLD activity from our univariate analyses, which reflected the fluctuations in activity in that 
ROI that can be accounted for by the four task factors (CPP, RU, reward and residual updating). 
Then, we implemented NMF on the matrix of functional connectivity estimated from the 
predicted BOLD time series and repeated all of our analyses (Supplementary Fig. 16-19). In the 
predicted BOLD, we again identified a subgraph 4 that showed the strongest edges in fronto-
parietal system. However, only some of the effects identified above were present in the predicted 
BOLD. Namely, with regard to task effects, only RU significantly modulated the temporal 
expression of the subgraph, and regard to individual difference effects, only the relationship 
between individual differences in normative learning and average subgraph expression was 
significant. Thus, the predicted BOLD time series do not capture all the functional connectivity 
effects we identified in our main analyses. Instead, the dynamic functional connectivity patterns 
identified above seem to reflect a mixture of coordinated activity across regions (which can be 
captured by univariate analyses) and other statistical dependencies across regions which can only 
be captured with network analyses.  
 

Discussion 
 We identified a pattern of functional connectivity that changed dynamically over time 
during a predictive inference task, being more strongly expressed during times that demanded 
faster learning and belief updating, and being enhanced in individuals that adapted their learning 
and belief updating more appropriately in this task. To identify this pattern, we used NMF, an 
unsupervised machine learning technique that decomposes the full matrix of time-dependent 
functional connectivity into subgraphs (patterns of functional connectivity), and the time-
dependent magnitude of these subgraphs. Among the subgraphs we identified in our data, the 
expression of one subgraph in particular was coherently modulated by three trial-by-trial factors 
which behaviorally influenced the degree of belief updating: CPP (surprise), RU (uncertainty), 
and residual updating (updating unaccounted for by surprise or uncertainty). Notably, CPP and 
RU are factors that should normatively promote greater belief updating, discounting past 
observations relative to the most recent evidence. Residual updating reflects the deviation 
between the subject’s update and the update that can be accounted for by the CPP and RU factors 
from the normative model. That is, the expression of this subgraph not only reflects normative 
factors but also likely fluctuations in subjective estimates of those factors. In addition, expression 
of this subgraph across individuals was statistically associated with individual differences in 
belief updating. Participants who showed stronger dynamic modulation of the expression of this 
subgraph by normative factors or who showed stronger average expression of this subgraph 
tended to update their beliefs in a more normative manner – that is, with a stronger influence of 
surprise (CPP) and uncertainty (RU).  
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Structure of the learning-related subgraph 

 We characterized the complex pattern of functional connectivity in the learning-related 
subgraph by summarizing the connectivity according the putative functional system of each 
node26. The largest proportion of connectivity in the learning-related subgraph involved the 
fronto-parietal system. Connectivity associated with the fronto-parietal system has been shown to 
increase at the beginning of learning and decreased toward the later phases of learning11, 18, 21. 
Our result extends this finding and shows that fronto-parietal functional connectivity is 
dynamically modulated in a trial-by-trial manner according to the need for new learning. That is, 
the pattern of functional connectivity captured by the learning-related subgraph increased after 
state changes and then gradually decreased as more information was gained about the current 
state. The fronto-parietal system is thought of as a control system that is involved in adjusting 
behavior flexibly27, 28. In particular, connectivity between the fronto-parietal network and other 
systems has been shown to change in response to different task requirements29. This type of 
flexible control is critical for learning in a dynamic environment, a context in which people 
should adjust their degree of belief updating flexibly3, 4.  

 The identified subgraph was also characterized by the balanced strength of within-system 
connectivity relative to between-system connectivity. However, we showed that the critical 
features that changed in response to task dynamics involved between-system connectivity. This 
result implies that faster learning and belief updating were associated with a greater degree of 
integration between different functional systems. Several previous studies have shown that 
complex cognitive tasks are associated with more integration between systems30, 31, 32, 33. For 
example, brain networks tended to be more segregated during sensory processing, and more 
integrated during complex cognitive tasks such as the n-back or gambling. Other work has 
shown that as a task becomes more practiced over time that the interaction between systems 
decreased while the connections within systems remained strong11. Here we demonstrated 
changes in integration on a fast time scale, as task demands varied from trial to trial. Integration 
between systems was greater during periods of the task when surprise or uncertainty was high, 
and therefore there was a need to update one’s beliefs and base them more on the current 
evidence than on expectations developed from past experience. 

 
Bridge between neural activation and neural communication 

 During learning in response to surprise and uncertainty, regions that showed stronger 
changes in neural activation also showed stronger functional connectivity. This association 
between neural activation and functional connectivity was also observed in other studies of 
motor, perceptual, category, spatial or value learning11, 14, 16, 18, 20, 21. This pattern of results raises 
the possibility, though, that the regions involved in the subgraph may be becoming more tightly 
synchronized to external task events during periods of surprise and uncertainty, without 
necessarily any increase in communication between them. 

However, this was not the case. The dynamic changes in functional connectivity we 
identified appeared to reflect a mixture of regional co-activation induced by task factors and 
increases in correlation between regions that could not be accounted for by task-related 
activations. The functional connectivity present in predicted BOLD time series from univariate 
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GLMs captured some, but not all, of the effects we observed in our data. There were both critical 
within-subject (e.g., the modulation of subgraph expression by surprise and residual updating) 
and between-subject (e.g., the relationship between individual differences in normative learning 
and the dynamic modulation of subgraph expression by normative factors) effects that were only 
uncovered in the full, original functional connectivity matrices. Even though the changes in 
functional connectivity we describe may reflect a mixture of stimulus-driven and endogenous 
dynamics, the network-level provides an important higher-level, reduced-dimensionality 
description of these changes.  

Individual differences in learning were also reflected in features of individual 
connectomes. In our previous study, we noted a relationship between individual differences in 
normative learning and activity in dorsomedial frontal cortex and anterior insula1. In the current 
study, we further identified the association between normative learning and a pattern of a whole-
brain functional connectivity (both the average expression of this subgraph and the dynamic 
modulation of this subgraph’s expression by normative factors). Thus, our present results show 
how functional connectivity can provide complimentary information to neural activations 
regarding individual differences. Our findings also add to previous work showing that brain 
network dynamics can reflect individual differences in learning in various domains11, 12, 14, 18, 21. 
Potentially, these differences in individual connectomes during learning might be linked 
individual differences in resting-state functional connectivity (in which no task performance is 
required)34. 

 
Arousal and network dynamics 

 The dynamics of functional connectivity that we identified may be linked to arousal. We 
and others have previously shown that surprise and uncertainty induce changes in arousal, as 
indexed by pupil responses2, 5, 35. The increases in integration between the fronto-parietal and 
other systems that we observed in this study in response to surprise and uncertainty are 
consistent with previous studies of the relationship between arousal (e.g., wake/sleep, heart rate 
and pupil size) and the dynamics of functional connectivity in large-scale brain networks33, 36, 37, 

38, 39, 40. Specifically, high arousal states are associated with changes in connectivity in regions in 
the fronto-parietal, dorsal attention, ventral attention, salience and default mode networks36, 39, 
and particularly to increases in integration in the fronto-parietal and default mode networks33.  

Potential links between arousal and dynamic functional connectivity are particularly 
interesting in light of theories about the functional role of arousal in changing neural gain, or the 
sensitivity of neural communication41. Arousal is associated with changes in the activity of 
noradrenergic neurons in the locus coeruleus42, 43, 44, which is hypothesized to modulate neural 
gain in the cortical projection targets of these cells. As neural gain increases, neurons receiving 
excitatory input become more active while neurons receiving inhibitory input become less active, 
and these effects have been shown to change network topology45. One previous study established 
a simulated brain functional network and showed that increased neural gain leads to stronger 
network integration, which is particularly pronounced in the fronto-parietal network46. 
Furthermore, atomoxetine, a noradrenergic reuptake inhibitor, increases network integration 
during task performance47 and modulates participants’ learning in dynamic environments48. 
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Limitations and future directions 
 We conclude by noting a few limitations of the current study and several directions for 
future work. First, future studies should evaluate the generalizability of our results to other types 
of tasks. In the current study, we used a specific predictive-inference task in which the structure 
of the environment was communicated through visual representations. If instead the inference 
regarded a different modality such as auditory stimuli35, how similar might the learning-related 
subgraph be? We would expect that different modalities require interactions between different 
sensory systems, but that the critical role of the fronto-parietal system would remain.  

 Second, future studies should investigate whether distinct network dynamics are 
associated with changes in surprise and uncertainty. In dynamic environments like the one we 
studied, the two factors are temporally linked, as change-points lead to immediate periods of 
surprise followed by longer periods of uncertainty1. In the current study, functional connectivity 
was calculated in sliding time windows, which may include both the surprise elicited by change-
points and the uncertainty that follows. Thus, surprise and uncertainty are difficult to temporally 
dissociate. This property may explain why we identified a single subgraph associated with both 
factors. Our previous work showed that surprise was selectively associated with activation in 
visual cortex and uncertainty was selectively associated with activation in anterior prefrontal and 
parietal cortex1. Using a task that can temporally separate the tracking of surprise and 
uncertainty49 might enable the identification of distinct subgraphs for each factor. 
 Last, future studies should evaluate the distinct influence of arousal on the dynamics of 
functional connectivity during belief updating. Arousal may play an important role during 
periods of high cognitive demand when there is a need for the flexible adjustment of behavior. 
There were important similarities between the learning-related subgraph we identified and 
previously described arousal-linked changes in functional integration. However, we did not 
directly measure arousal in the current study. It would be important to investigate the 
relationship between arousal, network reconfiguration, and belief updating in the future. 
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Methods 
Participants 

We used a dataset from our previous study and further details can be found in that report1. 
Thirty-two individuals participated in the fMRI experiment: 17 females, mean age = 22.4 years 
(SD = 3.0; range 18-30). Human subject protocols were approved by the Internal Review Board 
in University of Pennsylvania. All participants provided informed consent before the experiment. 

 
Task 

Each participant completed four 120-trial runs during functional scanning. In each run, 
participants performed a predictive-inference task (Fig. 1a). On each trial, participants made a 
prediction about where the next bag would be dropped from an occluded helicopter by 
positioning a bucket along the horizontal axis (0-300) of the screen. The location of the bag was 
sampled from a Gaussian distribution with a standard deviation (noise) and a mean (the location 
of the helicopter). The standard deviation was high (s.d. = 25) or low (s.d. = 10) in different runs. 
The location of the helicopter usually remained stable but it changed occasionally. The 
probability of change was zero for the first three trials after a change and 0.125 for the following 
trials. After the change, the new location was sampled from a uniform distribution. Additionally, 
correctly predicting the location of the bag resulted in coins landing in the bucket, which could 
either have positive or neutral value depending on their color, which was randomly assigned for 
each trial. 

 
Behavior model 

We applied the same normative model described in our previous study1. An 
approximation to the ideal observer solution to this task updates beliefs according to a delta 
learning rule (Fig. 1b). Beliefs are updated in proportion to the prediction error, which is the 
difference between the observed outcome (bag drop location) and the prediction (bucket 
location), 𝑋" − 𝐵". The proportion of the prediction error to update is determined by the learning 
rate (𝛼"), which is adjusted adaptively on each trial according to two normative factors (Fig. 1c): 
change-point probability (CPP) and relative uncertainty (RU). CPP reflects the likelihood that a 
change-point has happened and increases when there is an unexpectedly large prediction error. 
RU reflects the uncertainty about the current location of the helicopter relative to the amount of 
noise in the environment. RU increases after CPP increases and decays slowly as more precise 
estimates of the helicopter location are possible. 

As in our previous study, a regression model was applied to investigate how different 
factors influence participants’ belief updates. We regressed trial-by-trial updates (𝐵"-. − 𝐵") 
against the prediction error (𝛿) and its interaction with the two normative factors, CPP and RU, 
as well as whether the outcome was rewarded or not1. The form of the regression model can be 
written as 
 

𝑈𝑝𝑑𝑎𝑡𝑒" = 𝛽7 + 𝛽.𝛿" + 𝛽(𝛿"𝐶𝑃𝑃" + 𝛽;𝛿"𝑅𝑈" 1 − 𝐶𝑃𝑃" + 𝛽>𝛿"𝑅𝑒𝑤𝑎𝑟𝑑" + 𝛽A𝐸𝑑𝑔𝑒" + 𝜀	, 
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where t is the trial number and Edge is a quadratic-weighted term ((150 − 𝐵"-.) 150 − 𝐵"-. ) 
that captures the tendency to avoid updating toward the edges of the screen. This regression 
model was fitted separately to each participant’s data to estimate the influence of each factor on 
each participant’s behavior. To examine the relationship between individual differences in 
normative learning and functional network dynamics, we used the sum of the regression 
coefficients on CPP and RU as an index of normative learning. 
 

MRI data acquisition and preprocessing 
MRI data were collected on a 3T Siemens Trio with a 32-channel head coil. Functional 

data were acquired using a gradient-echo echoplanar imaging (EPI) (3 mm isotropic voxels, 64 x 
64 matrix, 42 axial slices tilted 30° from the AC-PC plane, TE = 25 ms, flip angle = 75°, TR = 
2500 ms). There were four runs with 226 images per run. T1-weighted MPRAGE structural 
images (0.9375 X 0.9375 X 1 mm voxels, 192 X 256 matrix, 160 axial slices, TI = 1100 ms, TE 
= 3.11 ms, flip angle = 15°, TR = 1630 ms) and matched fieldmap images (TE = 2.69 and 5.27 
ms, flip angle = 60°, TR = 1000 ms) were also collected. Functional data were corrected for slice 
timing and head motion, attenuated for outliers, undistorted and warped to MNI space, smoothed 
with 6 mm FWHM Gaussian kernel and intensity-scaled by the grand-mean value per run. Detail 
of these preprocessing steps were described in our previous study1. Individual’s structure images 
were segmented into gray matter, white matter (WM) and cerebrospinal fluid (CSF) using FAST 
(FMRIB’s Automated Segmentation Tool)50.  
 

Constructing time-varying functional networks 
For each run and each participant, blood-oxygenation-level-dependent (BOLD) time 

series were obtained from each of 264 regions of interest (ROIs; diameter = 9mm) based on the 
parcellation in Power et al. (2011)26. ROIs that did not have valid BOLD time series for all runs 
and all participants were removed, resulting in N = 247 ROIs. For each BOLD time series, a 
band-pass filter was applied with a cutoff of 0.01-0.08 Hz. This low-frequency band has shown 
to reflect neuronal activation and neural synchronization51, 52, 53. To remove the influence of head 
motion, a confound regression was implemented to regress out nuisance factors from each 
BOLD time series. This confound regression included 24 motion parameters (three translation 
and three rotation motion parameters and their expansion ([𝑅"𝑅"(𝑅"J.𝑅"J.( ]))54, as well as 
average signals from WM and CSF55. 

In order to construct dynamic functional networks, we define sliding time windows and 
calculate Pearson correlation coefficients between ROI time series in each sliding time window. 
We assigned these coefficients to the first TR in the time windows. To ensure magnetization 
equilibrium, the first 6 volumes of each run were removed from the analysis. For the rest of the 
volumes in each run, a sliding window was defined with a 10-TR (i.e., 25 seconds) length and 
80% overlap across windows. Each run had 106 sliding time windows, leading to T = 424 sliding 
time windows for each participant. Each participant’s data thus formed a matrix of dynamic 
functional networks with dimensions 𝑁×𝑁×𝑇. Then, we took each participant’s 𝑁×𝑁 matrix 
and unfurled the upper triangle into an O(OJ.)

(
 vector. By concatenating vectors across all time 

windows (𝑇), we obtained an O(OJ.)
(

×𝑇 matrix. Furthermore, we concatenated matrices from S = 
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32 participants to form a O(OJ.)
(

×(𝑇×𝑆) matrix. To ensure that our approach did not give undue 
preference to either positively or negatively weighted functional edges, we separated this matrix 
into two thresholded matrices: one composed of positively weighted edges, and one composed of 
negatively weighted edges. That is, in the matrix of positive functional correlations between ROI 
time series, the original negative correlations between ROI time series were set to 0; in the 
matrix of negative functional correlations between ROI time series, all values were multiplied by 
-1, and the original positive functional correlations between ROI time series were set to 0. After 
concatenating the matrix composed of positively weighted edges and the matrix of negatively 
weighted edges, we had a final O(OJ.)

(
×(𝑇×𝑆×2) matrix A. 

Clustering functional networks into subgraphs 
An unsupervised machine learning algorithm called non-negative matrix factorization 

(NMF)22 was applied on A to identify subgraphs W and the time-dependent expressions of 
subgraphs H. The matrix factorization problem 𝑨 ≈ 𝑾𝑯	𝑠. 𝑡.𝑾 ≥ 0,𝑯 ≥ 0 was solved by 
optimization of the cost function: 

𝑚𝑖𝑛𝑾,𝑯 	
1
2
𝑨 −𝑾𝑯 '

( + 𝛼 𝑾 '
( + 𝛽 𝑯(: , 𝑡) .

(
[\

"].

	, 

where A is the functional connectivity matrix, W is a matrix of subgraph connectivity with size 
O(OJ.)

(
×𝑘, and H is a matrix of time-dependent expression coefficients for subgraphs with size 

𝑘×(𝑇×𝑆). The parameter k is the number of subgraphs, 𝛼 is a regularization of the connectivity 
for subgraphs, and 𝛽 is a penalty that imposes sparsity on the temporal expression coefficients56. 
We used an alternative non-negative least square with block-pivoting method with 100 iterations 
for fast and efficient factorization to solve this equation57. The matrices W and H were initialized 
with randomized values from a uniform distribution between 0 and 1. 

 A random sampling procedure was used to find the optimal parameters k, 𝛼, and 𝛽58. In 
this procedure, the NMF algorithm was re-run 1,000 times with parameter k drawn from U(2,15), 
parameter 𝛼 drawn from U(0.01, 1), and parameter 𝛽 drawn from U(0.01, 1). The subgraph 
learning performance was evaluated through 4-fold cross-validation. In each fold, twenty-four 
participants were used for training; 8 participants were used for testing and calculating cross-
validation error ( 𝑨 −𝑾𝑯 '

( ). An optimal parameter set should minimize the cross-validation 
error. We chose an optimal parameter set (𝑘 = 10, 𝛼 = 0.535, 𝛽 = 0.230) that ensured the 
cross-validation error in the bottom 25% of the distribution of cross-validation error from our 
random sampling scheme23. 
 Since the result of NMF is non-deterministic, we implemented consensus clustering to 
obtain reliable subgraphs59. In this procedure, we (i) used the optimal parameters and ran the 
NMF 100 times on A, (ii) concatenated subgraph matrix W across 100 runs into an aggregate 
matrix with dimensions O(OJ.)

(
×(𝑘×100), (iii) applied NMF to this aggregate matrix to obtain a 

final set of subgraphs Wconsensus and expression coefficients Hconsensus. 
 

Properties of subgraphs 
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 After applying NMF, we obtained the pattern of functional connectivity (W) and 
temporal expression (H) of subgraphs. To delineate interactions between nodes, we rearrange W 
into several 𝑁×𝑁 subgraphs. In addition, to understand the roles of cognitive systems in each 
subgraph, we mapped each node to 13 putative cognitive systems: uncertain, sensory, cingulo-
opercular task control, auditory, default mode, memory retrieval, visual, fronto-parietal task 
control, salience, subcortical, dorsal attention, ventral attention, and cerebellar25, 26. To show 
which within-system and between-system edges were strong in each subgraph, we applied a 
permutation test. We permuted the system label for nodes and formed a matrix with system-by-
system edges. This process was repeated 10,000 times to determine which strength of system-by-
system edges was above the 95% confidence interval threshold after correction for multiple 
comparisons. 

To demonstrate the connectivity pattern of each subgraphs, we ordered them according to 
the relative strength between within-system edges and between-system edges. For each subgraph, 
we calculated the average strength of within-system edges (edges that link two nodes that both 
belong to the same system), and the average strength of between-system edges (edges that link a 
node in one system to a node in another system). Then, we subtracted the average strength of 
between-system edges (EB) from the average strength of within-system edges (EW) and divided 
this difference by the sum of them (`aJ`b

`a-`b
). We then summarize the properties of each subgraph 

by their relative strength, average within-system strength and average between-system strength. 
Additionally, we estimated their 95% confidence interval by implementing boostrapping 10,000 
times on the edges corresponding to the relative strength, average within-system strength or 
average between-system strength, separately. 

Next, we investigated the relationship between the connectivity pattern and temporal 
expression of subgraphs. Due to high associations between positive and negative expression, we 
used the relative expression (which is the difference between positive and negative expression) 
as the subgraph expression24. Across subgraphs, we then calculated Pearson correlation 
coefficients between the average expression and the relative strength, between the average 
expression and the average within-system strength, and between the average expression and the 
average between-system strength. To determine the significance of correlation coefficients, we 
implemented permutation tests. For each analysis, we permuted the labels of subgraphs for the 
average expression and calculated the correlation coefficient, and we repeated this procedure 
10,000 times to form the null distribution of correlation coefficients. Then, we calculated p 
values by comparing the true correlation coefficient with the null distribution. 

 
Modulation of learning factors on temporal expression 

 We investigated how fluctuations in the trial-by-trial expression of each subgraph were 
related to trial-by-trial learning factors. Through NMF, we acquired temporal expression every 2 
TR (i.e., 5 seconds). We then applied a linear interpolation on the temporal expression to obtain 
an expression aligned with outcome onset on each trial. That is, we examined how different 
learning factors lead to the change of functional connectivity after the onset of outcome on each 
trial. Several learning factors were examined: CPP, RU, reward, and residual updating. The 
factors CPP and RU were estimated based on the normative learning model1, 2, 3. Residual 
updating was derived as the residual of the behavioral regression model, which was the 
difference between a participant’s actual update and the update predicted by the behavioral 
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regression model. We next examined the effect of these four factors together, by including all 
four factors in a regression model predicting trial-by-trial expression. Regression models were 
implemented for each participant separately. Regression coefficients were then tested at the 
group level using two-tailed t-tests. 

 
The relationship between individual normative learning and subgraph expression 

Next, we examined the relationship between individual differences in normative learning 
and subgraph expression. For the index of individual normative learning, we used the sum of the 
regression coefficients of CPP and RU estimated from the behavior model as an index of 
normative learning1. This normative learning index reflected the extent to which a participant’s 
trial-by-trial updates were influenced by the two normative factors CPP and RU. Then, we 
examined two types of relationship. First, we calculated the Pearson correlation coefficient 
between individual normative learning and dynamic modulation of subgraph expression by 
normative factors. This dynamic modulation was indexed as the sum of regression coefficients of 
CPP and RU estimated from the regression model for trial-by-trial subgraph expression. That is, 
this dynamic modulation reflected how normative factors were associated with the change in 
subgraph expression. Second, we calculated the Pearson correlation coefficient between 
individual normative learning and the average expression of subgraphs. To determine the 
significance of correlation coefficients, we implemented permutation tests. For each analysis, we 
permuted the labels of participants for individual normative learning and calculated the 
correlation coefficient, and we repeated this procedure 10,000 times to form the null distribution 
of correlation coefficients. Then, we calculated p values by comparing the true correlation 
coefficient with the null distribution.  
 

Within-subject versus between-subject effects 
 To show the relative importance of each subgraph, we evaluated the variance explained 
for within-subject and between-subject effects for each subgraph. The explained variance of 
within-subject effects was the R2 of the regression model that investigated the relationship 
between the four learning factors (CPP, RU, reward and residual updating) and trial-by-trial 
subgraph expression. The explained variance of between-subject effects was the R2 of a 
regression model that investigated the relationship between individual differences in normative 
learning and two individual-level measures of subgraph expression (dynamic modulation by 
normative learning factors and average expression). We investigated the relationship between 
within-subject and between-subject effects across subgraphs using Pearson correlation. To 
determine the significance of the correlation coefficient, we implemented a permutation test. We 
permuted the labels of subgraphs for the within-subject effects and calculated its correlation 
coefficient with between-subject effects, and we repeated this procedure 10,000 times to form 
the null distribution of correlation coefficients. Then, we calculated p values by comparing the 
true correlation coefficient with the null distribution.  
 

Contributions of different types of edges to within-subject and between-subject effects 
 We evaluated the contributions of different types of edges to within-subject and between-
subject effects. We mainly focused on the contribution of within-system edges and between-
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system edges. For this analysis, we implemented three types of comparison: Within versus All, 
Between versus All, and Between versus Within. For Within versus All, we kept within-system 
edges only and re-estimated within-subject and between-subject effects; then, we compared these 
effects with the effects estimated using all edges. This comparison showed the change of effects 
after between-system edges were removed, and thus, this comparison revealed the contribution 
of between-system edges. Specifically, for the within-subject effects, we examined the change of 
coefficients for the regression model that investigate the influence of four learning factors (CPP, 
RU, reward and residual updating) on subgraph expression. The change was calculated for each 
participant separately, and the significance of change was then tested at the group level using 
two-tailed t-tests. For the between-subject effects, we examined the change of correlation 
coefficients for two types of relationship separately: the relationship between individual 
normative learning and dynamic modulation and the relationship between individual normative 
learning and average expression. To determine the significance of the change of correlation 
coefficients, we implemented permutation tests. We permuted the labels of participants for 
individual normative learning and calculated the change of correlation coefficient, and we 
repeated this procedure 10,000 times to form the null distribution of the change of correlation 
coefficients. Then, we calculated p values by comparing the true change of correlation 
coefficient with the null distribution. Similar analyses were implemented for Between versus All. 
We kept between-system edges only and re-estimated within-subject and between-subject effects. 
We then compared these effects with the effects estimated using all edges. In this comparison, 
within-system edges were removed and thus, we examined the contribution of within-system 
edges. Last, the comparison of Between versus Within is a direction comparison between effects 
estimated with between-system edges only and effects estimated with within-system edges only. 
Thus, this comparison examined the different contributions between between-system and within-
system edges.  
 We also investigated the contribution of different functional systems and the contribution 
of different system-by-system edges. For the contribution of different functional systems, we 
compared the effects after removing edges of one functional system with the effects estimated 
with all edges. For the contribution of different system-by-system edges, we compared the 
effects after removing one system-by-system edge with the effects estimated with all edges. 
Statistical testing was conducted with the same procedures. 
 

Relationship between univariate activation and functional connectivity 
We investigated the relationship between univariate activation and functional 

connectivity. To address this issue, we first estimated the modulation of univariate activation by 
four learning factors (CPP, RU, reward and residual updating) using general linear models 
(GLMs). In the GLM, the regressors were the onset of outcome, CPP, RU, reward and residual 
updating. Before entering the GLM, these regressors were convolved with a gamma 
hemodynamic response function as well as the temporal derivative of this function. Six motion 
parameters were also included in the GLM. After implementing the GLMs on univariate activity, 
we calculated the predicted BOLDs as the sum of predicted time series (including both the main 
effect and the temporal derivative) of CPP, RU, reward and residual updating. Then, we repeated 
the same sequence of analyses described above on the predicted BOLD time series. 
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Data availability 
The data for the current study are available from the corresponding author upon request. 
 
Code availability 
Codes are available at https://github.com/changhaokao/nmf_network_learning. 
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Figure 1. Overview of the task and theoretical model of belief updating (McGuire et al., 2014). (a) Sequence of the 
task. At the start of each trial, participants predict where a bag will drop from an occluded helicopter by positioning 
a bucket on the screen. After participants submit their prediction, the bag drops and any rewarded coins that fall in 
the bucket are added to the participant’s score. The location of the last prediction and the last bag drop are noted on 
the next trial. (b) An example sequence of trials. Each data point represents the location of a bag on each trial 
(yellow for rewarded coins, gray for neutral coins). The dashed line represents the true generative mean. The mean 
changes occasionally. The cyan line represents the prediction from a normative model of belief updating. The inset 
equation shows how the model updates beliefs (Bt = belief, Xt = observed outcome, 𝛼" = learning rate on trial t). The 
vertical dashed line represents the boundary of the noise conditions: high-noise (left) and low-noise condition (right). 
Noise refers to the variance of the generative distribution. (c) Two learning components from the normative model. 
Change-point probability (CPP) reflects the likelihood that a change-point happens, which is increased when there is 
an unexpectedly large prediction error. Relative uncertainty (RU) reflects the uncertainty about the generative mean 
relative to the environmental noise, which is increased after high CPP trials and decays slowly as more precise 
estimates of the generative mean are possible. The inset formula shows how CPP and RU contribute to single trial 
estimates of learning rates. 
  

this distribution, representing the location of the helicopter,
usually remained stable across trials but was occasionally
resampled from a uniform distribution. In addition, each bag
had either a high or a neutral reward value (sampled with equal
probability independently on each trial), which was revealed

only after the prediction had been made. Participants could
maximize their overall earnings by inferring the location of
the helicopter and placing their bucket directly beneath it. Suc-
cessful inference required flexible belief updating in response
to changes in the helicopter’s location but stable belief mainte-
nance across trials in which the helicopter remained stationary.

Behavioral Results
Multiple factors influenced belief-updating behavior. We mea-
sured belief updating as the adjustment in bucket position
from one trial to the next. This update, when expressed as a frac-
tion of the spatial prediction error—i.e., the difference between
the previous, chosen bucket position and the subsequent bag
position, or d—can be thought of as a direct measure of learning
rate (cf. Nassar et al., 2010). We analyzed behavior using linear
regression models of belief updating. One explanatory variable
was the trial-wise prediction error d, which could account for a
tendency to update bucket position toward the most recent
bag location as a fixed fraction of d (i.e., a fixed learning rate).
Additional explanatory variables encoded trial-to-trial adjust-
ments in learning rate based on both normative and incidental
factors.
Two normative factors were computed by applying an approx-

imately Bayesian learning model to the sequence of observa-
tions experienced by each participant (Figure 1B; Nassar et al.,
2012, 2010). The first factor was change-point probability
(CPP), which is elevated transiently upon observation of a sur-
prising outcome and reflects the probability that the helicopter
has moved (Figure 1C). The second factor was relative uncer-
tainty (RU), which reflects the uncertainty in one’s belief about
the environment. RU depends inversely on the number of prior
observations attributable to the current environmental state. It
is maximal on the trial after a likely change point and decays
gradually as a function of trials thereafter (see Figure 1C). The
regression also included a term for the current reward value.
Reward value carried no predictive information and therefore
played no role in our computational model, although reward
information can, of course, be relevant in other situations.
Regression fits showed that participants flexibly adapted their

learning rates as predicted by the computational model while
also deviating from the model in systematic ways. Consistent
with previous work, participants learned more when outcomes
were surprising as indexed by CPP (median coefficient = 0.53,
interquartile range [IQR] 0.40 to 0.76, signed-rank p < 0.001)
and when beliefs were more uncertain as indexed by RU (me-
dian = 0.32, IQR 0.11 to 0.44, signed-rank p < 0.001; Figure 2C;
Nassar et al., 2012). However, there was considerable heteroge-
neity across participants, with some behaving like the computa-
tional model (CPP and RU coefficients near one) and others less
so (coefficients near zero). On average, participants also devi-
ated from the model with a tendency to use less-flexible learning
rates (median fixed learning-rate coefficient = 0.39, IQR 0.22 to
0.48, signed-rank p < 0.001) and to modulate learning based
on the irrelevant factor of reward value (median reward coeffi-
cient = 0.03, IQR 0 to 0.05, signed-rank p < 0.001; Figure 2C).
The overall regression fit behavior very well (median r2 = 0.967,
IQR 0.949 to 0.979). Secondary analyses showed that (1) effects
of CPP and RU could also be observed using single-trial

Figure 1. Task Overview and Theoretical Predictions
(A) Screenshots of the experimental task. Participants positioned a bucket,

trying to predict where a bag would drop from an occluded helicopter.

(B) An example sequence of trials. Data points mark the location at which

successive bags fell (yellow = rewarding outcome, gray = neutral outcome).

Heavy dashed line marks the true generative mean, which had periods of

stability with occasional change points. Cyan line marks the predictions of

an approximate Bayesian model. Inset equation presents the model’s belief-

updating rule (Bt = belief, Xt = observed outcome, at = learning rate on trial t).

Vertical dashed line marks the boundary between a high-noise condition (left)

and low-noise condition (right), reflected in different levels of stochastic vari-

ance around the generative mean.

(C) Two theoretical influences on learning rate across trials. Change-point

probability (CPP) is elevated when an unexpectedly large prediction error

occurs. Relative uncertainty (RU) is elevated subsequently and slowly decays

as a more precise estimate of the current mean is reached. Inset equation

shows how CPP and RU jointly determine the adaptive learning rate.
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had either a high or a neutral reward value (sampled with equal
probability independently on each trial), which was revealed

only after the prediction had been made. Participants could
maximize their overall earnings by inferring the location of
the helicopter and placing their bucket directly beneath it. Suc-
cessful inference required flexible belief updating in response
to changes in the helicopter’s location but stable belief mainte-
nance across trials in which the helicopter remained stationary.
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tion of the spatial prediction error—i.e., the difference between
the previous, chosen bucket position and the subsequent bag
position, or d—can be thought of as a direct measure of learning
rate (cf. Nassar et al., 2010). We analyzed behavior using linear
regression models of belief updating. One explanatory variable
was the trial-wise prediction error d, which could account for a
tendency to update bucket position toward the most recent
bag location as a fixed fraction of d (i.e., a fixed learning rate).
Additional explanatory variables encoded trial-to-trial adjust-
ments in learning rate based on both normative and incidental
factors.
Two normative factors were computed by applying an approx-

imately Bayesian learning model to the sequence of observa-
tions experienced by each participant (Figure 1B; Nassar et al.,
2012, 2010). The first factor was change-point probability
(CPP), which is elevated transiently upon observation of a sur-
prising outcome and reflects the probability that the helicopter
has moved (Figure 1C). The second factor was relative uncer-
tainty (RU), which reflects the uncertainty in one’s belief about
the environment. RU depends inversely on the number of prior
observations attributable to the current environmental state. It
is maximal on the trial after a likely change point and decays
gradually as a function of trials thereafter (see Figure 1C). The
regression also included a term for the current reward value.
Reward value carried no predictive information and therefore
played no role in our computational model, although reward
information can, of course, be relevant in other situations.
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Figure 2. Schematic overview of the method. (a) Regions of interest (ROIs). Functional MRI BOLD signals were 
extracted from spherical ROIs based on the coordinate system of Power et al. (2011). There were 264 ROIs in this 
coordinate system. We only kept ROIs that had usable data from all subjects. Thus, we used 247 ROIs for the 
following analyses. Each ROI can be assigned to one of 13 putative functional systems. (b) An example of Pearson 
correlation coefficients calculated between regional BOLD time series over the course of the experiment. Each 
BOLD time series was divided into 10-TR (25 seconds) time windows, and consecutive time windows were placed 
every 2 TRs leading to 80% overlap between consecutive time windows. Pairwise Pearson correlation coefficients 
were calculated between ROI time series in each time window. (c) An example of edge strength over time. In each 
time window, there were 247*(247-1)/2 edges. (d) Nonnegative matrix factorization (NMF). In each time window, 
the matrix of edge strengths was unfolded into one column. Then, edges from all time windows in all participants 
were concatenated into a single matrix. Each row in the full data matrix contained an edge (pairwise correlation 
coefficients between BOLD time series from two ROIs) and each column contained a time window (across all scans 
and participants). Correlation values in this matrix were strictly positive; the full data matrix was divided into two 
halves, with one half containing the positive pairwise correlation coefficients (zero if the correlation coefficient was 
negative) and one half containing the absolute values of negative pairwise correlation coefficients (zero if the 
correlation coefficient was positive). Then, NMF was applied to decompose the concatenated matrix into a matrix W, 
which encoded the strengths of edges for each subgraph, and a matrix H, which encoded the time-dependent 
expression of each subgraph. For example, the strength of edges of the fourth subgraph (the fourth column in the 
matrix W) can be folded into a squared matrix, reflecting the edge strength between every pair of ROIs. 
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Figure 3. Patterns of connectivity in subgraphs. (a) Converting edges between nodes into edges between systems. 
First, the edges of each subgraph can be folded into a square matrix, representing the edges between every pair of 
nodes (ROIs). Then, based on the 13 putative functional systems reported by Power et al. (2011), we categorized 
each edge according to the system(s) to which the two nodes (ROIs) belonged. We calculated the mean strength of 
edges linking a node in one system to a node in another system, and refer to that value as the between-system edge. 
Similarly, we calculated the mean strength of edges linking two nodes that both belong to the same system and refer 
to that value as the within-system edge. Edges between nodes and edges between systems were normalized into the 
scale between 0 and 1. (b) Edges between systems in the ten subgraphs identified by NMF. For each subgraph, the 
top matrix shows the significant edges in that subgraph within or between systems. We show only significant edges 
(p<0.05 after the Bonferroni correction for multiple comparisons). All nodes from systems involved in significant 
edges are shown on the brain below. Subgraphs varied in the degree to which they represent interactions within the 
same system (e.g., subgraph 1) versus interactions between different systems (e.g., subgraph 10).  
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Figure 4. Temporal expression of subgraph 4 was related to learning factors and individual differences. (a) 
Modulation of temporal expression of subgraph 4 by learning factors. A regression model that included CPP, RU, 
reward and residual updating as predictors of temporal expression (indexed as the difference between positive and 
negative expression) of subgraph 4 was fitted for each participant, and coefficients were tested on the group level. 
The results showed positive effects of CPP, RU and residual updating. Error bars represent one SEM. (*p<0.05, 
***p<0.001) (b) The relationship between individual normative learning and the dynamic modulation of subgraph 4 
expression by normative factors. This dynamic modulation was indexed as the sum of the coefficients of CPP and 
RU in (a), and represents the extent to which trial-by-trial expression was influenced by the two normative learning 
factors. There was a significant positive correlation across participants. Each point represents one participant. The 
red line represents the regression line and the shaded area represents the 95% confidence interval. (c) The 
relationship between individual normative learning and average expression of subgraph 4. There was a significant 
positive correlation across participants. Each point represents one participant. The red line represents the regression 
line and the shaded area represents the 95% confidence interval. (d) Summary of the pattern of connectivity in 
subgraph 4. We summarized the pattern of connectivity as within-system strength (which is the value in the diagonal) 
and between-system strength (which is the average of values in the off-diagonal) for each system. The fronto-
parietal system showed the strongest contributions to the sub-graphs in terms of both within-system and between-
system strength. The 95% confidence interval of each system was estimated by boostrapping 10,000 times on the 
edges of that system. 
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Figure 5. The contribution of between-system and within-system edges to effects of learning factors and individual 
differences on subgraph 4 expression. (a) The contribution of between-system and within-system edges to the effect 
of learning factors on temporal expression of subgraph 4. To determine the relative contribution of between- and 
within-system edges on time-dependent subgraph 4 expression, we performed three comparisons. First, removing 
between-system edges (Within versus All) decreased the effect of CPP, RU and residual updating. Second, in 
contrast, after removing within-system edges (Between vs All), there was no significant change in these coefficients. 
Third, we directly compared the effects contributed from between-system edges only and from within-system edges 
only (Between versus Within). For between-system edges, there were stronger positive effects for CPP, RU and 
residual updating. Error bars represent one SEM. (*p<0.05, **p<0.01, ***p<0.001) (b) The contribution of 
between-system and within-system edges to the relationship between normative learning and dynamic modulation 
and average expression of subgraph 4. We performed the same three comparisons to determine the relative 
contribution of between- and within-system edges for each relationship with individual differences. For the effect of 
dynamic modulation, removing within-system edges (Between versus All) decreased the correlation coefficient. 
This correlation coefficient was also larger for within-system edges only than between-system edges only, but this 
effect was not statistically significant. For the effect of average expression, removing between-system edges (Within 
versus All) decreased the correlation coefficient, and the correlation coefficient was larger for between-system edges 
only than within-system edges only, though neither of these effects were statistically significant. Error bars represent 
one SEM (**p<0.01). 
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Figure 6. Relationship between edge strength of subgraph 4 and univariate task activations. (a) Relationship 
between the activation for CPP and the edge strength of subgraph 4. We calculated the Pearson correlation 
coefficient between the z-statistic for CPP from McGuire et al. (2014) and the edge strength across nodes in 
subgraph 4. Each data point represents an ROI. The edge strength for each ROI was calculated as the column sum of 
that ROI’s edges to other ROIs, reflecting the summed interactions between that ROI and all others. The edges were 
normalized into the scale between 0 and 1. A significantly positive correlation was observed. The red line represents 
the regression line and the shaded area represents the 95% confidence interval. (b) Relationship between the 
activation for RU and the edge strength of subgraph 4. We observed a significant positive correlation between the z 
statistic for RU from McGuire et al. (2014) and the edge strength across nodes in subgraph 4. The red line represents 
the regression line and the shaded area represents the 95% confidence interval. (c) Whole-brain thresholded 
activation maps for CPP and RU from McGuire et. al (2014) and whole-brain maps for edge strength of subgraph 4 
in the current study.   
 
  

CPP RU Subgraph 4

Activation: Positive effect Connectivity

Activation: Negative effect Connectivity

c

a b



 

 31 

 
Supplementary Figure 1. Optimal parameters for nonnegative matrix factorization. (a) Number of subgraphs. We 
randomly sampled the number of subgraphs from a uniform distribution (𝑘 ∈ [2, 	15]). The contour plot shows the 
Kernel density of the bivariate distribution. The darker blue area represents the higher probability mass. We selected 
the optimal parameter (𝑘 = 10) by averaging the parameter values that ensured that the cross-validation error was in 
the bottom 25% of the sampling distribution (orange dashed line). (b) Subgraph regularization. We randomly 
sampled values of subgraph regularization from a uniform distribution (𝛼 ∈ [0.01, 	1.0]) and select the optimal 
parameter (𝛼 = 0.535). (c) Expression sparsity. We randomly sampled values of expression sparsity from a uniform 
distribution (𝛽 ∈ [0.01, 	1.0]) and select the optimal parameter (𝛽 = 0.230). 
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Supplementary Figure 2. Properties of subgraphs. (a) Subgraphs differ in the extent of within- versus between-
system edge strength. For each subgraph, the strength of within-system edges (edges linking two nodes that both 
belong to the same system; Fig. 3b) was averaged, and the strength of between-system edges (edges linking one 
node from one system to another node from another system; Fig. 3b) was averaged. The ten subgraphs are ordered 
according to the relative strength of within- versus between-system edges. To form a normalized relative strength, 
we subtracted the average strength of between-system edges from the average strength of within-system edges and 
then divided this difference by their sum. A high relative strength means that a subgraph has stronger within-system 
edges than between-system edges (e.g., subgraph 1). The 95% confidence interval of each subgraph was estimated 
by boostrapping 10,000 times on the edges of that subgraph. (b) Subgraphs differ in the extent of within-system 
strength. For each subgraph, the strength of within-system edges was averaged. For demonstration, the ten 
subgraphs are ordered according to within-system strength. The 95% confidence interval of each subgraph was 
estimated by boostrapping 10,000 times on the edges of that subgraph. (c) Subgraphs differ in the extent of between-
system strength. For each subgraph, the strength of between-system edges was averaged. For demonstration, the ten 
subgraphs are ordered according to the between-system strength. The 95% confidence interval of each subgraph was 
estimated by boostrapping 10,000 times on the edges of that subgraph. (d) The relationship between relative strength 
and average expression across subgraphs. Average expression was calculated as the difference between positive 

a b c

d e f

g



 

 33 

expression and negative expression. Each data point represents one subgraph. A significantly positive correlation 
was observed. The red line represents the regression line and the shaded area represents the 95% confidence interval. 
(e) The relationship between within-system strength and average expression across subgraphs. A significant positive 
correlation was observed. The red line represents the regression line and the shaded area represents the 95% 
confidence interval. (f) The relationship between between-system strength and average expression across subgraphs. 
There was no significant correlation. The red line represents the regression line and the shaded area represents the 
95% confidence interval. (g) The relationship between explained variance of within-subject effects and explained 
variance of between-subject effects across subgraphs. For the within-subject effects, we implemented a regression 
model including factors of CPP, RU, reward and residual updating for each subgraph. Explained variance was 
indexed as R2 of the regression model. For the between-subject effects, we implemented a regression model to 
predict individual normative learning for each subgraph. We included two regressors: dynamic modulation of 
normative factors (CPP and RU) on subgraph expression, and average subgraph expression. We then calculated R2 
of the regression model for each subgraph. Among the ten subgraphs, subgraph 4 showed the strongest R2 for both 
within-subject and between-subject effects. 
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Supplementary Figure 3. Modulation of temporal expression by learning factors. A regression model that included 
CPP, RU, reward and residual updating as predictors of trial-by-trial expression was fitted for each participant and 
subgraph, and then regression coefficients were tested on the group level. Error bars represent one SEM. (*p<0.05, 
**p<0.01, ***p<0.001) 
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Supplementary Figure 4. The relationship between individual normative learning and the dynamic modulation of 
subgraph expression by normative factors. Normative learning was indexed by the sum of the coefficients of CPP 
and RU from a behavioral regression model, and represents the extent to which a participant’s behavior was 
influenced by the two normative learning factors. Dynamic modulation was indexed by the sum of coefficients of 
CPP and RU from the regression model against trial-by-trial expression in Supplementary Fig. 3, and represents the 
extent to which subgraph expression in that participant was influenced by the two normative learning factors. Each 
point represents one participant. The red line represents the regression line and the shaded area represents the 95% 
confidence interval. 
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Supplementary Figure 5. The relationship between individual normative learning and the average expression of 
each subgraph. Each point represents one participant. The red line represents the regression line and the shaded area 
represents the 95% confidence interval.  
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Supplementary Figure 6. Contributions of different functional systems in subgraph 4. (a) Contributions of different 
functional systems to the effect of learning factors on temporal expression of subgraph 4. We removed all edges 
from one of the 13 systems and re-estimated the coefficients for CPP, RU, reward and residual updating. Then we 
compared these coefficients with the original coefficients (including all the edges) to estimate the contribution of 
each system. Error bars represent one SEM. (*p<0.05, **p<0.01, ***p<.001) (b) Contributions of different 
functional systems to the relationship between normative learning and dynamic modulation and average expression 
of subgraph 4. We repeated the same procedure and estimated the change of correlation coefficients for each 
relationship separately. Error bars represent one SEM. (*p<0.05). 
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Supplementary Figure 7. Contributions of different system edges in subgraph 4. (a) Contributions of different 
system edges to the effect of learning factors on temporal expression of subgraph 4. We removed all edges for one 
of the 91 system-by-system connections and re-estimated the coefficients for CPP, RU, reward and residual updating. 
Then we compared these coefficients with the original coefficients (including all the edges) to estimate the 
contribution of each system edge. The open circles denote the significant system edges in subgraph 4 (as shown in 
Fig. 3b). An increase in coefficients is shown in red while a decrease is shown in blue. Lower p values are shown in 
darker color. A p value around 0.0005 corresponds to a corrected p value of .05 after multiple comparisons (i.e., 
0.05/91). (b) Contributions of different system edges to the relationship between normative learning and dynamic 
modulation and average expression of subgraph 4. We repeated the same procedure and estimated the change of 
correlation coefficients for each relationship separately. 
  

a

b



 

 39 

 
Supplementary Figure 8. Robustness check. Subgraphs identified with smaller sliding time window of 8 TRs, with 
6 TRs overlapping between time windows. (a) Edges between systems in the ten subgraphs identified by NMF, as in 
Fig. 3b. (b) Summary of the pattern of connectivity in subgraph 4, as in Fig. 4d, showing the within-system strength 
and between-system strength of each functional system. The 95% confidence interval of each system was estimated 
by boostrapping 10,000 times on the edges of that system. 
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Supplementary Figure 9. Robustness check.  Modulation of temporal expression by learning factors in all ten 
subgraphs identified with smaller sliding time window of 8 TRs (Supplementary Fig. 8). Error bars represent one 
SEM. (*p<0.05, **p<0.01) 
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Supplementary Figure 10. Robustness check. The relationship between individual normative learning and the 
dynamic modulation of subgraph expression by normative factors in all ten subgraphs identified with smaller sliding 
time window of 8 TRs (Supplementary Fig. 8). Each point represents one participant. The red line represents the 
regression line and the shaded area represents the 95% confidence interval.  
  



 

 42 

 
Supplementary Figure 11. Robustness check. The relationship between individual normative learning and the 
average subgraph expression in all ten subgraphs identified with smaller sliding time window of 8 TRs 
(Supplementary Fig. 8). Each point represents one participant. The red line represents the regression line and the 
shaded area represents the 95% confidence interval. 
  



 

 43 

 
Supplementary Figure 12. Robustness check. Subgraphs identified with larger sliding time window of 12 TRs, 
with 10 TRs overlapping between time windows. (a) Edges between systems in the ten subgraphs identified by NMF, 
as in Fig. 3b. (b) Summary of the pattern of connectivity in subgraph 4, as in Fig. 4d, showing the within-system 
strength and between-system strength of each functional system. The 95% confidence interval of each system was 
estimated by boostrapping 10,000 times on the edges of that system.  
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Supplementary Figure 13. Robustness check. Modulation of temporal expression by learning factors in all ten 
subgraphs identified with larger sliding time window of 12 TRs (Supplementary Fig. 12). Error bars represent one 
SEM. (*p<0.05, ***p<.001) 
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Supplementary Figure 14. Robustness check. The relationship between individual normative learning and the 
dynamic modulation of subgraph expression by normative factors in all ten subgraphs identified with larger sliding 
time window of 12 TRs (Supplementary Fig. 12). Each point represents one participant. The red line represents the 
regression line and the shaded area represents the 95% confidence interval.  
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Supplementary Figure 15. Robustness check. The relationship between individual normative learning and the 
average subgraph expression in all ten subgraphs identified with larger sliding time window of 12 TRs 
(Supplementary Fig. 12). Each point represents one participant. The red line represents the regression line and the 
shaded area represents the 95% confidence interval. 
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Supplementary Figure 16. Robustness check. Subgraphs identified in predicted BOLD signals from  
univariate GLMs (including predictors for CPP, RU, reward and residual updating). Subgraphs were identified with 
a sliding time window of 10 TRs, with 8 TRs overlapping between time windows. (a) Edges between systems in the 
nine subgraphs identified by NMF, as in Fig. 3b. (b) Summary of the pattern of connectivity in subgraph 4, as in Fig. 
4d, showing the within-system strength and between-system strength of each functional system. The 95% 
confidence interval of each system was estimated by boostrapping 10,000 times on the edges of that system. 
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Supplementary Figure 17. Robustness check. Modulation of temporal expression by learning factors in all nine 
subgraphs identified in predicted BOLD signals (Supplementary Fig. 16). Error bars represent one SEM. (*p<0.05, 
**p<0.01, ***p<.001) 
 



 

 49 

 
Supplementary Figure 18. Robustness check. The relationship between individual normative learning and the 
dynamic modulation of subgraph expression by normative factors in all nine subgraphs identified in predicted 
BOLD signals (Supplementary Fig. 16). Each point represents one participant. The red line represents the regression 
line and the shaded area represents the 95% confidence interval. 
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Supplementary Figure 19. Robustness check. The relationship between individual normative learning and the 
average subgraph expression in all nine subgraphs identified in predicted BOLD signals (Supplementary Fig. 16). 
Each point represents one participant. The red line represents the regression line and the shaded area represents the 
95% confidence interval. 
 
 


