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Similarity-based search of sequence collections is a core task in bioinformatics, one
dominated for most of the genomic era by exact and heuristic alignment-based
algorithms. However, even efficient heuristics such as BLAST may not scale to the data
sets now emerging, motivating a range of alignment-free alternatives exploiting the
underlying lexical structure of each sequence.

In this paper, we introduce SuperVec, a novel supervised approach to learning
sequence embeddings. Our method extends earlier Representation Learning (RL) based
methods to include jointly contextual and class-related information for each sequence
during training. This ensures that related sequence fragments have proximal
representations in the target space, better reflecting the structure of the domain.

Such representations may be used for downstream machine learning tasks or
employed directly. Here, we apply SuperVec embeddings to a sequence retrieval task,
where the goal is to retrieve sequences with the same family label as a given query. The
SuperVec approach is extended further through H-SuperVec, a tree-based hierarchical
method which learns embeddings across a range of feature spaces based on the class
labels and their exclusive and exhaustive subsets.

Experiments show that supervised learning of embeddings based on sequence labels
using SuperVec and H-SuperVec provides a substantial improvement in retrieval
performance over existing (unsupervised) RL-based approaches. Further, the new
methods are an order of magnitude faster than BLAST for the database retrieval task,
supporting hybrid approaches in which SuperVec rapidly filters the collection so that
only potentially relevant records remain, allowing slower, more accurate methods to be
executed quickly over a far smaller dataset. Thus, we may achieve faster query
processing and higher precision than before.

Finally, for some problems, direct use of embeddings is already sufficient to yield
high levels of precision and recall. Extending this work to encompass weaker homology
is the subject of ongoing research.

1 Introduction 1

Rapid comparison of molecular sequences is an essential task in bioinformatics, with 2

applications including homology detection, annotation, and phylogenetic analysis [1]. 3

For most of the genomic era, sequence comparison has relied primarily on a succession 4

of exact and subsequently heuristic algorithms for sequence alignment, the most 5

successful being BLAST, the Basic Local Alignment Search Tool, which has in various 6
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guises dominated the field since its introduction in 1990 [2]. Exact algorithms for 7

finding global or local sequence alignments were introduced respectively in [3] and [4]. 8

Here the alignment score constitutes a pseudo-metric and a principled, yet 9

time-consuming, method for quantifying sequence similarity and divergence. A high 10

alignment score is taken to indicate a high probability that the sequences are similar. 11

However, this intuition may break down for isolated local alignments or more remote 12

homology, and fail altogether under structural re-arrangement. 13

BLAST rapidly identifies short, high-scoring seed matches between the sequences, 14

extending and combining these as long as a strong match score is maintained. As is well 15

known, the approximate alignment and its significance are estimated using 16

Karlin-Altschul statistics, and these are used to rank the results returned when queries 17

are submitted to sequence collections. BLAST uses word-based heuristics to avoid the 18

computational penalties inherent in the dynamic programming based exact alignment 19

algorithms, which are quadratic in the sequence length. Yet the exponential increase in 20

the availability of sequence data as a result of successive ‘next-generation sequencing’ 21

(NGS) technologies has highlighted the limitations even of successful heuristics of this 22

kind, motivating research into comparison methods that do not rely on the underlying 23

primitive of sequence alignment. Such alignment-free methods construct similarity 24

through alternative features, usually based upon the bag-of-words (BOW) 25

representation familiar from information retrieval, and have the additional virtue of 26

robustness in the presence of structural re-arrangements. 27

The construction of BOW for sequences follows two steps: (i) splitting the biological 28

sequence into k-mers (or words), and (ii) computing the statistics for either an 29

individual k-mer or a k-mer set. The limitations of the BOW representation lie in its 30

high dimensionality and inability to capture patterns inherent in the sequence, patterns 31

which might otherwise support more meaningful comparison. Recent advances in 32

learning distributed representations for text processing have led to techniques that 33

provide a semantically meaningful, dense vector representation of words present in a 34

large corpus of documents. Such Representation learning (RL) approaches in text 35

processing rely on the distributional hypothesis of semantics, the idea that words which 36

frequently co-occur support a common meaning. The best known of these approaches is 37

Word2Vec, due to Mikolov et.al [5]. These techniques may also be applied to biological 38

sequences to analyse, compare and perform downstream machine learning tasks for 39

various applications. Initial research by Asgari et al. [6] and Kimothi et al. [7] utilized 40

Word2Vec and Doc2Vec respectively to demonstrate that useful low-dimensional and 41

robust representations can be generated to support machine learning tasks over 42

biological sequences. 43

1.1 Contribution 44

This paper concerns learning of tailored word-based embeddings for molecular sequences 45

to support sequence comparison without the need for sequence alignment. As with other 46

embedding methods, our technique also requires as input a set of words or k-mers 47

extracted from the sequence. The effect of learning is to capture the information 48

implicit in these k-mers, markedly reducing the dimension from the full bag-of-words 49

representation while ensuring that related k-mer groups have proximal representations 50

in the embedding space. We improve these associations by the addition of class 51

information through supervision, and subsequently through the use of supervision over 52

defined class hierarchies. In this way, we may compute sequence similarity accurately 53

over vectors within a lower dimensional subspace, while ensuring that the calculation 54

relies on features pertinent to the problem at hand, here reflecting some biological 55

grouping or functional relationship. 56

We demonstrate the utility of our proposed approach for retrieval of homologous 57
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sequences—sequences with a common evolutionary history—from a database. Here we 58

take membership of the same protein family as a marker of homology, relying on the 59

family definition provided in PFAM [8] for protein sequences. The exponential increase 60

in database size over the last decade or more has posed fundamental challenges for 61

alignment-based techniques, primarily due to the quadratic complexity of the 62

algorithms. In this paper, we propose alternative techniques for homologous sequence 63

retrieval which provide an order of magnitude improvement in execution time over these 64

methods. The methods, which we term SuperVec, and in its hierarchical form, 65

Hierarchical SuperVec, fall broadly under the umbrella of alignment-free sequence 66

comparison but are based more firmly in the tradition of Representation Learning (RL) 67

in text processing. 68

In the earlier bioinformatics applications ( [6], [7]), k-mers are embedded in a 69

manner that reinforces their surrounding context, implicitly capturing the ‘semantics’ of 70

these co-occurring terms. Here we implicitly adopt a distributional hypothesis for 71

sequence k-mers, the view that commonly occurring k-mers are likely drawn from 72

functionally related contexts, as part of some region of a gene or protein, or as a 73

constituent of some regulatory region. The nature of these relationships depends 74

crucially on the type of the sequence and on the resolution implied by the choice of 75

k-mer size, k. The addition of metadata to the training process both reinforces and 76

complements the relationships inherent in the sequence representation. Such labels are 77

commonly used to indicate function (as in the Gene Ontology categories [9]) or 78

associations and may be used directly (see for example, the protein-protein interaction 79

work of [10]) or indirectly to support inference. Class information of this nature may be 80

available implicitly in features or representations exploited by other methods, for 81

example in the BLOSUM scores employed by BLAST [11], which summarise the 82

alignments of hundreds of proteins. 83

SuperVec makes supervised learning of sequence representations based on class 84

information explicit, extending the earlier context-based ( [6], [7]) approaches to 85

incorporate additional labels or metadata associated with the sequences from which we 86

derive a set of k-mers. Our hypothesis is that by infusing meta information in the 87

learning process, the approach will yield sequence representation better suited to the 88

task at hand, with members of the same class (even if they are divergent sequences – 89

those who might otherwise exhibit a lower degree of shared context) – embedded in 90

close vicinity in the vector space. This is achieved by joining two embedding models in 91

one framework. The first enforces class supervision, while the second incorporates 92

contextual information present in the sequence, achieved as before by extracting a set of 93

k-mers from each sequence. Class information constrains the intra-class vectors to fall 94

closer together within the vector space, which in turn induces class information in the 95

embedding of the constituent k-mer sets. 96

The number of constraints enforced increases with the number of classes, reducing 97

the efficacy of the training process and ultimately limiting its accuracy as the inter-class 98

separation decreases. To overcome these issues we consider a range of partitions other 99

than the original classes, and construct a series of embeddings using the SuperVec 100

algorithm to better cover the space. This method, which we call Hierarchical 101

SuperVec or H-SuperVec, supports embeddings across feature spaces based on the class 102

labels and their exclusive and exhaustive subsets. As we have seen, some of the most 103

commonly used label sets such as GO [12] are inherently hierarchical in nature, 104

supporting the application of these partitions across multiple levels. This approach has 105

the effect of providing observations of the separation of the underlying sequences, as 106

projected into the particular embedding space. These may be exploited to improve our 107

estimate of the true separation, and to better capture the structure of the original 108

sequence hierarchy through the use of label sets reflecting these relationships. In the 109
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bioinformatics context, we may work with a number of additional label sources such as 110

the functional categories of the Gene Ontology [12] and regulatory pathway information 111

from databases such as KEGG [13] and RegPrecise [14]. 112

Experimental results on sequence retrieval tasks illustrate that SuperVec provides a 113

substantial improvement (40− 100% for many precision-recall values) in the retrieval 114

performance vis-a-vis the embedding methods reported in [6] and [7]. These results also 115

demonstrate that H-SuperVec further improves the retrieval performance providing 116

80− 200% improvement for many precision-recall values when compared to [6] and [7]. 117

The proposed methods can also be used as a filter to rapidly select a relevant subset 118

of sequences from the large database, allowing methods with high precision to give 119

desirable output. We call such an approach as a Hybrid approach. The experimental 120

results show that the Hybrid approach- H-SuperVec+BLAST is significantly faster than 121

the BLAST and gives similar performance for early recall levels. While the 122

representations provided by our model are used in this paper only for the homologous 123

sequence retrieval problem, these representations can be directly utilised for other 124

bioinformatics applications, such as the prediction of protein-protein interactions. 125

Further, there is also some scope for improvement in learning models that provide vector 126

space representations for biological sequences, and this paradigm has the potential to 127

match the accuracy of alignment based methods while offering far greater computational 128

efficiency, in part through the reduced dimensionality of the representation. 129

In summary, following are the main contributions of the paper: 130

• We present a supervised approach - SuperVec to learn embeddings for biological 131

sequences. SuperVec provides flexibility to utilize meta-information (like class 132

labels) along with the contextual information present in the sequences to generate 133

their embeddings. 134

• We present an approach - H-SuperVec that is designed specifically for sequence 135

retrieval task. H-SuperVec is built over series of SuperVec models. Although we 136

have shown the use of SuperVec and H-SuperVec approaches for particular 137

bioinformatics application these approaches are generic and can be easily extended 138

to other domains with similar problems. 139

• We show that our approaches provide a faster alternative to the alignment-based 140

method like BLAST for sequence retrieval task, providing an order of magnitude 141

speedup in querying time. 142

• We show that our approaches can be used as a pre-processing filter for applying a 143

high precision method for sequence retrieval tasks. 144

In the next section we give a more detailed introduction to the key approaches in 145

Representation Learning, Word2Vec and Doc2Vec, providing the building blocks for the 146

development of SuperVec and H-SuperVec in the subsequent sections. 147

2 Embedding Models for Text Documents 148

We have earlier introduced the general ideas of Representation Learning, their origins in 149

text processing, and the application of these methods in a biological context. In this 150

section we shall consider the assumptions underpinning these approaches and some of 151

the insights gained, leading into the development of SuperVec and its hierarchical 152

variant H-SuperVec. To assist this process, we conclude this section with a brief 153

introduction to the architecture of Word2Vec and Doc2Vec, which have been prominent 154

in previous studies and appear later as building blocks for our proposed methods. 155
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The fundamental principle of Word2Vec [5] lies in the distributional hypothesis [15]: 156

co-occurring words also share a semantic relationship. Word2Vec captures co-occurrence 157

information in word embeddings by employing a simple classification task wherein a 158

word is predicted based on its context (nearby words) and the representations are 159

learned in a manner such that words with similar meanings appear proximal in the 160

embedding space. Follow up works [16–18] extended the idea of word embedding to 161

learning of embeddings for the whole document, based on suitable combinations of word 162

embeddings. 163

Asgari et. al. [6] introduced BioVec, an adaptation of the Word2Vec framework to 164

learn embeddings for molecular sequences. Here, the skip-gram variant of Word2Vec is 165

used to obtain k-mer embeddings, with the sequence embedding given by the sum of the 166

embeddings of all the k-mers present in the sequence. However, BioVec does not 167

preserve the k-mer ordering of the sequence. Kimothi et.al. [7] addressed this limitation 168

through Seq2Vec [7], which relies on the Doc2Vec [16] architecture to provide a direct 169

embedding for the sequence. 170

While the application of Word2Vec and Doc2Vec to biological sequences is rather 171

straightforward, the insights obtained are not. Both of these studies confirmed the 172

utility of the embeddings in capturing relevant features of the protein sequences — 173

initially using BioVec and through subsequent improvements in Seq2Vec. The BioVec 174

study also provided an important insight regarding the relationship among k-mer 175

embeddings and the biochemical and biophysical properties of the sequence, the mass, 176

volume, and charge. It was shown that k-mers with similar physico-chemical properties 177

form clusters in the embedding space. Further, in the Seq2Vec paper we demonstrated 178

that the use of the sequence tag during learning results in even better clustering of the 179

sequence data – sequences belonging to the same family were more likely to be clustered 180

together using Seq2Vec than with the BioVec model. Such representations have proven 181

beneficial for classification task. 182

In the present context, there is an analogue to the distributional hypothesis in that 183

co-occurring k-mers are likely associated with the same or similar proteins, potentially 184

sharing structure and function, and as we have seen, physico-chemical properties. We 185

here build upon the earlier notion of context driven embeddings based on these k-mers, 186

incorporating the available sequence labels to obtain sequence representations through a 187

novel optimisation framework which we call SuperVec. As we shall discuss later, the 188

SuperVec method performs better for the sequence retrieval task when compared with 189

embeddings obtained using the earlier approaches, while retaining the computational 190

efficiency critical when dealing with a large biological sequence database. 191

2.1 Word2Vec Architecture 192

We now briefly discuss the Word2Vec architecture, which forms a core building block for 193

SuperVec. As discussed above, the idea behind Word2Vec is that pairs of words which 194

share a semantic relationship should be proximally located in the embedding space. 195

Word2Vec achieves these embeddings through the fully-connected shallow neural 196

network (NN) shown in Fig 1. The input and the output layer of this network have V 197

nodes, where V is the vocabulary size. Each node at the input/output layer is mapped 198

to a vocabulary word such that the ith node corresponds to the ith word in the 199

vocabulary. The weight vector vi ∈ Rn denotes connections from the ith input node to 200

the hidden layer nodes, where n is the number of nodes in the hidden layer. The 201

concatenation of input node weight vectors forms the input-hidden layer weight matrix, 202

W ∈ RV×n. Similarly, the hidden-output layer weight matrix is denoted W
′
∈ Rn×V . 203

Once training is completed, the weight vector vi corresponding to the ith word at 204

the input/output layer is also its corresponding embedding. These embeddings are 205
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learned such that words with semantically similar meanings are closer in the embedding 206

space. This objective is achieved by a prediction based framework, where the loss 207

function of the NN is a likelihood function for the words in the corpus. The likelihood 208

function is proportional to the probability of the occurrence of a word given its context. 209

The Word2Vec method has two variants, namely the CBOW (Continuous Bag of Words) 210

and the Skip-gram. In the CBOW architecture, the context is given at the input to 211

predict the word, whereas in the Skip-gram architecture, the word is used to predict the 212

context. 213

Fig 1(a) shows a sample w−2, w−1, w0, w1, w2. Here, w0 denotes the word at the 214

center and wi (i 6= 0) denote the nearby context words. The subscript i denotes the 215

position of words relative to the central word, w0. Inputs to the NN are here a 216

one-hot-encoding of the context words, as shown in small bold letters in the figure. 217

Fig 1. Word2Vec Architecture: The figure shows two variants of word2vec
architecture - CBOW and Skip Gram [19]

A context is represented through a binary vector by keeping all elements zero except 218

the indices corresponding to its constituent words. As shown in Fig 1(a), the 219

one-hot-encoding of words in the context operates on the weight matrix W to give the 220

hidden layer vector h, where 221

hT = [w−2 + w−1 + w1 + w2]
T
W. (1)

Here, w−2 + w−1 + w1 + w2 is the vector corresponding to the context. Similarly, the 222

input to the output layer is given as yT = hTW
′
. Finally the Softmax function is 223

applied at the output layer to produce the output vector z = softmax(y). The output 224

at node j is thus 225

zj =
exp(yj)∑V
k=1 exp(yk)

. (2)

Here, zj , yj are the jth elements of the vectors z and y respectively. Vector z can be 226

interpreted as the probability distribution of all words in the vocabulary given the 227

context of w0 at the input. The embeddings for words in the corpus are obtained by 228

maximizing the joint probability of a word, w, conditioned on its context, C, for all 229
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samples in the corpus. The conditional probabilities for each sample are assumed to be 230

independent of each other and hence the joint probability for all samples can be written 231

as,
∏

w∈V ocab Pr [w | C]. Maximizing
∏

w∈V ocab Pr [w | C] is the same as minimizing its 232

negative log likelihood, so the overall loss function for word2vec may be written as 233

J(W) =
∑

w∈V ocab

− log Pr [w | C] . (3)

We note that updating the weight vectors implies adjusting those vectors 234

corresponding to words in the embedding space. Maximizing the probability Pr [w0 | C], 235

as given in Eq (2), is equivalent to maximizing the dot product of the weight vectors of 236

w0 and its context words, ultimately reducing the cosine distance between them. The 237

process of maximizing the conditional probabilities (Eq (3)) therefore translates into 238

reducing the cosine distance in the embedding space between the word and its 239

surrounding context. The resulting optimisation problem can be solved using the 240

standard gradient descent approach. However, to increase the computational efficiency 241

of the algorithm, Mikolov et.al in [20] use a negative sampling method that essentially 242

modifies the original objective function so that each training sample only updates a few 243

weight vectors. 244

2.2 Doc2Vec Architecture 245

The Doc2Vec model essentially inherits the advantages offered by the Word2Vec model 246

and generates a low dimensional representation of each document and its constituent 247

words. These representations can then be used to retrieve documents from a collection. 248

The main difference in the architecture of Doc2Vec and Word2Vec lies in the use of a 249

document-tag along with the underlying words. The Doc2Vec architecture thus requires 250

additional nodes to specify the document-tag as input. However, the output layer 251

remains unchanged, and after training is completed, the Doc2Vec model yields both 252

word embeddings and embeddings for the documents. 253

Having introduced the background to our work and the components which underpin 254

our model, we now explain in detail the architecture and operation of SuperVec. 255

3 Proposed Approach: SuperVec 256

We now discuss our proposed supervised approach for training a sequence embedding 257

framework, which once trained, can be utilised to generate embeddings for new 258

unlabeled protein sequences. As outlined earlier, providing sequence labels while 259

training may lead to a model that captures both a macro-level pattern from the class 260

labels and the micro-level contextual information present in the protein sequences. We 261

call our method SuperVec, reflecting the supervised nature of the approach. We discuss 262

the model architecture and its operation in detail in following sections. We then 263

introduce a new approach which utilizes the fact that SuperVec generates diverse and 264

multiple embeddings for a sequence when trained with a diverse set of classes. These 265

sets are obtained by partitioning the classes randomly and hence generating a tree-like 266

structure (shown in Fig 3). The diversity of sequence embeddings gives us diverse 267

query-subject distances which are processed jointly to give a better estimate of the 268

similarity between the query-subject pair. We call this approach Herierchical 269

SuperVec or H-SuperVec. We show in the result section that the use of label 270

information during the training together with an increased diversity of representation 271

models considerably increases the retrieval performance while continuing to offer good 272

computational performance. 273
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3.1 Notation 274

We denote the corpus of N protein sequences as S = {s1, s2, . . . , sN} and the 275

vocabulary with M unique k-mers as K = {k1, k2, . . . , kM}. Each sequence 276

si =
[
ki1 , ki2 , . . . , kini

]
is an ordered list of k-mers. To avoid notation clutter we use si 277

to also denote its tag. Each sequence in S belongs to one of the L classes l1, l2, . . . , lL 278

and si ∈ lk means lk is the label for sequence si. Finally, the embeddings of the k-mer 279

ki and the sequence si are denoted ki and si respectively. 280

3.2 Training SuperVec 281

3.2.1 Model Description 282

The SuperVec architecture consists of two Word2Vec units combined so that it can 283

jointly incorporate the class label and contextual information contained in the sequences. 284

As shown in Fig 2, NN1 is a CBOW configuration of Word2Vec that generates an 285

embedding for sequences using the contextual information, while NN2 follows a 286

skip-gram configuration of Word2Vec to help incorporate the class level information. 287

NN1 requires a word-context pair for training while NN2 uses a sequence and a set of 288

similarly labeled sequences. Note that NN1 forces the embeddings of the words that 289

co-occur together along with the sequence embedding, while NN2 further constrains 290

sequences having the same labels to be close to each other. Achieving embeddings 291

informed both by context and by class information requires the use of both networks. 292

Here we couple NN1 and NN2 by sharing the sequence embedding between them. 293

Fig 2. SuperVec Model: NN1 and NN2 architectures are shallow neural networks
with respectively the CBOW and the Skip-gram variant of the Word2Vec model. The
context of kij comprises its nearby words and is denoted kij−w , ...., kij−1 , kij+1 ....kij+w .
The context of the si are sequences which have the same label as si.

3.2.2 Optimization problem formulation 294

To train the SuperVec model, i.e., to learn its parameters, two prediction tasks are 295

performed, one by each of its sub-networks. Both networks essentially perform 296

word(context)/context(word) prediction, although the meaning of context and word 297

April 22, 2019 8/26

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/620153doi: bioRxiv preprint 

https://doi.org/10.1101/620153
http://creativecommons.org/licenses/by/4.0/


Table 1. context-word pairs for NN1 and NN2

Network Architecture context word
NN1 CBOW si and Cij kij
NN2 Skip-Gram si1 , si2 ...sit ∈ lk; given si ∈ lk si

differs between them, as seen in Table 1 below. Here we see the sample kmer kij , its 298

context Cij and the corresponding sequence tag si, and the relationships between them. 299

Since the sequence embedding task is shared by the sub-networks, the parameters of
these networks influence each other. Mathematically, the coupling of these sub-networks
means solving a joint optimization problem with the overall loss function a linear
combination of those for NN1 and NN2

J(S,K) =
∑
si∈S

ni∑
j=1

− log Pr
[
kij | Cij , si

]︸ ︷︷ ︸
NN1

−γ
∑
z∈I+i

log Pr [sz | si]︸ ︷︷ ︸
NN2

 . (4)

Here γ controls the balance between class information and contextual information. 300

The matrices K = [k1, k2, . . . ,kM ]
T ∈ RM×n and S = [s1, s2, . . . , sN ]

T ∈ RN×n
301

denote the embeddings for sequences and k-mers respectively. We define I+i to be the 302

set of indices of sequences which have the same label as si. The conditional probability 303

for NN1 in Eq (4) can be computed by a softmax function, but considering the large 304

number of k-mers and the computational burden involved, we approximate it using 305

hierarchical softmax (HS) [21]. To compute the second part of Eq (4) we use negative 306

sampling [20], where for any given sequence we try to maximize the probability of some 307

selected positive samples as opposed to others. For example in a context/word pair, all 308

the words in the context can be treated as positive samples and the remaining words in 309

the vocabulary as negative samples. In our case, for any input sequence si, sequences 310

whose index lies in I+i are seen as positive samples, whereas the remaining sequences 311

are seen as negative samples. We denote the set of indices of the negative samples as 312

I−i . The second part of Eq (4) can then be approximated as 313

log σ (〈sz, si〉) +
∑
r∈I−i

log σ (−〈sr, si〉) , (5)

where σ (x) = 1
1+exp(−x) is the sigmoid function. Maximizing the first part of the

Eq (5) maximizes 〈sz, si〉 and therefore reduces their cosine distance in the embedding
space. Similarly, maximizing σ (−〈sr, si〉) translates into maximizing the cosine distance
between si and sr. As defined above, the sz have the same label as si whereas the sr
have a different label. Maximizing Eq (5) therefore forces the sequences from the same
class to be mapped closer in the embedding space, while other sequence pairs are
pushed apart. Employing negative sampling thus yields embeddings with low intra-class
and high inter-class separation, a mapping well suited to the retrieval task. Replacing
the second part of Eq (4) with its negative sampling expansion, the final loss function
for SuperVec is given as

J(S,K) =
∑
si∈S

ni∑
j=1

[
− log Pr

[
kij | Cij , si

]

−γ
∑
z∈Z+

i

log σ (〈sz, si〉) +
∑
r∈Z−i

log σ (−〈sr, si〉)

 . (6)
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Computing the second part of Eq (6) requires a very large number of 314

operations—the number of positive samples × number of negative samples—for each 315

case. To mitigate this computational burden, we use only a few randomly selected 316

positive and negative samples for any given sequence. In Eq (6), Z+
i and Z−i are sets 317

which constitute the indices randomly chosen from the positive indices, I+i , and from 318

the negative indices, I−i , respectively. Note that we sample positive as well as negative 319

samples to further speed up the training process. 320

3.2.3 Parameter learning 321

Before discussing the parameter learning process for SuperVec, it is important to note 322

that as for the Word2Vec model, the parameters of SuperVec constitute the embeddings 323

of the k-mers and the sequences. At the end of the training process, we not only get a 324

trained network but we also obtain the embeddings for k-mers and the sequences used 325

in the training process. The process of learning the parameters involves a training 326

process similar to that used for the Word2Vec framework. The parameters are initialized 327

randomly and then modified for each sample to reduce the value of the loss function. 328

The sample here consists of the k-mer, its context, and the corresponding sequence tag. 329

As explained before, SuperVec employs two prediction tasks for each selected sample. 330

In these prediction tasks, for any context/word at the input, the parameters are 331

modified to maximize the probability of word/context at the output by updating the 332

values of parameters using gradient descent. After sufficient iterations, we obtain a 333

trained network which retains the relevant information – in this case, the contextual 334

and class information. The update equations and the derivation of the gradient for si, 335

kij and other parameters of SuperVec over J(S,K) are provided in the appendix ??. 336

Once the model is trained it can be employed for learning the representation of any new 337

sequence. Note that new sequences do not require any label information: as discussed 338

below, we use only NN1 for learning this representation. 339

3.2.4 Inference 340

Computing the representation of a new sequence by passing it through the trained 341

model constitutes the inference step, and a model which generates meaningful 342

representations for new sequences may prove useful for many downstream bioinformatics 343

tasks. The efficacy of the inference step is evaluated with respect to the task for which 344

the learned representations are employed. In this paper, we consider retrieval as the 345

downstream application. Here it is expected that the information learned by the trained 346

model is exploited in the representation of the new sequence. 347

For the retrieval task, SuperVec is trained over labeled sequences. Once we have the 348

trained SuperVec model, we use it to generate embeddings for the database sequences. 349

When a new sequence is given as a query, the first step is to generate its representation 350

within the embedding space, and to compute the relevant distances. Since the inference 351

step does not utilize the sequence labels, only one of the sub-networks of SuperVec, i.e. 352

NN1 (refer to Fig 2), is used. Although the standalone NN1 only uses contextual 353

information, we expect that since NN1 and NN2 are coupled and jointly trained, NN1 354

will also capture the class information to some extent, and that this will eventually 355

influence the representation learned in the inference step. While the representation for a 356

sequence is computed during the inference step, all the parameters of NN1 remain 357

unchanged except for the sequence vector, which is initialized with zeros. This vector is 358

updated iteratively following a gradient descent approach similar to the training stage. 359

The comparison of Seq2Vec and SuperVec results for retrieval tasks confirms our 360

hypothesis that incorporating label information in addition to the contextual 361

information in the training process helps in generating useful sequence embeddings for 362
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retrieval purposes. Although SuperVec performs better than other representation 363

learning methods (Seq2Vec [7], BioVec [6]) for a number of retrieval tasks, we observe 364

that its retrieval performance deteriorates with an increasing number of classes. With 365

the increase in the number of classes, the constraints enforcing interclass and intraclass 366

separation necessarily increase in number. Satisfying this set of constraints may prove 367

difficult, reducing the efficacy of the training process and ultimately leading to a 368

deterioration in retrieval performance. The other important observation to note here is 369

that the interclass and intraclass distances of a set of sequences change when we 370

generate sequence embeddings using SuperVec models trained on a diverse set of classes. 371

This observation implies that we get a diverse embedding of a sequence when generated 372

through multiple models. Keeping these observations in mind, we propose a hierarchical 373

approach which improves the retrieval results by computing a better estimate of the 374

query-subject similarity. We call this proposed method H-SuperVec. In this approach 375

we work with a binary-tree obtained by partitioning a set of classes at each parent node 376

(refer Fig 3). Once the tree is created, a SuperVec model is trained for each of the 377

nodes. Following this approach gives us multiple trained models, which can be used to 378

generate many observations of the same quantity (here the query-subject distance). 379

These observations are processed jointly to get a better estimate of query-subject 380

similarity. We describe the H-SuperVec model in detail in the following section. 381

3.3 Hierarchical SuperVec 382

H-SuperVec exploits the fact that we can generate multiple, diverse embeddings for a 383

given sequence using multiple SuperVec models trained on sequence data belonging to a 384

diverse set of classes. Note that for each query-subject (database sequence) pair, each 385

SuperVec model results in a distance computation corresponding to that model. This 386

distance is used as a proxy to measure the similarity between two sequences. Each 387

SuperVec model introduces some noise in the embeddings it generates and hence in the 388

distance computed for any query-subject pair. Processing the query-subject distances 389

obtained from different SuperVec models together reduces the overall noise and give us 390

a better estimate of query-subject similarity. We utilize this fact in H-SuperVec and 391

apply it to the same retrieval task. Applying H-SuperVec for retrieval tasks involves the 392

following steps: 393

• Form a Hierarchical Structure: First, we assign all of the class labels and their 394

corresponding sequences to the root node. The root node is then split into two 395

child nodes by randomly partitioning its associated class labels into equal halves. 396

These child nodes are further partitioned, following the same process for each 397

node until we are left with leaf nodes, each associated with a single class label. An 398

example of such an hierarchical tree is shown in Fig 3. 399

• Train a SuperVec model for each node of the above tree: these models can 400

subsequently be used to generate embeddings for a new sequence. 401

• Assign weights to each node: As we traverse down the tree, SuperVec is 402

successively trained with fewer classes, leading to an increase in noise in the 403

computed query-subject distance. To get a better estimate of query-subject 404

similarity, we apply a simple linear model (weighted sum) over the distances 405

computed at each node. For query (q), the similarity is estimated as the weighted 406

sum: 407

d =
∑

i∈nodes

widi, (7)

where di is the query-subject distance computed at the ith node and wi is the 408

weight assigned to node i. Since noise increases as we traverse down the tree, the 409
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Fig 3. An example Binary tree for H-SuperVec: A hierarchical structure obtained
by partitioning the class labels of each parent node into equal size subsets. The root
node is assigned p class labels (L1, L2....Lp) and their corresponding sequences. In this
example we assume that p is an even number; the right child of the parent node is
assigned the even and the left child is assigned the odd indexed labels selected from
those assigned to the parent node.

largest weight is assigned to the root node, with node weights decreasing as we 410

traverse toward the leaves. The weight magnitudes are constrained by three 411

conditions: (i) the weights are positive, wi > 0,∀i; (ii) nodes at the same level of 412

the tree are assigned equal weights; and (iii) the weights sum to one, i.e., 413∑
i∈nodes wi = 1. 414

• Retrieve sequences: Once we build a hierarchical tree and train the SuperVec 415

model for each node, the retrieval task is performed as follows. First, we learn 416

embeddings for database sequences using the SuperVec model at each node. For a 417

new query sequence, multiple embeddings are generated corresponding to the 418

nodes of the tree using the inference step. Pairwise query-subject distances are 419

then calculated for each node using Eq (8). These distances are finally combined 420

as a linear sum to give an estimate of similarity between the query-subject pair. 421

The results are returned in descending order of their similarity with the query 422

sequence. 423

Since the weight assigned to each node is reduced as we traverse down the tree, the 424

contribution of the nodes in the computation of similarity between query-subject pair 425

also decreases. We empirically determined that working with a one or two level tree 426

produces consistently better retrieval results. For our experiments, we chose a tree with 427

only one level, i.e., the tree having root and its child nodes. We demonstrate the 428

mechanism followed by the H-SuperVec method to estimate the distance of 429

query-subject pair in Fig 4. SuperVec1, SuperVec2 and SuperVec3 are the models for 430

root and first level nodes respectively. Each of these models is utilized to obtain the 431

query-subject distance; the distance computed at ith node and hence through ith model 432

is given as, 433

di = 1− 〈qi, si〉
‖qi‖‖si‖

. (8)

where qi and si are the embeddings of query ‘q’ and a database sequence ‘s’ 434

computed at ith node. The weights wi were chosen empirically in order to optimise 435
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retrieval performance subject to the constraints discussed above, and in this initial 436

study we have limited experiments to shallow trees, where the depth does not exceed 3. 437

Retrieval performance is generally stronger if the weight mass is concentrated toward 438

the root node, with the best results obtained with the set {0.75, 0.125, 0.125}, 439

corresponding to root and child nodes respectively. Employing H-SuperVec for the 440

retrieval task gives an improvement over all representation learning method considered 441

in this paper including SuperVec; the results are shown in section 5.

Fig 4. SuperVec1/2/3 are the SuperVec model trained for node 1, 2 and 3 respectively.
qi and si are the embedding of a query (q) and subject (s) and di is the distance of
query-subject pair computed at ith node, d is the similarity score for q and s.

442

4 Experimental Design and Evaluation 443

4.1 Task and Data 444

We now discuss the experimental setup to demonstrate the quality of embeddings 445

generated using the proposed method. Asgari et. al [6] demonstrated the utility of the 446

embeddings generated through their method BioVec on the protein family classification 447

task. In this work, we focus on the related problem of homologous sequence retrieval, 448

where the task is to return a set of sequences from a database that are homologous to a 449

given query. For embedding based methods, we address the retrieval problem by 450

employing nearest neighbour search, where for a given query the sequences from a 451

database are retrieved based on their cosine-distance to the query sequence embedding. 452

We use the protein sequence data provided by Asgari et al. [6] for evaluation of our 453

approach on the sequence retrieval task. The dataset consist of 324018 protein 454

sequences, each uniquely annotated with one of the 7027 family labels. In this dataset, 455

there are families who have the same functional description given in the PFAM database. 456

For example, Chitin synth 1 (PF01644) and Chitin synth 2 (PF03142) are two different 457

entries in PFAM, but both represent the chitin synthase enzyme. We merged such 458

April 22, 2019 13/26

.CC-BY 4.0 International licenseis made available under a
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder. It. https://doi.org/10.1101/620153doi: bioRxiv preprint 

https://doi.org/10.1101/620153
http://creativecommons.org/licenses/by/4.0/


families into a single representative family; this led to a reduction in the number of 459

families to 6967. The families/classes present in this dataset differ considerably in their 460

size; the largest family contains 3024 sequences, whereas many families are based on a 461

single sequence. The distribution of class sizes and sequence lengths is shown in Fig 5. 462

To create reasonably sized training and test splits for experiments we chose the 463

largest 200 families, ensuring a minimum family size of least 400 members. These 464

families contain a total of 15, 0324 sequences. 465

Fig 5. Distribution of class sizes and lengths of sequences present in the
complete dataset.

In the experiments below, we first demonstrate the utility of our method on a small 466

(two-class) data-set. Subsequently, we perform retrieval experiments on different 467

database sizes ranging from 21531 (25 classes) to 90121 sequences (200 classes), to 468

analyze the reliability of our method. 469

4.2 Experimental Design 470

The experimental setup used to conduct most of the retrieval experiments in this paper 471

is discussed below. 472

• Setup 1: This setup was designed to demonstrate the advantages of the 473

supervised method SuperVec and its extension HSuperVec on the sequence 474

retrieval task. Here, the database was constructed by choosing at random 60% of 475

the sequences from each class (each family corresponds to one class). The 476

remaining 40% of these sequences form a query set that is used to evaluate 477

retrieval performance on the database. Retrieval based on a given query proceeds 478

as follows. First, for each database sequence, an n-dimensional embedding is 479

generated, yielding a database embedding space. For a new query, we first 480

generate its embedding; then we employ nearest-neighbor search in the database 481

embedding space, returning sequences in descending order of cosine similarity. To 482

avoid the computational overburden of computing the distance of all database 483

sequences to the query and sorting them, we use an approximate neighborhood 484

search [22] technique and fix the neighborhood size to be 10, 000. 485

Note that the process of generating embeddings for the sequences differs for each 486

of the considered RL methods. For BioVec, sequence embeddings are generated 487

by adding the corresponding k-mer embeddings; we use the k-mer embeddings 488

provided by [6]. To generate the sequence embedding using the Seq2Vec or 489

SuperVec approach, we first train them using the database sequences; note that 490

unlike Seq2Vec, SuperVec also uses the database sequence label for training. 491

Once these models are trained, the sequence vectors are generated by following 492

the inference step. 493

In this study, all experiments were performed using a commodity Linux workstation 494

equipped with an Intel Core i7-4790K, 3.6GHz 8 core, 16 thread processor. The values 495

of hyper-parameters–the k -mer size and the representation length of sequences for 496

SuperVec and Seq2Vec–are kept same as given in [6], whereas the context size and 497

supervision parameter γ are chosen based on the best retrieval results obtained on a 498

database of largest 50 classes under setup-1. The values selected for the SuperVec and 499

Seq2Vec hyper-parameters are shown in Table 2. 500
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Table 2. Hyper-parameters for SuperVec/Seq2Vec

Parameter Value
k-mer size 3

context size 1
Sequence representation length 100

γ 0.5

4.3 Evaluation 501

The performance of SuperVec and H-SuperVec on the homologous sequence retrieval 502

task was evaluated through comparison against the other representation learning (RL) 503

approaches–BioVec and Seq2Vec–along with BLAST, the standard approach for this 504

problem. 505

The evaluation metrics for the retrieval task were chosen as follows: 506

1. Interpolated precision-recall values: The interpolated precision value 507

p
′
(r) [23] at a recall level r, is defined as highest precision value found for any 508

recall level r
′
> r; p

′
(r) = max

r′≥r
p(r

′
). Here, p(r) is the precision value at recall r, 509

which is defined as the ratio of the number of relevant sequences to be retrieved at 510

recall r, and the number of sequences that need to be retrieved to get that many 511

relevant sequences for a given query. 512

2. Querying Time: 513

The querying time is defined as the time required to retrieve the significant 514

matches from the database for a given query. As discussed before, the retrieval 515

process for RL methods requires that we first train the model, which is then used 516

for generating the representations for the database and subsequent query 517

sequences followed by the nearest-neighbor search. This training process is 518

computationally intensive, but is required only once for each model. The training 519

time for SuperVec for v 90k training sequences is v 28 hours, and there remains 520

scope to improve this performance through parallelization and optimization. We 521

compute the querying time as the sum of the time taken to generate the sequence 522

embedding and the time required to produce the list of nearest neighbor(s) for a 523

given query. For BLAST, we report the querying time as the time required for it 524

to return the list of database sequences for a given query, i.e. we do not consider 525

the creation of the BLAST database. 526

5 Results and Discussion 527

In this section, we present the results obtained on the retrieval task for SuperVec, 528

H-SuperVec and the other methods considered. 529

5.1 Supervised Vs Unsupervised Embeddings 530

Biological sequence embeddings generated through Representation Learning methods 531

can be broadly categorized as supervised or unsupervised based on the training process 532

adopted. Here, SuperVec will generate supervised embeddings, while approaches such 533

as BioVec and Seq2Vec will yield unsupervised embeddings. The information captured 534

in these embeddings plays a vital role in ensuring a suitable basis for the task 535

undertaken. In the case of retrieval, high precision requires that the representation: (i) 536

generate a database embedding space with low intraclass and high interclass separation, 537

and (ii) map each new query close to its class in the embedding space. 538
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To demonstrate the effect of the supervision adopted in SuperVec on database and 539

query embeddings, and its consequences for retrieval performance, we initially consider 540

a retrieval task over a small database – consisting of the two largest classes from the 541

dataset. We then visualize the two-dimensional t-SNE plots [24] of the database and 542

query sequence embeddings generated through SuperVec, BioVec and Seq2Vec and 543

subsequently compare their retrieval performance. 544

From the t-SNE plots shown in Fig 6, we observe that: 545

• BioVec generated database embeddings are well-separated by class, but form 546

small groups within each class. Seq2Vec provides (relatively) better intraclass 547

organisation than BioVec, but the two classes are merged to a great extent. 548

SuperVec database embeddings show a better intraclass and interclass separation 549

than the other methods, albeit with some overlap at the boundary. 550

• For a new query, the presence of the relevant subjects (here the database 551

sequences from the same class) decreases as we increase the neighborhood size. 552

Thus, we expect to see a decrease in the precision values for increasing recall 553

levels. Analyzing the plots we can infer that such an effect will have a stronger 554

impact on the retrieval performance of Seq2Vec and BioVec when compared to 555

SuperVec, especially for late recall levels. To validate this observation, we 556

compare the retrieval performance of the RL methods considered, and find results 557

consistent with our observations from the t-SNE plots. From the retrieval results 558

in Table 3, we can infer that supervision helps in the retrieval task. 559

• To ensure that these results hold more broadly, we conducted a similar two-class 560

experiment for 100 randomly selected pairs and found the outcomes consistent 561

with the largest pairing discussed above. The results are shown in Table 4. We 562

also conducted same experiments on the largest eight and sixteen classes and 563

observe that SuperVec consistently outperforms other RL methods. The results 564

are shown in Table 5 and Table 6 respectively. 565

Table 3. Largest two class experiment results : Average interpolated precision values at ten recall levels computed for
2242 sequences queried on the database of largest two classes, 3360 sequences. The average precision value at a particular
recall level is calculated by first computing the class wise average followed by averaging the precision value obtained for both
the classes.

Recall Levels
Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BioVec 0.8552 0.7858 0.7202 0.671 0.6309 0.5995 0.5712 0.5486 0.5245 0.5017
Seq2Vec 0.8128 0.7241 0.6769 0.6433 0.6157 0.5917 0.5763 0.5507 0.5309 0.5069
SuperVec 0.9294 0.9035 0.8799 0.8579 0.8359 0.8125 0.7857 0.7533 0.7102 0.6116
BLAST 0.9610 0.8996 0.8673 0.8551 0.8327 0.7286 0.5638 0.28246 0.1677 0

As the RL approaches fall broadly under the umbrella of alignment-free methods, we 566

also consider the performance of BLAST on these tasks a most widely used of the 567

alignment-based approaches. The results show that SuperVec outperforms BLAST for 568

the two class database problems, while the performance declines as the number of 569

classes in the database increases. As we shall see later, we improve upon SuperVec 570

through the use of H-SuperVec and H-SuperVec+BLAST. Comparing the querying time 571

for each approach, we see that the RL methods provide a substantially faster 572

alternative, offering a speedup in querying time of more than 40× when compared to 573

BLAST. For the experiments involving the largest eight and sixteen classes, the average 574

querying time is v 20− 30 ms for RL approaches and ∼ 900 ms for BLAST. 575
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Fig 6. t-SNE plots: The mapping of database and query embeddings generated through BioVec, Seq2Vec and SuperVec

approaches for largest two classes from the dataset; DB1, DB2 denotes the database sequences and Q1, Q2 denotes the query
sequences from class 1 and class 2 respectively. There is a better segregation of the DB1 and DB2 for SuperVec as compared
to Seq2Vec and BioVec. Also, the presence of number of relevant database sequences for a given query decreases at a lower
rate for SuperVec followed by BioVec and Seq2Vec as we increase the neighborhood size.

These experiments were subsequently extended to much larger databases involving a 576

large number of classes and sequences. We again followed experimental setup-1 and we 577

limited our analysis to the top 200 classes, ensuring a minimum size of 400 samples. 578

The results of these experiments are shown in Fig 7. The plots in Fig 7(a) and Fig 7(b) 579

shows the interpolated precision-recall graph obtained for a small database–21531 580

sequences, 25 classes–and for a larger database–90121 sequences 200 classes–respectively. 581

These results show that SuperVec maintains its superiority when compared to the 582

unsupervised methods even for larger databases. Note that although the results for only 583
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Table 4. Retrieval results for 100 random pairs: Average interpolated precision values at ten recall levels computed for
100 random pair of classes. All of these pairs differ in the number of database and query sequences. The precision value
shown at particular recall level below is averaged over the chosen 100 pairs.

Recall Levels
Methods 0.1 0.2 0.3 0.4 0.5
BioVec 0.9079± 0.087 0.8817± 0.101 0.8573± 0.112 0.8329± 0.124 0.8066± 0.134
Seq2Vec 0.9494± 0.034 0.9258± 0.05 0.904± 0.064 0.8828± 0.076 0.8616± 0.085
SuperVec 0.9899± 0.009 0.9882± 0.011 0.9868± 0.013 0.9853± 0.014 0.9836± 0.016
BLAST 0.9705± 0.046 0.9562± 0.082 0.9416± 0.105 0.9322± 0.115 0.9208± 0.133

Recall Levels
Methods 0.6 0.7 0.8 0.9 1
BioVec 0.7764± 0.142 0.7458± 0.147 0.7109± 0.149 0.6617± 0.143 0.5520± 0.082
Seq2Vec 0.8380± 0.094 0.8110± 0.102 0.7778± 0.108 0.7320± 0.111 0.6247± 0.095
SuperVec 0.9815± 0.018 0.9788± 0.021 0.9749± 0.025 0.9675± 0.032 0.9279± 0.06
BLAST 0.9084± 0.153 0.8918± 0.180 0.8547± 0.214 0.7896± 0.259 0.0485± 0.136

Table 5. Largest eight class experiment: Average interpolated precision values at ten recall levels computed for 6553
sequences queried on the database of largest eight classes, 9793 sequences. The average precision value at a particular recall
level is calculated by first computing the class wise average followed by averaging the precision value obtained for all the
classes.

Recall Levels
Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BioVec 0.7168 0.623 0.56 0.5023 0.4265 0.3592 0.3119 0.2667 0.2218 0.1134
Seq2Vec 0.6671 0.5604 0.4886 0.4374 0.3863 0.3448 0.3079 0.2719 0.2335 0.1508
SuperVec 0.7985 0.7437 0.7016 0.6667 0.6342 0.5998 0.5571 0.4783 0.379 0.1799
BLAST 0.9631 0.9348 0.9110 0.8918 0.8307 0.7382 0.66 0.4716 0.337 0

Table 6. Largest sixteen class experiment: Average interpolated precision values at ten recall levels computed for 10537
sequences queried on the database of largest two classes, 15791 sequences. The average precision value at a particular recall
level is calculated by first computing the class wise average followed by averaging the precision value obtained for all the
classes.

Recall Levels
Methods 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
BioVec 0.7128 0.598 0.5304 0.4757 0.4154 0.3656 0.3229 0.258 0.178 0.0735
Seq2Vec 0.6684 0.5545 0.4857 0.4323 0.3837 0.3381 0.2901 0.22 0.1526 0.0808
SuperVec 0.8217 0.7782 0.744 0.7121 0.6771 0.6386 0.5935 0.5387 0.4641 0.1198
BLAST 0.9547 0.924 0.8985 0.8799 0.8341 0.7474 0.6815 0.5664 0.4662 0

two database sizes are provided in Fig 7, we performed the same retrieval task on the 584

database of different sizes —35088 sequences 50 classes; 57768 sequences, 100 classes 585

and 75576 sequences, 150 classes and find that the results remain consistent with the 586

experiments shown. 587

Our observations may be summarized as follows: 588

• SuperVec consistently outperforms the baseline biological sequence embedding 589

approaches on the sequence retrieval task for a wide range of database sizes. 590

• RL methods are substantially faster than BLAST and provide a gain of v35× in 591

querying time, albeit with some reduction in precision. 592

• The presence of a large number of sequences and classes in the database leads to 593

deterioration in the performance of all methods. Although the retrieval 594
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performance of SuperVec also deteriorates for larger databases it still consistently 595

performs better than Seq2Vec and BioVec, most likely as a result of its ability to 596

incorporate the class label information in the sequence embeddings. 597

Fig 7. Supervised Vs unsupervised: Average interpolated precision values at 11
recall levels for largest 25 and 200 classes.
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5.1.1 Robustness of SuperVec 598

To study the robustness of our approach, we conducted experiments on larger databases, 599

this time following the different setup discussed below. 600

• Setup 2: In this setup the sequences are chosen randomly from each class in the 601

ratio 60:20:20, generating the training, database and query set. Here the training 602

sequences are used for training the models whereas the database and query sets 603

are reserved for validation on the retrieval task. Once the models are trained, the 604

process followed to generate sequence embeddings and retrieval of homologous 605

sequences for a given query is the same as described in setup-1. Note that this 606

change won’t have much effect on BioVec generated sequence embeddings as we 607

use the k-mer embeddings directly from [6]. 608

As mentioned before, setup-1 uses database sequences and their labels as part of 609

the training process, leading to the possibility of overfitting with respect to the 610

database sets. This setup is intended to show the robustness of our approach, 611

demonstrating that our method gives retrieval results similar to those obtained in 612

setup-1 even when a different set of sampled sequences are used to train the 613

models. 614

The retrieval results obtained following setup 2 are consistent with setup-1, in which the 615

supervised approach outperforms the baseline RL approaches. The retrieval result for 616

the database of 100 class and 75576 sequences is shown in Fig 8. Since the database and 617

training sequences are different in setup-2, the superior results obtained using SuperVec 618

suggest that SuperVec transfers the information learned from the training sequence and 619

their labels more efficiently to the database and query sequence embeddings. 620

Fig 8. 100 classes experiment: Comparison of interpolated average precision values
for retrieval task performed on 100 classes database following setup 2.

5.2 Retrieval using H-SuperVec 621

H-SuperVec is the hierarchical version of SuperVec and is specifically designed to 622

address the retrieval problem. As discussed before, H-SuperVec partitions the set of 623
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classes in the database into a series of exclusive and exhaustive subsets to make a binary 624

tree (Fig 3). We then train a SuperVec model for each of the subset nodes of the tree. 625

For a set of classes, many such partitions are possible, and the choice of partitioning 626

may affect the training of SuperVec networks, which in turn affect the query-subject 627

similarity computation and subsequent retrieval performance. To analyze the effect of 628

partitions on retrieval results, we perform the retrieval experiment on a randomly 629

chosen set of eight classes, with the experimental protocol following setup 1. We 630

partition the chosen classes into equal-sized subsets and compute the precision-recall 631

values using the H-SuperVec approach for all of the 35 possible partitions. To calculate 632

the query-subject similarity (Eq. (7)) we follow the process explained in Fig 4 and 633

assign the weights to node1, node2 and node3 as 0.75, 0.125, 0.125 respectively. We 634

compare the precision-recall values obtained by employing H-SuperVec against 635

SuperVec and report the percentage change in the precision value at different recall 636

levels. The results obtained from all 35 partitions show a similar trend; Fig 9 shows the 637

plot for five of these splits. These results demonstrate that: 638

• The choice of the partition at the root node has a negligible impact on the 639

performance of H-SuperVec; in other words, a random partition may be chosen 640

for applying H-SuperVec. 641

Fig 9. Percentage change in precision values: These plots shows the percentage
change in precision values obtained for H-SuperVec as compared to SuperVec for the
retrieval task performed on randomly chosen eight classes. The graph is shown for five
splits among possible 35 splits.

Based on the observation made from the eight class experiments, we use a random 642

partition of equal size for applying H-SuperVec on larger databases containing the 643

largest 50, 100, 150 and 200 classes. The results for the 100 and 200 class database are 644

shown in Fig 10. Similar to the eight class experiment, we observe that H-SuperVec 645

approach outperforms SuperVec, giving an improvement in precision values as high as 646

40%. These results validate our claim that using multiple observations of the distance 647

give a better measure of the similarity of the sequences in the embedding space leading 648

to performance superior to SuperVec on the retrieval task. 649
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Fig 10. H-SuperVec vs SuperVec: Comparison of interpolated average precision
values for retrieval task performed on 100 and 200 classes database.

We consider the querying time required for each of these methods in the section 650

below. 651

5.3 Querying Time 652

Querying times on a retrieval task for a database of v 90k sequences and 200 classes are 653

shown for all methods in Table 7. Timings reported are averaged over a set of 1108 654

randomly selected queries, chosen in equal proportion from each class. Querying times 655

are seen to be similar across the Representation Learning methods. Since the SuperVec 656

models required for H-SuperVec are generated in parallel, the querying time for 657

H-SuperVec remains approximately the same as for SuperVec. Nearest neighbour 658

search requires the same amount of processing time for all RL methods. 659

When compared to BLAST, RL approaches takes v 35× lower time in processing a 660

query. Note that the querying time reported in Table 7 is computed when the queries 661

are processed serially. For vector-based methods, multiple queries can be processed 662

together thus further reducing the querying time. For the above mentioned query set, 663

when all queries are processed together we note that RL method took only 0.77 sec, i.e., 664

the average querying time is 0.69 msec which thus gives us v 1000× speedup when 665

compared to BLAST. 666

Table 7. Querying Time: Mean querying time (in milliseconds) computed for 1108
queries for the database of size 90k (200 classes).

Methods BioVec Seq2Vec SuperVec H-SuperVec BLAST

Querying Time 38.30 20.11 20.11 22.09 765.19

The advantages offered by H-SuperVec—the gain in processing time and the 667

improved retrieval results when compared to the earlier models (SuperVec, BioVec, and 668

Seq2Vec) —suggest that we can use it along with BLAST for significantly faster 669

retrieval of sequences with only a modest reduction in fidelity of the results. We now 670

consider this hybrid approach in detail. 671
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5.4 Hybrid Approach: HSuperVec+BLAST 672

The proposed hybrid approach—H-SuperVec+BLAST (H+BLAST)—follows a two-step 673

retrieval process. H-SuperVec is utilized initially to prune the original database to 674

produce a list of results potentially relevant for the given query. Here selection is based 675

on nearest neighbour search in the database embedding space. The list of possible 676

relevant subjects (the reduced database) obtained via H-SuperVec is then provided to 677

BLAST for re-ranking in accord with the given query. Fig. 11 shows the block diagram 678

for the H+BLAST approach, where DB represents the original database, DBr the 679

reduced database set obtained from the first step and DBo the final ranked list of 680

similar sequences for the given query.

Fig 11. Hybrid Approach : Step1 uses H-SuperVec for pruning the original
database (DB) and gives reduced database (DBr). In step2, BLAST re-ranks DBr

based on alignment-based similarity between its sequences and the given query, q and
finally provide the list of retrieved sequences, DBo.

681

The size of the DBr is fixed by choosing a sufficient number of nearest neighbors 682

(NN) for a given query. For our experiment on 90k sequences and 200 classes, we keep 683

NN = 10k, thereby allowing BLAST to operate on a comparatively small database 684

(DBr). This provides a significant improvement in querying time compared to the 685

direct application of BLAST to the original database. The average querying times using 686

H+BLAST and BLAST to process 60k queries on a database of 90k sequences are 687

v 400 msec and 1 sec respectively. Also, the use of BLAST in step 2 gives a 688

performance improvement over H-SuperVec on the retrieval task. With the increase in 689

database sizes, we expect to see further improvements in querying time and retrieval 690

performance of H+BLAST as compared to BLAST and H-SuperVec respectively. Utilizing 691

both approaches together thus gives us the best of both worlds —faster processing of 692

queries and higher precision levels in the results. 693

Fig 12 provides the comparison for the methods considered of retrieval performance 694

over the database of 200 classes. As shown, the proposed approaches, SuperVec, 695

HSuperVec and H+BLAST considerably improve over the baseline RL approaches; Fig 13 696

shows the percentage gain in precision value achieved by our approaches compared to 697

the baseline approaches. 698

Improved RL approaches are expected to yield better database and query 699

embeddings, so that the relevant subjects for a given query may be confined to a close 700
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Fig 12. Retrieval performance comparison: The results are averaged over 60k
queries on the database of 90k sequences and 200 classes.

Fig 13. Improvement in precision: The plot shows the percentage improvement in
precision value achieved by SuperVec, HSuperVec and H+BLAST over other methods.
Precision is compared at 0.6 recall for the database of 90k sequences and 200 classes.

neighborhood in the database embedding space, leading to improved performance on 701

the retrieval task. Improvements in RL approaches would also allow us to choose a 702

smaller number of candidate relevant subjects for a given query, thus providing further 703

gains in processing time and performance for hybrid approaches. 704
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6 Conclusions 705

In this paper, we introduced SuperVec, a supervised approach to learning embeddings 706

for biological sequences. SuperVec not only learns from the information present in the 707

sequences, but also captures sequence label information. We have demonstrated the 708

utility of SuperVec generated embeddings for the homologous sequence retrieval task 709

and noted its superior performance relative to other RL approaches in the bioinformatics 710

domain. The better performance of SuperVec on the retrieval task suggests that we can 711

generate task-specific sequence embeddings by infusing relevant meta information along 712

with the sequence information during the learning phase of a RL model. 713

We also presented a hierarchical version of SuperVec—specifically designed for the 714

sequence retrieval task—which we call H-SuperVec. H-SuperVec is seen to provide 715

improved performance SuperVec when applied to the retrieval task. The major 716

advantage offered by our methods lies in the speedy retrieval of relevant sequences from 717

the database for a given query, some 30-50× faster than BLAST. We also proposed a 718

hybrid approach for the retrieval task which exploits these performance advantages. 719

H-SuperVec can quickly provide a list of the possible relevant subjects from a large 720

database which can be then re-ranked with BLAST. We show that such an approach 721

can give us early precision comparable results to BLAST along with much-improved 722

querying speed. 723

Use of representation learning approaches for sequence comparison is growing, and 724

the improvement in retrieval performance achieved with our approaches is a strong step 725

forward in this direction. Our current work is focused on further improving the 726

Representation Learning techniques for biological sequences so that we can obtain a 727

better estimate of sequence similarity from the distances calculated in the embedding 728

space. Embeddings generated through such RL techniques can then be used for a wide 729

range of downstream bioinformatics tasks, including large scale phylogeny construction, 730

PPI prediction, and sequence clustering. 731
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