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Abstract 1 

Deep Convolutional Neural Networks (CNNs) are gaining traction as the benchmark model of 2 

visual object recognition, with performance now surpassing humans. While CNNs can accurately 3 

assign one image to potentially thousands of categories, network performance could be the result 4 

of layers that are tuned to represent the visual shape of objects, rather than object category, since 5 

both are often confounded in natural images. Using two stimulus sets that explicitly dissociate 6 

shape from category, we correlate these two types of information with each layer of multiple 7 

CNNs. We also compare CNN output with fMRI activation along the human visual ventral 8 

stream by correlating artificial with biological representations. We find that CNNs encode 9 

category information independently from shape, peaking at the final fully connected layer in all 10 

tested CNN architectures. Comparing CNNs with fMRI brain data, early visual cortex (V1) and 11 

early layers of CNNs encode shape information.  Anterior ventral temporal cortex encodes 12 

category information, which correlates best with the final layer of CNNs. The interaction 13 

between shape and category that is found along the human visual ventral pathway is echoed in 14 

multiple deep networks. Our results suggest CNNs represent category information independently 15 

from shape, much like the human visual system. 16 

 17 

Keywords: deep learning, shape, object categorisation, Convolutional Neural Networks (CNNs), 18 

fMRI 19 

 20 
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Introduction 22 

 23 

In recent years, the performance of Deep Convolutional Neural Networks (CNNs) has 24 

improved significantly, such that they are able to meet1-3, and even surpass4 human performance 25 

in classifying objects. In light of these impressive findings, these artificial networks are 26 

increasingly compared to their biological counterparts, resulting in an accumulation of evidence 27 

for their use as a benchmark model of visual object recognition5, 6. For example, the internal 28 

representations of CNNs show correspondence with human ventral temporal cortex (VTC) as 29 

measured by fMRI, as well as with primate inferotemporal cortex (IT) measured using single cell 30 

recordings7-12. The correspondence between deep networks and neural representations along the 31 

visual pathway has even allowed for accurate neural response prediction of single-cell recordings 32 

in IT9 as well as fMRI13. Representational similarities have been further extended from the 33 

spatial into the temporal domain, with results showing a corresponding ordering of processing 34 

between CNNs and the human visual brain using MEG14. These accumulating findings showcase 35 

the ability of CNNs to model neurons from single unit responses to entire populations, spanning 36 

the multiple scales and dimensions used to study neural activity, and making CNNs one of the 37 

best models to date for studying vision in the human and primate brain.  38 

While these feats are impressive, it is unclear to what extent these results are easily 39 

interpretable in terms of category representations. Object category information can often be 40 

confounded with low-level visual features, such as colour, texture, and shape15. In this paper, we 41 

highlight the significant interaction between shape and category that is known to occur in natural 42 

images16  and address the possibility that these networks may distinguish between object 43 

categories by relying upon visual features, such as shape, rather than high-level category 44 
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representations.  Indeed, the shape similarity of objects has been capitalised on in the machine 45 

learning field to improve performance17. CNNs are proficient at representing the perceived shape 46 

of objects, as opposed to their physical shape18 and there are claims that CNNs rely heavily upon 47 

shape information for classification19. Two-dimensional regular vs irregular shape 48 

representations have been found in monkey IT, which are highly comparable to late layers of 49 

CNNs12. Furthermore, CNNs mimic a behavioural bias in humans known as the “shape-bias”, 50 

which is the preference to categorise an object based on shape rather than colour20. Given that 51 

these networks are adept at representing object shape, it is possible they are taking advantage of 52 

shape-based features, instead of category information, to classify object images.    53 

Recent neuroimaging studies have begun to de-cofound category from visual features, 54 

including shape, in order to investigate their interaction along the visual ventral pathway10, 16, 21, 55 

22. VTC in humans is one of the main category-selective areas23, distinguishing, for example, 56 

between animate and inanimate objects24, 25. To build up this category-related representation, 57 

visual information is processed in a series of stages along the ventral visual pathway, from 58 

primary visual cortex (area V1) through to VTC23.  In recent years, the exact role of VTC has 59 

come under question, in particular whether this area encodes category-specific information, or 60 

simply the low-level visual properties associated with category, such as colour, shape, size and 61 

texture15, 26, 27. Proklova, Kaiser & Peelen22 found that VTC encodes texture and outline 62 

alongside category-specific information that is not present in earlier visual areas. Another higher 63 

visual area, lateral occipitotemporal complex (LOTC), was found to encode category-associated 64 

shape properties as well as category-selective information21.  Other category-orthogonal object 65 

properties, including size, position and pose, show higher population decoding performance in 66 

monkey IT (analogous to human VTC) compared to early visual areas, contrary to what was 67 
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previously believed10.  Indeed, the majority of visual object representations in IT may be 68 

accounted for by object shape, or other low-level visual properties, rather than category28. 69 

Nevertheless, studies that explicitly de-confound category from more low-level properties 70 

suggest that the category selectivity cannot be fully explained by these other properties10, 16, 21, 71 

and point towards a so-called feature-dependent categorical code15.  72 

In this paper, we explicitly dissociate shape from category in two stimulus sets to 73 

determine: (i) how CNNs represent object shape and category when they are independent from 74 

one another; and (ii) how these artificial representations correspond with shape and category 75 

representations in human visual cortex. Using two carefully designed stimulus sets, which 76 

orthogonalise shape and category, we assess four top-performing CNNs in their ability to 77 

represent category independently from shape layer by layer. Taking the same two stimulus sets, 78 

we measure human fMRI responses when viewing these images and assess the interaction 79 

between shape and category along the visual ventral stream. Finally, we compare artificial 80 

representations with human fMRI responses for the same two stimulus sets, to evaluate how 81 

closely CNNs reflect biological representations.  82 

 83 

  84 
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Methods 85 

We aimed to determine the relationship between models of shape and category, CNNs, 86 

and neural responses in the human visual ventral pathway. We tested object shape and category 87 

representation in four top-performing CNNs and compared this with behavioural ratings of shape 88 

and category as well as human fMRI response patterns from experiments in two previous 89 

studies16, 29.  Below we describe participants, stimulus sets, CNN architectures, the neuroimaging 90 

experiments, and data analysis.  91 

 92 

Participants 93 

All participants gave written informed consent. All experiments were approved by the 94 

Ethics Committee at KU Leuven and the University Hospitals Leuven. All methods were 95 

performed in accordance with the relevant guidelines and regulations. For the behavioural ratings, 96 

each stimulus set was rated by an independent group of participants (N= 4 for set A; N = 16 for 97 

set B). For the neuroimaging experiments, there were 15 participants (8 females, mean age of 30 98 

years) scanned in fMRI experiment A, none whom were excluded. There were also 15 99 

participants (8 females, mean age of 24 years) scanned for fMRI experiment B, with one person 100 

who was excluded due to excessive head motion.  All subjects had normal or corrected vision.  101 

 102 

Stimulus sets 103 

The stimuli in both experiments were designed to dissociate shape from category 104 

information. Both stimulus sets are grayscale images of objects on a white or grey background, 105 

centred at the origin and presented at a normal viewing angle (see Figure 1). Set A contains 32 106 

unique images, divided into 2 equally sized categories (animal vs non-animal) and 2 equally 107 
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sized groups of shapes (low and high aspect ratio). Set B contains 54 images divided into 6 108 

object categories (minerals, animals, fruit/veg, music, sport and tools) and 9 shape types. The 109 

model design for each stimulus set, which orthogonalises shape from category, is illustrated in 110 

Figure 1. For additional information about the stimulus sets, refer to Ritchie and Op de Beeck29 111 

and Bracci and Op de Beeck16, for Set A and B respectively.   112 

To confirm that shape was not predictive of category information for each of the stimulus 113 

sets, we analysed the images using low-level GIST descriptors30 and tested how well these visual 114 

features predicted shape or category using Linear Discriminant Analysis (LDA). GIST provides 115 

a low dimensional representation of an image based on spectral and coarsely localised 116 

information. We defined the GIST descriptors to include 8 orientations over 8 scales and 117 

combine this with LDA.  For Set A, we ran a two-way classification using a leave-one-level out 118 

procedure, for example, training on bar stimuli and generalising to blob stimuli to test for 119 

animacy classification. For Set B, we followed a six-way classification using a leave-one-level 120 

out test procedure, permuting across all possible groups of train and test combinations and 121 

averaging across results. For example, we selected six shape clusters of the total nine, trained an 122 

LDA on GIST descriptors from five clusters (5x6 = 30 images) and tested whether the algorithm 123 

could predict the 6 different categories from the held out images. All six-way shape and category 124 

combinations were tested and averaged.  125 

 126 

Behavioural data 127 

Each stimulus set was rated on object category and shape properties by means of the 128 

multiple object arrangement method31. Participants rated similarity in two task contexts: for 129 

object category, “arrange the images based on the semantic similarity among objects”; for object 130 
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shape, “arrange the images based on perceived object shape similarity”. These models, based on 131 

behavioural data, are meant to better represent the stimulus psychological space relative to the 132 

stricter design-based models (2 categories x 2 shape types in set A; 6 categories x 9 shape types 133 

in set B). For example, in Set B, the design-based shape model represents the 9 different shape 134 

types as equidistant from one other, whereas the behaviour-based shape model is sensitive to 135 

further variation between the 9 shape types in terms of between-type similarity. The behaviour-136 

based model for Set B illustrates that elongated objects (the final 3 shape types), regardless of 137 

their orientation, are perceived as being more similar to each other relative to round objects (the 138 

first 3 shape types), which is not visible in the design-based model. Figure 1A and 1B depicts 139 

both design-based and behaviour-based models.  140 

 141 

fMRI Experiments 142 

Here we provide a summary of the fMRI procedures and analyses, the full details are 143 

provided in Ritchie and Op de Beeck29 for experiments using Set A and Bracci and Op de 144 

Beeck16 for Set B. 145 

Preprocessing and Analysis   146 

All imaging data was pre-processed and analysed using SPM and MATLAB. For each 147 

participant, fMRI data was slice-time corrected, motion corrected (using spatial realignment to 148 

the first image), coregistered to each individual’s anatomical scan, segmented and spatially 149 

normalised to the standard MNI template. Functional images were resampled to 3 x 3 x 3 mm 150 

voxel size and spatially smoothed by convolving with a Gaussian kernel of 6mm FWHM for Set 151 

A and 4mm FWHM for Set B32.  After pre-processing, a GLM was used to model the BOLD 152 

signal for each participant, for each stimulus, at each voxel. Regressors for the GLM included 153 
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each stimulus condition of interest (32 for A, 54 for B) and 6 motion correction parameters (x, y 154 

and z coordinates for translation and rotation). Each predictor had its time course modelled as a 155 

boxcar function convolved with the canonical haemodynamic response function, producing a 156 

single estimate for each voxel per predictor for every run. The beta weights fitted to each GLM 157 

were used to create Representational Dissimilarity Matrices (RDMs) for each participant 158 

(defined below).  159 

 160 

Regions of Interest (ROIs) 161 

Neural representational content was investigated in three main ROIs in visual cortex: primary 162 

visual cortex (V1), and ventral temporal cortex (VTC), which was split into posterior (VTC post) 163 

and anterior (VTC ant) halves. These ROIs were chosen for their relevance in both object shape 164 

and category information processing23. VTC is bounded laterally by the occipitotemporal sulcus 165 

(OTS), posteriorly by the posterior transverse collateral sulcus (ptCoS) and anteriorly by the 166 

anterior tip of the mid-fusiform sulcus (MFS)23. ROIs were defined at the group level by 167 

combining the anatomical criteria above (using the Neuromorphometrics atlas in SPM) with 168 

functional criteria (all active voxels for the contrast of all conditions versus baseline that 169 

responded to visual information exceeding the statistically uncorrected threshold of p < 0.001 in 170 

a second-level analysis). For further details on ROI definition, please refer to Bracci, Kalfas & 171 

Op de Beeck33 where the exact same ROI criteria were applied. We used a two-factor repeated-172 

measures Analysis of Variance Model (ANOVA) to assess the interaction between two within-173 

participant factors: conditions (shape, category) and area (V1, VTC post and VTC ant). 174 

 175 
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Deep Neural Network Architectures 176 

Each architecture consists of multiple convolutional layers followed by pooling 177 

operations and fully-connected layers. For each CNN, which was pre-trained on the ImageNet 178 

dataset34, we ran a forward pass of each image in the stimulus set through the network. We 179 

output the activation of weights in each layer, resulting in a matrix with size of the nodes per 180 

layer times the stimulus set (32 for A, 54 for B). We calculated 1 - correlation for each activation 181 

pattern of one stimulus with another to obtain an RDM with size N x N, where N = the number 182 

of stimulus conditions (32 x 32 for A, 54 x 54 for B). We did not include final softmax 183 

classification layers in our analysis, since we were interested in the structure of layer 184 

representations and not classification performance per se.  185 

CaffeNet  186 

CaffeNet is an implementation of AlexNet1 in the Caffe deep learning framework35. 187 

CaffeNet is an 8-layer convolutional neural network (CNNs) with five convolutional layers and 188 

three fully connected layers.  189 

VGG-19 190 

VGG-193 was the top ranking CNN for single object localisation in ILSVRC 2014, and 191 

second-running in image classification34. VGG-19 consists of 19 weighted layers with an 192 

additional softmax read-out layer for classification. The architecture contains 16 convolutional 193 

layers separated by five max pooling layers, with the final 3 layers being fully-connected.  194 

GoogLeNet 195 

GoogLeNet2, also known as InceptionNet, was the top-performing architecture for image 196 

classification in ILSVRC 201434. GoogLeNet is a 22-layer deep network, when counting only 197 

parameterised layers, or 27 layers deep if including pooling operations. All convolution, 198 
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reduction and projection layers use rectified linear activation. The bottom layers of the network 199 

follow conventional convolutional neural network architecture, consisting of chained 200 

convolutional operations followed by max pooling. The top layers of the network replace 201 

multiple fully-connected layers with an average pooling layer, a single fully connected layer and 202 

a classification layer. The middle layers of the network differ substantially from traditional 203 

convolutional neural network structure, consisting of stacked “inception” modules, which are 204 

miniature networks containing one max pooling and 3 multi-sized convolution operations (1 x 1, 205 

3 x 3 and 5 x 5 convolutions) in parallel configuration.  Convolution operations inside inception 206 

modules are optimised with dimensionality reduction, by preceding expensive 3 x 3 and 5 x 5 207 

convolution operations with 1 x 1 convolutions. Inception modules allow for increased width of 208 

the network, as well as depth, while maintaining a constant computational budget.  209 

ResNet50 210 

ResNets are a family of extremely deep architectures that won the ILSVRC classification 211 

task in 201536. ResNet50 contains 50 stacked “residual units”, which use a split-transform-merge 212 

strategy to perform identity mappings in parallel to 3x3 convolutions with rectification. ResNets, 213 

like GoogLeNet2, are multi-branch architectures, containing only 2 branches (performing identity 214 

projection and 3x3 convolutions) instead of GoogLeNet’s maximum 4 branch inception modules 215 

(performing multi-size convolutions). Identity mappings perform a key role in the architecture’s 216 

success, forcing the network to preserve features, rather than learn entirely new representations 217 

at every layer, as is the case with conventional CNNs37.  The final 3 layers of ResNet50 are 218 

identical in design to GoogleNet, performing average pooling, transformation to 1000 219 

dimensions using full connections and softmax classification (not included in our analysis).   220 

 221 
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Representational Similarity Analysis 222 

We used Representational Similarity Analysis (RSA) to quantitatively compare CNN 223 

representations per layer with design models, behavioural ratings, and with fMRI neuroimaging 224 

data. RSA compares RDMs, which characterise the representational information in a brain or 225 

model38. Given a set of activity patterns (biological, behavioural or artificial) for a set of 226 

experimental conditions, the dissimilarity between patterns is computed as 1 minus the 227 

correlation across the units that compose the patterns. RDMs are symmetrical about a zero 228 

diagonal, where 0 denotes perfect correlation. RSA assesses second-order isomorphism, which is 229 

the shared similarity in structure between dissimilarity matrices39. Spearman rank order 230 

correlation was used to compare dissimilarity matrices, since the relationship between RDMs 231 

cannot be assumed to be linear38. In cases where there was any dependency relationship between 232 

shape and category RDMs (visible in the Set A behavioural data), we used partial correlation. 233 

We determined the significance of every correlation by comparing it with a null distribution 234 

obtained by randomly permuting the RDM labels and then calculating dissimilarity relationships 235 

1000 times. 236 

 237 

Results 238 

Behavioural Data 239 

For each stimulus set, participants provided similarity judgments for the shape and 240 

category dimension (see Figure 1, right column). For Set A, we found a significant correlation 241 

between the behavioural models for shape and category (Spearman’s ρ = 0.4753, p < 0.001 242 

permutation test with 10000 randomisations of stimulus labels) and so partial correlations when 243 

carrying out RSA with Set A behavioural models.  For Set A, as expected, behavioural and 244 
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design category models strongly correlate with one another (ρ = 0.8555, p < 0.001) and design 245 

shape strongly correlates with behavioural shape (ρ = 0.7849, p < 0.001). For Set B, we found no 246 

significant correlation between behavioural models for shape and category (ρ = 0.006, p = 247 

0.8209). Again, as expected, shape behavioural and design models were significantly correlated 248 

(ρ = 0.4145, p < 0.001) and category behavioural and design models were also significantly 249 

correlated (ρ = 0.6195, p < 0.001).   250 

 251 

Low-level Shape Analysis of Stimuli 252 

Using GIST30 descriptors of each image and combining this with LDA, we confirmed 253 

that category could not be predicted based upon these low-level descriptors whereas shape could, 254 

demonstrating that our stimulus sets were properly orthogonalised. LDA with GIST predicted 255 

shape above chance level, at 87.5% for Set A and 69% for Set B.  Category was predicted below 256 

chance level, at 37.5% for Set A and 10% for Set B.  257 

 258 

Shape and category RSA on all CNN layers for Stimulus Sets A and B 259 

Figure 2 illustrates layer-by-layer RSA between the CNN representations and the shape 260 

and category models and behavioural data in the two stimulus sets. Note that all RSA using Set 261 

A behavioural models involved partial correlations (explained above in Behavioural data). 262 

Looking across all networks, in the first layer of all CNNs, shape is already represented above 263 

the significance threshold in most cases, whereas category is not. Shape correlations at the first 264 

layer of CNNs are lower and closer to the significance threshold for Set A (design 0.12 < ρ < 265 

0.22, behavioural 0.12 < ρ < 0.24) than Set B (design 0.26 < ρ < 0.44, behavioural 0.24 < ρ < 266 

0.36). CaffeNet shows the highest correlation in shape information at the first layer with both 267 
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behavioural and design models for both stimulus sets. In CaffeNet, there is a single rise and fall 268 

in shape information, except in the Set A behavioural model. In all other networks, shape 269 

correlations fluctuate along the layers, with peaks at different layers before decreasing at the 270 

final layer in all cases except for Set A GoogLeNet and ResNet50. For Set A, shape correlations 271 

remain relatively high at the final layer (design 0.34 < ρ < 0.51, behavioural 0.29 < ρ < 0.59). In 272 

contrast, for Set B, shape correlation levels increase in the networks before falling in the final 273 

layers of all networks, to below their first layer levels for the design model correlations (0.11 < ρ 274 

< 0.14), or to roughly their initial values for the behavioural model correlations (0.32 < ρ < 0.36). 275 

For all networks, category information remains low across the majority of layers, hovering at or 276 

below the significance level until the final few layers, where it increases above the significance 277 

threshold to peak at the final layer. At the final layer, for Set A, category correlations reach 278 

between 0.31 < ρ < 0.42 for design models and between 0.34 < ρ < 0.42 for behavioural. For Set 279 

B, category correlations reach between 0.11 < ρ < 0.21 for design models and between 0.24 < ρ 280 

< 0.37 for design models at the final layer.  281 

To investigate the interaction between shape and category and CNN layers, we tested 282 

correlation values in a 2 X 2 ANOVA with Layer (modelled linearly with intercept and slope) 283 

and Condition (Shape or Category).  Table 1 summarises the statistical results of the main effects 284 

(layer, condition) and their interaction in CNNs and models.  For Set A, for both types of models 285 

across all networks, layer has a highly significant main effect and condition is also significant 286 

(Table 1) which suggests that correlation values can be predicted given the CNN layer and the 287 

condition of interest (shape or category information). Their interaction is significant in 288 

GoogleNet and VGG-19, but not in CaffeNet and ResNet50, suggesting that as category 289 

increases, shape decreases significantly in two out of the four networks tested. For Set B, across 290 
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all networks, condition is highly significant, and layer has a significant main effect in 291 

behavioural model correlations, however regarding design model correlations, layer is only 292 

significant in one CNN (ResNet50). This suggests that it is possible to make significant 293 

predictions of behavioural shape and category judgements given CNN layer information, 294 

however this prediction does not extend to design models of shape and category. Condition is 295 

highly significant across all networks, and the interaction between layer and condition is 296 

significant for both models and CaffeNet, and the design model and GoogleNet.  297 

In summary, across both Sets A and B, we can see that shape information gradually 298 

increases and/or wavers as the network is traversed, before falling in the final layers. The peak 299 

value in shape information remains roughly the same regardless of network depth. Peak category 300 

correlations also remain roughly the same regardless of network depth. Across both Sets A and B, 301 

category information is at or below the significance threshold in the initial layer before reaching 302 

the maximum value at the final layer, showing the opposite trend with shape correlations. 303 

Interestingly, the maximum levels of shape and category correlations do not depend on network 304 

depth, nor on architectural design differences, such as the use of inception modules. Figure 3 305 

contains multidimensional scaling plots of peak design shape and category information for Sets 306 

A and B.  307 

 308 

Shape Versus Category information in Visual Ventral Stream Regions 309 

Figure 4 summarises the representational similarity in three regions of interest (ROIs) 310 

along the visual ventral pathway, from low-level area V1 through to posterior and anterior VTC, 311 

compared with design and behavioural models of shape and category. For Set A, shape 312 

information reduces slightly along the ventral stream, from 22% to 19% in design models, and 313 

All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/555193doi: bioRxiv preprint 

https://doi.org/10.1101/555193


CATEGORY VS SHAPE IN DEEP NETWORKS & VISION 

 

16 

 

18% to 10% in behavioural models. Category information increases along the ventral pathway, 314 

from -3% to 41% in design models, and -6% to 40% in behavioural models. We tested RSA 315 

results using a two-factor ANOVA, with ROI (V1, VTC ant, VTC post) and Condition (category, 316 

shape) as within-subject factors. For Set A, results reveal a significant main effect for ROI (F2, 15 317 

= 26.34, p < 0.001 for the design model; F2, 15 = 35.81, p < 0.001 for behavioural), whereas the 318 

main effect of Condition (shape vs category) is not significant (F1, 15 = 0.56, for design; F1, 15 = 319 

1.02, for behavioural). There is a significant interaction between ROI and Condition (F2, 15 = 320 

68.14, p <0.001 for design, F2, 15 = 73.34, p < 0.001 for behavioural), indicating that as category 321 

information increases from V1 to VTC ant, shape information decreases. Post hoc pairwise t-322 

tests further confirmed the dissociation between shape and category along the visual ventral 323 

stream: category divisions were able to significantly better explain the neural pattern in later 324 

ventral areas (VTC ant) relative to shape (t(15) = 8.57, p < 0.0001 for design models, t(15) = 5.67, p 325 

< 0.0001 for behavioural models); whereas the opposite was true in early visual area V1, where 326 

shape was significantly more related to the neural data compared to category divisions (t(15) = 327 

6.34, p < 0.0001 for design models, t(15) = 8.16, p < 0.0001 for behavioural models). 328 

For Set B, we see a qualitatively similar trend of decreasing shape information from V1 329 

to VTC anterior (from 10% to 0% in the design models, and from 18% to 4% in the behavioural 330 

models) and increasing category information (from -1% to 6% in the design models, and from 331 

1% to 6% in the behavioural models). The two-factor ANOVA, with ROI (V1, VTC ant, VTC 332 

post) and Condition (category, shape), revealed that when correlating ROI representations with 333 

the design models for Set B, ROI has no significant effect (F2, 14 = 0.57, ns), the effect of 334 

Condition is significant (F1, 14 = 11.39, p < 0.01) and there is a highly significant interaction 335 

effect between area and condition (F2, 14 = 36.71, p < 0.001). Analysing correlations with the 336 
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behavioural models for Set B, the effect of area is significant (F2, 14 = 3.79, p = 0.027), as is 337 

condition (F1, 14 = 33.84, p < 0.001) and there is a highly significant interaction effect between 338 

area and condition (F2, 14 = 13.33, p < 0.001). Again, pairwise t-tests further confirmed the 339 

dissociation between shape and category in visual ventral brain regions, with shape being 340 

significantly more related to neural data in early visual area V1 than category (t(14) = 7.56, p < 341 

0.0001 for design models, t(14) = 5.28, p = 0.0001 for behavioural models); and category able to 342 

explain neural patterns more in VTC ant than shape (significantly for design models t(14) = 3.89, 343 

p = 0.0007, but not significantly for behavioural models: t(14) = 1.20, p = 0.24). Thus, there is a 344 

two-way interaction between shape and category across the visual ventral stream that is 345 

significant for both stimulus sets and both model types, illustrating a decrease in shape combined 346 

with an increase in category going from V1 to VTC anterior. 347 

 348 

RSA for fMRI Brain Data and all CNN layers 349 

Neural fMRI responses for each participant, and ROI, for Set A and Set B were 350 

correlated with the RDMs of every layer for each CNN. Results are shown in Figure 5. For each 351 

stimulus set and network, correlation values were tested in a 2 X 3 ANOVA with Layer 352 

(modelled linearly with intercept and slope) and ROI as within subject factors. In CaffeNet, V1 353 

and VTC posterior correlations peaked at the third convolutional layer, and VTC anterior peaks 354 

at the final layer for both stimulus sets. For both stimulus sets, the 2 X 3 ANOVA results reveal a 355 

significant main effect of ROI (Set A: F2, 15 = 88.73, p < 0.001; Set B: F2, 14 = 57.00, p < 0.001) 356 

and Layer (Set A: F1, 15 = 41.06, p < 0.001; F1, 14 = 48.38, p < 0.001) and their interaction (Set A: 357 

F2, 15 = 133.72, p < 0.001; Set B: F2, 14 = 44.88, p < 0.001). In VGG-19, both stimulus sets show 358 

similar peaks in correlations, with V1 reaching a maximum at layer 13, VTC posterior at layer 15, 359 

All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was not peer-reviewed) is the author/funder.. https://doi.org/10.1101/555193doi: bioRxiv preprint 

https://doi.org/10.1101/555193


CATEGORY VS SHAPE IN DEEP NETWORKS & VISION 

 

18 

 

and VTC anterior at the final 19th layer. For both sets, there is a significant main effect of ROI 360 

(Set A: F2, 15 = 59.12, p < 0.001; Set B: F2, 14 = 26.98, p < 0.001) and Layer (Set A: F1, 15 = 294.14, 361 

p < 0.001; F1, 14 = 40.30, p < 0.001). The ROI x Layer interaction is significant in Set A (F2, 15 = 362 

55.49, p < 0.001), but does not reach significance in Set B (F2, 14 = 2.76, p = 0.06). GoogLeNet 363 

has multiple peaks for correlations with V1 and VTC posterior, and there is a clear peak in VTC 364 

anterior in the final layer for both stimulus sets. For both Sets, ROI (Set A: F2, 15 = 73.76, p < 365 

0.001; Set B: F2, 14 = 37.07, p < 0.001), Layer (Set A: F1, 15 = 152.19, p < 0.001; Set B: F1, 14 = 366 

18.08, p < 0.001) and their interaction (Set A: F2, 15 = 130.85, p < 0.001; Set B: F2, 14 = 12.46, p < 367 

0.001) are all highly significant. Finally, in ResNet50, V1 peaks at layers 44 to 47, VTC 368 

posterior peaks at layers 47 to 49, and VTC anterior peaks at the final layer. For both Sets, ROI 369 

(Set A: F2, 15 = 31.20, p < 0.001; Set B: F2, 14 = 20.26, p < 0.001) and Layer (Set A: F1, 15 = 370 

1431.40, p < 0.001; Set B: F1, 14 = 895.32, p < 0.001) are highly significant, and their interaction 371 

is significant (Set A: F2, 15 = 5.97, p = 0.003; Set B: F2, 14 = 52.54, p < 0.001). Together these 372 

results show that across all deep neural networks, there is a cascade in correlation peaks from V1 373 

to VTC posterior to VTC anterior along the layers of each network, matching with the flow of 374 

activation along the human visual ventral pathway. For all networks, and both stimulus sets, the 375 

highest correlation of VTC anterior occurs at the final layer.  376 
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Discussion 377 

In this study, we investigated orthogonal shape and category representations in biological 378 

and artificial networks by making comparisons between: (i) CNNs and models of shape and 379 

category; (ii) models and the brain; and (iii) CNNs and the brain. First, comparing artificial 380 

networks and models, we found that CNNs represent category information as well as shape, and 381 

that category information peaks at the final layer for all tested CNNs, regardless of network 382 

depth. Peak correlation levels for shape and category do not increase with network depth, and 383 

remain roughly at the same level regardless of architectural design differences, including the use 384 

of inception modules or residual networks. Second, comparing models and the brain, there is a 385 

two-way interaction between shape and category in the human visual ventral pathway, where 386 

shape is best represented earlier in V1, and category emerges later in anterior VTC. This 387 

interaction between shape and category is significant across both stimulus sets and for both 388 

design and behavioural models. Third, comparing artificial networks and the brain, V1 correlates 389 

highest with early to mid-level layers of deep networks, and anterior VTC correlates best with 390 

the final layer of CNNs. Across both stimulus sets and for all networks, peak correlations with 391 

V1 always occur in earlier network layers than peak correlations with anterior VTC, 392 

demonstrating that CNNs reflect a similar order of computational stages as the human ventral 393 

pathway when processing these object images.    394 

Our results allow for a greater understanding of how shape and category are represented 395 

in deep networks and in the visual ventral pathway, in particular: (i) how differing shape and 396 

category definitions between the two stimulus sets reveal differences between low-level and 397 

high-level shape representations in CNNs and the brain; (ii) how shape and category processing 398 
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along deep network layers maps onto brain regions; and iii) how careful stimulus design allows 399 

us to make better inferences about category semantics in the brain and in CNNs.  400 

One major advantage of this study is that we consider two stimulus sets that carefully 401 

control shape and category to draw conclusions about their interaction and interplay, rather than 402 

broadly extrapolating results based on a single set of images. These two well-controlled stimulus 403 

sets are similar in design but differ slightly in how shape and category are defined, allowing us to 404 

extract a finer interpretation of results. Looking at the differences in shape definitions between 405 

these stimulus sets, in Set A, shape is defined with a low to high aspect ratio (described as “bar-406 

like” or “blob-like”), while it is characterized retinotopically in Set B. Comparing CNNs and 407 

models, both low-level (Set B) and high-level (Set A) shape information is preserved until the 408 

very last layer of all networks, however there is a visible reduction in low-level compared to 409 

high-level shape information in the final layers. Comparing models and the brain, we see that the 410 

high-level (Set A) shape information remains quite high in VTC ant, compared to low-level (Set 411 

B) shape information, which reduces to correlation levels that are at or near zero.  The plausible 412 

explanation for why shape information drops off in Set B but not in A, is that higher level 413 

regions represent a more abstract form of shape, which is factored into the design of Set A, but 414 

not B. Indeed, previous studies showed that perceived shape similarity strongly overlaps with 415 

higher-level brain representations in humans40, and in monkeys12, 41. Kalfas et al.12 found that the 416 

deepest layers of networks, rather than IT responses, correlated best with human shape similarity 417 

judgements. We also found that CNNs correlated much higher with behavioural shape 418 

judgements than fMRI. This finding suggests that there is at least some correspondence between 419 

how humans and models use shape, even though there are very likely also differences (see e.g. 420 

Baker et al.19). 421 
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Considering the differences in category definitions between the stimulus sets, Set A has 422 

only two category clusters defined by the animate-inanimate division, whereas Set B has six 423 

object clusters. The number of groups clearly affects the size difference in correlation levels 424 

between category models and CNNs as well as the brain, where fewer groupings boost the signal. 425 

In the final layer of all CNNs, we see that category, as defined by animacy in Set A, reaches 426 

correlation levels up to three times the magnitude of Set B. Considering brain data, category as 427 

defined by animacy in Set A reaches six times the magnitude in VTC ant compared to Set B. 428 

This is consistent with existing studies that show a strong animacy division in higher-level 429 

regions of visual cortex24. We find that in all four networks, human similarity judgements of 430 

category are best explained by the final layer of CNNs, more so than fMRI representations in late 431 

ventral areas.   432 

Our use of multiple CNNs allows us to observe the influence of network depth on peak 433 

correlations with brain regions. Hong et al.9 compared their brain data to a CNN consisting of 6 434 

parallelised convolutional layers, finding that the model’s top hidden layer was most predictive 435 

of IT response patterns and that lower layers had higher resemblance to V1-like Gabor patterns. 436 

Consistent with their findings, we also found that the final layer of CNNs had maximum 437 

correspondence with later ventral stream areas, and that earlier layers showed higher correlation 438 

with V1.  Cichy et al.14 found peak V1 correlations in the second layer of an 8-layer CNN trained 439 

for object recognition. Similarly in our experiments, we found that peak V1 correlations occurred 440 

at layer 3 in an 8-layer network (CaffeNet) for both stimulus sets. As network depth increases, 441 

peak correlations with V1 shift from earlier tiers in the network to later layers. Interestingly, 442 

some of the highest V1 correlations occur immediately prior to fully connected layers, as is the 443 

case in ResNet50 and VGG-19. Figure 5 illustrates peak V1 correlations occurring as late as the 444 
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45th layer in ResNet50, bringing into question the explanatory value of additional processing 445 

stages in deeper networks, especially when an 8-layer network achieves similar magnitudes of 446 

correlation with V1 by the third layer. Nevertheless, while the maximum correlation values of 447 

brain regions shift to later layers in larger networks, the rank-order of correlation peaks with 448 

brain regions still matches the order of information processing along the ventral pathway. That is, 449 

correlations with V1 always peak before VTC ant, regardless of network depth. We extend upon 450 

the findings of Cichy et al.14 on the order of visual information processing from a single 8 layer 451 

network to multiple networks, including a 50 layer network.  452 

Recently, there has been some effort directed towards investigating the role of semantic 453 

representations in deep visual networks, and where category semantics may be represented in the 454 

ventral pathways13. Deriving high-level semantic meaning from low-level feature descriptions is 455 

commonly referred to as the “semantic gap” in computer vision literature42. In order to fully 456 

establish the level at which CNNs are able bridge the semantic gap, and extract meaningful 457 

information from images, it is necessary to remove all possible reliance on low-level features, 458 

which could be exploited to improve performance, and test network performance on carefully 459 

designed images that minimise potential dependencies between category and influencing features. 460 

Devereux et al.13 do not properly control for the influence of shape, as we have, and include 461 

many low-level visual features labelled misleadingly as “semantic” descriptors, such as “is 462 

circular/round” or “is “green”, which we would argue do not allow for a dissociation between 463 

vision and semantics15. Our study explicitly defines category semantics as falling within the 464 

animacy division in Set A, or in multiple object categories (animals, minerals, fruit/vegetables, 465 

music, sports equipment and tools) in Set B. Our stimulus sets do not confound category 466 

semantics with shape information, allowing us to draw firmer conclusions.   467 
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In conclusion, despite shape and category often being confounded in natural images, and 468 

the possibility for artificial neural networks to exploit this correlation when performing 469 

classification tasks, we find that deep convolutional neural networks are able to represent 470 

category information independently from low-level shape in a manner similar to higher level 471 

visual cortex in humans.   472 

  473 
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 624 

 625 
         626 

Figure 1 (A) 32 stimuli in 2 categories (animal and non-animal), (B) 54 stimuli in 6 categories 627 

(animals, minerals, fruit/vegetables, music, sports equipment, tools). Left: Each category 628 

division is highlighted by a distinct colour. Common shape information is circled in grey. 629 

Numbers indicate indexing for RDMs. Due to copyright restrictions, not all images are shown in 630 

Set A and the ones displayed are representative. Set A images are published in compliance with 631 

a CC BY-SA license (https://creativecommons.org/licenses/by-sa/3.0/) and their sources are: 632 

guinea pig (https://commons.wikimedia.org/wiki/File:AniarasKelpoKalle.jpg by Tavu); squash 633 

(https://commons.wikimedia.org/wiki/File:Festival-Squash.jpg by Evan-Amos); slug (Black Slug 634 

at Aggregate Ponds, https://www.flickr.com/photos/brewbooks/2606728819 by brewbooks); and 635 

wooden spoon (https://upload.wikimedia.org/wikipedia/commons/7/7b/Wooden_Spoon.jpg by 636 

Donovan Govan). Images have been changed to greyscale and have the background removed. 637 

The final two images have also been rotated. Set B images are published in compliance with a 638 

CC-BY license (https://creativecommons.org/licenses/by/4.0/) and are re-used from Figure 5a in 639 

Kubilius, Bracci and Op de Beeck18. Right: Shape and category RDMs. The design models are 640 

based on the experimental design. The behavioural models are obtained via multiple object 641 

arrangement31; see methods. 642 
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 643 

 644 

 645 
 646 

Figure 2: Correlation between layers in CNNs and shape (orange/red) versus category (blue) in 647 

Set A (top row) and B (bottom row). The horizontal axis indicates network depth and the vertical 648 

axis indicates correlation (Spearman’s ρ). For GoogLeNet and ResNet architectures, the 649 

correlations shown are for 3x3 convolutional operations, while other parallel operations 650 

(projections and convolutions of different sizes) are omitted. Dashed line indicates significance 651 

threshold of p < 0.05. Grey shading indicates fully-connected layers.  652 

 653 

  654 
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Stimulus 

Set
Network

Number of 

Layers
Model 

Layer        

F 1,1 

Layer       

p 

Condition 

F 1,1 

Condition 

p 

Interaction 

F 1,1 

Interaction 

p 

D 92.338 <0.001 14.825 0.002 4.729 0.050

B 41.233 <0.001 126.651 <0.001 0.202 0.661

D 53.304 <0.001 11.477 0.002 6.496 0.016

B 17.370 <0.001 99.161 <0.001 6.252 0.017

D 46.438 <0.001 8.390 0.006 4.464 0.041

B 18.59 <0.001 87.68 <0.001 10.21 0.003

D 28.788 <0.001 41.075 <0.001 1.662 0.200

B 25.010 <0.001 750.551 <0.001 0.323 0.571

D 1.766 0.208 173.677 <0.001 29.577 <0.001

B 8.306 0.014 212.106 <0.001 7.774 0.016

D 2.567 0.118 160.955 <0.001 4.023 0.053

B 22.075 <0.001 207.91 <0.001 3.536 0.069

D 2.026 0.162 312.186 <0.001 8.551 0.006

B 27.727 <0.001 329.938 <0.001 1.833 0.183

D 26.517 <0.001 1377.504 <0.001 0.012 0.913

B 61.007 <0.001 1108.272 <0.001 0.311 0.578

B

CaffeNet 8

VGG-19 19

GoogLeNet 22

ResNet50 52

A

CaffeNet 8

VGG-19 19

GoogLeNet 22

ResNet50 52

655 
 656 

Table 1: 2 X 2 ANOVA results of Layer (modelled linearly with slope and intercept) and 657 

Condition (shape or category) and their interaction in CNNs and models (D = design, B = 658 

behavioural). 659 
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 661 

Figure 3: Multidimensional scaling plots of 1) Peak design shape correlations with common 662 

shape represented by common symbols, and 2) peak category correlations, with common 663 

category represented by shared colour, for each network and Set A (top 2 rows) and B (bottom 2 664 

rows). Colour coding corresponds to Figure 1.  665 

 666 

 667 

 668 
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 670 

 671 

Figure 4 RSA results for shape and category models for Set A (left) and B (right) in ROIs. Three 672 

regions along the ventral visual pathway are analysed: V1, VTC post and VTC ant. Error bars 673 

represent standard error. ROI visualisations are re-used from Fig 4A in (Bracci, Kalfas, & Op 674 

de Beeck33, p. 8). Note the difference in scale between A and B.  675 

 676 
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 677 

 678 
Figure 5: RSA comparing models (CaffeNet, VGG-19, GoogLeNet and ResNet50) and fMRI 679 

activation in V1 (navy), VTC post (yellow) and VTC ant (green) ROIs for Sets A (top row) and B 680 

(bottom row). Grey shading indicates fully-connected layers.  681 

 682 
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