
Low-Power and Topology-Free Data Transfer
Protocol with Synchronous Packet Transmissions

Jongsoo Jeong, Jongjun Park, Hoon Jeong, JongArm Jun, Chieh-Jan Mike Liang†, and JeongGil Ko
Electronics and Telecommunications Research Institute

† Microsoft Research
Email: jeonggil.ko@etri.re.kr

Abstract—Tightly synchronizing transmissions of the same
packet from different sources theoretically results in construc-
tive interference. Exploiting this property potentially speeds up
network-wide packet propagation with minimal latencies. Our
empirical results suggest the timing constraints can be relaxed
in the real world, especially for radios using lower frequencies
such as the IEEE 802.15.4 radios at 900 MHz. Based on these
observations we propose PEASST, a topology-free protocol that
leverages synchronized transmissions to lower the cost of end-to-
end data transfers, and enables multiple traffic flows. In addition,
PEASST integrates a receiver-initiated duty-cycling mechanism
to further reduce node energy consumption. Results from both
our Matlab-based simulations and indoor testbed reveal that
PEASST can achieve a packet delivery latency matching the
current state-of-the-art schemes that also leverages synchronized
transmissions. In addition, PEASST reduces the radio duty-
cycling by three-fold. Furthermore, comparisons with a multi-
hop routing protocol shows that PEASST effectively reduces the
per-packet control overhead. This translates to a ⇠10% higher
packet delivery performance with a duty cycle of less than half.

I. INTRODUCTION

Over the past several years, wireless sensor networks (WSN)
have enabled diverse monitoring applications in domains rang-
ing from environment to health care. We observe that, due
to the energy constraints of battery-operated nodes and data
requirements, the traffic patterns in many of these monitor-
ing deployments are event-based [4], [5], [10], rather than
performing continuous and high-frequency data collection. In
addition, while some of them require periodic status messages
from each node to the gateway, the interval is quite infrequent
(at the granularity of hours or days [17]). Two high-level de-
sign goals are shared by event-based monitoring applications:
long network life time, and minimal human intervention. The
former is driven by the fact that WSN deployments can be
at locations without readily stable power sources, and the
latter ensures that human effort does not linearly (or worse)
grow with the network size. To this end, the community
has identified both dynamic topology maintenance and energy
efficiency as two challenges.

Typically, topology maintenance implements a process of
having nodes learn their neighborhood by listening to periodic
presence beacons from neighbors. While this primitive of
neighborhood discovery is agnostic to the topology type, the
drawback is the control overhead in beaconing and information

exchange, especially in cases of high network dynamics.
While it is possible to build on-demand routing paths without
maintaining any network knowledge, the route discovery phase
can take a long time to complete. A recent work, Glossy, by
Ferrari et al. suggested that synchronized transmissions (from
constructive interference) can speed up flooding a packet in
the network [8]. The PEASST protocol, proposed in this work,
leverages this rapid flooding to implement practical topology-
free routing in WSNs. The challenges to make this approach
practical are the tight timing constraints for the concurrent
senders, and the lack of considerations for the energy metric.

Being a major energy consumer on a WSN node, the radio
usage has been a focus in reducing the energy consumption.
While some WSN applications can lower the amount of
outgoing traffic with data compression, another approach is
duty-cycling the radio to minimize the idle-listening times.
An example is the receiver-initiated link layer, or Low-Power
Probing (LPP), in which a receiver triggers communications by
first advertising its presence. As later sections point out, radio
duty-cycling introduces design challenges in rapid flooding,
especially the uncertainty of which nodes should stay awake
for the flooding.

Our contributions lie in a practical point-to-point data
transfer protocol with synchronized transmissions for minimal
topology maintenance, and asynchronous duty-cycling. First,
we demonstrate that an IEEE 802.15.4-based platform at
900 MHz provides more relaxed constraints to encourage
constructive interference, as compared to the platforms in pre-
vious work; thus, increasing room for practically realizing con-
structive interference-based systems. Second, we describe our
PEASST protocol that combines both constructive inference-
based synchronized packet transmissions and receiver initiated
duty-cycling techniques. Finally, empirical results on a real-
world testbed show an improvement of 52% in terms of radio
duty-cycle over multihop routing protocol-based networks.

This paper is structured as follows. In Section II, we start
our technical discussions by introducing preliminary analy-
sis and experiments on the challenges of realizing synchro-
nized packet transmissions on low-cost, low-power wireless
platforms. Next, based on these observations we introduce
our PEASST protocol for achieving effective synchronized
packet transmissions in a contention-based wireless channel
environment in Section III. We perform evaluations on the978-1-4799-4657-0/14/$31.00 © 2014 IEEE

performance of PEASST in Section IV and discuss about some
related work in Section V. Finally, we conclude the paper and
bring up some topics for future work in Section VI.

II. CHALLENGES IN REALIZING SYNCHRONIZED PACKET
TRANSMISSIONS WITH CONSTRUCTIVE INTERFERENCE

As synchronized packet transmissions have been the build-
ing block for several previous work in the wireless community,
this section starts with an overview followed by empirical
analysis to motivate our design decisions.

During a transmission, the radio transceiver modulates data
bits into analog waveforms. With signals from concurrent
transmitters, the receiver essentially observes wave interfer-
ence, or the net effect of all waves. If the interference over-
powers the intended signal, then the receiver will fail to decode
the incoming signal with high probability. Interestingly, if all
concurrent signals have the same wave form with matching
phase, then the receiver will observe a single amplified signal.
This phenomenon of synchronized packet transmissions is
called constructive interference. Unfortunately, the constraint
of matching wave phase (within a chip rate, T

c

) imposes
overhead. For example, on 2.4 GHz 802.15.4 radios, two
concurrent waves cannot differ by more than 0.5 µsec in
the transmission timing (e.g., 2 Mchips/sec), which motivates
the need for frequent network-wide time synchronization to
achieve a bound within a single chip rate [8]. As we will
explain later, this constraint of 0.5 µsec can be relaxed with
changes in the frequency-band of the radio.

Next, we present a set of data-driven observations for a
hardware platform with relaxed time constraints for achieving
successful synchronized packet transmissions with construc-
tive interference.

A. Experiment Hardware Setup
We select the Atmel RF212 RFIC, a 900 MHz 802.15.4

radio supporting BPSK modulation 1. First, due to the longer
chip rates at 900 MHz, the time synchronization bound is
relaxed by a factor of three in theory (i.e., ⇠1.66 µsec vs.
0.5 µsec at 2.4 GHz). Second, our hardware configuration has
a longer communication range due to the lower frequency of
the 900 MHz band and higher receiver sensitivity from using
BPSK (-108 dBm vs. -101 dBm on O-QPSK). This translates
to deploying fewer relay nodes in the same geographical
region, and reduces the cumulative “de-synchronization” as
packets travel over many hops.

For our feasibility studies, we set up a wired testbed of
two transmitting nodes, a single receiver, and a trigger node.
We configure the senders so that they are capable of sourcing
their radio’s clock using either the on-board external crystal
oscillator or an external waveform generator. The trigger node
informs the senders of the start of an experiment using con-
nections to GPIO pins, which provides identical or different
transmission times for each of the two senders. Once triggered,
senders immediately transmit a pre-loaded packet.

1The IEEE 802.15.4-compliant chip rate for 900 MHz radios with BPSK
is 600 Kchip/sec.

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10 12 14 16

P
a

ck
e

t
R

e
ce

p
tio

n
 R

a
tio

 (
%

)

Time Differences of Two Transmissions (Ticks)

On-Board Oscillator
Waveform Generator

Fig. 1. Packet reception ratio for packets that were synchronously transmitted
on our wired testbed. We vary the transmission time offset between the two
transmitters to measure the resulting PRR and test for cases where the on-
board oscillator is used to clock the radio and when an external waveform
generator is used as the radio’s common clock source. When using our RF212
radio, a single tick is ⇠125 nsec and a single chip rate is 1.66 µsec (14 ticks).

Fig. 2. The raw signals from the two transmitters (left) and the mixed signal
of the two (right) captured using connections to an oscilloscope when using
the on-board crystal oscillators as the transmitting radio’s clock source.

B. Transmission Time Analysis

To quantify the timing constraints for achieving constructive
interferences, we adjust the two senders’ transmission timing
parameters to introduce lags (�

TX

) with an increment of 1
tick (or 125 nsec). We disable MAC-level features such as
CCA checks and keep the received signal strength (RSS) the
same for all packets.

Figure 1 plots the packet reception ratio (PRR) with respect
to various �

TX

. In theory, if two identical signals do not
lag beyond 14 ticks (e.g., 1.66 µsec), the receiver should
be able to successfully decode the signal. Surprisingly, unlike
the observations from previous work [8], we observe a low
PRR in spite of the tight synchronization of the two senders
(�

TX

< T
c

). Oscilloscope traces at the receiver indicates that
the combined signal is not synchronized (c.f. Figure 2), even
when the two senders are theoretically synchronized at the
software scale. The shallow regions on the right of Figure 2
show two signals collide de-constructively. We conjectured
that the reason behind this observation is the instability of
the on-board crystal oscillators. To validate this, we repeat
the experiment with the external waveform generator as the
“common” clock source for both senders.

Figure 1 shows the improved PRR with the use of a

Fig. 3. The raw signals from the two transmitters (left) and the mixed signal
of the two (right) captured using connections to an oscilloscope when using
an external waveform generator as the transmitting radio’s clock source.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4

P
a

ck
e

t
R

e
ce

p
tio

n
 R

a
tio

 (
%

)

RSS Difference of Senders (dBm)

On-Board Oscillator
Waveform Generator

Fig. 4. Packet reception ratio of the packet transmitted from two different
transmitters with �TX=0 but with differences in reception power levels
configured by connecting signal attenuators.

waveform generator. Furthermore, the resulting mixed signal
shows a non-corrupted pattern as Figure 3. This suggests that
using low-cost hardware components for designing low-power
wireless platforms can be a reason that prevents the system
from enjoying the benefits of making synchronized packet
transmissions. In addition, Figure 1 also shows that the PRR
degrades as the lag, T

c

, increases. An interesting point is that
the PRR drops to around 80% at T

c

= 10 ticks (or 1 µsec),
which is slightly lower than the theoretical upper bound of
14 ticks. While this is still a factor of two more relaxed than
reported on the 2.4 GHz radio [8], we next show that the
complex environment in real-world deployments actually help
raise the PRR to an even higher level.

C. Received Signal Strength Analysis

Destructive interference happens when two concurrent sig-
nals are not synchronized in the analog wave forms, essentially
if both have approximately the same signal strength. However,
in the real-world deployments, the RSS of two signals (even
transmitted at the same power level and distance) are likely to
be different. This sub-section provides insights and analysis
on how synchronized transmissions perform in the real-world
radio environment.

We first configure the wired testbed to have a �
TX

of 0,
but with varying differences in the reception signal strength
(�

RSS

). We adjust the latter by connecting signal attenuators

-75

-70

-65

-60

-55

-50

 0 100 200 300 400 500

R
S

S
I

(d
B

m
)

Sample Count (10 Hz)

Stable Line of Sight
Dynamic Indoors

Fig. 5. Received signal strength collected over time in two different indoors
environments.

 0

 20

 40

 60

 80

 100

 0 1 2 3 4
P

a
ck

e
t

R
e

ce
p

tio
n

 R
a

tio
 (

%
)

RSS Difference of Senders (dBm)

Fig. 6. Packet reception ratio plots for our wireless experiment with �TX=0
and varying �RSS collected in 9 different indoors environments.

to the sender’s radio transceiver socket. Figure 4 plots the PRR
with respect to each �

RSS

. We observe that the PRR increases
with �

RSS

when using the relatively unstable on-board oscil-
lators. Specifically, the improvement is as high as a factor
of six with a mild RSS difference of 2 dBm. This result also
suggests that even low-cost radio components can still achieve
reasonable performance of synchronized transmissions.

Next, we verify the existence of RSS difference from
multiple signals. We measured the RSS with a pair of nodes
exchanging packets at 10 Hz, located 15 meters apart in
various indoor environments. Figure 5 plots the RSS over
time for both one relatively stable environment and one
environment with furnitures and human movement. Results
show that even in the stable environment with minimal human
movement and line-of-sight (e.g., the best case scenario), the
RSS continuously varies over time. Therefore, in a realistic
scenario where various objects move around to complicate the
channel environment, the signals sent from different radios
should also show a high �

RSS

. This observation confirms
the intuition that the RSS difference from multiple signals are
inevitable in indoor environments, and suggests the potential
of synchronized transmissions on low-cost off-the-shelf radio
components.

Finally, we quantify the observed PRR in a real indoor
deployment setting. For this experiment we wirelessly trigger
the senders (located at an equal distance at the receiver) to
initiate packet transmissions using similar operations as the
work by Ferrari et al. [8]. In Figure 6 we plot the mean PRR
and standard deviation collected over nine different indoor

Listening

Suppress
Tx

Probing
Tx

Probing
Ack. Tx

Wakeup the Network

TSyncDelay

Data
Tx

Data
Ack. Tx Rx

Tbackoff Twait

Suppress
Msg. Data Data Ack.

Source
Node

Node 1

Node 2

Destination
Node

Listening

Fig. 7. Operational view of the PEASST protocol.

environments with respect to �
RSS

(varied using attenuators)
on the two senders. Since RX TX1 ⇡ RX TX2, by
configuring �

RSS

= 0 dBm, we are testing for the worst
case scenario as observed in the results presented above. In
reality, since nodes are commonly positioned “randomly”, the
node placement itself will naturally increase the chances of
experiencing larger �

RSS

. Notice that due to the channel
dynamics, the experienced �

RSS

increased to larger values
than the preset values; thus, resulting in a high PRR for indoors
environments compared to our wired tests.

Overall, these results suggest that ironically, having a com-
plex channel environment, which increases the chances of
experiencing large �

RSS

, can be a more effective wireless
channel environment in realizing synchronized packet trans-
missions with constructive interference.

III. PEASST: POINT-TO-POINT PACKET EXCHANGE WITH
ASYNCHRONOUS SLEEP AND SYNCHRONOUS

TRANSMISSIONS

Building on the results that synchronized packet transmis-
sions are reasonably achievable in the real world, we design
a point-to-point transfer protocol that performs asynchronous
radio duty-cycling and at the same time achieve the benefits
of synchronous packet transmissions. The rest of this section
describes our PEASST (Point-to-Point Packet Exchange with
Asynchronous Sleep and Synchronous Transmissions) proto-
col.

PEASST sits between the applications and radio driver to
replace the network stack. Through a set of object-based APIs,
applications pass the pointer and the size of the object to
deliver, along with the destination node address.

The data transmission process in PEASST has three phases
(c.f. Figure 7): (1) selective network-wide wake up, (2) rapid-
flood based packet delivery, and (3) sleep phase. PEASST
addresses the following major challenges to be practical for
real-world monitoring deployments. First, in contrast to Glossy
where all nodes in the network need to participate in the
flooding session, PEASST aims to reduce this number to
improve the network energy efficiency. Second, PEASST
supports multiple point-to-point traffic flows in the network by
minimizing the contention among concurrent flood sessions.

A. Network Wakeup Phase
There are two categories of network-wide duty-cycling

mechanisms: sender-initiated and receiver-initiated. PEASST
implements the network-wide wakeup with receiver-initiated
Lower-Power Probing (LPP) [14]. Compared to the sender-
initiated Low-Power Listing (LPL) [2], LPP is known to
perform more efficiently as the network scales up [14]. This
characteristic enables a wide range of large-scale monitoring
networks. In addition, LPP has a lower overhead and con-
tention, as LPL relies on continuously transmitting packets to
wake up neighboring nodes.

In the example of Figure 7, the source node (N
TX

) and
the destination node (N

dest

) are two hops apart, and node 1
and 2 (N1 and N2) are within a single-hop range of both
N

TX

and N
dest

. Before N
TX

sends data packets to N
dest

, it
first initiates the network wakeup following the typical LPP
operations. Specifically, it waits for the periodic wakeup of
LPP nodes signaled by the presence beacon. Following the
beacon, the node radio will leave the radio on for a pre-defined
time T

LPPWait

, to wait for neighboring nodes to send pending
packets destined to it. In PEASST, the sender uses this time
to transmit a MSG

awake

to extend the receivers’ radio ON
time. MSG

awake

also includes the destination node ID and
size (e.g., packet count) of the data object to be sent in this
session (C

TX

). In Figure 7, N
TX

wakes up N1 followed by
N2. Then, N2 wakes up N

dest

(located one hop away) with a
MSG

awake

as well.
Wakeup Suppression. After N

dest

receives MSG
awake

, there
is no need to wake up additional nodes in the network, as the
set of intermediate nodes (N

intermediate

) between N
TX

and
N

dest

are already up.
N

dest

can initiate the wakeup suppression by broadcasting
MSG

suppress

after a short delay of T
backoff

. This delay en-
sures that all probes and MSG

awake

transmissions are at least
two hops away from N

dest

to minimize the interference for
MSG

suppress

. Starting from the wakeup suppression phase,
the nodes in the network (or the subset that are associated with
the data flow from N

TX

to N
dest

) has their radios on; thus, are
ready to perform synchronized packet transmissions. Specif-
ically, once nodes N1 and N2 receive MSG

suppress

from
N

dest

, which will happen simultaneously for both nodes since
they are at the same hop, N1 and N2 will process the packet
internally and forward the same message, MSG

suppress

, in a
synchronized manner after T

SyncDelay

ticks of the start frame
delimiter (SFD) detected for the MSG

suppress

packet. This
will allow synchronized packet transmissions and the packet
will eventually reach N

TX

.

B. Data Exchange Phase
When MSG

suppress

reaches N
TX

, N
TX

implicitly takes
this as an indication that N

dest

and N
intermediate

nodes are
ready to participate in the synchronized transmission-based
rapid-flood session. After a short wait of T

wait

(to avoid
collisions with ongoing MSG

suppress

transmissions), N
TX

initiates its packets (a total of C
TX

packets) with an interval
of I

C

TX

to nodes in its one hop (e.g., N1 and N2 in Figure 7).

After receiving an incoming packet, all receivers wait for a
fixed interval before broadcasting to encourage synchronized
transmissions.

Since nodes record the meta data of packets they have
forwarded, they can avoid re-broadcasting a particular packet.
This prevents the “echo looping” problem.

C. Sleep Phase

PEASST implements two different schemes to instruct the
network to return to low-power sleep state after the data
objects have been transmitted.
Implicit Termination. As all nodes learn the data object
size from MSG

awake

(e.g., C
TX

), they (i.e., N
TX

, N
dest

,
and N

intermediate

) can enter the LPP-based duty-cycling after
the last packet is relayed. The benefit of this method is the
simplicity, but the drawback is that packet losses can prevent
nodes from entering the proper state. For such cases, nodes
exit the data exchange phase after a timeout, TO

TX

. We will
discuss further into how this timeout is configured in the next
section.
Explicit Termination. After N

dest

receives all C
TX

messages
from N

TX

, it sends an acknowledgment (MSG
ACK

). Other-
wise, N

dest

sends an negative acknowledgment (MSG
NACK

)
after a timeout. After N

intermediate

forward either MSG
ACK

or MSG
NACK

, they terminate the data exchange phase
and return to LPP-based duty-cycling. While this method
requires an additional transmission phase for MSG

ACK

or
MSG

NACK

, this explicit behavior can reduce the nodes’ wait
time (TO

TX

) in networks with high packet loss rates.

D. Configuring the Timeouts

Since packets in PEASST operate in a collision-capable
environment, for PEASST to operate smoothly between dif-
ferent phases, configuring effective timeout values become an
important issue. Specifically, we consider two major timeout
parameters: TO

wakeup

and TO
TX

.
Initiated at N

TX

, TO
wakeup

represents the time from
N

TX

’s initial wakeup (due to its intent to send data) until
MSG

suppress

is received. If N
TX

knows the number of hops
to N

dest

, computing TO
wakeup

would be trivial as the LPP
wakeup interval I

wakeup

is pre-defined. However, since the
global topology is not available a priori, we take an adaptive
approach in computing TO

wakeup

as Eq. 1.

TO
wakeup

= ↵⇥ TO
wakeup

+ (1� ↵)⇥ TO
wakeupRep

(1)

Here, TO
wakeup

is initialized to TO
wakeup

=
Maximum Hops (H

max

) ⇥ I
wakeup

. ↵ is weighting
factor, and TO

wakeupRep

is computed as follows.

TO
wakeupRep

= H
reported

⇥ I
wakeup

, (2)

where H
reported

is the reported hop count to N
dest

collected
from the previous transmission. Specifically, in MSG

awake

,
N

TX

includes a counter for each hop node to increase, and
N

dest

includes H
reported

in MSG
suppress

. While starting

at a rough state, the exponentially weighted moving average
(EWMA) allows TO

wakeup

to reach a near-optimal value.
Once nodes on the path from N

TX

to N
dest

have their
radios on, nodes need to keep track of an additional timeout
that concerns the duration of the data transmission and ac-
knowledgment phases. Specifically, a timer is initiated when
MSG

suppress

is received and turns off the radio if the re-
sleeping phase (e.g., using either of the implicit of explicit
methods) does not complete within TO

TX

. Since at this point
H

reported

is known, TO
TX

h

for nodes that are h hops from
N

TX

is computed as follows, in the case of the explicit
termination scheme with acknowledgment.

TO
TX

h

= (H
total

· C
TX

+H
total

� h)⇥ T
SyncDelay

+ T
backoff

+ (C
TX

� 1) · I
C

TX

+ ✏,
(3)

✏ is a predefined buffering time to account for unexpected
delays. On the other hand, when using implicit termination,
the equation for computing the timeout becomes even simpler.

TO
TX

h

= (h · C
TX

)⇥ T
SyncDelay

+ T
backoff

+ (C
TX

� 1) · I
C

TX

+ ✏.
(4)

By waiting for TO
TX

h

after the reception of MSG
suppress

at N
TX

, each node participating in the flow is guaranteed
to stay awake throughout the data exchange process. This
property allows synchronized transmissions to work effectively
while minimizing the radio ON time. We will later discuss
the parameter configurations used for our analysis and exper-
iments in Section IV.

E. Supporting Multiple Traffic Flows
The two mostly related previous work by Ferrari et al., either

consider only network-wide flooding scenarios [8] or enforce
network-wide transmission schedules to restrict multiple traffic
flows from taking place at a given time [7]. Assuming the
network has multiple traffic flows (e.g., F1,F2, ...,Fn

,) that
start randomly at different nodes, PEASST supports multiple
flows by implicitly scheduling the flows and minimizing the
impact of contentions among traffic flows.

We note that, with selective wakeup, PEASST nodes fully
activate their radios only if there is a chance that they are
on the path from the source to the destination. This design
helps constrain the coverage of a traffic flow to an area. In
the PEASST design, there are two additional factors that can
cause such interference. Particularly, the probe packets of LPP
and MSG

awake

packets are the two types of packets that are
transmitted at any random times and are the ones that can
interfere with the synchronously transmitted packets. Next, we
describe methods to overcome these interference and other
external challenges.
CCA and Random Backoff: We configure all LPP probes
and MSG

awake

packets to perform CCA checks prior to
transmissions and set a backoff when the channel is sensed
busy. Also, we configure the CCA threshold (the minimum
energy level to detect and declare a busy channel) to be
significantly lower (-95 dBm) compared to the default values

of -86 dBm for the Atmel RF212 operating with BPSK and
-77 dBm for CC2420 operating with O-QPSK. This allows
LPP probes and MSG

awake

to effectively discover on-going
transmissions and backoff when needed. We note that the first
transmission attempt of the synchronous packet transmissions
(e.g., data packets, MSG

suppress

and MSG(N)ACK

) also
perform this CCA check to monitor the channel conditions
before transmitting.
Dynamic Transmission Power for Prioritization: Despite
the improved CCA sensitivity, there is still a chance for
collisions due to hidden terminals. Based on the experiences
from the testbed, we assign priority to each packet type by
using the transmission power. Specifically, packets with higher
priority are transmitted with relatively higher transmission
power. In our current implementation, the synchronized trans-
missions during the data exchange phase have a transmission
power of at least 5 dBm higher than those of LPP probes
and MSG

awake

. This provides the synchronized packets with
a higher probability to reach a target destination node by
(1) increasing the communication range; thus, minimizing
the number of hops to travel and (2) by opportunistically
exploiting the capture effect so that the stronger packets can
be properly decoded despite the potentially negative packet
collisions [13], [15].
Timeout Configurations: While the two methods above dis-
cuss about mostly prioritizing the synchronized flows, in a
contention-based environment, other external factors can also
disrupt the packets. To maintain network efficiency even under
harsh environments we introduced a pair of timeout values in
Section III-D. Here we introduce two additional “guard times”
included in PEASST. The first is the term T

backoff

, used in
the text earlier, and the second is T

wait

. To recap, T
backoff

is used to confirm that all probing messages are at least two
hops away from N

dest

before initiating MSG
suppress

so that
chances of packet collision at the first hop is decreased. On
the other hand, before initiating the data packets (at N

TX

) and
MSG(N)ACK

(at N
dest

) nodes wait for only T
wait

, where
T
wait

< T
backoff

since at this phase the nodes know that
the intermediate nodes are prepared to perform synchronized
packet transmissions and no LPP probe or MSG

awake

packets
will be initiated from these nodes.
Duplicate Transmissions: Lastly, we configured PEASST so
that after making an initial attempt to start a synchronized
transmission flow, if the forwarding process of the packet
cannot be overheard after 2⇥ T

SyncDelay

, a retransmission is
made. This is to actively increase the reliability when packets
arrive corrupted at the receivers.

IV. EVALUATIONS

We evaluate the performance of PEASST using both
Matlab-based simulations and also using a 15 node indoor
testbed. While focusing on the packet reception ratio (PRR),
radio duty-cycle, and communication latency, we compare
the performance of PEASST with LWB and the standardized
IETF RPL routing protocol combined with the LPL low-power
MAC. We present our experimental parameters in Table I.

Parameter Default Value Parameter Default Value
I

wakeup

2 sec I

C

TX

Variable
T

SyncDelay

375µsec T

backoff

200 msec
C

TX

1 T

LPPWait

20 msec
Packet length 15 bytes

TABLE I
SUMMARY OF BASE PARAMETERS USED IN OUR EVALUATIONS.

 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

 10

 0 20 40 60 80 100 120

R
a

d
io

 D
u

ty
 C

yc
le

 (
%

)

Inter Packet Interval (min)

PEASST with Ack - Wakeup 2 sec
LWB - Wakeup 2 sec

PEASST with Ack - Wakeup 8 sec
LWB - Wakeup 8 sec

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120

D
a

ta
 D

e
liv

e
ry

 L
a

te
n

cy
 (

s)

Inter Packet Interval (min)

PEASST with Ack - Wakeup 2 sec
LWB - Wakeup 2 sec

PEASST with Ack - Wakeup 8 sec
LWB - Wakeup 8 sec

Fig. 8. Mean radio duty-cycle (top) and packet delivery latency (bottom)
achieved in out Matlab simulation environment for PEASST and LWB with
varying inter-packet intervals and different wakeup intervals. We use a linear
topology of 6 nodes for our Matlab-based evaluations.

A. PEASST vs. LWB: Latency and Duty-Cycle

The first step of our evaluation is a simulation-based eval-
uation of PEASST against the recently proposed low-power
wireless bus (LWB) [7]. While we point the readers to [7] for
details on LWB, on a high level, LWB exploits synchronized
packet transmissions by configuring a global wakeup schedule
(e.g., TDM-based) to isolate data flows. Specifically, all nodes
wakeup to participate in the forwarding process and sleeps
based on the TDM schedule that the gateway provides. The
goal of this evaluation is to compare the performance of the
two protocols under various traffic loads to observe what
conditions each scheme is suitable for. We implement both
schemes in MATLAB and present the results below.

In Figure 8 we configure the radio’s wakeup interval
I
wakeup

to be identical for both PEASST and LWB (in [7] this
term is named as the “communication round” interval) with
varying inter-packet-intervals (IPIs) to compute the expected
radio duty-cycle and packet delivery latency. We assume a line
topology of six nodes where each node is connected to its
direct neighbors only. Given that synchronized transmissions
treat all n-hop neighbors equally when transmitting its packets
(e.g., MAC-layer broadcasting-based protocol), we find this as

Fig. 9. Pictorial view of our indoors testbed. The testbed consists of 15
nodes equipped with Atmel RF212 radios operating on the 900 MHz-band
deployed to form a maximum of 4 hops.

a simple but reasonable topology to test the two protocols.
On the top of Figure 8 we plot the duty-cycle of PEASST

and LWB configured with two different I
wakeup

. We can
notice that regardless of I

wakeup

(but more prominent for
lower I

wakeup

), PEASST shows lower duty-cycles with in-
creasing IPIs. This difference grows to as much as three-
fold when IPI = 120 sec and I

wakeup

= 2 sec. The main
reason behind LWB’s high duty-cycle is due to the fact
that LWB requires all nodes to wake up to perform time
synchronization and data forwarding at every I

wakeup

. On
the other hand, since PEASST nodes only wake up for a
small T

LPPWake

at every I
wakeup

, nodes can keep very low
duty-cycles when the IPI is high. Nevertheless, as I

wakeup

increases, we can notice that the radio duty-cycle of LWB
decreases to a significantly low level as well. We point out
that the latency and duty-cycle differences observed with and
without the data acknowledgments (for data exchange phase
termination) in PEASST was <0.5% in all cases.

Using the bottom of of Figure 8, where we plot the end-
to-end latency (from the point where N

TX

wakes up to send
a packet until reception of MSG

ACK

at N
TX

) of PEASST
and LWB, we can see that while increasing I

wakeup

reduces
LWB’s duty-cycle, this comes at a price of trading off data
delivery latency. Notice that for both protocols, the latency
changes linearly with increasing I

wakeup

. We also point out
that despite the burden of having to wakeup intermediate nodes
from LPP sleep mode, PEASST shows a latency performance
that is only ⇠1 second longer than LWB. Based on these
observations, we can conclude that PEASST is a more suitable
solution than LWB for applications with sparse and event-
based traffic patterns, since it can deliver packets with similar
latencies while achieving a much lower radio duty-cycle.

B. PEASST vs. RPL+LPL: PRR and Duty-Cycle

Using a sparsely deployed 15 node indoors testbed
(see Fig. 9), we test the performance of PEASST (with

 60
 65
 70
 75
 80
 85
 90
 95

 100

 5 15 30 45 60
 0

 1

 2

 3

 4

 5

 6

 7

P
a

ck
e

t
R

e
ce

p
tio

n
 R

a
tio

 (
%

)

D
u

ty
 C

yc
le

 (
%

)

Inter-Packet Interval (min)

PEASST PRR
RPL+LPL PRR

PEASST Duty Cycle
RPL+LPL Duty Cycle (no P2P)

RPL+LPL Duty Cycle (with P2P)

Fig. 10. Packet reception ratio and duty-cycle plots for PEASST and
RPL+LPL with varying IPI. For RPL+LPL we plot two cases with and without
routing support for point-to-point traffic.

acknowledgment-based termination) and compare it with a
standardized routing protocol for low-power and lossy net-
works (LLNs), IETF RPL [18]. The RPL routing protocol,
itself, does not have the capabilities of turning off the nodes’
radios for conserving its limited battery resources. For this
purpose, we integrate low-power listening (LPL) to the RPL
routing protocol. Implemented in TinyOS, this implementation
has been used in various previous work; thus, the validity of
the implementation is proven [11], [12]. In this work we use
OF0, the hop count metric as RPL’s path selection metric,
which is the default routing metric of the RPL standards. Using
these two protocols we run experiments with varying IPI and
present their respective PRR and duty-cycles in Figure 10.
We vary IPI and configure nodes to send packets to a single
destination node at each IPI.

Notice in Figure 10 that the PRR for PEASST is ⇠100%
for all IPI while for RPL+LPL, the PRR is ⇠90%. The
main cause of the low PRR for RPL+LPL is the sparse
deployment of the sensor nodes in our testbed. RPL will try
to choose a (single) next hop node towards the destination
and wait for that node to wake up when trying to make
data transmissions. Under dynamic channel conditions and
frequent link quality fluctuations, RPL will try to improve
its routes. However, given a sparse topology, the number of
nodes that RPL can select as forwarders are limited (both
physically and with respect to RPL’s routing policies). On
the other hand, since PEASST is designed to be topology-
free, nodes have the capability to select “any node(s)” as
its data forwarder; thus, increase its probabilities of delivery
the packet to the next hop successfully. Furthermore, when
observing the results for the two protocols’ duty-cycles, the
differences in performance is more evident. Notice that we
plot two different cases for RPL+LPL’s duty-cycle. RPL can
provide both collection and point-to-point routes, but the cost
of providing point-to-point routes comes at a price of sending
more frequent node connectivity reports (defined as destination
advertisement objects in [18]). Nevertheless, since PEASST
offers such point-to-point data delivery capabilities (e.g., not
only data collection), we find this as a fair comparison. We

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 5 15 30 45 60
 0

 1

 2

 3

 4

 5

 6

 7

 8
D

a
ta

 D
e

liv
e

ry
 L

a
te

n
cy

 (
se

c)

%
 o

f
L

a
te

n
cy

 S
yn

ch
ro

n
iz

e
d

P
a

ck
e

t
T

ra
n

sm
is

si
o

n
s

(%
)

Inter Packet Interval (min)

Total Latency
Synchronized Packet Transmission Latency

LPP Network Wakeup Latency
% of Latency from Sync. Transmissions

Fig. 11. Packet delivery latency breakdown and the percentage of latency
taken up by the data exchange phase for PEASST.

test one case where this routing report is made at an interval
of 30 minutes (e.g., with P2P) and another case where only
data collection routes are maintained (e.g., no P2P).

Notice that the average duty-cycles of PEASST nodes are
at least 13% lower than those of RPL+LPL nodes in any
configuration. Specifically, despite not using P2P routes (e.g.,
relatively less routing overhead generated), the duty-cycles of
PEASST is reduced by as much as 48% compared to RPL.
Furthermore, when P2P routes are supported, PEASST reduces
the duty cycle by as much as 52%. Looking deeper into the
results for PEASST, while our two evaluation methods are not
equally comparable (e.g., different topology, different channel
environment, etc.), we point out that compared to the results
in Figure 8, the duty-cycles we observe on the testbed are
relatively high. Quantitatively speaking, for all IPIs that we
tested, we were able to observe an average of 17% increase
in duty-cycles compared to the simulation-based results in
Figure 8. Based on deeper analysis on the packet traces, we
were able to identify that in several cases MSG

ACK

was
not properly received; thus, forcing nodes to stay awake for
TO

TX

. Furthermore, the missed packets in our experiments
with PEASST were mostly from N

TX

not being able to
find proper N

Intermediate

. This naturally caused the nodes
that were awake to continue its ON state for TO

wakeup

.
Furthermore, due to the increasing level of contention, the
duty-cycles increase with decreasing IPI.

On the other hand, in terms of packet delivery latency we
were able to observe a similar end-to-end latency compared
to the plot in Figure 11. By breaking down the cause of the
overall packet delivery latency, we can see that >⇠96% of
the time was spent for waking up the LPP-sleeping nodes.
Furthermore, due to similar reasons as the duty-cycles (e.g.,
unexpected packet loss), although the differences are less
protrusive for the latency results, we can notice an increasing
trend as the IPI decreases.

Lastly, we compare the control overhead to achieve data
packet delivery for PEASST and RPL+LPL. We note that since
LPL retransmits packets continuously until the next hop node
wakes up to receive the packet, we count these transmissions
as a single transmission for RPL+LPL. In Figure 12 we plot

 0

 5

 10

 15

 20

 25

 5 15 30 45 60

P
e

r
D

a
ta

 P
a

ck
e

t
O

ve
rh

e
a

d
(P

a
ck

e
ts

)

Inter-Packet Interval (min)

PEASST
RPL+LPL

Fig. 12. Per data-packet overhead-packet count for PEASST and RPL+LPL.

the average number of control packets issued for each data
packet transmission. Notice that with a low IPI, the amount of
relative control overhead (with respect to the number of data
packet transmissions) is lower for RPL. However, we can see
that as IPI increases, this overhead ratio increases quickly. This
is a somewhat predicted behavior given that despite the lack of
data traffic, proactive routing protocols will continuously try to
maintain the optimal routes. On the other hand, since PEASST
only wakes up nodes and issues control traffic when data traffic
exists, the varying IPI has minimal effect on the per data packet
control packet overhead. Overall, the experimental results from
our testbed suggests that PEASST is a well-suitable protocol
for applications with sparse traffic patterns.

V. RELATED WORK

We now position our work among previous work related
to PEASST. Specifically, we discuss about various previous
work in the domain of asynchronous radio duty-cycling algo-
rithms and schemes that utilize constructive interference for
synchronized packet transmissions and capture effect.
Asynchronous Radio Duty-Cycling Schemes and Multi-
hop Routing: Implementing asynchronous radio duty-cycling
schemes minimize the wireless nodes’ radio on-time by al-
lowing nodes to turn off their radios when there is no traffic
to serve in the network [2], [6], [14], [16], [19]. While these
protocols are implemented under various paradigms, in this
work we focus on the receiver-initiated radio duty-cycling
paradigm. One example of such base-technology is LPP [14].
As discussed earlier, LPP shows effectiveness in waking up a
large set of nodes and suits our purposes of minimizing the
interference levels for “protecting” the synchronized packet
transmissions. Thanks to this capability, similar concepts have
been utilized in various previous work [6], [16]. We point out
that these protocols focus on the MAC layer of the networking
stack while PEASST implements data delivery capabilities
on top of the receiver initiated wakeup paradigm. Neverthe-
less, these wakeup/MAC protocols can easily be connected
to various routing engines to form a complete low-power
networking suite (e.g., CTP [9], IETF RPL [18]). However, as
Section IV-B shows, these routing protocols generate a large
number of control messages to make the protocols less suitable

for applications with sparse, event-based traffic. One example
of such a combination is Dozer which provides extremely low-
power operations for data gathering applications [3]. While be-
ing an efficient protocol, Dozer is designed for data collection
scenarios and extending it to many-to-many scenarios would
require learning the sleeping schedules of all neighbor nodes
and maintaining the routing tables to each destination.
Networking with Synchronized Packet Transmissions: The
concept of utilizing synchronized packet transmissions with
constructive collisions in low-power networks was initially
presented in a work by Ferrari et al. [8]. In this work the
Glossy protocol was presented to make efficient network-wide
flooding possible. While Glossy acts as the basis of our study,
Glossy does not provide support for node duty-cycling; thus, is
not suitable for networks that target long lifetimes. As follow-
up work the low-power bus (LWB) was proposed to realize
point-to-point packet transmissions using Glossy [7]. However,
to allocate the network for a single data flow at all times,
an LWB network keeps a continuous network transmission
schedule. This requires all nodes to wake up for long periods
periodically; thus, as we show in Section IV-A, is less efficient
than PEASST when dealing with event-based, sparse traffic
generating applications.
Flooding with the Capture Effect: The capture effect ex-
plains the phenomenon where a receiver can hear packets that
come in at relatively stronger signal strengths among other
overlapping signals that can be overheard at the same time [1].
In WSNs capture effects are widely used to implement fast
flooding protocols [13], [15]. While, the concept of synchro-
nized transmissions used in this work and capture effect both
deal with the overlap of transmitted signals, capture effect
deals with “ignoring” weaker signals to decode the stronger
ones while the synchronized transmissions in this work deal
with “colliding constructively”.

VI. FUTURE RESEARCH DIRECTIONS AND CONCLUSIONS

In this work, we examine the feasibility of applying syn-
chronized packet transmissions with constructive interference
to low-cost, low-power wireless systems. Based on the results
of our feasibility study, we design, implement and evaluate
the PEASST protocol which provides point-to-point packet
transmissions using a combination of an asynchronous radio
duty-cycling scheme and synchronous packet transmissions.
To the best of our knowledge, PEASST is the first protocol that
attempts to apply synchronized packet transmissions to low-
power networks where active channel contention factors exist.
We evaluate PEASST against state-of-the-art low-power data
transmission protocols and show that PEASST achieves reli-
able packet delivery with a duty-cycle of ⇠1.3% and relatively
low latency levels. We envision this work as a stepping stone
in applying the concept of synchronized packet transmissions
to various wireless channel environments. As a first step
to realize this, we plan on incorporating different network
wakeup schemes to PEASST as a way to further minimize
the packet delivery latency and duty-cycles to a lower level.

Furthermore, we plan on designing a real application system
with PEASST as the main data transmission protocol.

ACKNOWLEDGEMENTS

This work is supported by “Development of Self-Powered
Smart Sensor Node Platform for Smart and Green Building”
[#10035570], and Basic Research Project (Development of an
integrated early detection system of landslides based on real-
time monitoring) of KIGAM, both funded by MSIP, Korea.

REFERENCES

[1] A. Bottcher and M. Dippold. The capture effect in multiaccess
communications-the rayleigh and landmobile satellite channels. Com-
munications, IEEE Transactions on, 41(9):1364–1372, 1993.

[2] M. Buettner, G. Yee, E. Anderson, R. Han, and M. B. G. Yee. X-mac: A
short preamble mac protocol for duty-cycled wireless sensor networks.
In Proceedings of SenSys 2006, Nov. 2006.

[3] N. Burri, P. V. Rickenbach, and R. Wattenhofer. Dozer: ultra-low power
data gathering in sensor networks. In Proceedings of IPSN 2007, Apr.
2007.

[4] R. Cardell-Oliver, K. Smettem, M. Kranz, and K. Mayer. Field testing
a wireless sensor network for reactive environmental monitoring [soil
moisture measurement]. In Intelligent Sensors, Sensor Networks and
Information Processing Conference, 2004. Proceedings of the 2004, Dec.
2004.

[5] M. Chang and P. Bonnet. Meeting ecologists’ requirements with adaptive
data acquisition. In Proceedings of SenSys 2010, Nov. 2010.

[6] P. Dutta, S. Dawson-Haggerty, Y. Chen, C.-J. M. Liang, and A. Terzis.
Design and evaluation of a versatile and efficient receiver-initiated link
layer for low-power wireless. In Proceedings of SenSys 2010, Nov. 2010.

[7] F. Ferrari, M. Zimmerling, L. Mottola, and L. Thiele. Low-Power
Wireless Bus. In Proceedings of SenSys 2012, Nov. 2012.

[8] F. Ferrari, M. Zimmerling, L. Thiele, and O. Saukh. Efficient Network
Flooding and Time Synchronization with Glossy. In Proceedings of
IPSN 2011, Apr. 2011.

[9] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis. Collection
Tree Protocol. In Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys), pages 1–14, Nov 2009.

[10] J. Ko, J. Park, J. A. Jun, and N. Kim. Just send me the summary!: ana-
lyzing sensor data for accurate summary reports in indoor environments.
In Proceedings of SenSys 2012, Nov. 2012.

[11] J. Ko, A. Terzis, S. Dawson-Haggerty, D. Culler, J. Hui, and P. Levis.
Connecting Low-Power and Lossy Networks to the Internet. Communi-
cations Magazine, IEEE, 49(4):96 –101, April 2011.

[12] J. Ko, N. Tsiftes, A. Dunkels, and A. Terzis. Pragmatic low-power
interoperability: Contikimac vs tinyos lpl. In Sensor, Mesh and Ad
Hoc Communications and Networks (SECON), 2012 9th Annual IEEE
Communications Society Conference on, pages 94–96, 2012.

[13] J. Lu and K. Whitehouse. Flash flooding: Exploiting the capture effect
for rapid flooding in wireless sensor networks. In Proceedings of IEEE
INFOCOM 2009, Apr. 2009.

[14] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis. Koala: Ultra-low power
data retrieval in wireless sensor networks. In Proceedings of IPSN 2008,
Oct. 2008.

[15] D. Son, B. Krishnamachari, and J. Heidemann. Experimental study of
concurrent transmission in wireless sensor networks. In Proceedings of
SenSys 2006, Nov. 2006.

[16] Y. Sun, O. Gurewitz, and D. B. Johnson. RI-MAC: a receiver-initiated
asynchronous duty cycle MAC protocol for dynamic traffic loads in
wireless sensor networks. In Proceedings of SenSys 2008, Nov. 2008.

[17] G. Werner-Allen, K. Lorincz, M. Ruiz, O. Marcillo, J. Johnson, J. Lees,
and M. Welsh. Deploying a Wireless Sensor Network on an Active
Volcano. IEEE Internet Computing, Special Issue on Data-Driven
Applications in Sensor Networks, Mar. 2006.

[18] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks. RFC 6550 (Proposed Standard),
Mar. 2012.

[19] W. Ye, J. Heidemann, and D. Estrin. An energy-efficient mac protocol
for wireless sensor networks. In Proceedings of IEEE INFOCOM 2002,
June 2002.

