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ABSTRACT Isogenic bacterial populations are known to exhibit phenotypic hetero-
geneity at the single-cell level. Because of difficulties in assessing the phenotypic
heterogeneity of a single taxon in a mixed community, the importance of this deeper
level of organization remains relatively unknown for natural communities. In this
study, we have used membrane-based microcosms that allow the probing of the
phenotypic heterogeneity of a single taxon while interacting with a synthetic or nat-
ural community. Individual taxa were studied under axenic conditions, as members
of a coculture with physical separation, and as a mixed culture. Phenotypic hetero-
geneity was assessed through both flow cytometry and Raman spectroscopy. Using
this setup, we investigated the effect of microbial interactions on the individual phe-
notypic heterogeneities of two interacting drinking water isolates. Through flow cy-
tometry we have demonstrated that interactions between these bacteria lead to a
reduction of their individual phenotypic diversities and that this adjustment is condi-
tional on the bacterial taxon. Single-cell Raman spectroscopy confirmed a taxon-
dependent phenotypic shift due to the interaction. In conclusion, our data suggest
that bacterial interactions may be a general driver of phenotypic heterogeneity in
mixed microbial populations.

IMPORTANCE Laboratory studies have shown the impact of phenotypic heterogeneity
on the survival and functionality of isogenic populations. Because phenotypic heteroge-
neity plays an important role in pathogenicity and virulence, antibiotic resistance,
biotechnological applications, and ecosystem properties, it is crucial to understand
its influencing factors. An unanswered question is whether bacteria in mixed com-
munities influence the phenotypic heterogeneity of their community partners. We
found that coculturing bacteria leads to a reduction in their individual phenotypic
heterogeneities, which led us to the hypothesis that the individual phenotypic diver-
sity of a taxon is dependent on the community composition.

KEYWORDS Raman spectroscopy, axenic culture, coculture, flow cytometry,
microbial interactions, phenotypic heterogeneity, single cell, synthetic ecosystems

Genetically identical bacteria are known to exhibit single-cell heterogeneity under
controlled laboratory conditions (1–3). These heterogeneous traits include mor-

phological traits, such as cell size, as well as biochemical properties, such as protein and
mRNA content. The individualization of identical sister cells in clonal populations occurs
rapidly after cell division (4). Cells can be partitioned into clusters of cells with similar
traits, called phenotypes. The variation in phenotypes within sympatric isogenic pop-
ulations is referred to as the phenotypic heterogeneity (5).

Noise in gene expression is known to be one of the main drivers of phenotypic
heterogeneity (6–8). At first glance, a heterogeneous gene expression appears to be
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disadvantageous, as it may reduce the mean fitness of the population under the
prevailing environmental conditions (9). However, several studies have indicated that
biological noise is an evolved and regulated trait (10, 11), which offers benefits for the
survival (12, 13) and functionality (14–16) of a clonal population. The aforementioned
studies have revealed that isogenic bacterial populations are not homogeneous pop-
ulations. Instead, they behave as communities consisting of phenotypic subgroups,
which may differ in quantitative (i.e., continuous variation in phenotypic traits) and
qualitative (i.e., distinct phenotypic states) aspects.

In nature, bacteria are not encountered as isolated populations, but they are a part
of a larger association where many microorganisms coexist. To date, little research has
been devoted to the occurrence and functional consequences of phenotypic hetero-
geneity in natural, mixed communities (17, 18), and our knowledge regarding factors
that influence phenotypic heterogeneity is limited. One of the reasons for this is that it
is difficult to assess the heterogeneity of a single taxon within a mixed community.
Recently, several experimental approaches that assess the metabolic diversity of a single
taxon in natural communities have been developed (19, 20). However, these approaches
rely on fluorescence in situ hybridization probes that bind to 16S rRNA gene sequences for
identification of the taxon of interest. Hence, these approaches do not allow exclusion of
the possibility that some of the observed phenotypic differences are caused by minor
genetic differences between bacteria with very similar 16S rRNA genes.

Two laser-based methods that are suitable for assessing phenotypes are flow
cytometry and Raman spectroscopy (21–23). Two types of light can be detected by the
flow cytometer: scattered light and fluorescence. The scattered light provides informa-
tion about the basic characteristics of the cells (e.g., size, shape, and surface properties),
while the fluorescence data provide additional information about the cell properties for
which it has been stained (e.g., nucleic acid content, metabolic activity, etc.) (24). Flow
cytometry thus gives information regarding the morphological, as well as specific physio-
logical, properties of single cells. The Raman spectrum of a single cell consists of a
combination of the individual spectra of all the compounds that make up this cell (e.g.,
proteins, nucleic acids, fatty acids, etc.). This results in a complex spectrum, which can be
interpreted as a chemical fingerprint of the cell (25, 26). Hence, single-cell Raman spectra
offer an in-depth view on the biochemical composition of each phenotype.

A tool that can help to answer questions that are difficult to study directly in natural
communities is a synthetic ecosystem. A synthetic ecosystem consists of a selected set
of species under specific conditions. Such ecosystems are controllable and have a
reduced complexity in comparison to natural communities (27). Hence, they provide a
way to test ecological theories in order to better understand the rules of nature (28). A
specific setup for these synthetic ecosystems is cocultures. The principle of such a
system is that two or more bacterial populations are cultivated together with some
degree of contact between them, which allows study of their interactions (29).

An unanswered question, and the focus of this study, is whether bacteria in mixed
communities influence the phenotypic heterogeneity of their community partners.
Here, we used a synthetic community setup where two isolates were used as model
organisms. Four synthetic communities were created. The isolates were grown in axenic
cultures as a reference for noninteracting genotypes. To be able to study the individual
community members separately after they have been interacting via their joint me-
dium, a coculture with physical separation by a membrane was created. Lastly, a mixed
culture without physical separation, representing “full interaction,” was created. Phe-
notypes were assessed through flow cytometry and single-cell Raman spectroscopy.
Furthermore, we applied and evaluated a novel machine learning approach to quantify
synthetic community composition through flow cytometric fingerprinting.

RESULTS

We aimed to evaluate whether the phenotypes and phenotypic heterogeneity of a
single taxon in a dual-species coculture are mediated by interactions with a partner
taxon. Two drinking water isolates, an Enterobacter sp. and a Pseudomonas sp., were
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used as model organisms. The experimental design consisted of four synthetic com-
munities: two axenic cultures, a coculture with physical separation between the taxa
(partial interaction), and a mixed culture (full interaction) (Fig. 1). Each synthetic
community was prepared in triplicate, and the communities were monitored for 72 h.
Every 24 h, the population phenotypic diversity was assessed by flow cytometry. At
72 h, populations were analyzed using single-cell Raman spectroscopy. Cell viability
was verified through SYBR Green I (SG) and propidium iodide staining (see Fig. S1 in the
supplemental material). Cell populations remained viable throughout the course of the
experiment and differences in viability between the coculture and the axenic culture
were insignificant for both taxa (Wilcoxon rank sum test, P � 0.05; Fig. S1). In the results
presented below, the physically separated culture is referred to as the “coculture,” while
“mixed culture” indicates the culture without physical separation.

Flow cytometric diversity assessment. To evaluate whether microbial interactions
can lead to changes in the phenotypic heterogeneity of interacting organisms, cyto-
metric diversity estimates were used as measures of phenotypic heterogeneity. For this,
an equal-spaced binning grid was used to arbitrarily split up the cytometric parameter
space in operational phenotypic units. The signals of both scatter and fluorescence
detectors were used, implying that the diversity is a measure of population heteroge-
neity in terms of both morphological traits and nucleic acid content. Note that the
calculated diversity metrics are independent of the taxon abundances (Fig. S2), as all
populations were subsampled to equal cell counts prior to diversity estimation (see
Materials and Methods).

The phenotypic community structure was first investigated through an alpha diver-
sity (i.e., within-sample diversity) assessment. For both taxa, the diversity of the indi-
vidual taxon was larger when present in the axenic culture compared to when the same
taxon was present as a member of the coculture. Not only the phenotypic diversity (D1

and D2), which includes both richness and evenness, decreased (Fig. S3), but the
phenotypic richness (D0) of the coculture members decreased compared to the axenic
cultures (Fig. 2A). This indicates not only that the interaction led to a reorganization of
the phenotypic community structure (i.e., a change in the relative abundances of the
cytometric bins) but also that the number of nonempty bins on the cytometric
fingerprint was reduced due to the interaction, implying not only a redistribution of
trait abundance but also a reduction in trait heterogeneity. At 72 h, the alpha diversities
(D0) were significantly lower in the cocultures compared to the axenic cultures, for both
Enterobacter (one-sided Wilcoxon rank sum test, P � 0.05) and Pseudomonas (P � 0.05).
The phenotypic diversity metrics were not additive when compared between the two
coculture members and the mixed culture, suggesting that fractions of these two
populations share certain phenotypic properties.

Using a contrast analysis, differences between the phenotypic fingerprints of pop-
ulations can easily be visualized in bivariate parameter spaces. To evaluate whether the
observed lower diversities were linked with specific shifts in the cytometric fingerprint,
differences in scatter and fluorescence patterns of the axenic cultures and the cocul-
tures were assessed. The differences in scatter patterns were limited for both taxa (Fig.
S4). In contrast, a clear difference in fluorescence intensity was observed (Fig. 2B and C;
Fig. S5). For Enterobacter there was a shift toward high-fluorescence cells in the
coculture compared to the axenic culture. This difference became larger over time. For

FIG 1 Illustration of the experimental setup. Bacteria in apical and basal phase can interact via
metabolites in their shared medium while they are physically separated by the membrane of the cell
culture inserts. Four synthetic communities were created: two axenic cultures, a coculture, and a mixed
culture. There were biological replicates (n � 3) for each synthetic community.
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Pseudomonas there was a more limited difference, with a small enrichment of lower-
fluorescence cells. Thus, there was not only a reduction in population diversity, but
there was also a shift of the population fingerprint. Moreover, this shift was taxon
dependent.

To further compare the cytometric fingerprints of the different populations, a
principal coordinate analysis (PCoA) ordination was generated based on the Bray-Curtis
dissimilarities between the fingerprints (Fig. 3). In this ordination, the fingerprints of the
taxa, both under axenic and under coculture growth, are separated, with the mixed
culture in between. The populations show a significant shift in their phenotypic
structure through time (P � 0.001, r2 � 0.154). In addition, there is a significant
difference in the fingerprint of Enterobacter when present as an axenic culture com-
pared to being present in the coculture (P � 0.001, r2 � 0.455). For Pseudomonas, the
differences between the axenic cultures and coculture members were not significant
(P � 0.092, r2 � 0.170). The mixed culture shifted from a community that is more
resembling Enterobacter at the first measurement, toward a community that is more
similar to Pseudomonas at the second and third measurements.

To better understand the interaction that was occurring between Enterobacter and
Pseudomonas, we applied a novel machine learning approach to infer the relative
abundances of both taxa in the mixed community (30). Previous results confirmed our
initial hypothesis that the phenotypic diversity of a taxon can be influenced by the
presence of other taxa. In order to take this into account, a random forest classifier was
trained, for each time point separately, on the fingerprints of the coculture members at
the corresponding time point, as these are expected to be the most biologically
accurate (see the supplemental results and discussion). The predictions indicate a
higher abundance of Enterobacter in the community at 24 h, followed by a gradual
enrichment of Pseudomonas at the second and third time points (Fig. 4). Classifier
accuracy was always �94% (Table S1). The results of this study show that the pheno-

FIG 2 (A) Phenotypic alpha diversity D0 for both individual bacterial taxa in communities of axenic cultures, cocultures, and
mixed cultures. The taxa are denoted as taxon E (Enterobacter sp.) and taxon P (Pseudomonas sp.), respectively. The
populations are indicated with names in the form of “X treated with Y,” where X is the taxon in the sample (E, P, or EP)
and Y is what was present on the other side of the membrane (E, P, or fresh medium). There were biological replicates
(n � 3) for each community. The dashed lines indicate the average trend of the replicates. P values indicate the significance
of the differences between the axenic culture and coculture populations at 72 h for Enterobacter (PE) and Pseudomonas (PP)
(one-sided Wilcoxon rank sum test). (B and C) Contrast analysis of the phenotypic fingerprints was performed to compare
the phenotypic community structure of axenic cultures and coculture members with respect to fluorescence intensity. Each
plot is a comparison between the axenic culture and coculture of the same taxon at the same time point, averaged over
the three biological replicates. The color gradient indicates whether density in the coculture increased (purple) or
decreased (dark green) relative to their respective axenic culture at the specified time point. (B) The upper row presents
contrast results for Enterobacter. (C) The lower row presents contrast results for Pseudomonas. If the difference between the
two communities is �0.01, no contrast value is shown on the graphs, which causes the appearance of different clusters.
Note that different scales were used for the different taxa.
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typic community structure of a taxon is a dynamic property, in time as well as in relation
to external influencing factors such as presence of other taxa. Before further applying
the in silico methodology to infer community composition of synthetic ecosystems, it
is recommended to have an external validation of the predicted relative abundances
(see the supplemental results and discussion).

In summary, both Enterobacter and Pseudomonas showed lower phenotypic diver-
sities in the coculture compared to their axenic culture counterparts. However, while
the overall phenotypic community structure did not change substantially for Pseu-
domonas (i.e., small differences in beta diversity and limited shift toward lower-
fluorescence-intensity cells), there was a clear shift in the phenotypes of the Entero-
bacter population (i.e., large differences in beta diversity and a clear shift toward
higher-fluorescence-intensity cells).

Raman phenotyping. The cytometric phenotype only takes into account the
morphological characteristics and nucleic acid content of the cells. However, pheno-
types can differ in more cell constituents than nucleic acids alone. The Raman spectrum
of a single cell offers a more in-depth view on the biochemical phenotype compared
to flow cytometry. Raman spectroscopy was used to measure single-cell spectra for
each of the populations of Enterobacter and Pseudomonas in the axenic cultures and the
coculture at 72 h.

The spectra hold 333 wavenumbers over the selected biologically relevant range. To
gain insight in the separability of cells from the different populations, spectra were
visualized through PCA after preprocessing of the data (see Materials and Methods)
(Fig. 5A). The spectra of the Enterobacter populations were clearly separated. A large
overlap between the spectra of Pseudomonas that was grown in axenic culture and
Pseudomonas that was grown in the coculture was observed. However, when perform-
ing PCA for each taxon separately, cells from the coculture and the axenic culture were
separated well (Fig. 5B and C). For Enterobacter, the axenic and coculture groups
differed significantly (P � 0.001, r2 � 0.343). For Pseudomonas, no permutational
multivariate analysis of variance (PERMANOVA) could be performed since the group
dispersions were significantly different. This confirms the previous results, indicating
that for both taxa a phenotypic shift occurred but that this shift was larger for
Enterobacter than for Pseudomonas.

Since the Raman spectrum of a single cell is a combination of the spectra of all
compounds that make up this cell (e.g., proteins, nucleic acids, fatty acids, etc.), the
signal intensity at every wavenumber is the result of all compounds that produce a
signal at this wavenumber. The Raman spectra of all DNA and RNA bases are available

FIG 3 PCoA ordination of the Bray-Curtis dissimilarities between the phenotypic fingerprints for both individual bacterial taxa in
communities of axenic cultures, cocultures, and mixed cultures. The ordination is shown in three graphs, split according to time, since this
allows for easier interpretation of how the different communities are relating to each other at each time point. The taxa are denoted as
taxon E (Enterobacter sp.) and taxon P (Pseudomonas sp.), respectively. The populations are indicated with names in the form of “X treated
with Y,” where X is the taxon in the sample (E, P, or EP) and Y is what was present on the other side of the membrane (E, P, or fresh
medium). There were biological replicates (n � 3) for each community. The variance explained by the overall temporal effect (r2

Time), as
well as the effect of coculturing compared to axenic culture (r2

E), is provided (PERMANOVA). The effect of coculturing was not significant
for Pseudomonas and is therefore not indicated.
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from literature (31), as well as information regarding peak regions that are assumed to
be related to nucleic acids in general (32). We aimed to investigate whether the shift in
fluorescence intensity that was observed through flow cytometry was caused by a
changing DNA or RNA content and in this way get more information about the cause
of the observed phenotypic shift. Based on this tentative peak assignment, differences
in nucleic acids between the coculture and the axenic populations were observed for
both taxa (Fig. S6). However, there was no consistency in whether this was considered
an increase or a decrease (i.e., for some wavenumbers the average intensity was higher
in the coculture, while for other wavenumbers the intensity was higher in the axenic
culture). When considering only uracil and thymine, it remained impossible to draw a
conclusion regarding whether DNA or RNA differences contributed most to the ob-
served phenotypic shift (Fig. S6).

DISCUSSION

There is an interest in understanding the implications of phenotypic heterogeneity
in both natural and engineered microbial ecosystems. Our current knowledge is mainly
based on experimental setups using axenic cultures. This is partly due to the fact that
it is not straightforward to assess the phenotypic heterogeneity of an isogenic popu-
lation in a mixed community. In order to circumvent this issue, we present a
membrane-based synthetic community setup. Using this setup, we investigated the
effect of microbial interactions on the individual phenotype and phenotypic diversities
of the interacting taxa. To avoid modified behavior compared to behavior under natural
conditions due to domestication history (33), two freshly isolated strains were used.

Effect of interaction on phenotype and phenotypic diversity. Based on flow
cytometric fingerprinting, the phenotypic diversity of both community members was
lower when they were grown in a coculture compared to when they were grown as
axenic cultures (Fig. 2A; see Fig. S3 and S5 in the supplemental material). This effect of
interaction on population diversity was more pronounced for Enterobacter than for
Pseudomonas, indicating that different taxa had different phenotypic responses to the
interaction. When comparing the populations through beta-diversity assessment (Fig.
3), a similar observation was found. The differences between the cytometric fingerprint
of Enterobacter in the coculture and in the axenic culture were significant, whereas the
differences between Pseudomonas in the coculture and in the axenic culture were not
significant.

FIG 4 Predicted relative abundances in the mixed cultures. The random forest classifiers that were used
to infer community composition were constructed using the fingerprints of the coculture members at the
corresponding time point as input data. Green lines indicate the predicted relative abundances of
Enterobacter; blue lines indicate the predicted relative abundances of Pseudomonas. The different shades
correspond to biological replicates (n � 3).
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As indicated by the standard deviations that were found when calculating the
average spectra for each population, Raman picks up a broad range of phenotypic
diversity (Fig. S7 and S8). The data set with the single-cell Raman spectra was relatively
small (i.e., 51 spectra per population). Diversity estimates are known to be sensitive to
sample size (34). To be conservative, no conclusions were drawn regarding phenotypic
diversity as observed using the single-cell Raman spectra. Similar to the flow cytometry
results, PCA of the single-cell spectra indicated a bigger shift in phenotypes for
Enterobacter and a smaller shift for Pseudomonas. The spectra of Enterobacter in the
coculture and in the axenic culture were clearly separated (Fig. 5A). For Pseudomonas,
the separation only became clear when the PCA was performed on the spectra for
Pseudomonas alone (Fig. 5C). Since both techniques, flow cytometry and Raman
spectroscopy, measure widely different optical properties of individual bacterial cells,
finding the same observation using these two approaches strengthens confidence in
the conclusions.

Differences in scattering patterns were limited for both taxa, implying that there
were no large changes in cell morphology (35). Since SG staining is a stoichiometric
staining, a higher fluorescence signal is directly related to a higher concentration of
stained nucleic acids (36, 37). In terms of nucleic acid content, large differences were
observed for Enterobacter and limited differences for Pseudomonas, with Enterobacter
shifting toward high-nucleic-acid individuals (Fig. 2B and C; Fig. S5). This can indicate
different physiological shifts. On the one hand, the DNA copy number could be
increased, implying an adaptation of the cell cycle. Although both bacteria were
expected to be in stationary phase at all sampling points (Fig. S9), it is possible that
under stress the bacteria adapted their cell cycle behavior and DNA concentration (38).
On the other hand, the bacteria might have maintained a similar DNA concentration
but a higher RNA concentration, indicating a shift in their gene expression. The bacteria

FIG 5 Visualization of the separability of the single-cell Raman spectra for Enterobacter and Pseudomonas
in axenic culture and coculture at 72 h. There are 51 single-cell measurements for each population.
The taxa are denoted as taxon E (Enterobacter sp.) and taxon P (Pseudomonas sp.), respectively. The
populations are indicated with names in the form of “X treated with Y,” where X is the taxon in the
sample (E, P, or EP) and Y is what was present on the other side of the membrane (E, P, or fresh medium).
PCA was carried out for the entire data set (A), for the spectra of Enterobacter separately (B), and for the
spectra of Pseudomonas separately (C). The variance explained by the effect of coculturing compared to
axenic culture (r2

E) is provided for Enterobacter (PERMANOVA). Beta dispersions were differing signifi-
cantly between the two groups, and therefore no PERMANOVA could be performed for Pseudomonas.

Phenotypic Heterogeneity in Cocultures Applied and Environmental Microbiology

April 2019 Volume 85 Issue 8 e02814-18 aem.asm.org 7

 on M
arch 21, 2020 by guest

http://aem
.asm

.org/
D

ow
nloaded from

 

https://aem.asm.org
http://aem.asm.org/


could have been more actively expressing the same genes as they were in the axenic
cultures, or they might have shifted toward expression of other genes compared to the
axenic cultures (39). Lastly, an increased membrane permeability may also explain the
higher fluorescence signals.

Through single-cell Raman spectroscopy, which offers an in-depth view on the
biochemical phenotype, we attempted to investigate which of the above-mentioned
scenarios was most likely to be occurring. Using a reference-based peak assignment,
the Raman spectra indicated differences in wavenumbers that were potentially related
to DNA and RNA and in this way support both hypotheses (Fig. S6). It should be noted
that the tentative peak assignment resulted in inconsistent conclusions regarding the
intensity change of nucleic-acid-related wavenumbers for both taxa under the different
conditions (i.e., axenic or coculture). This might be explained by the fact that the signal
intensity at every wavenumber is the superposition of all compounds’ signals at this
wavenumber, thereby prohibiting biomolecule-specific interpretation.

Several uptake or metabolic pathways are often simultaneously active in a single
taxon’s population (40, 41). Interspecies interactions are known to alter the intensity of
the production pathways that are active in interacting bacteria (42, 43), and hence they
may be influencing population heterogeneity. For example, the interspecies interac-
tions may allow species to share products of costly pathways and in this way depri-
oritize some functions which would be necessary for the proliferation in monoculture,
such as the production of certain amino acids (39, 42). Since costly production path-
ways are often expressed by only a fraction of a clonal population (15, 44), sharing these
pathways between genotypes might allow one or both interacting genotypes to steer
the distribution of their costly phenotypes and hence reduce their population heter-
ogeneity. This would enable each genotype to occupy the functions at which it is most
performant, thus creating a mixed community with a higher overall performance. The
increased cell density in the mixed culture compared to the axenic cultures may
indicate this increased performance (Fig. S2). The idea of pathway sharing is in line with
the observation that the gene essentiality for a specific taxon is dependent on its
community partners (45). It is possible that interactions between bacteria may indeed
lead to other than only additive effects on the phenotypic population structure of the
individual taxa. For example, a taxon that is excreting a certain metabolite may cause
expression of metabolic pathways in taxa that utilize this metabolite and therefore
affect the phenotypic diversity of these cross-feeding taxa. In addition to these coop-
erative interactions, competition may also explain the reduction in phenotypic diver-
sity. It may confer a competitive advantage for a taxon to reduce its heterogeneity and
in that way reduce the fraction of individuals that are in a suboptimal state for
exploiting the current environmental conditions (13). In the present study, the com-
munity was predicted to be dominated by Pseudomonas (Fig. 4). A possible hypothesis
for the fact that Enterobacter showed a stronger reduction in phenotypic diversity may
be that Enterobacter needed to reduce its heterogeneity more in order to compete with
Pseudomonas.

Evaluation of the experimental setup. In literature, phenotypic heterogeneity is
most often studied though the assessment of single-cell metabolic activity, using
isotope labeling with stable or radioactive probes (41, 46), or through the quantification
of gene expression variability with fluorescence-labeled proteins (2, 11, 40). Both
isotope labeling and fluorescence-labeled proteins allow the study of heterogeneity in
clonal populations. However, these methods require either a modification of the
organisms under study by inserting a fluorescent protein or the use of rather expensive,
and sometimes dangerous, isotopes. Using phenotypic fingerprinting through flow
cytometry does not require any tagging of bacteria or the use of isotopes. Moreover,
it is possible to assess the phenotypic diversity of bacterial populations without prior
knowledge on potentially relevant metabolic pathways (isotope labeling) or genes
(fluorescence labeling). The main benefits of the flow cytometric approach are its speed
and the fact that large amounts of cells can be analyzed. This allows good coverage of
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the phenotypic landscape of the community and enables researchers to achieve a
highly resolved sampling frequency.

However, when assessing phenotypic heterogeneity, there needs to be a definition
of the phenotypes between which will be distinguished. Using the previously published
protocol by Props et al. (47), a binning grid was applied to each of the bivariate
parameter combinations (i.e., scatter and fluorescence parameters). Bacteria that fell
within the same bin were defined as the same phenotype. Thus, phenotypes, and by
extension the phenotypic diversity metrics, were defined ad hoc. Moreover, when
evaluating phenotypic heterogeneity based on flow cytometry, the phenotypic traits
on which information is gained are morphological parameters and nucleic acid content
(in the case of SG staining). However, only a certain level of information is retained in
the scatter and fluorescence parameters (e.g., morphology cannot be inferred directly
from scatter values) (48). Thus, the phenotypic traits derived through flow cytometry
are an abstract representation of the phenotype. In addition, only taking into account
these traits is an abstraction of the entire phenotypic diversity of the bacteria. The fact
that phenotypes were defined using a predefined binning grid and based on a limited
number of phenotypic traits makes it difficult to make a link with functionality and to
fully understand the underlying biological or ecological process that caused the
phenotypic diversity shift. Additional examination of the transcriptome (39, 49, 50) or
exometabolite profiles (51), or the use of mutant libraries, could provide valuable
insights in the cause of the phenotypic adaptation and the functional consequences
that the change in phenotypic state might bring. In addition, more validated and
automated pipelines for detection of biomolecules based on single-cell Raman spectra
would be an interesting improvement.

It should be noted that the difference in volume between the basal and apical
phases may cause the metabolites consumed and produced to be slightly different
compared to the mixed cultures. Differences in resource and metabolite concentration
due to differences in total microbial load may have influenced the effect size of
coculturing on the phenotypic diversity (52, 53). In addition, it should be noted that the
current experimental setup assesses well-mixed communities. However, in nature,
bacteria often occur in biofilms. In the case of mixed-species biofilms, the residing
species would occur in “patches” where they would experience different microenvi-
ronmental conditions (e.g., due to diffusion-mediated distribution of nutrients, metab-
olites, etc.). Phenotypic heterogeneity in the center of a patch might then be
mediated by intraspecies cell-to-cell interaction, while phenotypic heterogeneity on
the edges of a patch may be mediated by interspecies cell-to-cell interactions. Further
research to address these aspects is required.

Conclusion. In conclusion, we have used a synthetic community setup in which the
individual phenotypic heterogeneity of environmental isolates in mixed or synthetic
communities can be studied. We demonstrated that interactions between bacterial
populations lead to an adjustment of the individual phenotypic diversities of the
interacting populations. Since phenotypic heterogeneity is playing an important role in
pathogenicity and virulence (14), antibiotic resistance (12, 54), biotechnological appli-
cations (20, 23, 55, 56), and ecosystem properties (57), it is crucial to understand its
influencing factors. The experimental design presented here provides a framework
within which further ecological hypotheses regarding phenotypic heterogeneity and
microbial interactions can be tested.

MATERIALS AND METHODS
Isolates. An Enterobacter sp. and a Pseudomonas sp. were selected from a set of drinking water

isolates which were isolated on R2A agar and provided by Pidpa (Provinciale en Intercommunale
Drinkwatermaatschappij der Provincie Antwerpen, Antwerp, Belgium). Preliminary tests showed that
these isolates had distinct cytometric fingerprints, as determined by the method of Rubbens et al. (30),
and reached stationary growth phase within 24 h in M9 supplemented with 200 mg/liter glucose at 28°C,
starting from a cell density of 106 cells ml�1 (Fig. S9). The isolates were identified with Sanger sequencing
(LGC Genomics GmbH, Germany). DNA extraction was performed by means of bead beating with a
PowerLyzer instrument (Qiagen, Venlo, Netherlands) and phenol-chloroform extraction. A PCR was
performed on the V1 to V6 region of the 16S rRNA gene. The primers 63F (CAGGCCTAACACATGCAAGTC)
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and 1378R (CGGTGTGTACAAGGCCCGGGAACG) were used, and amplification was performed using an
initial denaturation for 5 min at 94°C, followed by 30 cycles of 1 min of denaturation at 95°C, 1 min of
annealing at 53°C, and 2 min of extension at 72°C. A final elongation step was included at 72°C for 10 min.
The quality of the PCR products was evaluated by agarose gel electrophoresis, and samples were sent
out for Sanger sequencing. The obtained sequences were BLAST searched against two databases, NCBI
BLAST and the Ribosomal Database Project (Table S2). Both databases yielded the same identities. The
strains were deposited in the BCCM/LMG Bacteria Collection under accession numbers LMG 30741
(Enterobacter sp.) and LMG 30742 (Pseudomonas sp.).

Experimental setup. Bacteria were cultured in Transwell plates (Costar 6-well cell culture plates;
Corning, Inc.), where apical and basal compartments were created using cell culture inserts (ThinCert cell
culture inserts with pore diameters of 0.4 �m; Greiner Bio-One). The membranes of the culture inserts
were replaced by membranes with smaller pore sizes to avoid migration of bacteria between the two
compartments (Whatman Cyclopore polycarbonate and polyester membranes [0.2-�m pore size]; GE Life
Sciences). Four synthetic communities were created: two axenic cultures, a physically separated culture,
and a mixed culture (Fig. 1). Each community was prepared in triplicate and randomized over the plates
to account for plate effects. Before the start of the experiment, both types of bacteria were grown on
nutrient agar (Oxoid, UK) plates. For both taxa, a single colony was picked and transferred to liquid
minimal medium (M9 with 200 mg/liter glucose as a carbon source). After 2 days of incubation at 28°C,
the cell densities in the two liquid cultures were determined by flow cytometry, and the cultures were
diluted to the desired starting cell densities in fresh medium in triplicate for each synthetic community.
The required dilution was high enough to neglect differences in the volumes of fresh media and thus
resources for growth that were needed to prepare the cultures. The starting cell densities were set to
have the same initial cell density of 106 cells ml�1 in each synthetic community and with equal relative
abundances for both community members in the cocultures and mixed cultures (Table S3). No additional
medium was added after the initial setup of the experiment. The first sampling moment was at 24 h,
which suggests, based on the previously determined growth kinetics, that both taxa were in stationary
phase at every sampling point (Fig. S9). Interaction between the taxa was studied in stationary phase
because previous research has indicated that both Raman spectroscopy and flow cytometry are able to
pick up differences in phenotype and phenotypic community structure due to differences in growth
stages. When bacterial populations are not standardized on growth phase, it would be difficult to
distinguish between phenotypic diversity differences which are due to growth and differences which are
due to the presence of the interacting partner taxon.

The six-well plates were incubated at 28°C and gently shaken (25 rpm) to aid diffusion of metabolites
between the compartments. The communities were monitored over a period of 72 h. Every 24 h, the
samples were analyzed by flow cytometry. After 72 h, the samples were fixed with 4% paraformaldehyde
for Raman spectroscopic analysis (see the supplemental material). Sample fixation was necessary since
single-cell Raman measurements were too time-consuming for immediate analysis.

Flow cytometry. For flow cytometric analysis, the samples were diluted and stained with 1 vol% SG
(100� concentrate in 0.22-�m-filtered dimethyl sulfoxide; Invitrogen) for total cell analysis, and with
1 vol% SG combined with propidium iodide (SGPI; 100� concentrate SG [Invitrogen] and 50� 20 mM
propidium iodide [Invitrogen] in 0.22-�m-filtered dimethyl sulfoxide) for Live/Dead analysis. SG primarily
stains double-stranded DNA, but it will also stain the RNA (58). Staining was performed as described
previously, with an incubation period of 20 min at 37°C in the dark (59). Samples were analyzed
immediately after incubation on a FACSVerse flow cytometer (BD Biosciences, Belgium) equipped with
eight fluorescence detectors (527/32, 783/56, 586/42, 700/54, 660/10, 783/56, 528/45, and 488/45 nm),
two scatter detectors, and a blue 20-mW 488-nm laser, a red 40-mW 640-nm laser, and a violet 40-mW
405-nm laser. The flow cytometer was operated with FACSFlow solution (BD Biosciences) as sheath fluid.
Instrument performance was verified daily using FACSuite CS&T beads (BD Biosciences).

Raman spectroscopy. Prior to analysis, the fixed sample was centrifuged for 5 min at room
temperature and 5,000 � g, and the pellet was resuspended in 0.22-�m-filtered Milli-Q (4°C). A portion
(10 �l) of cell suspension was spotted onto a CaF2 slide (Crystran, Ltd., UK) and air dried for a few minutes.
The dry sample was analyzed using an Alpha 300 R confocal Raman microscope (WITec GmbH, Germany)
with a 100�/0.9NA objective (Nikon, Japan), a 785-nm excitation diode laser (Toptica, Germany), and a
UHTS 300 spectrometer (WITec GmbH) with a – 60°C cooled iDus 401 BR-DD charge-coupled device
camera (Andor Technology, Ltd., UK). Laser power before the objective was measured daily and was
about 150 mW. Spectra were acquired in the range of 110 to 3,375 cm�1 with a diffraction grating of 300
grooves/mm. For each single-cell spectrum, the Raman signal was integrated over 40 s. All Raman
samples were analyzed within 1 week after sampling, with minimal time between them to limit possible
differences caused by differences in storage duration. For each population, between 51 and 55 single-cell
spectra were measured from a single biological replicate population. To allow for a fair comparison, 51
spectra were selected from each population for further analysis. The spectra with the lowest intensity
were assumed to be of lesser quality and were therefore discarded.

A large peak in the range of 850 to 1,030 cm�1 was present in the spectra of Enterobacter in the
axenic culture, while this peak was not observed in the other populations or during preliminary tests (Fig.
S7). Moreover, intensity values showed large variability for this region. This might be the result of
technical issues during fixation or storage of the sample. Similar to the study of García-Timermans et al.
(60), this region was excluded for further analysis (Fig. S8).

Data analysis. (i) Flow cytometric diversity analysis. The flow cytometry data were imported in R
(v3.3.1) (61) using the flowCore package (v1.40.3) (62). A quality control of the data set was performed
through the flowAI package (v1.6.2) (63). The data were transformed using the arcsine hyperbolic
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function, and the background of the fingerprints was removed by manually creating a gate on the
primary fluorescent channels (59). The Phenoflow package (v1.1.1.) (47) was used to assess the pheno-
typic community structure of the bacterial populations. Based on the study by Rubbens et al. (64), which
assessed the usefulness of information captured by additional detectors (i.e., detectors that are not
directly targeted) for bacterial population identification, an optimal subset of detectors was selected to
include in the analysis. The subset included the scatter detectors, the detector for which had been
stained (i.e., fluorescein isothiocyanate), and some additional detectors that received spillover signals
(AmCyan, dsRed, and eCFP).

Prior to diversity estimation, all populations were subsampled to 30,000 cells in order to account for
sample size differences. In short, for each bivariate parameter combination (i.e., combination of the scatter and
fluorescence parameters) an 128 � 128 equal-space binning grid is applied, which discretizes the parameter
space and in which each bin represents a hypothetical phenotype. For each bin, a kernel density estimation
is performed. All density estimations are summed to the total density estimation of the community. Finally,
the density values for each of the bins are concatenated into a one-dimensional vector, which is called the
“phenotypic fingerprint.” From this fingerprint, alpha and beta diversities are calculated, which are then used
as measures for phenotypic population heterogeneity. The alpha diversity (i.e., within-sample diversity) is
calculated by using the first three Hill diversity numbers, D0, D1, and D2, which correspond to the observed
richness, the exponential of Shannon entropy, and the inverse Simpson index, respectively (65). The beta
diversity (i.e., between-sample diversity) is evaluated by PCoA on the Bray-Curtis dissimilarities between the
fingerprints. The significance of the differences between fingerprints was assessed by means of PERMANOVA
(999 permutations) on the Bray-Curtis dissimilarity matrix. The homogeneity of variance in groups was
assessed before performing PERMANOVA. A significance level of 0.01 was used.

(ii) Flow cytometric in silico communities. Relative abundances in the mixed cultures were predicted
using the supervised in silico community methodology of Rubbens et al. (64), implemented in the Phenoflow
(v1.1.1) software package. In short, a cytometric fingerprint of the taxa that make up the synthetic community
is made. Next, the single-cell data of the axenic cultures are aggregated to a so-called “in silico community.”
This in silico community consists of labeled data, which allows the use of supervised machine learning
techniques, such as random forests, to discriminate between different community members. The label to be
predicted is the taxon, and the predictors are the scatter and fluorescence parameters. Once this classifier has
been trained on the data set, it can use the single-cell data to predict the relative abundances of both taxa
in a mixture. For training of the random forests, the biological replicates were pooled, and 10,000 cells of both
Enterobacter and Pseudomonas were randomly sampled.

(iii) Raman spectra. The Raman spectrum data were analyzed in R (v3.3.1). Spectral processing was
adapted from the study of Berry et al. (66) and was performed using the MALDIquant package (v1.16)
(67). In short, a baseline correction was performed using the statistics-sensitive nonlinear iterative
peak-clipping (SNIP) algorithm. Next, the biologically relevant part of the spectrum (600 to 1,800 cm�1)
was selected (25), and the spectra were normalized by surface normalization. The intensity values were
zero centered and scaled to unit variance before performing PCA (statistical package, v3.3.4).

Data availability. The entire data analysis pipeline is available as an R Markdown document at
https://github.com/jeheyse/Cocultures2018. The Raman data and accompanying metadata are available
at https://github.com/jeheyse/Cocultures2018. Raw FCM data and metadata are available on FlowRe-
pository under accession ID FR-FCM-ZYWN.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/AEM

.02814-18.
SUPPLEMENTAL FILE 1, PDF file, 5.3 MB.
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