
 

 

 

 

Project acronym: BYTE 

Project title:  Big data roadmap and cross-disciplinarY community for addressing 
socieTal Externalities 

Grant number:  285593 

Programme:  Seventh Framework Programme for ICT 

Objective:  ICT-2013.4.2 Scalable data analytics 

Contract type: Co-ordination and Support Action 

Start date of project:  01 March 2014 

Duration:  36 months 

Website: www.byte-project.eu 

 
 

 

Deliverable D1.1: 
Understanding and mapping big data 

 

Author(s): Rajendra Akerkar and Guillermo Vega-Gorgojo, University of Oslo 
Grunde Løvoll, DNV GL AS 
Stephane Grumbach and Aurelien Faravelon, INRIA 
Rachel Finn, Kush Wadhwa, and Anna Donovan, Trilateral Research 
& Consulting 
Lorenzo Bigagli, National Research Council of Italy 
 

Dissemination level:  Public   

Deliverable type:  FINAL  

Version:  3.0 

Submission date:  31 March 2015 



D1.1: Understanding and mapping of big data 
   
   

 2 

Table of contents 
 
1	
   INTRODUCTION ............................................................................................................... 5	
  

1.1	
   Abstract ......................................................................................................................... 5	
  
1.2	
   Purpose and scope ........................................................................................................ 5	
  
1.3	
   Target audience ............................................................................................................ 5	
  
1.4	
   Methodology ................................................................................................................. 5	
  

2	
   BIG DATA CONCEPT AND ITS ORIGIN ....................................................................... 7	
  
3	
   DEFINING BIG DATA .................................................................................................... 10	
  

3.1	
   Common Definitions .................................................................................................. 10	
  
3.2	
   Working big data definition for BYTE ...................................................................... 13	
  

4	
   OPPORTUNITIES & CHALLENGES ............................................................................. 15	
  
4.1	
   Opportunities .............................................................................................................. 15	
  
4.2	
   Challenges .................................................................................................................. 16	
  

4.2.1	
   Data acquisition and storage ................................................................................ 18	
  
4.2.2	
   Data communication ............................................................................................ 19	
  
4.2.3	
   Data management and curation ........................................................................... 20	
  
4.2.4	
   Data analysis ........................................................................................................ 21	
  
4.2.5	
   Data visualization ................................................................................................ 21	
  
4.2.6	
   Human role in life cycle of big data .................................................................... 23	
  

5	
   BIG DATA APPLICATIONS ........................................................................................... 26	
  
5.1	
   Big Data in Business .................................................................................................. 26	
  

5.1.1	
   Changing industries with big data ....................................................................... 30	
  
5.1.2	
   Internet of things and big data ............................................................................. 30	
  
5.1.3	
   The industrial Iinternet of things ......................................................................... 31	
  
5.1.4	
   Examples of typical big data use cases ................................................................ 32	
  

5.2	
   Big Data in Science .................................................................................................... 35	
  
5.2.1	
   Examples of typical big data use cases ................................................................ 35	
  

5.3	
   Big Data in Public Administration ............................................................................. 37	
  
5.3.1	
   Examples of typical big data use cases ................................................................ 38	
  

6	
   BIG DATA DEFINITIONS IN SELECTED SECTORS ................................................. 41	
  
6.1	
   Big Data Definition in Oil & Gas Sector .................................................................... 41	
  

6.1.1	
   Big Data Applications in Oil & Gas Sector ......................................................... 42	
  
6.1.2	
   Big Data Challenges in O&G Sector ................................................................... 45	
  

6.2	
   Big Data Definition in Healthcare .............................................................................. 47	
  
6.2.1	
   Big Data Applications in the Healthcare Sector .................................................. 48	
  



D1.1: Understanding and mapping of big data 
   
   

 3 

6.2.2	
   Big Data Challenges in the Healthcare Sector .................................................... 49	
  
6.3	
   Big Data Definition in environment ........................................................................... 51	
  

6.3.1	
   Big data applications in environment sector ....................................................... 51	
  
6.3.2	
   Big data challenges in environment sector .......................................................... 53	
  

6.4	
   Big Data Definition in Crisis Informatics .................................................................. 54	
  
6.4.1	
   Big data definitions and typologies ..................................................................... 54	
  
6.4.2	
   Big data applications in crisis informatics ........................................................... 58	
  
6.4.3	
   Big data challenges in the crisis informatics sector ............................................. 63	
  

6.5	
   Big Data Definition in Smart Cities ........................................................................... 67	
  
6.5.1	
   Big Data Applications in the Smart Cities Sector ............................................... 69	
  

6.6	
   Big Data Definition in Shipping ................................................................................. 74	
  
6.6.1	
   Big Data Applications in the Shipping Sector ..................................................... 76	
  

6.7	
   Big Data Definition in Culture ................................................................................... 79	
  
6.7.1	
   Defining big cultural data .................................................................................... 80	
  
6.7.2	
   Big data applications in the cultural sector .......................................................... 83	
  

7	
   CARTOGRAPHY OF DATA FLOWS ............................................................................ 87	
  
7.1	
   Country study ............................................................................................................. 87	
  

7.1.1	
   USA ..................................................................................................................... 88	
  
7.1.2	
   China .................................................................................................................... 88	
  
7.1.3	
   France .................................................................................................................. 89	
  
7.1.4	
   Korea ................................................................................................................... 90	
  
7.1.5	
   Egypt .................................................................................................................... 90	
  
7.1.6	
   Brazil ................................................................................................................... 91	
  
7.1.7	
   Global perspective ............................................................................................... 91	
  

8	
   SUMMARY ...................................................................................................................... 93	
  
REFERENCES ........................................................................................................................ 96	
  

 
 

  



D1.1: Understanding and mapping of big data 
   
   

 4 

List of Figures 
Figure	
  1	
  The	
  graphics	
  illustrating	
  big	
  data	
  (Source:	
  Expand	
  Your	
  Digital	
  Horizon	
  With	
  Big	
  data	
  by	
  Brian	
  Hopkins	
  

and	
  Boris	
  Evelson)	
  ......................................................................................................................................	
  11	
  
Figure	
  2	
  A	
  knowledge-­‐discovery	
  lifecycle	
  for	
  big	
  data	
  .........................................................................................	
  17	
  
Figure	
  3	
  EY’s	
  2013	
  Global	
  Information	
  Security	
  Survey	
  .......................................................................................	
  26	
  
Figure	
  4	
  General	
  Electric’s	
  vision	
  of	
  industrial	
  internet	
  (source:	
  http://www.ge.com/stories/industrial-­‐internet)

	
  ....................................................................................................................................................................	
  32	
  
Figure	
   5	
   Oil	
   &	
   Gas	
   supply	
   chain	
   (Source:	
   S.	
   Oladunjoye,	
   R.	
   Price,	
   N.	
   Rahman,	
   and	
   J.	
  Wells,	
   Transfer	
   pricing	
  

Transfer	
  pricing	
  in	
  the	
  oil	
  &	
  gas	
  sector-­‐	
  A	
  primer,	
  International	
  Tax	
  Review,	
  July	
  2012)	
  ...........................	
  41	
  
Figure	
  6	
  Type	
  of	
  trade	
  and	
  transaction	
  flows	
  in	
  O&G	
  industry	
  ............................................................................	
  42	
  
Figure	
  7:	
  Big	
  data	
  application	
  areas	
  in	
  crisis	
  informatics	
  .....................................................................................	
  59	
  
Figure	
   8	
  Overview	
   of	
   generating	
  meaning	
   via	
   analytics	
   (Data	
  Warehousing	
   vs.	
   Big	
   Data)	
   in	
   the	
   context	
   of	
   a	
  

smart	
  city.	
  ...................................................................................................................................................	
  69	
  
Figure	
  9	
  Map	
  of	
  World	
  Data	
  Flow	
  ........................................................................................................................	
  92	
  

 
List of Tables 
Table	
  1	
  Traditional	
  paradigm	
  to	
  the	
  big	
  data	
  paradigm	
  ........................................................................................	
  8	
  
Table	
  2	
  Business	
  benefits	
  using	
  big	
  data	
  solutions	
  ..............................................................................................	
  43	
  
Table	
  3	
  5V	
  in	
  O&G	
  sector	
  .....................................................................................................................................	
  46	
  
Table	
  4	
  Big	
  Data	
  Challenges	
  in	
  the	
  O&G	
  Industry	
  ................................................................................................	
  46	
  
Table	
  5	
  –	
  Main	
  big	
  data	
  applications	
  in	
  healthcare	
  .............................................................................................	
  48	
  
Table	
  6	
  Big	
  data	
  challenges	
  in	
  healthcare	
  ............................................................................................................	
  49	
  
Table	
  7	
  5V	
  in	
  Healthcare	
  ......................................................................................................................................	
  50	
  
Table	
  8	
  Types	
  of	
  data	
  associated	
  with	
  big	
  data	
  and	
  crisis	
  ...................................................................................	
  56	
  
Table	
  9:	
  OCHA	
  matrix	
  of	
  data	
  sources	
  and	
  types	
  .................................................................................................	
  57	
  
Table	
  10	
  5V	
  in	
  Shipping	
  ........................................................................................................................................	
  78	
  
Table	
  11	
  Big	
  Data	
  Challenges	
  in	
  the	
  Shipping	
  Industry	
  ........................................................................................	
  79	
  
Table	
  12	
  Top	
  10	
  sites	
  in	
  the	
  US	
  ............................................................................................................................	
  88	
  
Table	
  13	
  Top	
  10	
  sites	
  in	
  China	
  .............................................................................................................................	
  89	
  
Table	
  14	
  Top	
  10	
  sites	
  in	
  France	
  ............................................................................................................................	
  89	
  
Table	
  15	
  Top	
  10	
  sites	
  in	
  Korea	
  .............................................................................................................................	
  90	
  
Table	
  16	
  .	
  	
  Top	
  10	
  sites	
  in	
  Egypt	
  ...........................................................................................................................	
  91	
  
Table	
  17	
  Top	
  10	
  sites	
  in	
  Brazil	
  ..............................................................................................................................	
  91	
  
Table	
  18	
  Online	
  population	
  and	
  flow	
  balance	
  .....................................................................................................	
  92	
  

 

 



D1.1: Understanding and mapping of big data 
   
   

 5 

1 INTRODUCTION 

1.1 ABSTRACT 
Big data is an IT buzzword nowadays. Data is being collected at an extraordinary scale in 
very wide-ranging application areas. Big data analytics now steers almost every aspect of our 
society, including retail, manufacturing, life sciences, physical sciences, and financial 
services. One of the most common definitions of big data uses three terms starting with the 
letter V: volume, velocity and variety. Many leading big data companies seem to coalesce 
around this definition. But some are sceptical of that definition, too. This report examines and 
identifies several definitions of big data, including investigating how big data is understood in 
different disciplines, industries or contexts. Further, the report presents a working definition 
of big data. 
  
One of the major challenges of big data is how to extract value from it. Creating value from 
big data is a multistep process. Most industry sectors know how to create it and store it, but 
they fall short when it comes to analysis and synthesis. Scientific research is also seeing 
dramatic impacts as data intensive fields such as bioinformatics, climate change, and physics 
more effectively use computation to interpret observations and datasets. Thus, this report 
presents a close-up view on big data, including big data applications, opportunities, and 
challenges in selected industry sectors. 
  
Finally, we measure the data flows on the main intermediation platforms. These platforms are 
particularly relevant since they operate essentially in all countries in the world, and occupy in 
most countries the top position with a very large traffic. An analysis of the traffic on these 
platforms thus allows for a greater understanding of the global cross-country data flow. 
 
 

1.2 PURPOSE AND SCOPE 
The report summarises the activities performed in the context of Task 1.1 and Task 1.2 of the 
BYTE project. The aim of the report is to provide a useful reference for understanding big 
data, existing scientific and technological status and the immediate future activities, and to 
identify how BYTE can go beyond that point. 
 
 

1.3 TARGET AUDIENCE 

• Researchers in Data Science and related fields 
• The deliverable is addressed to the European Commission for the purpose of mapping 

the current context in which big data is being utilised and the Project Consortium for 
the purpose of identifying the current status of big data landscape. 

 

1.4 METHODOLOGY 
This research attempts to clarify the concept of big data using an exploratory methodology 
and approach, given the novelty of the relatively new topic that is big data. The report is 
based upon a literature review of qualitative and quantitative data. The literature review 
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prioritized the most relevant and up to date works because of the high velocity with which the 
field is evolving.   
 
In addition to academic literature, the review also includes definitions and information from 
current industry leaders. Numerical data from secondary and tertiary sources are also used to 
further explore the challenges, opportunities and applications of big data. The criteria for 
choosing the literature and materials used were to only utilize the most relevant and up to 
date literature from reputable authors, industry players and publishers. 
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2 BIG DATA CONCEPT AND ITS ORIGIN  

 
Data, or pieces of information, have been collected and used right through history. However, 
in contemporary world, advances in digital technology have considerably boosted our ability 
to collect, store, and analyse data. All of the data, however, are merely that—data—until they 
are analysed and used to inform decision-making. 
 
The use of the term “big data” can be traced back to debates of managing large amount of 
datasets in both academia and industry during the 1980s. Big data arose due to the emergence 
of three major trends. First, it has become economical to generate a broad kind of data, due to 
inexpensive storage, sensors, smart devices, social software, multiplayer games, and the 
Internet of Things. Second, it has become inexpensive to process huge amounts of data, due 
to progresses in multicore CPUs, solid state storage, cloud computing, and open source 
software. Thirdly, not just database administrators and developers, but many more people 
(such as decision makers, domain scientists, application users, journalists, and ordinary 
consumers) have become involved in the process of generating, processing, and consuming 
data. This is known as a democratization of data.  
 
As a result of these accelerating trends, there is now a widespread realization that an 
unprecedented volume of data can be captured, stored, and processed, and that the knowledge 
gleaned from such data can benefit everyone: businesses, governments, academic disciplines, 
engineering, communities, and individuals. 
 
With varied data provisions, such as sensor networks, telescopes, scientific experiments, and 
high throughput instruments, the datasets increase at exponential rate (Szalay et al., 2006, 
Lynch 2008). The off-the-shelf techniques and technologies that are available to store and 
analyse data cannot work efficiently and adequately. The technical challenges arise from data 
acquisition and data curation to data analysis and data visualization.  
 
Big data has changed the way that we adopt in doing businesses, managements and 
explorations. Data-intensive computing is coming into the world that aims to provide the 
tools that we need to handle the big data problems. Data-intensive science (Bell et al., 09) is 
emerging as the fourth scientific paradigm in terms of the previous three, namely empirical 
science, theoretical science and computational science. Long ago, researchers describing the 
natural phenomenon only based on human empirical evidences, so we call the science at that 
time as empirical science. It is also the beginning of science and classified as the first 
paradigm. Then, theoretical science emerged some hundreds years ago as the second 
paradigm. However, in terms of many complex phenomenon and problems, scientists have to 
turn to scientific simulations, since theoretical analysis is highly complicated and sometimes 
inaccessible and infeasible. Subsequently, the third science paradigm was the computational 
one. Simulations usually generate a large volume of data from the experimental science, at 
the same time; increasingly large data sets are created in various pipelines. There is no doubt 
that the world of science has changed just because of the increasing data-intensive 
applications.  
 
In 2012, Gartner recorded the ‘‘Top 10 Strategic Technology Trends For 2013’’ (Savitz, 
2012a) and ‘‘Top 10 Critical Tech Trends for the Next Five Years’’ (Savitz, 2012b), and big 
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data is listed in the both places. Without doubt, in near future big data will transform many 
fields, including business, the scientific research, and public administration.  
 
In order to discuss about various issues related to big data, it is necessary to understand 
different facets about big data. For the definition of the big data, there are various different 
explanations from 3Vs to 4Vs. Doug Laney used volume, velocity and variety, known as 3Vs 
(Laney, 2001), to present data related challenges. In literature, we come across definitions of 
big data using these 3 Vs:  

• Volume – data sizes will range from terabytes to zettabytes. 
• Variety – data comes in many formats from structured data, organized according to 

some structures like the data record, to unstructured data, like image, sounds, and 
videos which are much more difficult to search and analyse. 

• Velocity – in several applications, like smart cities and smart planet, data 
continuously arrives at possible very high frequencies, resulting in continuous high-
speed data streams. It is crucial that the time needed to act on such data be very 
small.  

Occasionally, people use another V according to their special requirements. The fourth V can 
be value, variability, veracity, or virtual (Zikopoulos et al., 2011). In general, big data is a 
collection of massive data sets with an immense diversity of types so that it becomes difficult 
to process by using state-of-the-art data processing approaches or traditional data processing 
platforms.  
 
In 2012, Gartner provided a more detailed definition (Laney, 2012) as:  

Big data are high-volume, high-velocity, and/or high-variety information assets that 
require new forms of processing to enable enhanced decision making, insight 
discovery and process optimization.  

Ultimately, a data set can be called big data if it is challenging to perform capture, curation, 
analysis and visualization on it at the existing technologies.  
 
The above discussion underlines that volume alone is possibly the least difficult issue to 
address when dealing with big data. The genuine challenge arises when we have big volumes 
of unstructured and structured data uninterruptedly arriving from a large number of sources. 
Tackling this challenge require a new generation of technologies and architectures, designed 
to economically extract value from vary large volumes of a wide variety of data, by enabling 
high-velocity capture, discovery and analysis (O’Reilly, 2011).  
 
Table 1 outlines the shifts required to move from traditional to the big data paradigm. 
 
Table 1 Traditional paradigm to the big data paradigm 

Traditional Paradigm New Paradigm 

Some of the data 

E.g. An online transaction records main data 
fields, a timestamp and IP address. 

All of the data 

E.g. Clickstream and path analysis of web 
based traffic, all data fields, timestamps, IP 
address, geospatial location where appropriate, 
cross channel transaction monitoring from web. 
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Clean Data 

E.g. Data sets are typically relational, defined 
and delimited. 

Chaotic Data 

E.g. Data sets are not always relational or 
structured. 

Deterministic  

E.g. In relational databases, the data has 
association, correlation, and dependency 
following classic mathematical or statistical 
principles.  

Complex coupling  

E.g. Data can be coupled, duplicative, 
overlapping, incomplete, have multiple 
meanings all of which cannot be handled by 
classical relational learning tools.  

Examining of Data to Test Hypotheses  

E.g. Defined data structures induce the 
generation and testing of hypotheses against 
known data fields and relationships. 

Discovery of Insight 

E.g. Undefined data structures induce 
exploration for the generation of insights and 
the discovery of relationships earlier unknown. 

Lag-time Analysis of Data  

E.g. Data needs to be defined and structured 
prior to use, and then captured and collated. 
The period of extracting data will vary but often 
involves a delay. 

Real-time Analysis of Data  

E.g. Data analysis takes place as the data is 
captured. 
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3 DEFINING BIG DATA 

3.1 COMMON DEFINITIONS 
 
Big data is still in its early stages, everyone is still trying to grasp its core nature and to define 
it scientifically and pragmatically. Nonetheless the precise meaning of the concept remains 
unclear and is often used synonymously with other related concepts such as Business 
Intelligence (BI) and data mining. Several stakeholders have created new definitions or 
revisions of existing definitions that best suit their interests. Nevertheless, to capture the core 
of big data, consistent themes can be found by examining various definitions provided by the 
industry gurus and related literature. 
 
Among several definitions reported in the literature, the first formal, academic definition 
appears in a paper submitted in July 2000 by Francis Diebold in his work of econometrics 
and statistics (Diebold, 2000): 
 

“Big data refers to the explosion in the quantity (and sometimes, quality) of available 
and potentially relevant data, largely the result of recent and unprecedented 
advancements in data recording and storage technology. In this new and exciting 
world, sample sizes are no longer fruitfully measured in “number of observations,” 
but rather in, say, megabytes. Even data accruing at the rate of several gigabytes per 
day are not uncommon.” 

 
The most popular definition in recent years uses the “Three V’s”: volume (size of datasets 
and storage), velocity (speed of incoming data), and variety (data types). Reacting fast 
enough to deal with data velocity is a challenge for most organizations. As mentioned in 
Section 2, the concept was first raised by Doug Laney (2001) in his META Group research 
note that describes the characteristics of datasets that cannot be handled by traditional data 
management tools. With increasing interest and insight in the field, the “Three V’s” have 
been expanded to “Five V’s”: volume, velocity, variety, veracity (integrity of data), value 
(usefulness of data) and complexity (degree of interconnection among data structures) 
(Armour, 2012). However, the soul of these V’s remains within the extent of data 
characteristics per se. 
 
Another noteworthy definition presented by Brian Hopkins and Boris Evelson. According to 
them, if we simply have high volume or velocity, then big data may not be appropriate. The 
definition described in “Expand your digital horizon with big data”1:“Big data: techniques 
and technologies that make handling data at extreme scale economical.” 
 
The two main characteristics are volume and velocity, while variety and variability shift the 
curve shown in the following Figure 1. In other words, extreme scale is more economical, 
and more economical means more people do it, leading to more solutions. 
 
More comprehensive definitions and descriptions have also emerged. For example, in the 
report, “Demystifying big data”, the big data commission at the TechAmerica Foundation 
offers the following definition:  

                                                
1http://www.asterdata.com/newsletter-images/30-04-2012/resources/Forrester_Expand_Your_Digital_Horiz.pdf 
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“Big data is a term that describes large volumes of high-velocity, complex, and 
variable data that require advanced techniques and technologies to enable the capture, 
storage, distribution, management, and analysis of the information” (TechAmerica, 
2012). 

 
Figure 1 The graphics illustrating big data (Source: Expand Your Digital Horizon With Big data by 

Brian Hopkins and Boris Evelson2) 

Furthermore, researchers at McKinsey propose a subjective definition: “Big data refers to 
datasets whose size is beyond the ability of typical database software tools to capture, store, 
manage, and analyse” (McKinsey, 2011).  
 
The definition of big data can vary by sector, depending on what kinds of software tools are 
normally available and what sizes of datasets are common in a particular industry. Big data in 
several sectors at the moment range from a few dozen terabytes to multiple petabytes. 
 
IBM3 states that big data involves notable amounts of data that comes from a wide variety of 
sources. IBM highlights the increasing speed of data generation. “Every day, we create 2.5 
quintillion bytes of data — so much that 90% of the data in the world today has been created 
in the last two years alone. This data comes from everywhere: sensors used to gather climate 
information, posts to social media sites, digital pictures and videos, purchase transaction 
records, and cell phone GPS signals to name a few. This data is big data.”  
 
Mike Gualtieri, Forrester Analyst, proposes a definition that attempts to be pragmatic and 
actionable for IT specialists; this definition doesn’t depend on measurement of data 
characteristics: 
 

“Big data is the frontier of a firm’s ability to store, process, and access (SPA) all the 
data it needs to operate effectively, make decisions, reduce risks, and serve 
customers” (Gualtieri, 2012).  
 

                                                
2www.asterdata.com/newsletter-images/30-04-2012/resources/Forrester_Expand_Your_Digital_Horiz.pdf  
3 www-01.ibm.com/software/data/bigdata/what-is-big-data.html  
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Jerry Smith, Data Scientist Insights contributor, developed a mathematically sound definition 
of big data: 

“Big data represents the historical debri (observed data) resulting from the interaction 
of at between 70 and 77 independent variable/subjects, from which non-random 
samples of unknown populations, shifting in composition with a targeted time frame, 
can be taken” (Smith, 2012).  

Some more definitions of big data presented in literature are as follows: 
Association for Data-driven Marketing & Advertising (ADMA)4, Sydney has provided 
global, commercial and marketing definitions of big data.  
 
Global definition of big data 
Big data is the collection of large volumes of varied information, used to extend our 
understanding of the environment, medicine, science, business and human experience. 
 
Commercial definition of big data 
Big data is the current term given to the wide use of data collected from digital, 
technological, and analogue sources. Big data is used to improve business understanding of 
markets, allowing improvements in customer experience and organisational performance. 
 
Marketing definition of big data 
Big data is the current term given to collecting, analysing and generating insights from a wide 
variety of customer, commercial and environmental information. 
 
It is used to develop better understanding of customer preferences, habits and considerations 
in making transactions with different categories, brands and channels. 
 
The successful use of data in marketing leads to improved customer experience, a better 
exchange of value between customers and organisations, and improved business 
performance. 
 
SAP5 offers a more promotion-oriented view on big data.  

 
“Big data is an opportunity to change how you work, play, and live by tracking new 
signals within digital noise. From major league sports and personalized shopping to 
carbon reduction and cancer treatment, organizations are using big data to re-imagine 
achieving what is possible.”   

 
Clearly, SAP is focusing on the benefits of big data rather than delivering a straightforward 
definition of the concept. Besides, SAP is underlining the fact that big data can provide value 
in a wide variety of fields. 
 
SAS has added two additional dimensions to complement the original three Vs. These are 
variability and complexity (SAS, 2014). IBM, includes a fourth V; veracity. Furthermore, a 
fifth V, value is commonly associated with big data.  
 

                                                
4 http://www.adma.com.au/ 
5 http://www.sap.com/bin/sapcom/en_us/downloadasset.2014-04-apr-24-19.sap-makes-big-data-real-real-time-real-results-
pdf.bypassReg.html  
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Principal analyst for O'Reilly Radar, Edd Dumbill, has given alternative definition (Dumbill, 
2012): “Big data is data that exceeds the processing capacity of conventional database 
systems. The data is too big, moves too fast, or doesn’t fit the strictures of your database 
architectures. To gain value from this data, you must choose an alternative way to process it.” 
 
In other words, there is no consensus on the exact characteristics of big data. Nevertheless 
there are multiple characteristics which most of the vendors in the field agree upon. 
 
Despite the range and differences existing within each of the abovementioned definitions 
there are some points of similarity. Notably all definitions make at least one of the following 
assertions: 

• Size: the volume of the datasets is a critical factor. 
• Complexity: the structure, behaviour and permutations of the datasets are a critical 

factor. 
• Technologies: the tools and techniques which are used to process a sizable or complex 

dataset is a critical factor. 

Important point to be noted, while discussing of the concept of big data, is that the phrase can 
refer either to huge and/ distinct datasets, or to technologies processing such datasets. In 
literature, big data comes in two different types: static big data and real-time big data. Both 
types of datasets can be structured or unstructured.  
 
 

3.2 WORKING BIG DATA DEFINITION FOR BYTE 
From previous sub-section on big data definitions, big data can mean one of four things: 
 
Big volumes of data and small analytics: Using traditional analytics (SQL, descriptive 
statistics, etc.) on datasets which are larger than possible with traditional tools.  
 
Advanced analytics on big volumes of data: Using machine learning and other complex 
analytics on very large quantities of data.  
 
Big (high) velocity:  Refers to the increasing speed at which the data is created, and the 
increasing speed at which the data can be processed, stored and analysed. The possibilities of 
processing data in real-time is an area of particular interest, which allows businesses to do 
things like electronic trading, real-time ad placement on Web pages, real-time customer 
targeting, real time monitoring and optimization of assets,  and mobile social networking. 
 
Big variety: Many enterprises are faced with integrating a larger and larger number of data 
sources with diverse data.  Most of data generated is unstructured; coming in all shapes and 
forms ̶ from geo-spatial data, to tweets which can be analysed for content and sentiment, to 
multimedia data such as photos, audio and videos. 
 

We can define big data as: 
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Big data is  using big volume, big velocity, big variety data asset to 
extract value (insight and knowledge),  

and furthermore ensure veracity (quality and credibility) of 
the original data and the acquired information,  

that demand cost-effective, novel forms of data and 
information processing for enhanced insight, decision 
making, and processes control.  

Moreover, those demands are supported by new data models 
and new infrastructure services and tools which is able to 
procure and process data from a variety of sources and 
deliver data in a variety of forms to several data and 
information consumers and devices. 



D1.1: Understanding and mapping of big data 
   
   

 15 

4 OPPORTUNITIES & CHALLENGES 

 
While big data is transforming how research and business is conducted across the board. And 
in research it is leading to the emergence of a new paradigm of science based on data-
intensive computing, in unison it poses a significant challenge for researchers and business. 
Big data technologies can derive value from large datasets in manner that were earlier 
impractical — truly, big data can generate insights which previously was not available and 
that researchers didn’t even think to pursue6. Nonetheless the technical capabilities of big data 
have reached a level of complexity and pervasiveness that demands concern about how best 
to balance the opportunities offered by big data against the social and ethical questions these 
technologies raise. 
 
 

4.1 OPPORTUNITIES 

The opportunity that big data presents to all industry sectors is in the potential to unlock the 
value and insight contained in the data industries already hold via the transformation of 
information, facts, relationships and indicators. The value of big data for industries is limited 
by their ability to efficiently utilize big data and the ability to derive useful information from 
this data. With every opportunity there come barriers and sectors must overcome these to 
enable the benefits of big data to be realised. 
 
Big data analysis may provide profound insights into a number of important areas including 
health care, medical and other sciences, transport and infrastructure, education, 
communication, meteorology and social sciences. 
 
Important areas that big data may influence are described below: 
 
Data management — there are potential savings in time and money if industries implemented 
smarter data management practices that were aware of the needs of big data analysis. Data 
sources from differing enterprises and operational areas would be of greater benefit to 
multiple industries and for multiple purposes if there were greater transparency. For example, 
through better business process management, redundant data collection processes can be 
reduced by reusing data collected from separate processes. 
 
Personalisation of services — we have moved from an era of experiencing things at a macro 
level to experiencing things at a personal level. Big data analytics may produce value by 
revealing a clear picture of a customer. Big data is able to achieve this due to its characteristic 
granularity. This granularity may assist in unlocking the possibility of personalised services 
tailored to the individual and delivered by industry. The granularity in big data opens up new 
opportunities for personalising services. When a service provider knows something specific 
about a user then there is an opportunity to tailor the service offered accordingly. This will be 
most useful when the data in question relates to the user’s needs, and when the 
personalisation is done in a manner that is prominent for the transaction being undertaken or 
service being used.  
 

                                                
6 http://www.whitehouse.gov/sites/default/files/docs/big_data_privacy_report_may_1_2014.pdf  
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Predictive analytics — the alliance of multiple datasets from disparate sources in combination 
with advanced analytics technologies will advance problem solving capabilities, and in turn 
will improve the ability of predictive analytics to reveal insights that can effectively support 
decision-making. In short, big data opens up the field of reliable predictive analytics. By 
assessing the relationships embedded in large datasets it is possible to construct a new 
generation of models explaining how things are likely to evolve in the future. This approach 
can be blended with scenario planning to develop a series of predictions for how a system 
will respond to distinct choices. The state of the art in predictive analytics can deliver 
forecasts for some domains with a very high degree of precision, offering an auditable, 
scientific basis for making decisions in complex systems. 
 
Productivity and efficiency — the analysis of big data sources can be used to identify cost 
savings and opportunities to increase efficiency and reliability, which will directly contribute 
to an improvement in productivity. Where big data and analytics are used to detect cost 
savings and increase efficiency, they can contribute to a direct progress in productivity. This 
can in turn help to boost further innovation. 
 
As per McKinsey (Manyika et al., 2012) report, the effectual use of big data has the primary 
benefits to transform economies, and delivering a new wave of productive growth. Drawing 
benefits of valuable knowledge beyond big data will become the key competition for 
enterprises and will create new rivals who are able to attract employees that have the critical 
skills on big data. Big data could produce $300 billion potential annual value to US health 
care, and €250 billion to European public administration (Manyika et al., 2012).  
 
 

4.2 CHALLENGES 

Big data brings many appealing opportunities and at the same time we are also facing a lot of 
challenges (Ahrens et al., 2011, Chen et al., 2014). 
 
There are technical difficulties in data acquisition, storage, searching, sharing, analysis, and 
visualization. A key challenge exists in computer architecture for several decades, that is, 
CPU-heavy but I/O-poor (Hey et al., 2009). This system disproportion still curbs the progress 
of the discovery from big data. The CPU performance is doubling each 18 months following 
the Moore’s Law, and the performance of disk drives is also doubling at the same rate. But, 
the disks’ rotational speed has to some extent improved over the past decade. The 
consequence of this disproportion is that random I/O speeds have improved reasonably while 
sequential I/O speeds increase with density gradually. Information is growing at exponential 
rate at the same time, but the improvement of information processing methods is also rather 
slower. In a lot of important big data applications, the state-of-the-art techniques and 
technologies cannot preferably solve the real problems; this is mainly an issue for real-time 
analysis. 
 
Typically, knowledge discovery life-cycle for big data is shown in Fig. 4.1, (Akerkar et al., 
2007), which consists of the following phases: 

1. Data Generation: Data may be generated by devices, experiments, sensors, or 
supercomputer simulations.  

2. Data Processing and Organization: This phase involves sub-processes such as 
recording, cleaning, reduction, visualization, query analytics, and many other aspects 
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of data processing. This may also include combining data with external data or 
historical data, in principle creating a virtual data warehouse.  

3. Data Analytics, Mining and Knowledge Discovery: Given the size and complexity of 
data and the need for both top-down and bottom-up discovery, scalable algorithms 
and software need to be utilized in this phase.  

4. Actions, Feedback and Refinement: Insights and discoveries from preceding phases 
help close the loop by initiating new simulations, models, parameters, observations, 
thus, making the closed loop cycle for big data. 

Challenges in big data analysis include data inconsistence and incompleteness, heterogeneity, 
scalability, timeliness and data security (Jagadish et al., 2014, Agrawal et al., 2011, Kouzes et 
al., 2009).  

 
Figure 2 A knowledge-discovery lifecycle for big data 

There are many technical challenges that must be addressed to realize the full potential of big 
data. (Jagadish et al., 2014) provide a comprehensive discussion of such challenges based on 
the notion of data analysis pipeline:  

• Data Recording: it is critical to capture the context into which data has been created, 
to be able to filter out non relevant data and to compress data, to automatically 
generate metadata supporting precious data description and to track and record 
lineage.  

• Information Extraction and Cleaning: data may have to be transformed in order to 
extract information from it and express this information in a form that is proper for 
analysis. Data may also be of poor quality and/or uncertain. Hence, data cleaning and 
data quality verification are critical.  

• Data Integration, Aggregation and Representation: data can be very heterogeneous 
and may have different metadata. Data integration, even in more conventional cases, 
requires huge human efforts. Novel approaches that can improve the automation of 
data integration are critical as manual approaches will not scale to what is required for 
big data. Also different data aggregation and representation strategies may be needed 
for different data analysis tasks.  
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• Query Processing, and Analysis: methods appropriate for big data need to be able to 
deal with noisy, dynamic, heterogeneous, unreliable data and data characterized by 
complex relations. Though regardless of these difficulties, big data even if noisy and 
uncertain can be more precious for detecting more reliable hidden patterns and 
knowledge compared to tiny samples of good data. Also the relationships existing 
among data can represent an opportunity for cross-checking data and thus improve 
data trustworthiness. Supporting query processing and data analysis requires scalable 
mining algorithms and powerful computing infrastructures.  

• Interpretation: analysis results extracted from big data needs to be interpreted by 
decision makers and this may require the users to be able to analyse the assumptions 
at each phase of data processing and perhaps re-tracing the analysis.  

As the prior step to data analysis, data must be well-constructed. However, considering 
variety of data sets in big data problems, it is still a big challenge for us to purpose efficient 
representation, access, and analysis of unstructured or semi-structured data in the further 
researches. How can the data be pre-processed in order to improve the quality data and the 
analysis results before we begin data analysis? As the sizes of data set are often massive, 
occasionally gigabytes or more, and their origin from heterogeneous sources, current real-
world databases are severely susceptible to inconsistent, incomplete, and noisy data. Hence, a 
number of data pre-processing methods, including data cleaning, data integration, data 
transformation and date reduction, can be applied to remove noise and rectify inconsistencies 
(Akerkar et al., 2007).  
 
Different challenges arise in each sub-process when it comes to data-driven applications. In 
the following subsection, we give a brief overview of challenges facing for each sub-process. 
 

4.2.1 Data acquisition and storage 
Data sets grow in size because they are increasingly being collected by ubiquitous 
information-sensing mobile devices, sensory technologies, remote sensing, software logs, 
cameras, microphones, radio-frequency identification readers, wireless sensor networks, and 
so on. There are 2:5 quintillion bytes of data created every day, and this number keeps rising 
exponentially (Hilbert et al., 2011). The global technological capacity to store information 
has somewhat doubled about every 3 years since the 1980s. In several disciplines, such as 
financial and medical, data is often deleted just because there is no enough space to store 
these data. These valuable data are created and captured at high cost, but ignored 
conclusively. The bulk storage requirements for experimental data bases, array storage for 
large-scale scientific computations, and large output files are reviewed in (Worlton, 2071). 
 
Big data has changed the way we capture and store data (Oliveira et al., 2012), including data 
storage device, data storage architecture, data access mechanism. The accessibility of big data 
is on the top priority of the knowledge discovery process.  
 
The existing storage technologies (Agrawal et al., 2011, Pirovano et al., 2003) cannot possess 
the same high performance for both the sequential and random I/O simultaneously, which 
requires us to rethink how to design storage subsystems for big data processing systems. 
 
Direct-attached storage (DAS), network-attached storage (NAS), and storage area network 
(SAN) are the enterprise storage architectures that were commonly used (Leong, 2009). 
However, all these existing storage architectures have serious shortcomings when it comes to 
large-scale distributed systems. Determined concurrency and per server throughput are the 
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basic requirements for the applications on highly scalable computing clusters, and current 
storage systems lack both. Optimizing data access is a standard way to improve the 
performance of data-intensive computing (Ishii et al., 2009-11-12), these techniques include 
data replication, migration, distribution, and access parallelism. In (Bencivenni et al., 2008), 
the performance, reliability and scalability in data-access platforms were discussed. Data 
storage and search schemes also lead to high overhead and latency (Shen et al., 2011), 
distributed data-centric storage is a good approach in large-scale wireless sensor networks 
(WSNs). (Shen et al., 2011) proposed a distributed spatial–temporal similarity data storage 
scheme to offer efficient spatial–temporal and similarity data searching service in WSNs.  
 

4.2.2 Data communication 
Cloud computing has become mainstream. Enterprises have a multitude of cloud providers to 
choose from. Cloud computing has a wide variety of forms, including IaaS (Infrastructure as 
a Service), PaaS (Platform as a Service), and SaaS (Software as a Service). Moreover, the 
distinctions among IaaS, PaaS, and SaaS have started to blur. For example, IaaS providers 
nowadays provide manageability features that begin to resemble PaaS. From a data platform 
perspective, the ideal goal is to provide PaaS in its truest form. In a world with true PaaS for 
data, users would be able to upload data to the cloud, query it exactly as they do today over 
their SQL databases on the intranet, and selectively share the data and results easily, all 
without worrying about how many instances to rent, what operating system to run on, how to 
partition the databases across servers, or how to tune them. Although the emergence of 
services such as Database.com, Google Big Query, Amazon Redshift, and Microsoft Azure 
SQL Database, we are yet far away from that vision.  
 
Here are some of the critical challenges in realizing the vision of Data Platform as a Service 
in the cloud. We know that the network bandwidth capacity is the bottleneck in cloud and 
distributed systems, especially when the volume of communication is large. On the other 
hand, cloud storage also leads to data security problems (Wang et al., 2011) as the 
requirements of data integrity checking. There are several schemes suggested under different 
systems and security models (Wang et al., 2009),( Oprea et al., 2005). 
 
Data replication is another challenge. Although data replication has been studied extensively 
in the past, it is important to revisit it in the context of the cloud, keeping in mind the need for 
high availability, load balancing, and cost. Both elasticity and replication need to be 
considered not just within, but also across, geographically distributed data centres. 
 
System administration and tuning is next challenge. A data platform in use as a cloud service 
will need extreme auto-tuning. In Data Platform as a Service, the traditional roles of database 
and system administrators do not exist. Therefore, all administrative tasks such as capacity 
planning, resource provisioning, physical data management, and admission control policy 
setting need to be automated while dealing with the variance that arises due to the elasticity 
of resources and their availability in the cloud setting. 
 
Data sharing is another key challenge, as the cloud enables it at an unprecedented scale. The 
database community should seek to develop novel services that harness this potential. We 
have already seen services that enable collaborative productivity tools as well as the ability to 
share results of data analysis or visualization. There is an ample opportunity to explore 
deeper ideas in the context of data analytics.  
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Further, we must realise how we can support important services such as data curation and 
provenance when we want to perform such activities collaboratively in the cloud. Data 
sharing in the cloud will also raise new issues in leveraging data sets, such as how to find 
valuable public data, how to correlate your own data with public data to add context, how to 
find high-quality data in the cloud, and how to share data at fine-grained levels, as well as 
business issues, such as how to distribute costs when sharing computing and data and how to 
price data. 
 
In the case of cyber-physical systems, as in the Internet of Things, where, e.g., cars will 
upload data into a cloud and obtain control information in return. Cyber-physical systems 
involve data streaming from multiple sensors and mobile devices, and must cope with 
intermittent connectivity and limited battery life, which pose difficult challenges for real-time 
and perhaps mission-critical data management in the cloud. 
 

4.2.3 Data management and curation 
In the perspective of data management, a number of aspects characterize big data, among 
them: the maximum size of the database, the data models, the capability of setting up 
distributed and clustered data management solutions, the sustainable rate for the data flow, 
the capability of partitioning the data storage to make it more robust and increase 
performance, the query model adopted, the structure of the database (relational, RDF 
(Resource Description Framework), reticular, etc.), etc. Considering data structures for big 
data there is a trend to find a solution using the so called NoSQL databases (“Not only SQL”, 
Simple Query Language), even if there are good solutions that still use relational database 
(Dykstra, 2012). In the market and from open source solutions, there are several different 
types of NoSQL databases and rational reasons to use them in different situations, for 
different kinds of data. There are many methods and techniques for dealing with big data, and 
in order to be capable to identify the best choice in each case, a number of aspects have to be 
taken into account in terms of architecture and hardware solutions, because different choices 
can also greatly affect the performance of the overall system to be built. Related to the 
database performance and data size, there is the so called CAP Theorem that plays a relevant 
role (Brewer, 2001), (Brewer, 2012). The CAP theorem states that any distributed storage 
system for sharing data can provide only two of the three main features: consistency, 
availability, and partition tolerance (Fox and Brewer, 2099). Property of consistency states 
that a data model after an operation is still in a consistent state providing the same data to all 
its clients. The property of availability means that the solution is robust with respect to some 
internal failure, that is, the service is still available. Partition tolerance means that the system 
is going to continue to provide service even when it is divided in disconnected subsets, for 
example a part of the storage cannot be reached. To cope with CAP theorem, big data 
solutions try to find a trade-off between continuing to issue the service despite of problems of 
partitioning and at the same time attempting to reduce the inconsistencies, thus supporting the 
so called eventual consistency.   
 
Furthermore in the context of relational database, the ACID (Atomicity, Consistency, 
Isolation and Durability) properties describe the reliability of database transactions. This 
paradigm does not apply to NoSQL database where, in contrast to ACID definition, the data 
state provides the so-called BASE property: Basic Available, Soft state and Eventual 
consistent. Therefore, it is typically hard to guaranteed an architecture for big data 
management in a fault-tolerant BASE way, since, as the Brewer’s CAP theorem says, there is 
no other choice to take a compromise if you want to scale up. 
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4.2.4 Data analysis 

Data analytics algorithms may range on data: ingestion, crawling, verification, validation, 
mining, processing, transcoding, rendering, distribution, compression, etc., and also for the 
estimation of relevant results such as the detection of unexpected correlations, detection of 
patterns and trends (for example of events), estimation of collective intelligence, estimation 
of the inception of new trends, prediction of new events and trends, analysis of the crowd 
sourcing data for sentiment/affective computing with respects to market products or 
personalities, identification of people and folk trajectories, estimation of similarities for 
producing suggestion and recommendations, etc. In the last few years, researchers made 
efforts to accelerate analysis algorithms to cope with increasing volumes of data and speed up 
processors following the Moore’s Law. It is necessary to develop sampling, on-line, and 
multi-resolution analysis methods. Some researchers devote into this area (Tang et al., 2009, 
Hsiao et al., 2008, Hassan et al., 2087). As the data size is scaling much faster than CPU 
speeds, there is a natural dramatic shift (Agrawal et al., 2011) in processor technology. 
Alternatively, processors are being embedded with increasing numbers of cores. This shift in 
processors leads to the development of parallel computing (Oehmen et al., 2006, Simeonidou 
et al., 2005, Garcia et al., 2011). 
 
For those real-time big data applications, like navigation, social networks, finance, 
biomedicine, astronomy, intelligent transport systems, and Internet of thing, timeliness is at 
the top priority. It is still a big challenge for stream processing involved by big data. 
 
It is right to say that big data not only have produced many challenge and changed the 
directions of the development of the hardware, but also in software architectures. One shift 
that is underway is the move towards cloud computing (Furht, 2011, Vouk, 2008, Adamov, 
2012, Foster et al., 2008), which aggregates multiple disparate workloads with varying 
performance objectives (e.g. interactive services require that the data processing engine 
return back an answer within a fixed response time cap) into a large cluster of processors.  
 
Data privacy and security emerges with great interests. Noteworthy security problems include 
data security protection, intellectual property protection, personal privacy protection, 
commercial secrets and financial information protection (Smith et al., 2012). Most developed 
and developing countries have already formulated related data protection laws to enhance the 
security. 
 
4.2.5 Data visualization 

One of the most valuable means through which to make sense of big data, and thus make it 
more approachable to most people is through data visualization. Data visualization is path, 
both literally, like the street signs that direct you to a road, and metaphorically, where 
colours, size, or position of abstract elements convey information. Data visualization can be 
categorized into two applications: 

• Exploration: In the exploration phase, the data analyst will use several graphics that 
are mostly unsuitable for presentation purposes yet may reveal very interesting 
features. The amount of interaction needed during exploration is high. Plots must be 
created fast and modifications like sorting or rescaling should happen promptly so as 
not to interrupt the line of thought of the analyst. 

• Presentation: Once the key findings in a data set have been explored, these findings 
must be presented to a broader audience interested in the data set. These graphics 
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often cannot be interactive but must be appropriate for printed reproduction. Besides, 
some of the graphics for high-dimensional data are all but trivial to read without prior 
training (say, in statistics), and thus probably not well suited for presentation 
purposes. 

Obviously, the amount of interactivity used is the major dimension to discriminate between 
exploratory graphics and presentation graphics. The visual (graphics), when properly aligned, 
can offer a shorter path to help decision making and become a tool to convey information 
vital in all data analysis. 
 
Having the ability to analyse big data is of restricted value if users cannot grasp the analysis7. 
Eventually, a decision-maker, provided with the result of analysis, has to interpret these 
results. It comprises assessing all the assumptions made and retracing the analysis. There are 
several probable sources of error: computer systems can have bugs, models mostly have 
assumptions, and results can be based on huge data. For all of these reasons, no responsible 
user will cede authority to the computer system. Rather he will try to understand, and verify, 
the results produced by the computer. The computer system must make it easy for him to do 
so. This is particularly a challenge with big data due to its complexity. There are often crucial 
assumptions behind the data recorded. Analytical pipelines can often involve multiple steps, 
again with assumptions built in. 
 
The purpose of data visualization (Simoff et al., 2008, Keim et al., 2004) is to represent 
knowledge more intuitively and effectively by using different graphics. To convey 
information easily by providing knowledge hidden in the complex and large-scale data sets, 
both visual form and functionality are necessary. Information that has been abstracted in 
some schematic forms, including attributes or variables for the units of information, is also 
valuable for data analysis.  
 
Online marketplace eBay, have hundreds of million active users and billions of goods sold 
each month, and they generate a lot of data. To make all that data understandable, eBay 
turned to big data visualization tool: Tableau8, which has capability to transform large, 
complex data sets into intuitive pictures. The results are also interactive. 
 
Based on them, eBay employees can visualize search relevance and quality to monitor the 
latest customer feedback and conduct sentiment analysis. 
 
For big data applications, it is difficult to conduct data visualization because of the large size 
and high dimension of big data. However, current big data visualization tools have poor 
performances in functionalities, scalability and response time. For instance, the history 
mechanisms for information visualization (Heer et al., 2008) are data-intensive and need 
more efficient tactics. 
 
Uncertainty is a multi-faceted characterization about data, whether from measurements and 
observations of some phenomenon, and predictions made from them (Wu et al., 2012). It may 
include several concepts including error, accuracy, precision, validity, quality, variability, 
noise, completeness, confidence, and reliability. Uncertainty arises in any phases of a visual 
analytics process (Wu et al., 2012). Uncertainty is a key issue with geospatial data sets. The 
difficulty of visualizing data with uncertainty increases with the richness in which uncertainty 
                                                
7 http://wp.sigmod.org/?author=8  
8 http://www.tableausoftware.com/solutions/big-data-analysis  
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is represented (from scalars to distributions) and the dimensionality of the data. As more 
information needs to be displayed, it is natural to turn to techniques from multivariate and 
statistical visualization techniques such as Chernoff faces, scatter plots, star plots, box plots, 
etc. New framework for modelling uncertainty and characterizing the evolution of the 
uncertainty information are highly necessary through analytical processes. 
 
Eventually, visualization and interactive exploration of large amounts of data has been 
challenging. In order to guarantee scalability, acceptable reaction times and support for 
multiple devices, developers generally want to think about efficient processing, rendering and 
brushing such data. 
 
4.2.6 Human role in life cycle of big data 

There has been a growing recognition of the increasing role of people in the data life cycle, of 
course, such as the work done in our community and elsewhere on crowdsourcing. However, 
the new need to “manage the people" is not just about crowdsourcing or micro-tasks. Today's 
setting requires the consideration of people (company culture and human factors) as they 
relate to: query understanding and refinement, identifying relevant and trustworthy 
information sources, defining and incrementally refining the data processing pipeline, and 
visualizing relevant patterns and obtaining query answers, all in addition to making the 
various micro-tasks doable by domain experts and end users. We can classify people's roles 
into four general categories: producers of data, curators of data, consumers of data, and 
community members.  
 
Many people today are data producers, as virtually anyone can generate a flood of data: the 
use of mobile phones, social platforms and applications (e.g., Facebook, Twitter), and an 
increasing collection of wearable devices (e.g., Fitbit). One key challenge is to develop 
algorithms and incentives that guide people to produce and share the most useful data, while 
maintaining the desired level of data privacy. 
 
Culture and organizations are also important factors. In order to succeed with big data there is 
a need for the right culture in addition to data, resources and competence. That means, 
cultural (as in company culture) aspects are just as crucial as competence and technical 
capabilities in big data success. The cultural aspects include: a culture which values facts and 
seeks facts from data, and a culture where sharing of data and idea is encourages (silo 
thinking is hindering getting value from data). 
 
In today's data-driven world there is less central control over data. Data is no longer just in 
databases controlled by a DBA and curated by the IT department. Instead, as mentioned 
earlier, a wide variety of data is now being generated and a wide variety of people are now 
empowered to curate it. In particular, crowdsourcing has emerged as a promising curation 
solution9,10. Another key challenge, then, is to obtain high-quality data sets from a process 
based on often-imperfect human curators. Two related challenges are building platforms that 
allow people to curate data easily and extending relevant applications to incorporate such 
curation. For these people-centric challenges, data lineage and explanation will be crucial, as 
well considerations of privacy, security and legal aspects related to data ownership and 

                                                
9 https://cs.uwaterloo.ca/~ilyas/papers/StonebrakerCIDR2013.pdf  
10 http://ceur-ws.org/Vol-782/SimperlEtAl_COLD2011.pdf  
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ownership of insight derived from data. These aspects will be identified and examined in 
WP2 (Elements of societal impact). 
 
People are data consumers as well. In the enterprise, data consumers have usually been 
people who know how to ask SQL queries, via a command-line interface or a graphical query 
tool, over a structured database. Today's data consumers may not know how to formulate a 
query at all. Here major challenge is to make it possible for such people to get their answers 
themselves, directly. This requires new query interfaces, e.g., interfaces based on multi-touch, 
natural language queries, and not just console-based SQL interfaces. 
 
Numerous communities exist online, with more being created daily. Members of such 
communities often want to create, share, and manage data, and it is becoming increasingly 
easy for them to do so. In particular, members may want to collaboratively build community-
specific knowledge bases, wikis, and tools to process data. For example, many researchers 
have created their own pages on Google Scholar, thereby contributing to this “community" 
knowledge base. Now challenge is to build tools to help communities produce usable data as 
well as to exploit, share, and mine it. 
 
The big data researcher is a multi-skilled person that understands the domain of IT and 
business. Also, she has the right creativity to develop hard, technical solutions that indeed 
help a data-driven, information-centric organisation. Though, the fusion of talent at the 
crossroads of business, information technology, data sciences and operations can be 
challenging to identify and develop. For many enterprises it is a real challenge to find the 
right big data talent. The shortage of talent will be a significant constraint to capture values 
from big data (Manyika et al., 2012). This type of human resource is more difficult to 
educate. It usually takes many years to train big data analysts that must have inherent 
mathematical abilities and related professional (domain) knowledge. We believe that the 
same situation also happened in other nations, not matter developed or developing countries 
around the world. It is likely that there will be a hot competition for human resources in big 
data developments. 

Finally, we provide some of the most common big data roles or job titles with the skills 
required. 

• Data scientists:  This title is similar to what a 2011 McKinsey report11 calls "deep 
analytical talent". These people have backgrounds in mathematics or statistics. Some 
have experience or academic degrees in artificial intelligence, natural language 
processing or data management. 

• Data architects: Programmers who are competent at working with complex data, 
disparate types of data, undefined data and lots of ambiguity. They may be people 
with usual programming or business intelligence backgrounds, with some 
background in statistics. They require the creativity and persistence to be able to 
harness data in new ways to create new insights. 

• Data visualizers: Technologists who translate analytics into information a business 
can use. They harness the data and put it in context investigating what the data 
means and how it will impact the business.  

• Data change agents: People who drive changes in internal operations and processes 
based on data analytics. They may have a Six Sigma background and proper 
communication skills to interpret jargon into terms others can understand. 

                                                
11 http://www.mckinsey.com/insights/business_technology/big_data_the_next_frontier_for_innovation  
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• Data engineers/operators: People who are the designers and managers of the big 
data infrastructure. They develop the architecture that helps analyse and process data 
in the way the business needs it.  

 
To sum up this section, we present a table containing various challenges of big data in seven 
industry sectors. Exemplifying challenges among seven sectors, if we compare the historical 
productivity of sectors in Europe with the potential of these sectors to acquire value from big 
data,	
  we see that patterns change from sectors to sectors.  While these sectors will have to 
overcome challenges to capture value from the use of big data, challenges are structurally 
higher for some than for others. For instance, capturing value in healthcare faces challenges 
given the relatively low IT investment performed thus far. In the following table, we have 
used ‘IT investment/tools’ as the bandwidth. 
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5 BIG DATA APPLICATIONS 

Nowadays several disciplines contain big data problems, varying from economy to 
administration and from scientific explorations to national security. In 2012, McKinsey 
institute report (Manyika et al., 2012) states transformative potentials of big data in five 
domains: health care of the United States, public sector administration of European Union, 
retail of the United States, global manufacturing and personal location data. 
 
In the following subsections, we will briefly introduce some applications of and problems 
related to big data in business, science and public administration. 
 
 

5.1 BIG DATA IN BUSINESS  

Big data is transforming the business landscape, as companies tap into more and more broad 
varieties of structured and unstructured data with greater speed and complexity.  Business has 
always wanted to derive insights from information in order to make better, smarter, real time, 
fact-based decisions: it is this demand for depth of knowledge that has stimulated the growth 
of big data tools and platforms. 
 
The leading enterprises are now including big data from both within and outside the 
enterprise, incorporating structured and unstructured data, machine data, and online and 
mobile data to supplement their organizational data and offer the basis for historical and 
forward-looking views.  

 
Figure 3 EY’s 2013 Global Information Security Survey12 

Companies that invest in and effectively derive value from their data will have a clear 
advantage over their competitors — a performance gap that will continue to grow as more 
relevant data is produced, emerging technologies and digital channels offer better acquisition 
                                                
12 http://www.ey.com/Publication/vwLUAssets/EY_-_2013_Global_Information_Security_Survey/$FILE/EY-
GISS-Under-cyber-attack.pdf  
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and delivery mechanisms, and the technologies that enable faster, easier data analysis 
continue to develop. 
 
Emergent technology has extended the potential of using data-driven results into every facet 
of an enterprise. But, though advances in software and hardware technology have empowered 
the big data era, enterprises need to take a complete view that recognizes that success is built 
upon the integration of people, process, technology and data.  
 
EY’s 2013 Global Information Security Survey results, shown in Figure 3, indicate that while 
adoption and use of big data is not yet widespread, there is growing confidence and 
familiarity with the technology. 
 
Mostly business environment changes frequently and rapidly. Thus, in such environment, 
future prediction becomes more vital than the modest visualization of historical or 
contemporary perspectives. For effective future prediction, data analysis using machine 
learning and predictive modelling techniques may be applied to enhance and support the 
organization’s business strategy. The gathering and aggregation of big data, and other 
information from outside the enterprise, enables the business to develop their own analytic 
capacity and capability, which for many years has only been available to a few larger 
organizations. 
 
For the last few years we have seen that increasing data use are changing and transforming 
business all across the board. Businesses are increasingly adopting a data-driven attitude to 
answering business critical questions, increase efficiency and improve performance, conduct 
more targeted services, and reduce risks. Across the board programs to collect and store data 
from across the business and from sources outside the business are executed and analytics are 
done on the data to get new business insight and strengthen decision making. Some typical 
examples of big data use in traditional businesses are: fully automated credit scoring, churn 
avoidance in telecom, 360 degree customer view (all relevant customer data made available 
for support and sale), optimization of asset use, stock, and value chain, fraud detection in 
banking and credit sector, and utilization of sensor data for performance monitoring and 
condition based maintenance of equipment and systems. 
 
It is not just traditional businesses which are harnessing the value of data. Over the last two 
decades we have seen the rise of a new industry, whose main asset is data. Armed with vast 
amounts of data and affordable capabilities for storage and processing, companies have been 
able to create new business and revenue streams from selling data or delivering services that 
are based on data analytics. The most prominent examples of new use of data occur in the 
new Internet-based industries. Here, companies exist that have created big business based 
entirely on access to data and their ability to use data. In addition to innovations in the 
business domain these companies have also moved “big data technology” forward by 
inventing and implemented the technology needed to solve the problems related to data 
handling and analyses in their own operations. Prime examples of such companies are 
Google, Facebook, Yahoo and Twitter. 
 
As mentioned earlier companies in sectors such as telecom, retail, media, healthcare, 
insurance, finance and transport/logistics are being transformed by utilizing large data sets 
about their customers and internal work processes. Insights from these data streams are used 
for better assessment of utilization, to improve operational efficiency, and to increase sales 
and the efficacy of marketing. 
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For instance, available financial data sources include stock prices, currency and derivative 
trades, transaction records, high-frequency trades, unstructured news and texts, consumers’ 
confidence and business sentiments hidden in social media and internet. Analysing such huge 
datasets helps measuring risks. It requires professionals who are familiar with sophisticated 
tools and techniques in portfolio management, securities regulation, proprietary trading, 
financial consulting, and risk management. 
 

Big data capabilities enable companies to streamline their supply chain and improve overall 
efficiency and profitability. The optimization may include predictions using weather data, 
tracking data, traffic data, and other data that may influence the movement of cargo and 
parcels. An example of this is FedEx which is using data-based value chain optimizations for 
all its processes. At the core of the system lies the package tracking system that tracks and 
monitors every phase of the delivery cycle. Data from this system enables the company to 
maximize utilization of assets and personnel, while delivering on time. FedEx also use this to 
create value added services for customer, like online direct access to information about on-
going deliveries. The FedEx system is integrated into a central system that collects and 
coordinates data from: airlines, connection hubs, positions of individual vehicles, weather 
forecasts, and real-time traffic information. This allows for real-time routing information to 
be pushed out to individual drivers and optimizations of pickup/delivery and asset 
utilization13. 
 
Study shows that the volume of business data worldwide, across all business sectors, doubles 
every 1.2 years (Manyika et al., 2012). As an example from the retail industry14, there are 
around 267 million transactions per day in Wal-Mart’s 6000 stores worldwide. For pursuing 
better competitiveness in retail, Wal-Mart teamed up with Hewlett Packard to establish a data 
warehouse which has a capability to store 4 petabytes of data, i.e., 4000 trillion bytes, tracing 
every purchase record from their point-of-sale terminals. By utilizing mature machine 
learning techniques to exploit the knowledge hidden in this huge volume of data, they 
effectively improve efficiency of their pricing strategies and advertising campaigns. 
  
Banking and finance companies also have a lot of data available, in this industry taking the 
right decision fast enough is an additional challenge to the sheer volume of data. An example   
from this domain is FICO’s falcon credit card fraud detection system15 which monitor and 
manages transactions from over 2.1 billion valid accounts around the world.  
 
By nature telecom generates and collect massive amount of behavioural data about their 
customers: who and how long people call, who send direct messages to whom, and where and 
when these activities take place. Traditionally these data have only been used for billing and 
more technical purposes like planning and debugging network infrastructure. In telecom loss 
of customers (often called churn) is also a big problem, and to counter this some players try 
to utilize and take targeted action based on their customer data in combination with external 
data sources (like social media data). By utilizing big data technology T-Mobile USA was 
able to utilize data from and about their 33 million customers to reduce churn rates by 50% in 

                                                
13 http://www.fedex.com/ma/about/overview/innovation.html  
14 http://istcolloq.gsfc.nasa.gov/spring2009/presentations/lopez.pdf  
15 http://www.fico.com/en/products/fico-falcon-fraud-manager/  
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just one quarter16. This was done by identifying key customers; customers with large social 
networks, and to target these individuals with tailor made offers to retain these influential 
high value customers. 
 
When it comes to using and treating data as an asset and the foundation for business we see 
new, Internet based business innovation and paving the way. Google’s main business model 
is based on its ability to use search phrases, and gathered personal profiles to connect 
advertisers effectively with potential customers. Twitter mines the content of Tweets to 
increase the value of advertising for their customers by enabling them to target relevant 
customer groups and measure the impact of their marketing campaigns. Twitter also sells raw 
data to insight aggregators and academia which is used to create new services and to research 
anything from epidemics to human behaviour17. 
 
Another interesting example is Cardlytics18. Cardlytics is an intermediary selling shopping 
habit and spending behaviour data from US banks and credit card providers to retailers. This 
data is then used to create targeted offerings to potential customers and the service is paid for 
by a commission for each sale. 
 
As the examples above illustrates; while big data affect all industries19, it does however have 
different kinds of impact and manifestations in different industries. And depending on the 
underlying business model20 big data will have different impact on mode of operation and the 
opportunities and market positions one can take.  
 
For traditional producers of goods the main use of data will be to facilitate improvement in 
the quality of the end product and to make the overall process more cost-effective. Typically 
this results in an increasingly automated production process. The benefits of process 
optimization has of course  has been recognised for industrialized processes for a long time, 
but access to new technology, the availability of data have made it possible to take this to 
take this to new levels of sophistication.  
 
In contrast, businesses in the knowledge industry (consulting would be a prime example of 
this) the main product is helping customers in solving their problems, and the key assets are 
the knowledge and capabilities of its workers. The main changes, challenges and 
opportunities posed by big data in this industry are related to: changes in the competitive 
landscape, data handling capabilities expected by the customers, and go to market strategies 
for data driven services. New technical capabilities have the potential to increase the 
efficiency of project delivery, to facilitate reuse of data, and enable scaling, through 
automation of the delivered services. At the same time; the possibility of encoding knowledge 
into models and use these models in combination with data can also enable competition from 
new players and thus completely alter the competitive landscape. 
 
A third kind of businesses are network service providers, where a traditional example is 
telecom. These businesses provides a network where the customer can conduct their “own 

                                                
16 http://www.bigdata-startups.com/BigData-startup/t-mobile-usa-cuts-downs-churn-rate-with-big-data/  
17 http://dssg.io/2013/12/13/qcri-twitter-relief.html  
18 http://cardlytics.com/  
19 “Industry Analytic Services”, Kurt Schlegel, Gartner research, July 2009, ID Number: G00167258 
20 “Configuring value for competitive advantage: On chains, shops, and networks”,  
Charles B. Stabell and Øystein D. Fjeldstad, Strategic Management Journal, Vol. 19, 413–437 (1998) 
Casting off the chains”, Øystein D. Fjeldstad and Espen Andersen, EBF issue 14, summer 2003 
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business”. And the value of the network increases with size and the capabilities of the 
network. IT technology and the Internet have enabled the creation of many new such 
companies, and for some of them, like Facebook, Twitter, and Google, the product they sell is 
the data generated by their users and the insight (mainly used for targeted marketing) derived 
from these enormous amount of data. 
 
When discussing big data impact on business it also make sense to talk about the “data 
driven” economy, and as indicated in the discussion above, there exist many different roles, 
market positions and business models within this economy. 
 

5.1.1 Changing industries with big data  
Recent big data evolution is transforming how industry sectors operate; we’ll look closer at 3 
examples: healthcare, finance, and life science.  
 
Healthcare21 industry presents immense opportunity for big data innovation. Physicians, 
patients, and other stakeholders have access to an astounding volume of rich clinical data that 
if combined and accurately mined, could help achieve healthcare’s objectives such as 
providing better care experiences for patients; improving the health of the population served; 
and lowering per capita costs.  
 
The healthcare industry must develop sophisticated strategies for managing emergent data 
sets. No longer is clinical data only accessed via electronic health records. Wearable medical 
devices like pacemakers or Fitbits are the fast growing sources of healthcare data. This 
information can be very valuable if gathered and harnessed effectively. 
 
In financial industry, professionals had to spend excessive time and resources organizing 
disparate data into structured data for analysis. Analytics excellence is core to innovation 
across the financial industry. Business executives in the financial industry must view 
analytics and the ability to efficiently and effectively exploit big data, advanced modelling, 
and real-time decision making across channels and operations as a key capability that will 
eventually distinguish those that prosper in uncertain and uneven markets from those that 
mess up. 
 
In comparison with other sectors, life sciences have been slower to adopt big data technology. 
Similar to healthcare, life sciences face exponentially growing sources of data. The industry’s 
prime source of data is randomized controlled clinical trials, but electronic health records, 
electronic lab results, and even cell phones generate data leveraged by life sciences 
professionals. The diversity of disparate data sets makes life sciences data particularly 
chaotic. While other industries have been able to leverage existing big data tools and advance 
to the stage where predictive analytics delivers valuable results, life sciences lag behind.  
 
5.1.2 Internet of things and big data 

The advent of more use of sensor data and automated monitoring is the sign of the next wave 
of changes in business: “The Internet of things” (IoT). A future where an products and 
appliances not only are able to sense and act upon the environment but also exchange and act 
upon information and data shared by other devices (i.e. intelligent machine to machine 

                                                
21 http://c.ymcdn.com/sites/masstlc.site-ym.com/resource/resmgr/Files/Healthcare_MTLC-2014.pdf  
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communication). These technologies will certainly take automation to the next level and it 
will be crucial for future “smart grid solutions” in the power sector, and they will also 
generate large amounts of machine-to-machine interaction data which will be available across 
traditional barriers. The IoT trend will therefore open up new opportunities for advanced 
analytical offerings and services and this is the main rationale behind the large investments in 
IoT and analytics by companies like General Electric (GE) and Phillips. Another trend which 
plays into both commercial use of big data and IoT is the advent of a new generation of 
cognitive computing, like IBM’s Watson technology, which is able to sift through, combine 
and infer knowledge form large collections of data sources22. (ref. to McKinsey report on 
disruptive technologies).  
 
Internet of Things has replaced big data to be the most hyped technology as Gartner’s Hype 
Cycle23 for Emerging Technologies said. Things here can refer to uniquely identifiable 
embedded computing devices such as heart monitoring implants, smart thermostat systems, 
etc. Big data and Internet of Things together will help build valuable systems. The value of 
IoT will be in gaining timely, valuable insights from all of the data being generated by 
sensors, etc. The advent of the IoT does also drive development of big data technology, as an 
example of this ParStream’s analytics database is a great fit for the speed and scale of IoT 
and is exactly the type of technology that can be the difference between big data and smart 
data driving business value. 
 
Recently, ParStream24 introduced the industry’s first analytics platform designed to handle 
the massive volumes and high velocity of Internet of Things (IoT) data. The platform will 
help companies generate timely, actionable insights from IoT data by providing more 
innovative and efficient ways to analyse that data faster. Real time big data analytics is very 
crucial for certain fields, like stock data, sensors data, etc. Google also launched BigQuery 
for real-time big data this year. 
 

5.1.3 The industrial Iinternet of things 
Mostly the discussion around big data has focused on clickstream data, sentiment analysis 
and consumer targeting. But behind the scenes, the capabilities enabled by machine-to-
machine communication and advanced analytics stand poised to dramatically change the 
world around us. The Industrial Internet of Things (IIoT) is connecting the physical world of 
sensors, devices and machines with the Internet and, by applying deep analytics through 
software, is turning massive data into powerful new insight and intelligence. The Industrial 
Internet involves putting different kinds of sensors, sometimes by the thousands, in machines 
and the places they work, then remotely monitoring performance to maximize profitability. 
G.E.25, one of the world’s biggest makers of equipment for power generation, aviation, health 
care, and oil and gas extraction, has been one of its biggest promoters.  

                                                
22 “Disruptive technologies: Advances that will transform life, business, and the global economy”, McKinsey 
white paper on disruptive technologies, 
http://www.mckinsey.com/insights/business_technology/disruptive_technologies  
23 http://www.gartner.com/newsroom/id/2819918  
24 https://www.parstream.com/  
25 http://www.ge-ip.com/industrial-big-data  
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Figure 4 General Electric’s vision of industrial internet (source: http://www.ge.com/stories/industrial-

internet) 

The development in IIoT will allow us to connect intelligent machines, advanced analytics 
and clever people working in smarter ways to achieve extraordinary things. And the fuel 
driving this revolution will be big data – masses of information aggregated, analysed and put 
to work across sectors as diverse as energy, transport, aviation, healthcare, consumer goods, 
retail and even other professional services. The industrial internet promises great benefits. 
However it raises some sensitive legal and moral issues, which will become increasingly 
prominent as the use of data and analytics becomes more sophisticated. 

 
5.1.4 Examples of typical big data use cases 

Value chain optimization  
Big data solutions help retailers optimize supply chains to reduce cost, improve service, and 
gain vital insight. Big data analytics are used to predict inventory positions in stores and 
distribution channels. This is achieved by utilizing demand plans and forecasts, sales history, 
external predictors of future performance such as category trends, weather patterns, local 
events and so on, allowing retailers to decrease both out-of-stocks and over-stocks. Big data 
analytics can also deliver full supply chain visibility by capturing real-time inventory 
positions across the enterprise and through the extended supply chain. Data to be leveraged 
include open purchase orders, in-transit inventory, or vendor and distributor inventory. 
Insight into channel behaviours are also used to identify renewal needs, by analysing 
customer sentiment, abandoned baskets, click through, time on page, etc. 
 
Retail 
For consumer marketers, the old adage still holds true: reach the right audience with the right 
message at the right time. Consider the Amazon’s recommendation engine: it’s an instant 
message to a singular person based on his or her actions, and the actions of similar people. 
This is a smart system, powered by big data. 
 
The other end of the spectrum would be a prime time TV ad or a roadside billboard. They are 
mass marketing at a time when the person cannot make an immediate purchase. Email 
campaigns used to be like this. Nowadays, companies are harnessing campaign management 
tools to harness insights to increase the effectiveness of their outreach with personalization. 
 
The next generation of consumer marketing offers multi-touch capabilities that seamlessly 
connect a personalized message across media, devices and locations to drive sales. Plus, the 
real-time data generated by sensors (which create an Internet of Things) means that consumer 
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marketers will be able to take advantage of location-based data like Apple’s iBeacon in stores 
as well external data like weather forecasts or social media sentiment that create a truly 
relevant and targeted buying environment. 
 
Fraud detection 
Fraud and financial crime is serious business, just ask the companies and individuals that 
have been victimized in the past year. With loads of transactions occurring per day, the 
financial data is most certainly big, making identifying a fraudulent purchase a challenge of 
pattern recognition. Patterns become stronger with more data points which give financial 
services companies, retails and other high-volume players the impetus to look at as much data 
as possible. However, when a bank has to process huge historical data along with real-time 
data nightly to detect fraud, it becomes nearly impossible to keep up with both the volume 
and velocity of data. 
 
In addition, enormous sets of location data are often leveraged to increase the effectiveness of 
fraud detection. Past transactions indicate where and when a consumer usually shops. If a 
person purchased a plane ticket to London, it would make sense that transactions will start to 
appear in London during the trip.  
 
While volume can be the key to recognizing fraud, velocity is the key to preventing fraud. 
New real-time big data platforms enable companies to process massive quantities of historical 
information and validate new transactions in real-time to spot patterns and halt a transaction 
before it occurs. By having real-time data at their fingertips, data scientists can also look at 
new information on the fly, evolving countermeasures just as criminals are adapting to 
security that’s already in place. With every measure of fraud prevention, companies can 
lower their costs, protect their assets and customers. 
 
Targeted marketing and churn avoidance 
In marketing campaigns, segmenting customers is a part of typical objectives of increased 
satisfaction to prevent customers from churning. The key to a big data driven advanced 
analytics solution providing optimal churn prevention will be its ability to provide preventive 
churn actions in real time. Strategic use of big data and advanced analytics enables service 
providers to shift their business intelligence focus from looking back at old records to looking 
forward with current data in predictive and preventive fashion to determine things such as 
behaviour triggering churn events and steps to prevent a churn event.  
 
Customer sentiment  
Customer sentiment is being expressed for every enterprise, product and service in existence 
over numerous social channels at an increasing rate. Using social monitoring and text mining 
tools, there’s a compelling opportunity to analyse what prospects and customers think about 
each of your products or services, as well as what they think about each of your competitors’ 
products or services, and correlate this sentiment analysis to sales efforts, product mix, 
marketing spend, advertising expense, loyalty programs, market share, customer share, 
competitor programs and specific cost and profit measures. This type of correlation is 
powerful in manipulating company operating decisions to influence customer behaviours 
with predictive responses. There is also an opportunity to correlate customer sentiment 
analysis with broad economic factors, specific market indicators, competitor moves or other 
factors that may uncover patterns that permit companies to model changes for improved 
customer consumption and company performance.  
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Logistics 
There have been many ways that enterprises have attempted to improve logistics efficiency 
through data, such as massive warehouse management system software and advanced 
planning systems that can predict the best quantity and location of inventory to avoid stock 
outs or dead inventory. The big data era builds on these concepts and takes advantage of 
advancements in data collection to make logistics faster, smarter and more efficient.  
 
For instance, RFID tags and sensors create a passive network of communication, tracking 
each item and its location. This boosts productivity when goods are shipped, received, picked 
and packed because goods can move without the scanning of barcodes. This constant flow of 
real-time data is a goldmine of information that can be the catalyst for new insights and 
optimizations. 
 
Big data and business models  
In certain industry sectors, such as financial services, big data has urged completely new 
business models. For instance, algorithmic trading nowadays analyses huge amounts of 
market data on a minute-by-minute basis, detecting opportunities to capture value instantly.  
In the retail sector, big data expedites analysis of in-store purchasing behaviours in near real 
time. With such fast insight into demand shifts, stores can adjust supply, stock levels, and 
prices to maximize sales. 
 
Big data can produce large data sets coupled with enormous processing capabilities to spur 
growth and reveal cost-reducing opportunities across industries. While every industry uses 
distinct approaches and emphases on different aspects from marketing to supply chain, 
almost all are engrossed in a transformation that leverages analytics and big data. As 
organizations evolve, so must their analytics capabilities, moving from basic to the more 
mature predictive analysis. Basic analytics provide a historic view of business performance: 
what happened, where it happened, how many times it happened. Anticipatory analytics 
identify unique drivers, root causes, and sensitivities. Predictive analytics perform business 
modelling and simulations and try to predict what will happen. 
 
When tackling big data challenges organizations react and organize the response in different 
ways. We have identified the following three general patterns in how companies organize 
themselves to create value from big data. These patterns can be valuable tools for evolving 
from a data-and-information focus to a business insight-and-foresight focus. Each model has 
its pros and cons26. 
 
Decentralized services model:  Every business has its own analytics group, which enables 
and encourages rapid decision making and execution. But normally there is no dedicated role 
for strategic planning or best-practice sharing, which can result in duplicate resources and 
infrastructure. This model increases focus, but the lack of an enterprise view can undermine 
opportunity. 
 
Embedded shared-services model: It is a centralized model that spins under an existing 
business unit and serves the entire organization. It can speed execution and decision making, 
and its structure, support processes, and standards increase efficiency and IT proficiency.  

                                                
26 See "IT Innovation Spurs Renewed Growth" at www.atkearney.com  
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Standalone shared-services model: It is analogous to the embedded model but exists outside 
business entities or functions. It has direct executive-level reporting and elevates analytics to 
an imperative core competency rather than an enabling capability. 
 

5.2 BIG DATA IN SCIENCE  

There are several big data applications in scientific disciplines like astronomy, atmospheric 
science, medicine, genomics, geochemistry and other complex and interdisciplinary scientific 
studies. Web-based applications encounter big data frequently, such as social computing, 
Internet text and documents, Internet search indexing. Nowadays, there are numerous sensors 
around us, they produce seamless sensor data that need to be used, namely, intelligent 
transportation systems (ITS) (Zhang et al., 2011) utilize the analysis of large volumes of 
complex sensor data.  
 
Several scientific disciplines are to a large extent data-driven (Szalay, 2011, Bryant, 2011) 
with the recent progress in computer sciences. Astronomy, social computing, meteorology 
(Wang et al., 2007), computational biology (McDermott et al., 2009, Akerkar, 2013) and 
bioinformatics (Lynch, 2008) are based on data-intensive discovery as huge amount of data 
with diverse types produced are utilized in these scientific domains (Fey et al., 2008).   
 
The e-science evolving from big data is a transformed science, and its world is new to those 
of us trained in classical scientific paradigms. The e-Science represents to the large scale 
science that is progressively carried out through distributed world-wide collaborations 
enabled by the Internet. Main characteristics of such collaborations are that they will require 
access to very large data collections, very large scale computing resources and high 
performance visualisation. Big data has an intense liaison with e-Science (Hey et al., 2002) 
that is computationally rigorous science which is implemented in distributed computing 
systems. Several concerns on big data applications can be resolved by e-Science which 
require grid computing (Jakob et al., 2005). The e-Sciences include particle physics, bio-
informatics, earth sciences and social simulations. It offers technologies that facilitate 
distributed collaboration, such as the Access Grid. Particle physics has a sophisticated e-
Science infrastructure in particular because of its need for adequate computing facilities for 
the analysis of results and storage of data originating from the European Organization for 
Nuclear Research (CERN) Large Hadron Collider, which commenced acquiring data in 2009. 
e-Science is a broad notion with many sub-areas, such as e-Social Science which can be 
regarded as a prominent development in e-Science; and helps collecting, processing, and 
analysing the social and behavioural data.  
 
The Large Hadron Collider (LHC) is a particle accelerator that can generate 60 terabytes of 
data per day (Brumfiel, 2011). The patterns in those data can give us a unique insight of the 
nature of the universe. The volume of human genome information is enormous, and it 
initially took a decade to process and decoding it. A lot of other e-Science projects (Hey et 
al., 2002) are planned or ongoing in wide-ranging research areas, such as environmental 
science, oceanography, geology and sociology. We can observe that enormous data sets 
generated in aforesaid fields greatly demand automated analysis. Furthermore, integrated 
repositories are essential as it is unrealistic to reproduce copies for remote research groups. 
Consequently, centralized storage and analysis approaches drive the entire system designs. 

5.2.1 Examples of typical big data use cases 
Bio-medical science 
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Mass spectrometers generate massive amount of complex proteomic data in a high-
throughput manner, challenging traditional analytics systems and workflows. A moderate 
sized lab can easily generate several GB of raw data every day. Effective utilization of these 
data archives for deriving context and biological insights relies on the ability to efficiently 
store, query and analyse these data using computational and statistical methods.  
 
Seismic exploration 
By applying advanced analytics, such as pattern recognition, to a more comprehensive set of 
data collected during seismic acquisition, geologists may be able to identify potentially 
productive seismic trace signatures that have been overlooked in newly acquired or archived 
data Also using/combining with data from other disciplines could enhance exploration 
efforts. For instance, historical drilling and production data from a nearby well could help 
geologists and geophysicists verify their assumptions in their analysis of a field. This 
becomes particularly vital where environmental regulations restrict new surveys. 
 
Climate studies 
Climate change prediction research teams are regularly investigating natural and 
anthropogenic-induced patterns of climate variability and change by means of data analysis 
and simulations of the earth’s climate system. With these model simulations, researchers are 
able to explore mechanisms of climate variability and change, as well as to detect and 
attribute past climate changes, and to project and predict future changes. The simulations are 
motivated by broad community interest and are widely used by the research communities. 
 
Cosmology 
One of the important challenges in cosmology is to provide a way to reduce photometric data 
in real-time for supernova discovery and to handle the large volume of observational data in 
conjunction with simulation data to reduce uncertainties in the measurement of the 
cosmological parameters via baryon acoustic oscillations, galaxy cluster counting and weak 
lensing measurements. Big data specific challenge is to perform analysis on both the 
simulation and observational data simultaneously. 
 
Large scale geospatial analysis and visualization 
As the number of geospatially aware sensors increase and the number of geospatially tagged 
data sources increases the volume geospatial data requiring complex analysis and 
visualization is growing exponentially.  Traditional GIS systems are generally capable of 
analysing lots of objects.   Today’s intelligence systems often contain trillions of geospatial 
objects and need to be able to visualize and interact with millions of objects. 
 
Big data and scientific research 
The advent of enormous data sets and data-intensive science are profoundly changing the 
way researchers work in almost all scientific discipline. Physicists, Biologists, chemists, 
cosmologists, earth and social scientists are all gaining from access to the tools and 
technologies that will integrate the big data into standard scientific methods and processes. 
Researchers are gradually capable of collecting huge quantities of data through computer 
simulations, low-cost sensor networks and highly instrumented experiments, creating a data 
deluge.  
 
The advantages of relating research with big data and the cloud have been most apparent in 
areas, for instance, genome studies. The considerable amounts of data are used to pinpoint 
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latent links between a person's genome and traits such as the tendency to develop a disease or 
a specific response to a drug. 
 
Environmental science is an excellent place for testing big-data initiatives. This research field 
has a broad variety and huge volumes of data, which need to be captured speedily. 
Nevertheless, the approaches and tools developed here can be applied more broadly in fields 
such as business, government and education. Climate scientists, for instance, may desire to 
use data to produce a model to make predictions – how climate change will modify 
ecosystems. Alternatively, they may want to use a model's predictions to create data, such as 
how changing ecosystems will influence further climate change.  
 
Cosmologists have a lot of work ahead to uncover hidden secrets of our planet and solar 
system.  
 
However, there are plenty of challenges to overcome first. Scientists are concerned that the 
data deluge will make it increasingly difficult to find data of relevance and to understand the 
context of shared data. The management of data presents ever more tough issues. The big 
question is: How do global, multidisciplinary and often competitive teams of researchers 
address challenges related to data management, the creation and use of metadata, ontologies 
and semantics, and still adapt to the principles of security, privacy and data integrity?  
 

5.3 BIG DATA IN PUBLIC ADMINISTRATION  

Public administration too encompasses big data problems (Bryant, 2007). It is common that 
citizens in different age groups need different public services. For instance, kids and 
teenagers want education whereas the senior citizens require higher level of health care. 
Nevertheless, every individual in society generates a lot of data in every public service, thus 
the total number of data about public administration in one country is really massive.  
 
Various Governments are dealing with adverse conditions to enhance their productivity. In 
such situations big data plays crucial role in public administration. As stated by McKinsey’s 
report (Manyika et al., 2012), big data functionalities, such as reserving informative patterns 
and knowledge, provide the public sector an opportunity to enhance productivity and 
efficiency while maintaining or increasing the quality and level of provided services. 
European’s public sector could potentially reduce expenditure of administrative activities by 
15–20 percent, increasing 223 billion to 446 billion values, or even more.  
 
Through its role in administering the tax system, social programs, and regulation, the federal 
government collects enormous amounts of granular administrative data. Examples include the 
abundant micro-level data sets maintained by the Social Security Administration, the Internal 
Revenue Service, and the Centres for Medicare and Medicaid. Although there is less 
uniformity, state and local governments similarly generate large amounts of administrative 
data, particularly in areas such as education, social insurance, and local government spending. 
Government administrative data are indeed underutilized, by government agencies and, 
because of limited and restricted access, by researchers and private data vendors who might 
use this data to uncover new facts. The major data sets also tend to be maintained separately, 
unlike in many European countries, which may have data sets that merge individual 
demographic, employment, and in some cases health data, for the entire population. 
Administrative data is a powerful resource. It typically covers individuals or entities over 
time, creating a panel structure, and data quality is high (Card et al., 2011).Besides , since the 
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coverage is universal, administrative data sets can be linked to other, possibly more selective, 
data. 
 
In modern business debates and decisions are usually informed by large amounts of data 
analytics, and in at least some companies, by extensive experimentation (Varian, 2010). 
Many government agencies are increasingly smart about using data analytics to improve their 
operations and services. However, most agencies almost surely lag behind the best private 
sector companies, and face challenges of both infrastructure and personnel demands. For 
example, a 2008 report by the JASON study group27 expressed some of these challenges in 
the context of how the military must try to process and analyse the vast quantities of sensor 
data that have become available, such as from drone flights and communications monitoring. 
The key challenge in consumer protection is to keep individuals from making decisions they 
will (predictably) come to regret without proscribing individual choice. Behavioural 
economics has emphasized that one way to strike this balance is through the framing of 
decisions (e.g., well-chosen defaults), and another way is through the careful presentation of 
information. For instance, people can end up making major financial decisions—buying a 
house, saving for retirement, planning health care spending—without good information about 
the financial consequences.  

 
5.3.1 Examples of typical big data use cases 

Cyber security  
Government agencies face many challenges associated with protecting themselves against 
cyber-attacks, such as managing the exponential growth in network-produced data, database 
performance issues due to lack of ability to scale to capture this data, and the complexity in 
developing and applying analytics for fraud to cyber data. Agencies continue to look at 
delivering innovative cyber analytics and data intensive computing solutions. Government 
agencies are looking to incorporate multiple streams of data to benefit both human and 
automated analysis. Cyber data such as host, network, and information from the World Wide 
Web, are being combined with human oriented information such as psychosocial, political, 
and cultural information to form a more complete understanding of our adversaries, motives, 
and social networks. 
 
Public transport 
Through improved information and autonomous functions, big data has the potential to 
transform transportation in many ways. Distributed sensors on handheld devices, on vehicles, 
and on roads can provide real-time traffic information that is analysed and shared. This 
information, coupled with more autonomous functions in cars can let drivers to operate more 
safely and with less disruption to traffic flow. 
 
Microdata services 
Microdata services can arise from various government services by, for instance, charging a 
little fee for basic information queries, such as those from the land registry office, or 
providing access to decision models that help with applications for financial support, legal 
assistance, environmental assistance etc. 
 
Tax 

                                                
27 http: // www.fas.org/irp/agency/dod/jason/data .pdf  
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Tax agencies need to minimize tax gaps and increase revenue collection by ensuring that all 
entities pay their required portion, refunds are issued only to those who legitimately qualify 
for them, and audits are performed on those most likely to be committing fraud, 
underreporting income or participating in other tax evasion schemes. Big data analytics can 
help tax agencies precisely determine who should be investigated for fraud or denied refunds 
by detecting new deception tactics, uncovering multiple identities and identifying suspicious 
behaviour. 
 
Preventive policing 
Preventive policing or algorithmic law enforcement is a recent field that predicts which areas 
are most vulnerable to crime, based on historical patterns, weather situations, the impact of 
certain events etc. 
 
Threats and crimes 
Two primary governmental functions are national security and public safety. Predicting 
potential threats and crimes before they happen and preventing them from occurring can 
significantly lower risks and improve public safety and national security. Big data analytics 
can help national security and law enforcement agencies improve intelligence by identifying 
threats and crimes before they happen, finding critical information faster, detecting 
associations between people and activities, improving the accuracy of threat and crime 
analysis, enabling information sharing and collaboration between investigative organizations, 
protecting sensitive facilities from attack and preventing emergent cyber-security risks. 
 
Law enforcement efficiency  
Law enforcement efficiency in relation to road traffic can be accomplished through analysis 
of traffic data obtained from smartphones and other location-aware devices, such as 
navigation units; it includes analysis of average speed. 
 
Open data and public sector 
The open data association and governments all over the world, including the EU, are devoted 
to make data publicly available and usable. The EU’s present review of the Public Sector 
Information Directive aims at unlocking the potential of big data held and accrued by 
government establishments both with regard to the public sector itself leveraging the potential 
and efficiencies that come along with a big data strategy, as well as to enable innovators and 
private enterprise to access big data held by public authorities. 
 
Public entities harvest and hold huge amounts of data which is mostly sensitive or 
confidential in nature. Government and public institutions have an inherent interest in 
managing vigilantly this large amount of data, both to improve their performance and 
generate savings that allow for much sought-after spending cuts, but also to be able to 
provide open data to their citizens and business entities. At the same time, ensuring that 
private information is not disclosed. 
 
Big data management is a key asset for the public sector to better conduct its public mandate 
as well as distribute knowledge and information to the public, empowering citizens and 
business with open data and information. Although big data is not restricted to data protection 
issues in many instances personal data plays no role at all, privacy concerns are however an 
important factor in any big data strategy. The areas of user sentiment and social data analysis, 
cross referencing and mixing of data acquired from varied sources trigger high demands for a 
safe and secure legal framework that can protect both data users and suppliers. 
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6 BIG DATA DEFINITIONS IN SELECTED SECTORS 

6.1 BIG DATA DEFINITION IN OIL & GAS SECTOR 
The energy industry is a very diverse sector in Europe and it basically covers: 

• the petroleum industry, including oil companies, petroleum refiners, fuel transport and 
end-user sales at gas stations 

• the gas industry, including natural gas extraction, distribution and sales 
• the electrical power industry, including electricity generation, distribution and sales 
• the coal industry 
• the nuclear power industry, and 
• the renewable energy industry, comprising alternative energy and sustainable energy 

companies, including those involved in hydroelectric power, wind power, and solar 
power generation, and the manufacture, distribution and sale of alternative fuels. 

The sector is known for its rapid adoption and ability to adapt challenges of the digital age. 
The sector is responsible for the extraction of raw materials and using these materials to 
produce energy.  
 
As assets’ yields become harder to access and even harder to forecast, it is vital that the 
industry is collecting and maintaining its data effectively.  Big data is relevant for the whole 
energy sector.  However, since the industry sector is too vast, in this section, we will limit our 
discussion to Oil & Gas (O&G) industry. 
 
The main objective of the O&G industry is to deliver sources of energy. Different segments 
of O&G industry are shown in the Figure 5. 

 
Figure 5 Oil & Gas supply chain (Source: S. Oladunjoye, R. Price, N. Rahman, and J. Wells, Transfer 

pricing Transfer pricing in the oil & gas sector- A primer, International Tax Review, July 2012) 

 
Oil & Gas upstream industry is multifaceted, data-driven business with data volumes 
increasing exponentially (Feblowitz, 2012). The processes for Oil and Gas (O&G) 
exploration and production generate enormous amounts of data. The data volume and 
complexity grows day-to-day. With new data acquisition, processing and storage solutions, 
and the development of new devices to track a wider array of reservoir, wells, machinery and 
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personnel performance, over-all data is growing fast. Upstream organizations work 
simultaneously with both structured and unstructured data. They must capture and manage 
more data than ever and are striving to store, analyse and get useful information from these 
huge volumes of data. Under these conditions, the traditional analysis tools would fail but 
with the appropriate infrastructure and tools, Oil & Gas companies can get quantifiable value 
from these data.  

 
Figure 6 Type of trade and transaction flows in O&G industry 

Oil & Gas companies use thousands of sensors installed in subsurface wells and surface 
facilities to provide continuous data collecting, real-time monitoring of assets and 
environmental conditions (Brulé, 2013). Nowadays, organizations are capturing a greater 
volume and variety of data, at a faster velocity, than ever before. Other than sensor data, big 
data includes large volumes of semi-structured and unstructured data— varying from high-
frequency drilling and production measurements to daily, written operations logs—that 
rapidly produce terabytes of new data. It also comprises a huge collection of business data, 
such as internal financial results, and news on energy and petroleum competitors bidding on 
leases and making major capital investments. Therefore, right tools for data analysis should 
be used (Hems & al., 2013).  To support the real-time decision-making, Oil & Gas industry 
need tools that integrate and synthesize diverse data sources into a unified whole. Being able 
to process big data makes it possible to derive insight from the relationships that will surface 
when all of these sources are processed as a whole. But to unlock this value, Oil & Gas 
companies need access to the appropriate technology, tools, and expertise.  
 
6.1.1 Big Data Applications in Oil & Gas Sector 

O&G industries are basically concerned with managing the massive complexity of 
Exploration and Production (E&P) data dominated by physical media and incompatible 
proprietary digital storage systems. Typically energy companies spend in E&P data 
management, handling streams of often incompatible data from different stages of a 
production operation lifecycle. 
 
The industry is challenged by the time needed to process the data logs to their fullest extent 
as it requires enormous human intervention. It involves monotonous and time-consuming 
efforts and infrastructure cost to cleanse the data and derive meaningful context of the 
information embedded in these unstructured data in quick time.  
 
For example, the big data solution can benefit in creating an Integrated Digital Oil Well 
which will provide a unified Well Life Cycle Management (WLM) methodology to assess the 
business process and recommend a Well Master Strategy for automating critical metrics and 
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integrated workflows to apply Business Intelligence for optimizing business operations 
(Holdaway, 2009).  
 
The following table provides some business benefits28 which can be realized by using big 
data solutions in the O&G sector: 
 
Table 2 Business benefits using big data solutions 

Improved Operations 

Drive combined insights from a single E&P data management 
platform for structured, unstructured and real-time data. Reduce the 
operational non-productive time and HSE (health, safety and 
environment), regulatory compliance cost due to “real-time risk 
management”. 

Unified Ontology for 
O&G sector 

Provide personnel with access to searchable institutional knowledge 
that compensates for limited expert staffing and achieving accuracy 
and helping personnel find what they are looking for more quickly. 
The time saved in accessing and loading data is important given the 
shortage of experts. 

Faster Production 
Rate 

Accelerate time-to-production by minimizing data bottlenecks that 
reduce asset team productivity. Enable faster decision-making by 
Geologist & Geophysicists and operational teams as risk profiling 
and forecasting is performed. 

Asset Development 
Improve asset uptime and predict the need for asset related 
operational demands. 
 

Enhanced safety and 
efficiency 

Enhanced safety and efficiency in drilling operation by linking well 
and drilling data with physical models. This development is also 
paving the way for integrating these systems into the control system, 
which in turn can/will facilitate autonomous drilling. 

 
By combination of big data and advanced analytics in Exploration and Production activities, 
experts can accomplish strategic and operational decision-making. The challenge in 
exploration is to provide quick, faultless, and automated access to structured and unstructured 
seismic data for geophysical interpretation. This linkage enables geotechnical professionals to 
understand the context in which seismic surveys were conducted, and it makes supplementary 
information available in real time to support the decision-making process. Additional benefits 
are gained when well master data is integrated with unstructured information. Correlating 
seismic and well production data is critical to enabling unified production and profitability 
analysis. 
 
The areas where the big data analytics can benefit O&G exploration include:  

• Historical drilling and production data help geologists and geophysicists verify their 
assumptions in their analysis of a field where environmental regulations restrict new 

                                                
28 http://www.igate.com/industries/energy  
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surveys (Feblowitz, 2012). Integrate enterprise data with real-time production data to 
deliver new insights to operating teams for enriching exploration efforts (Hems et al., 
2013).  

•  Conceive competitive intelligence using Analytics applied to geospatial data, O&G 
reports and other syndicated feeds in order to bid for new prospects (Hems et al., 
2013).  

• By means of advanced analytics based on Hadoop and distributed Database for 
storage, quick visualization and comprehensive processing and imaging of seismic 
data to identify potentially productive seismic trace signatures previously (Hems et 
al., 2013).  

 

Drilling and Completion  
By using historical drilling data it is feasible to quantitatively identify best and worst 
practices that impact the target. The intent is that these insights will improve future drilling 
operations in unconventional plays and potentially in conventional fields.  
 
Real-time information returned from supervisory control and data acquisition systems on 
well-heads can be used to grab prospects that boost asset performance and optimize 
production (Hems et al., 2013).  
 
Associated fields where analytics can enhance geoscience include: 

• Combine geologic measurement and scientific models into routine processes, such as 
shale development. 

• Involve cutting-edge subsurface models and conduct detailed engineering studies on 
wells to identify commercial prospects earlier and with less risk. 

• Utilise new models and simulators to leverage exploration activities to recognize the 
earth’s subsurface better and to deliver more reasonable energy, safely and 
sustainably. 

 
Production  

Big data also plays an important role in production and operation work. Oil recovery rates 
can be improved by integrating and analysing seismic, drilling, and production data to 
provide self-service business intelligence to reservoir engineers.  

• Big data analytics applied to seismic, drilling, and production data could help 
reservoir engineers map changes in the reservoir over time and offer decision support 
to production engineers for making changes in lifting methods. This approach could 
also be used to guide fracking in shale gas plays (Feblowitz, 2012).  

• Identify how maintenance intervals are affected by variables such as pressure, 
temperature, volume, shock, and vibration to prevent failure and associated downtime. 

• Forecasting production at thousands of wells. Aging wells where the forecast does not 
meet a predetermined production threshold are flagged for immediate remediation 
(Feblowitz, 2012).  

• Real time analytical solutions provide the mission critical business needs like 
predicting the behaviour of a device under specific set of conditions and defining the 
appropriate action strategy. Real-time SCADA29 and process control systems 

                                                
29 http://scada.com/  
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combined with analytics tools help O&G producer to optimize resource allocation and 
prices by using scalable computing technologies to determine optimum commodity 
pricing. They also, help to make more real time decisions with fewer engineers 
(Hollingsworth, 2013).  

• By detecting well problems before they become critical. 
 

Reservoir Engineering  
O&G companies improve understanding of future strategy based on available oil for a better 
identification of reservoirs and reserves by integrating real-time data into the earth model 
both on the rig and in the office. They also predict the likelihoods of success of turning 
reservoir into a production well by:  

• Engaging cutting-edge subsurface models and conduct comprehensive engineering 
studies on wells to identify commercial prospects earlier and with less risk (Feblowitz, 
2012).  

• Use big data tools to understand the earth’s subsurface better and to deliver more 
affordable energy, safely and sustainably.  

 
Equipment maintenance 

In upstream, if pressure, volume, and temperature can be collected and analysed concurrently 
and compared with the past history of equipment failure, advanced analytics can be applied to 
predict potential failures. Several upstream operations are in remote locations or on ships, so 
being able to plan maintenance on critical assets is vital, especially if work requires purchase 
of specialized equipment (Feblowitz, 2012). Specialists often use data collected from pumps 
and wells to adjust repair schedules and prevent or anticipate failure. Better predictive 
maintenance becomes possible (Hems et al., 2013):   

• Comprehend how maintenance intervals are affected by variables such as pressure, 
temperature, volume, shock, and vibration to prevent failure and associated downtime.  

• Use this insight to predict equipment failures and enable teams to efficiently schedule 
equipment maintenance in the field.  

• Integrate well and tool maintenance data with supply chain information to optimize 
scheduling of shop floor maintenance. 

 
6.1.2 Big Data Challenges in O&G Sector 

There are several challenges in the O&G sector. It is an imperative task to extract business-
critical intelligence and insights from large volumes of data in a complex environment of 
legacy diverse systems and fragmented and decentralized solutions that are common in the 
O&G sector.  
 
Like generic big data, the O&G Data is also characterized by the 5V (Baaziz, 13):  
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Table 3 5V in O&G sector 

Volume 

 
-­‐ Seismic data acquisition 
-­‐ Seismic processing  

Variety 

-­‐ Structured: standard and data models such Professional Petroleum Data 
Model30 (PPDM) 

-­‐ Unstructured: images, log curves, well log, maps, audio, video, etc.  
-­‐ Semi-structured: processed data such as analysis, interpretations, daily 

drilling reports, etc.  

Velocity 
-­‐ Real-time streaming data from well-heads, drilling equipment,  and sensors   

-­‐ Relevant data fragments needs to be automatically detected, assessed and 
acted upon. 

Veracity 
 

-­‐ Improve data quality  
-­‐ Run integrated asset models  
-­‐ Combination of seismic, drilling and production data  
-­‐ Drive innovation with unconventional resources (shale gas, tight oil)  
-­‐ Pre-processing to identify data anomalies  

Value 

-­‐ Increase speed to first oil  
-­‐ Enhancing production  
-­‐ Reduce costs, such as Non Productive Time (NPT)  
-­‐ Reduce risks, especially in the areas of Safety and Environment 

 
Generally O&G companies are concerned with challenges associated in managing complexity 
of E&P data such as seismic, drilling, well and production. Furthermore upstream data is 
rising exponentially in the form of both structured as well as unstructured data. The common 
challenges and possible approaches to tackle these challenges are listed in the Table 4.  
 
Table 4 Big Data Challenges in the O&G Industry 

Challenges Approach 

Data from different sources 
(structured, unstructured  & real-
time) 

 

Leverage the power of Hadoop , NoSQL 
databases for scalable information management 
systems in batch and near-real time streams to 
fulfil need for homogenous, integrated and 
perspective based information 

Huge  volume of domain specific 
information embedded in each data 
cluster 

Agile big data techniques, distributed processing, 
data mining for Oil Well drill parameter 
configuration models 

Use of different software products 
for data interpretation and decision 

Agile big data techniques for consistent asset 
models, optimized OpEx and CapEx, effective 

                                                
30 https://www.ppdm.org/ppdm-standards 
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making monitoring and integration between operation and 
business system 

Difficulty in using  data  to quickly 
and efficiently respond to user 
needs 

Analysing Oil Well productivity, planning, 
uncertainty in delivery of energy and managing 
storage 

Huge expenses on E&P data 
management, handling streams of 
often incompatible data 
 

Empower consumers with web, mobile enabled 
dashboards by easy slice and dice of data, 
planning innovative services and predictive risk 
modelling 

 

6.2 BIG DATA DEFINITION IN HEALTHCARE 

The healthcare sector is facing tremendous challenges. On the one hand, there is a continuous 
demand to improve the provision of preventive, curative and rehabilitative medical services. 
On the other hand, healthcare is one of the main governments’ expenditures, and there is 
ongoing pressure to control their growth – this is especially difficult in Europe with an aging 
population and the emergence of new and more expensive treatments. 
 
Big data can give response to some of the previous challenges by exploiting the riches of 
medical datasets. There are four main sources of medical data that can be exploited31: 

• Clinical data: electronic health records (EHRs) with patient diagnostics, laboratory 
values or medical images. 

• Pharmaceutical R&D data: clinical trials, drug datasets, etc. 
• Activity (claims) and cost data such as utilization of healthcare and cost estimates. 
• Patient behaviour and sentiment data. 

For all the promise of improving healthcare through data, the surprising reality is that big data 
is not utilised in healthcare settings32. In fact, data continues to be regarded by many as a 
“waste product” of the system: “In many industries, we collect a lot of data, and just haven’t 
learned how to analyse and use it. In healthcare, arguably, we don’t collect big data at all” – 
said Michael Chui of McKinsey & Co2.  
 
Nevertheless, some authors consider that the application of big data to healthcare is 
inevitable33. The digitization of medical records is a prerequisite, while the combination of 
medical data sources can significantly leverage the value of the healthcare data deluge. As a 
note of caution, the complexity of the medical domain is much higher than any other sector in 
which big data has consolidated, e.g. retailing.  
In the remaining of this section we will succinctly describe the main applications of big data 
in healthcare, as well as the most relevant data challenges so far. We do so by conducting a 
literature review of some of the most relevant works that analyse big data in healthcare. 

                                                
31 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The 
next frontier for innovation, competition, and productivity. McKinsey Global Institute. 
32 Bollier, D. (rapporteur) (2010). The promise and peril of big data. Washington, DC, USA: Aspen Institute, 
Communications and Society Program. 
33 Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 
309(13), 1351-1352. 
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6.2.1 Big Data Applications in the Healthcare Sector 
Table 5 presents the most promising big data applications in healthcare, along with the 
seminal works that identify them. 
 
Table 5 – Main big data applications in healthcare 

Generation of new knowledge Bollier34, Manyika et al.35, Murdoch & 
Detsky36  

Improved drug research and development Bollier4, Manyika et al.5 

Information access and clinical decision 
systems 

Løvoll & Kadal37, Manyika et al.5, Murdoch 
& Detsky6 

Patient monitoring and management Løvoll & Kadal7, Manyika et al.5 

Personalized medicine Bollier4, Manyika et al.5, Murdoch & 
Detsky6 

Epidemiology surveillance Bollier4, Løvoll & Kadal7 

Transparency about medical data Manyika et al.5 

Participatory healthcare Bollier4, Manyika et al.5, Murdoch & 
Detsky6 

 
Generation of new knowledge 
Medicine typically relies on experimental studies such as randomized trials for generating 
medical evidence. Big data offers the potential to derive further knowledge by analysing the 
data contained within EHRs – especially text-based annotations. This way, it is possible to 
obtain observational evidence for clinical questions that could not be possible otherwise. 
 
Improved drug research and development 
Clinical drug research often employs small sets of data, especially after drugs are introduced 
to the marketplace4. Access to larger datasets of patient populations can greatly improve drug 
surveillance. Other possible uses in this area include the predictive modelling for new drugs 
in order to detect the most promising allocation of resources, as well as analysing clinical 
trials and patient records to detect adverse effects5. 
 
Information access and clinical decision systems 

                                                
34 Bollier, D. (rapporteur) (2010). The promise and peril of big data. Washington, DC, USA: Aspen Institute, 
Communications and Society Program. 
35 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The 
next frontier for innovation, competition, and productivity. McKinsey Global Institute. 
36 Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 
309(13), 1351-1352. 
37 Løvoll, G. & Kadal, J. G. (2014). Big data - the new data reality and industry impact. DNV GL Strategic 
Research & Innovation. 
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Since there are so many medical publications it is difficult for physicians to stay current. 
Medical guidelines and literature reviews are especially important for compiling clinical 
practice, although physicians still have problems for obtaining relevant information when 
dealing with complex or multiple illnesses6. Better query systems and visualization 
techniques can help to improve data access. In addition, clinical decision systems can check 
potential problems in a treatment by analysing EHRs and medical guidelines. 
 
Patient monitoring and management 
Chronically ill patients consume many hospital resources7. A remote monitoring system can 
be employed to treat such patients at their homes, since anomalies in their condition can be 
detected at an early stage. 
 
Personalized medicine 
Big data can help to translate personalized medicine practices into clinical practice. This is 
possible through the analysis of large datasets, e.g. genomics, with EHR data. 
 
Epidemiological surveillance 
One of the tasks of health authorities is to monitor the spread of certain diseases such as the 
flu. While this information is typically obtained from hospitals and clinics, it is possible to 
early detect the diffusion of a contagious disease by using social media data. Google Flu 
Trends38 is an example of such a service that analyses live flu-related searches to early 
predict flu activity. 
 
Transparency about medical data 
Opening up medical data can help to identify performance opportunities for medical 
professionals, processes and institutions. In addition, patients can make more informed 
healthcare decisions, e.g. choosing a clinic. Moreover, data transparency can create a 
competition incentive to improve performance, even without a tangible reward. 
 
Participatory healthcare 
Patients can play a more active role in their healthcare by giving them direct access to 
healthcare data. They are increasingly using the Web to find information about their injuries 
and illnesses, while there are emerging social networks for exchanging healthcare 
information and providing support to each other, e.g. PatientsLikeMe39.   
 
6.2.2 Big Data Challenges in the Healthcare Sector 

Despite the potential benefits of big data in healthcare, there are several challenges that 
should be addressed. The prominent ones from our literature review are shown in Table 6. 
Table 6 Big data challenges in healthcare 

Security and privacy rights protection Bollier40, Manyika et al.41, Murdoch & 
Detsky42  

                                                
38 http://www.google.org/flutrends/  
39 http://www.patientslikeme.com/  
40 Bollier, D. (rapporteur) (2010). The promise and peril of big data. Washington, DC, USA: Aspen Institute, 
Communications and Society Program. 
41 Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., & Byers, A. H. (2011). Big data: The 
next frontier for innovation, competition, and productivity. McKinsey Global Institute. 
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Fragmentation and limited interoperability of 
EHR platforms 

Bollier10, Manyika et al.11, Murdoch & 
Detsky12 

Structural issues and resistance to change Bollier10, Manyika et al.11, Murdoch & 
Detsky12 

 
Security and privacy rights protection 
Personal data in healthcare is especially sensitive, and there is potential for discrimination 
based on it. Therefore, security and privacy rights protection are critical11. Anonymation 
techniques should be taken and their efficacy tested before sharing personal healthcare data 
with another party10. 
 
Fragmentation and limited interoperability of EHR platforms  
Murdoch & Detsky report that current EHR platforms are fragmented and have limited 
interoperability12. This is mainly due to the variety of medical data and the diversity of 
incompatible data formats. As a result, many datasets currently remain locked in silos that do 
not communicate. 
 
Structural issues and resistance to change 
While the previous challenge is related to technology, there are other structural issues that 
must be tackled for the adoption of big data in healthcare. For example, there are no strong 
incentives or champions for data use within hospitals or clinician groups43. Moreover, clinics, 
pharmaceutical companies, physicians and patients often believe that their interests will be 
harmed by the collection and use of data44: 

• Patients worry that the disclosure of their health records could result in discriminatory 
treatment or have a negative effect in their insurance. 

• Physicians are traditionally rewarded by frequent visits by patients; so preventive care 
and better health outcomes can negatively affect their income. 

• Pharmaceutical companies are reluctant to carry out post-marketing drug surveillance 
in order to not reveal unnoticed adverse effects. 

• Clinics could reduce their revenue for treatments found to be not effective, especially 
in comparison with other clinics. 

We conclude this chapter with an assessment of the characteristics of medical data, according 
to the 5V model proposed in this deliverable. This assessment is depicted in Table 7. 
Table 7 5V in Healthcare 

Volume 
-­‐ Massive datasets from electronic health records (EHRs) 
-­‐ Large drug datasets 
-­‐ Huge R&D datasets, e.g. genomics 

Variety -­‐ Quantitative data, e.g. laboratory values 
-­‐ Qualitative data, e.g. text documents, medical images, demographics  

                                                                                                                                                  
42 Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 
309(13), 1351-1352. 
43 Murdoch, T. B., & Detsky, A. S. (2013). The inevitable application of big data to health care. JAMA, 
309(13), 1351-1352. 
44 Bollier, D. (rapporteur) (2010). The promise and peril of big data. Washington, DC, USA: Aspen Institute, 
Communications and Society Program. 
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-­‐ Transactional data, e.g. records of medical delivery 

Velocity -­‐ Patient monitoring, especially in intensive healthcare 

Veracity 
 

-­‐ Improve data quality  
-­‐ Detection of inconsistencies and anomalies  
-­‐ Combination of medical data  

Value 
-­‐ Knowledge creation from the analysis of EHRs 
-­‐ Improved access to data, e.g. clinical guidelines 
-­‐ Improving efficiency and reducing operational costs 

 

6.3 BIG DATA DEFINITION IN ENVIRONMENT 

Environment (and earth science) sector is rapidly entering the new paradigm of large scale, 
data-intensive analytics to understand our complex and ever changing planet. Environmental 
science is an excellent proving ground for big-data initiatives – it has a wide variety and large 
volumes of data, which need to be captured rapidly. Environmental data sets are growing in 
size, variety and complexity at an unprecedented rate, creating new challenges and 
opportunities for their access, manipulation and archiving. With the advent of modern, real-
time analytics, massive environmental data sets are faster and cheaper to obtain than ever 
before, and the vast universe of big data applications is intersecting the realm of economic 
feasibility. 
  
Big environmental data can be defined as massive or complex sets of structured data (e.g., 
databases of environmental data, such as chemistry measurements) or unstructured data (e.g., 
photos or historical records) that may be pertinent to an environmental issue or query at hand. 
These related data sets may not be readily available (i.e., in digital format) or apparently 
related at first glance, nor are they easily analysed by conventional channels. Examples 
include “long” data, such as many analytical results collected over decades from a lengthy 
remedial investigation, and “wide” data, such as water, sediment, soil, and tissue samples 
measured for chemistry, toxicity, and community structure, along with bathymetric records, 
historical site photos, and processing records. 
 

6.3.1 Big data applications in environment sector 
The remote sensing and Earth Observation communities are paying a lot of attention to big 
data since new sensors with high spatial, temporal and radiometric resolution are increasingly 
providing an ever growing data amount (ESA 2013). But it is expected that also in-situ 
observatories, including crowdsourcing-oriented platforms and mobile tools, providing a 
large amount of small heterogeneous datasets, will require big data tools in place. In urban 
settings, for example, big data strategies will surely require to enable access and analysis of 
the immense amount of social and environmental observation data stream that is collected 
from intelligent sensors and citizens (Provost & Fawcett, 2013). 
 
Steed et al. (2013) describe a visual big data analytics system, called the Exploratory Data 
analysis ENvironment (EDEN), with specific application to the analysis of complex Earth 
system simulation data sets. Hampton et al. (2013) encourage ecologists to join large 
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scientific communities and global initiatives to address scientific and societal problems by 
making their small data sets publish in big repositories to harness its collective power. 
 
If ecologists’ data, and in general scientists’, have proved so valuable, surely equivalent 
benefits could be gained by sharing and integrating the data generated by people. The 
unprecedented combination of ubiquitous connectivity, today’s mobile technology, and 
ubiquitous sensing allowed users to become citizen-scientist, i.e. to become actively involved 
in different stages of research projects (e.g. Citizen Science Alliance45, Extreme Citizen 
Science46). From this standpoint, citizens at different level of technical expertise are 
empowered to collect, produce, and publish environmental observations in the interest of the 
research and society. In this context, participatory sensing and citizen science projects like 
eBird47 demonstrate the value of sharing small, localized observations that, when aggregated 
in integrated in big data repositories, build a deeper and broader understanding of ecological 
phenomena. 
 
Scholes et al. (2012) expose the need for combining different types of biodiversity data into 
an integrated, global system for biodiversity in the realm of the Group on Earth Observations 
Biodiversity network (GEO-BON). The authors stated that “a comprehensive and integrated 
observation system for biodiversity at several scales, from the subnational to the global for 
the purpose of protecting and improving biodiversity and human well-being. The system 
should help to compare the status of biodiversity at different places and track changes in 
biodiversity at a given place over time”. 
 
Along the same lines Havlik et al. (2011) observed the importance of user communities in 
generating valuable environmental observation data. They noted, however, that “these 
communities’ environmental observations represent a wealth of information which is 
currently hardly used or used only in isolation and therefore in need of integration with other 
information sources, which will lead to a paradigm shift from a mere Sensor Web to an 
Observation Web” (Havlik et al., 2011; p. 3874). So, citizen science data (crowdsourcing, 
user-generated data) is essentially a form of data sharing, and the challenges of using citizen-
science data reflect classic data-sharing and data integration challenges more generally 
present also in big data analytics, service-oriented architectures and in cloud computing. 
 
In the big data and citizen science context, the ENVIROFI project48 has paved a path towards 
the seamless integration of citizen-generated and research-generated environmental 
observation data. The set of ENVIROFI applications are clear examples of mobile cloud 
computing (Fernando et al., 2013) which take advantage of data context aspects (e.g. user’s 
location, objects in the vicinity, etc.) and run mobile applications based on remote cloud-
based services. 
 
These aspects become even more challenging when multidisciplinary applications are 
concerned. Indeed the science of today is required to answer to complex and urgent questions 
involving several disciplinary domains. Combining weather and chemical models to estimate 
air quality and pollution and their impact on animal and human health, integrating climate 
change scenarios and ecosystems data to predict how biodiversity is affected (Nativi et al., 

                                                
45 http://www.citizensciencealliance.org/  
46 http://www.ucl.ac.uk/excites  
47 http://www.birds.cornell.edu/citsci/  
48 http://www.envirofi.eu/  
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2009) or the possible invasion of alien species are just examples of answers that we currently 
need. 
 
This imposes heavy requirements to the digital infrastructures supporting these scenarios 
since they need to grow becoming smart cyber-infrastructures capable to deal with big 
volumes of heterogeneous datasets, but also to combine Environmental Sciences models in 
workflows supporting complex scientific Business Processes (Nativi et al., 2013). 
ENVIROFI addressed these challenges in its pilots, exploring the use of FI-WARE49 services 
for designing and running workflows, and in the design and development of specific 
mediation enablers (e.g. brokers) supporting different standard (e.g. from OGC or ISO) or 
community-specific service interfaces, metadata and data models. 
 

6.3.2 Big data challenges in environment sector 
According to many scientists and technologists big data would be able to support an entirely 
new approach to science based on data intensive scientific discovery, named the Fourth 
Paradigm (Hey et al., 2009). However, it requires innovative enabling technologies for data 
management, analytics, delivery, and so forth. Indeed many research efforts are now directed 
towards the development of new technologies or paradigms to support big data requirements. 
 
While the solutions above address mainly the Volume and Velocity axes, other architectural 
and technological solutions are oriented to address the Variety due to heterogeneity of 
datasets. The brokered architectures, as an evolution of the Mediation-based approach 
(Bigagli, 2006), demonstrated a valuable solution for efficiently connecting existing 
infrastructures (Nativi et al., 2013) and providing heterogeneous resources to big System of 
Systems, such as the Global Earth Observation System of Systems (GEOSS). 
 
In the scientific domain, several disciplinary areas are facing big data challenges as part of an 
innovative approach to science usually referred as e-Science. Environmental Sciences have 
been some of the disciplinary domains mostly pushing to, and potentially benefiting from, the 
e-Science approach, intended as “global collaboration in key areas of science, and the next 
generation of infrastructure that will enable it.” (Hey & Trefethen, 2002). They were in the 
forefront in many initiatives on distributed computing trying to realize the e-Science vision, 
including High Performance Computing, grid technologies (Petitdidier, Cossu, Mazzetti, Fox, 
Schwichtenberg, & Som de Cerff, 2009) and cloud services. The reason is that Environmental 
Sciences raise significant challenges in terms of storage and computing capabilities, as: 

1. They encompass a wide range of applications: from disciplinary sciences (e.g. 
climate, Ocean, Geology) to the multidisciplinary study of the Earth as a System (the 
so-called Earth System Science). Therefore Environmental Sciences require: 

a. Covering of a diverse temporal range (such as for Climate and Geological 
studies); 

b. Supporting a wide spatial coverage (the whole Earth, for global studies, and 
beyond including planetary sciences); 

c. Modelling many different geospatial data types, including profiles, 
trajectories, regularly and irregularly gridded data, volumes, and so on; 

                                                
49 http://www.fi-ware.org/  
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2. They are based on Earth Observation, requiring handling observations and 
measurements coming from in-situ and remote-sensing data with ever-growing 
spatial, temporal, and radiometric resolution. 

3. They make use of complex scientific modelling for deriving information from the 
large amount of observations and measurements. 

4. They are bases on simulations to study complex scenarios (e.g. for Climate Change). 
This points out that - referring to the big data V’s - big Volume, big Variety, and high 
Velocity are typical issues of Environmental Sciences data systems. 

 

6.4 BIG DATA DEFINITION IN CRISIS INFORMATICS 

This sub-section examines the use of “big data” in crisis informatics. Crisis informatics is 
used as an umbrella term that “includes empirical study as well as socially and behaviourally 
conscious ICT development and deployment. Both research and development of ICT for 
crisis situations need to work from a united perspective of the information, disaster, and 
technical sciences”.50 Crisis informatics has links to a number of activity areas around crisis 
management. These include preparedness (training, baseline information gathering, 
simulations, and conflict prevention), response (coordination, information gathering, and 
provision of humanitarian relief or aid) and recovery (resource allocation, population 
monitoring, development). As such, the discussion in this piece is not limited to crisis 
management, but also includes literature and examples related to humanitarianism, 
emergency management, first response and socio-economic development. However, crisis 
informatics and its relationship with big data specifically, is a new and emerging area of 
research. The first use of crisis informatics is recorded in 200751, and its relationship with 
large-scale data has been the subject of serious investigation since 2011. Given the nascent 
nature of big data and crisis informatics, this examination relies heavily on grey literature, 
mass media and Internet resources, as these are the areas in which the most information on 
big data and crisis informatics can be located given the often protracted timeline associated 
with the academic publishing process. Nevertheless, this sub-section seeks to outline the 
relationship between big data and crisis informatics in order to begin to explore and delineate 
a definition of “big data” within crisis informatics, and to contribute to the overall effort to 
produce a BYTE definition of “big data”.  
 

6.4.1 Big data definitions and typologies  
Reports from the UN, the International Federation of the Red Cross and other resources have 
offered a range of definitions and typologies of “big data” in areas related to crisis 
informatics. With respect to definitions, these have included attempts at specified definitions, 
as well as more general definitions via the identification of crisis points. In crisis-related 
documents, the UN Global Pulse initiative has made the most effort to define big data. First, 
the Big Data for Development report states that big data is “an umbrella term for the 
explosion in the quantity and diversity of high frequency digital data”.52 Later in the 
document, the authors expand upon this by stating that: 

                                                
50 Palen, L., S. Vieweg, J. Sutton, S.B. Liu & A. Hughes, “Crisis Informatics: Studying Crisis in a Networked 
World”, Third International Conference on e-Social Science, Ann Arbor, Michigan, October 7-9, 2007. 
51 Ibid. 
52 UN Global Pulse, Big Data for Development: Challenges & Opportunities, United Nations, New York, May 
2012, p. 4. http://unglobalpulse.org/sites/default/files/BigDataforDevelopment-UNGlobalPulseJune2012.pdf 
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"Big Data" is a popular phrase used to describe a massive volume of both structured 
and unstructured data that is so large that it's difficult to process with traditional 
database and software techniques. The characteristics which broadly distinguish big 
data are sometimes called the “3 V’s”: more volume, more variety and higher rates of 
velocity. This data is known as "big data" because, as the term suggests, it is huge in 
both scope and power.53 

Here, UN Global Pulse specifically makes reference to the original, Gartner definition of big 
data, by invoking the three Vs. Similarly, although Patrick Meier, a key figure in digital 
humanitarianism, does not explicitly seek to define big data, he also invokes the Vs in his 
discussion about a crisis point his team experienced in relation to their capacity to analyse 
data. Describing the Ushahidi platform used to map text messages and social media posts 
after the Haitian earthquake, he notes, “We quickly realized that our platform was not 
equipped to handle this high volume and velocity of urgent information”.54 Thus, for Meier 
and Ushahidi, it appears that “big data” emerged at the point of crisis in established 
computing infrastructures. Others have declined to specifically attempt to define big data and 
have instead opted to describe its effects. This may include a focus on the ability of high 
volumes of complex data to assist in “decision-making processes”55, to a focus on leveraging 
“complex real-time” data “for the common good”56. 
  
These different definition streams largely conform to attempts to define “big data” outside of 
the specific domain of crisis management. As indicated in Section 3, many definitions rely 
upon the Gartner definition of the three Vs, sometimes even expanding this to include 
additional Vs. Thus, the Gartner definition remains foundational. Additionally, there is also a 
sub-set of crisis informatics stakeholders that view “big data” as a continuation and 
augmentation of existing processes that is not worthy of the “hype” with which they are 
associated.57 However, what is not present in these definitions, or texts associated with 
definition, is a perspective common to many sociology, legal and privacy experts that 
foregrounds potential human rights infringements and unanticipated consequences of 
collecting, linking and mining large data sets; and the specific intention to use this 
information to segregate and profile individuals.58 Yet, the focus of crisis informatics and 
related disciplines is often the potentials and possibilities of big data to alleviate human 
suffering and assist in protecting human rights. Furthermore, these issues are recognized 
within the literature surrounding big data in crisis informatics more broadly, despite the fact 
that they are not specifically considered in relation to definitions. 
 

                                                
53 Ibid., p. 13.  
54 Meier, Patrick, “Harnessing the Power of Big Data to Deliver Humanitarian Response”, Forbes Magazine, 2 
May 2013. 
http://www.forbes.com/sites/skollworldforum/2013/05/02/crisis-maps-harnessing-the-power-of-big-data-to-
deliver-humanitarian-assistance/ 
55 Heaton, Brian, “Harnessing big data: Emergency managers can benefit from big data during the early stages 
of a disaster”, Emergency Management, July/August 2013, p. 44. 
56 Letouzé, Emmanuel Patrick Meier and Patrick Vinck, “Big Data for Conflict Prevention: New Oil and Old 
Fires”, in Franceso Mancini (ed.), New Technology and the Prevention of Violence and Conflict, International 
Peace Institute, New York, April 2013, p. 7 
57 Heaton, op. cit., 2013, p. 44. 
58 See for example, Lyon, David, “Surveillance, Snowden, and Big Data: Capacities, consequences, critique”, 
Big Data & Society, Vol. 1, July–December 2014, pp. 1–13, Boyd, Danah and Kate Crawford, “Critical 
questions for Big Data: Provocations for a cultural, technological and scholarly phenomenon”, Information, 
Communication and Society, Vol. 15, No. 5, 2012, pp. 662–679, and Crawford, Kate, “Think Again: Big Data”, 
Foreign Policy, 9 May 2013. www.foreignpolicy.com/articles/2013/05/09/think_again_big_data 
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Typologies 

In addition to these definitions, specific types of data are particularly associated with big data 
and crisis. These include:  
Table 8 Types of data associated with big data and crisis 

• Social media data (text, visual, moving 
image, audio) 

• Mass media data (text, visual, moving 
image, audio) 

• Geographical Information System data 
(satellite and/or drone) 

• Official publications (text) 

• Global positioning data (principally 
associated with mobile phones) 

• Climate information 

• Transaction data from smart phones, cash 
programmes or other on-line transactions 

• Digital health records 

• Humanitarian or other organisations’ 
databases  

• Mapping information 

The Big Data for Development report, specifically, has also developed typologies to assist in 
circumscribing “big data” as opposed to other types of data. According to the report, big data 
often include the following features: 

• Digitally generated – i.e. the data are created digitally (as opposed to being digitised 
manually), and can be stored using a series of ones and zeros, and thus can be 
manipulated by computers. 

• Passively produced – a byproduct of our daily lives or interaction with digital 
services 

• Automatically collected – i.e. there is a system in place that extracts and stores the 
relevant data as it is generated 

• Geographically or temporally trackable – e.g. mobile phone location data or call 
duration time. 

• Continuously analysed – i.e. information is relevant to human well-being and 
development and can be analysed in real-time59 

In addition, the report constructs a taxonomy of relevant digital sources, again with specific 
relation to big data for development, including: 

• Data Exhaust—passively collected transactional data from people’s use of digital 
services like mobile phones, purchases, web searches, etc., and/or operational metrics 
and other real-time data collected by UN agencies, NGOs and other aid organizations 
to monitor their projects and programs (e.g.,, stock levels, school attendance); these 
digital services create networked sensors of human behavior;  

• Online Information – web content such as news media and social media interactions 
(e.g., blogs, Twitter), news articles obituaries, e-commerce, job postings; this 
approach considers web usage and content as a sensor of human intent, sentiments, 
perceptions, and want;  

                                                
59 UN Global Pulse, op cit., 2012, p. 15. The authors of the Big Data for Development report note that real-time 
in this context should be understood as a relatively short and relevant time period. 
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• Physical Sensors – satellite or infrared imagery of changing landscapes, traffic 
patterns, light emissions, urban development and topographic changes, etc; this 
approach focuses on remote sensing of changes in human activity; 

• Citizen Reporting or Crowd-sourced Data – Information actively produced or 
submitted by citizens through mobile phone-based surveys, hotlines, user generated 
maps, etc; While not passively produced, this is a key information source for 
verification and feedback.60 

The UN Office for the Coordination of Humanitarian Affairs (OCHA) has stated that big data 
sets often originate from three different sources, individuals, governments and the private 
sector, and they construct the following matrix to associate data sources with particular types 
of data: 
Table 9: OCHA matrix of data sources and types61 

Source Data type 

Individuals Data “exhausts” from devices 

Social media 
SMS 

Governments Census and geo-data 
Tax information 

Public indicators (e.g. health) 

Private sector Transaction data 

Spending information 
GSM aggregate data 

This matrix is particularly useful in demonstrating that big data and crisis informatics 
requires different types of stakeholders to work together to make big data available to crisis 
managers, humanitarians, first responders and other actors. It also demonstrates the different 
varieties of data that crisis informatics professionals are working with in this sphere. As the 
discussion of applications below demonstrates, GIS data and social media data, particularly 
for mapping purposes are particularly visible in this area. According to Heaton, this is 
because such information is easiest to come by62; it is often open source data and thus 
accessible immediately and without restriction to authorities and humanitarian organizations 
who often do not have budget or time to negotiate with private companies about proprietary 
data.  In terms of whether this data is considered “big”, research by the Woodrow Wilson 
Center has indicated “Hurricane Sandy in 2012 generated more than 20 million tweets, 
several terrabytes of satellite and aircraft imagery, and an incalculable number of emails, 
SMS/test messages, and documents.”63 While this volume may not be considered “big data” 
in some contexts, governments, humanitarian organizations, emergency managers, local 

                                                
60 Ibid., p. 16. 
61 UN Office for the Coordination of Humanitarian Affairs (OCHA), Humanitarianism in the network age: 
Including world humanitarian data and trends 2012, United Nations, 2013, p. 26. 
62 Heaton, op cit., 2013.  
63 Crowley, John, Connecting Grassroots and Government for Disaster Response, Commons Lab, Woodrow 
Wilson International Center for Scholars, Washington DC, 2013, p. 22. 
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authorities and other organisations are not themselves data processing experts, nor do they 
have the resources to hire such experts for occasional occurrences. Given this lack of 
expertise, attempting to identify useful information from this relatively high volume of 
different types of data, being generated over a relatively short period of time and under 
conditions of enormous pressure certainly represents a crisis point in data processing that 
signals a need for new systems, processes, architectures and organisations to meet this 
challenge. As such, although it is a new field, crisis informatics certainly represents as a 
specific case of “big data” practice. 
 

6.4.2 Big data applications in crisis informatics  

There are a number of big data analytics in the crisis informatics sector when the data sets 
above are combined and mined to create new insights. Many of these applications are in a 
very early stage of development given the relative immaturity of the big data in this area. 
However, information gathered from a number of recent reports, media articles and web 
resources demonstrates that big data for crisis informatics has become a diverse and dynamic 
area. Furthermore, these applications are being used both to bring information in to 
professional stakeholders and to disseminate and exchange information with members of the 
public.  
 
The following is not intended to be an exhaustive taxonomy of data applications in crisis 
management and response. Specifically, some practices – e.g., the use of drones to aid search 
and rescue, mapping, etc. – have generated significant media attention, but they are not big 
data applications, as such. They may support, or be fed into, big data processing, but they are 
not “big data” in and of themselves as the relative immaturity of the drone sector means that 
they are often restricted to collecting one or two items of data.64 As such, the following 
categories focus on the combination of different data resources in order to produce new 
information that would not have been available by focusing on data sets in isolation. 
 
The International Federation of the Red Cross and Red Crescent Societies (ICRC) World 
Disasters Report offers an initial categorization of the use of big data in crisis informatics. 
This includes the following categories:  

• Situational analysis 
• Needs analysis 
• Coordination and resource allocation 
• Awareness raising 
• Community-driven response65 

This 2013 categorization demonstrates that the ICRC recognizes that big data can be used to 
bring data in to professionals to assist them in decision making in terms of understanding the 
situation, identifying needs and coordinating personnel and other resources in order to 
respond effectively. It also recognizes that members of the community are key stakeholders 
in the crisis response domain, and that other applications include the use of big data to raise 
awareness about risks, needs and to encourage members of the public to get involved. 
However, given the context in which it is produced, this categorization understandably 

                                                
64 This is set to change as drone technology develops and matures, and in the near future drones may emerge as 
big data platforms in their own right.  
65 International Federation of Red Cross and Red Crescent Societies, World Disasters Report: Focus on 
technology and the future of humanitarian action, Geneva, 2013. 
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focuses on response activities and the immediate and mid-term aftermath of the event. The 
categorization offered by this report is based on multiple resources and recognizes that big 
data can assist before, during and after a crisis, often via a cyclical process, as indicated in 
Figure 7 below:  

 
Figure 7: Big data application areas in crisis informatics 

Each of these application areas demonstrates two key issues. First, as noted above, ordinary 
citizens are key stakeholders in this process. They act as “seeded” volunteers who are 
organized before crisis events or “crowd-sourced” volunteers spontaneously emerging during 
events. Second, that realizing the potential applications of big data in crisis management 
requires participation from crisis informatics stakeholders (first responders, emergency 
managers, authorities, and humanitarian organizations), members of the public (as already 
noted) and industry. 
 
Training, planning and prevention 
In the pre-crisis phase, big data can be used to assist in training, planning and prevention 
activities. Specifically, Heaton argues that a key area of application of big data analytics is in 
training exercises that prepare responders and other authorities for crisis situations. He notes 
that big data can build better simulation platforms as these platforms “can at times suffer 
from a lack of statistical information to fuel predictive models. So where earthquakes, 
hurricanes or even shoreline erosion events are being trained for, large-volume data sets 
could help increase the accuracy and reliability of those models.”66 Data from the 2013 Japan 
earthquake is also being stored and analyse to see if the trends and details can help to develop 
better tools for future crises. The data being collected, stored and integrated includes the 
experiences of those who were impacted by the crisis as well as data from Google, Twitter 
Japan, NHK (mass media), Asahi Shimbun (mass media), Honda and a mapping company 
called Zenrin67. Finally, in the US data from volunteers, geographical surveys, weather 
services and previous crises is used by the US Army Corps of Engineers to inform the future 
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engineering of bridges, spillways and dams.68 Thus, the collection of data in previous crises 
works in a cyclical fashion to inform preparation for future crises.  
 
Early warning  
Also in the pre-crisis phase, big data can be harnessed to provide early warning to authorities, 
crisis stakeholders and ordinary citizens. This early warning may be medium-term immediate 
(e.g., areas under threat of flooding) or more immediate (e.g., minutes before an earthquake). 
These early detections may relate to early warnings about physical, topographical changes as 
well as social or health changes related to members of the public. The ICRC has noted a 
number of potential early warning services based on big data processing:  

Advances in high-performance computing and the availability of a large number of 
computers in the cloud (a network of remote servers) have made it possible to 
compute more complex models for hydrological and seismological risks. This allows 
decision-makers to make better-informed decisions sooner about which areas to 
evacuate. Emergency managers have used tools that take advantage of computing 
technology, for example, the Global Disaster Alert and Coordination System 
(GDACS), (and) the Humanitarian Early Warning Service (HEWS).69 

Data generated by citizens, coming in at fast rates and in high volumes can be used to identify 
the location and intensity of earthquakes. Information from social media “is converted to a 
real-time map hosted on the USGS (United States Geological Service) website, allowing for 
the public and responders to witness the distribution of shaking from an earthquake.”70 This 
can assist scientists and crisis managers to understand the potential impacts of the earthquake, 
the regions that might be most affected and the type of relief that might be necessary. It can 
also assist in notifying members of the public. Furthermore it saves time by enabling experts 
to process this information in less than one minute rather than up to 20 minutes. Finally, the 
USGS uses this “user-generated content from Twitter to produce a key (public) service, and 
pushes information back to the public through the same medium.”71 Crowd-sourced 
information from social media may also provide early warning about natural disasters. In the 
northeast of the US, individuals monitoring their twitter feed may have received warning of 
an impending earthquake minutes before they actually felt it.72 Combining machine 
processing of data from sensors, Global Positioning and seismic data can also result in the 
detection of “surface changes caused by natural disasters”.73  
 
With respect to social and public health issues, social media, sometimes combined with other 
data, can also be used to provide early warnings. In political crises, big data, such as that 
coming from social media feeds can also assist in providing early warning about social 
unrest. Letouzé et al. report for the International Peace Institute reports that social media feed 
from Iran’s post-election crisis can be used to “detect web-based usage of terms that reflect a 
general shift from awareness/advocacy toward organization/mobilization, and eventually 
action/reaction within the population (and, thus) model and predict social upheavals and 
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revolutions”.74 OCHA has also indicated that real-time monitoring of Twitter messages 
combined with proprietary GSM information from mobile phones indicating population 
movement in Haiti “could have predicted the October/November 2010 cholera outbreaks two 
weeks earlier than they were detected” by authorities.75  
 
Situational awareness 
In crisis situations, big data can be used to provide situational awareness both to authorities 
and members of the public using information coming from scientists, private companies and 
members of the public. This further demonstrates that members of the public are key 
stakeholders in the big data and crisis informatics ecosystem.  
 
With respect to providing situational awareness to authorities, big data coming from multiple 
sources is a key innovation. Principle among these innovations is the combination of GIS and 
social media data to produce maps of crisis-affected areas. This practice began in Kenya with 
the open-source Ushahidi platform, but really only began to integrate “big data” during the 
2010 earthquake in Haiti. The Ushahidi platform used text-based information provided by 
volunteers and members of the public to map human rights abuses in Kenya in 2007. In Haiti, 
the system was expanded to also include SMS messages and social media messages being 
generated by the hundreds of thousands by members of the public that were automatically 
mapped onto satellite imagery by the Humanitarian OpenStreetMap community.76 The map 
pinpointed the locations, on a street-by-street level and in almost real-time, of damage, 
missing persons, search and rescue needs, displaced persons, humanitarian infrastructure and 
refugee camps.77 The maps were so effective in assisting authorities in understanding the 
scale of the crisis and the needs of members of the public, which “the administrator of the US 
Marine Corps even claimed that the live crisis map of Haiti helped them save hundreds of 
lives”.78 More recently, this automated processing has been augmented with human 
intelligence and processing to provide more detailed information and reduce false positives. 
The Artificial Intelligence for Disaster Response (AIDR) system developed by the Qatar 
Computing Research Institute (QCRI) combines machine learning with human processing by 
a corps of volunteers to classify information coming in from social media (damage 
assessment, shelter needs, search and rescue, etc.) and to score the information by 
relevance.79  
 
In addition to mapping based primarily on social media, other resources are also being used 
to map crisis events and provide situational awareness. GSM data from mobile phones can be 
used to map people’s movements and identify areas of congestion or over-crowding during 
crisis that can impact the resources that are needed.80 SARWeather provides on-demand, 
high-definition weather forecasts for crisis areas, which allow “emergency managers to make 
operational decisions based on weather conditions”.81 In a final example, scientists at Georgia 
Tech have developed a landslide detection system called LITMUS that combines data from 
physical sensors from the “USGS seismic network, NASA TRMM Rainfall network, Twitter, 
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YouTube and Instagram”.82 In 2013, the system resulted in “detection of all 11 landslides 
reported by USGS and 31 more landslides unreported by USGS.”83 
 
While all of the above systems provide useful information to authorities, they may also 
provide useful information to members of the public. The mapping activities described above 
also provide information on the location of shelters, humanitarian headquarters and outposts 
and information about developing situations to members of the public. In addition to these, 
big data analytics can be used to bridge the gap between international humanitarian 
organisations and local people via the provision of information in local languages. In one 
example, an organisation called Translators without Borders was asked to make information 
about the crisis in Syria available to Arabic speaking audiences. This information was 
relevant both for those affected by the crisis directly as well as media outlets in the Arabic-
speaking world, and enabled people to make an informed decision using information in their 
own language.84  
 
Coordination and resource allocation 
In addition to providing situational awareness for authorities, big data can also assist in 
coordinating human and other resources during a crisis to meet immediate needs. This 
information can be used to “accurately assess damage to people, property and the 
environment”85 and to “inform the design and targeting of programmes and policies”86. The 
crisis mapping exercises described above have clear impacts for resource allocation and 
decision-making, as they can enable authorities to target specific areas for search and rescue 
work and identify the best places to set up camps for displaced people or stations for aid 
provision87. In addition, this information can enable authorities to assess damage before they 
are able to access specific locations. This means that they can have aid and other provisions 
ready once regions are accessible, rather than having to wait for access to determine levels of 
need. UN Global Pulse also notes that big data can provide near-to real-time feedback, which 
enables authorities to monitor the population and identify policies and programmes that are 
succeeding, failing or having undesired impacts and enable them to make adjustments 
accordingly.88 
 
Mobilising members of the public 
According to the ICRC, “disaster-affected communities today are increasingly likely to be 
‘digital communities’ as well – that is, both generators and consumers of digital 
information”.89 This is obvious from the massive amounts of data being generated by 
members of the public in disaster situations. However, as well as gathering information from 
members of the public via social media, this tool can also be used to push information and 
share information with members of the public to aid in response during a crisis. This is 
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particularly important, as the ICRC also recognizes that members of the public often act as 
first responders in crisis situations, well before aid or assistance is available.90 Many of the 
systems described above, including early warning systems, situational awareness systems and 
training systems also include systems for disseminating information to members of the 
public, or are particularly intended as collaborative information sharing platforms. Taking 
crisis mapping as a specific example, the system can be set up in a matter of hours, long 
before humanitarian or other organizations can arrive. As such, the information can be used 
to enable members of the public to meet one another’s needs in the gap between the incident 
and the official response. 
 
Tracing long-term impacts  
Finally, circling back to preparedness and training activities, big data can be used after a 
crisis to prepare for the next one. The section above has already demonstrated how data from 
previous crises is being used to analyse the incident and extract useful information for future 
events. However, these activities tend to focus on the next acute crisis. Data collection and 
processing using data from the East Japan earthquake, including displaced persons registers, 
documentation of experiences, health records, information on the movement of people, 
radiation logs and readings as well as other data is being used to inform future healthcare 
planning given the large population of people who may have been exposed to radiation.91 
These are often referred to as “cascading effects” of a crisis, and can persist for many years or 
even decades after crisis events. In addition to health, these may also implicate sectors such 
as taxation, public works, education, infrastructure and other areas. 
 
These different application areas for big data in crisis informatics demonstrate two key 
findings. First, crisis management is cyclical and many of the data collection and processing 
activities that happen during one phase of crisis management feed directly into other phases. 
For example, information collected from those affected during the crisis is needed for post-
disaster planning, information collected after disasters is useful in training for and preventing 
future crises and information collected outside of crises are essential for management of 
personnel and resources during an event. Second, there are many stakeholders that are 
involved in generating, collecting and processing big data during crises. These stakeholders 
include authorities, government agencies, humanitarian organisations, first responders, crisis 
managers, the media, members of the public and many others. Effective applications in big 
data and crisis management require the cooperation of all of these different actors. This 
complex ecosystem drives many of the challenges associated with big data and crisis 
informatics, and these are examined in the next section. 
 
6.4.3 Big data challenges in the crisis informatics sector 

The use of big data for crisis informatics results in a number of serious challenges, primarily 
because crises are complex, unexpected emergency situations and because much of the data 
generated, collected and processed comes from members of the public, often via social 
media. Many reports on big data in crisis informatics outline the challenges that are involved 
in collecting and processing such large volumes of information coming from a variety of 
sources and sometimes at a challenging pace. The ICRC, UN Global Pulse and OCHA have 
all identified the following challenges:  

• Privacy, data protection, ethics and data security 
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• Validity / accuracy of the data 
• Issues related to interpretation, bias and unequal power relations 

BYTE deliverable 3.2 examining big data in crisis informatics will examine each of these 
challenges in more detail and in relation to a specific instance of big data practice. However, 
the information here provides preliminary information about these challenges taking a broad 
perspective. 
 
Privacy, data protection, ethics and security  
Because people caught up in crisis situations are particularly vulnerable and because standard 
procedures may need to be adapted during crises, privacy, data protection, ethics and security 
emerge as important challenges both to enable collecting accurate and relevant data, and to 
protect those who have been impacted by the crisis. The first issue emerge around the fact 
that while there are many protection measures in place to deal with traditional data sets, 
combining these data sets can often present additional challenges that are already well-known 
to big data practitioners in general. For example, many big data and crisis informatics 
practitioners use Twitter as their key source of social media data because the company’s 
privacy settings make it clear that the data produced is open and can be accessible by anyone. 
However, research has consistently demonstrated that most users of social media applications 
do not read the terms of service and do not understand how their data can be accessed and 
used.92 Some organisations have responded to this by arguing that the data they produce is 
aggregated and thus de-linked from personal information. In addition, other organisations use 
specific processes to de-link personal information on social media from the information 
generated in respect of crisis informatics. The following process by the US Geological 
Service, described by the Woodrow Wilson International Center for Scholars, provides an 
example: 

The [US] Privacy Act of 1974 establishes policies and procedures pertaining to the 
collection, protection, maintenance, utilization, and dissemination or federal records 
containing personally identifiable information (PII). On Twitter, all Tweets are linked 
to a username, or the unique identifier of an account holder; in some cases, this 
username may contain PII such as the full name of the person controlling a Twitter 
account. When collecting tweets for TED, USGS uses a one-way encryption 
technique to replace usernames with a different identifier that effectively anonymizes 
the sender of the Tweet. This technical solution is sufficient to comply with The 
Privacy Act of 1974.93 

Nevertheless, re-identification can often be achieved using only four data points from a 
particular individual94, and these solutions, while legally compliant, have raised concerns 
about their efficacy, particularly as big data analytics and data linking practices develop. In 
addition, the risks around re-identification may have specific consequences in crisis 
situations. Thus, Letouzé et al., note that: 

the practice of big data remains in its infancy regarding standards and guidelines. In 
this respect, it is clear, for example, that the “general” challenge of big data privacy 

                                                
92 Andrejevic, Mark, “Exploitation in the data mine”, in Fuchs, C., Boersma, K., Anders, A. and Sandoval, M. 
(Eds.), Internet and Surveillance: The Challenges of Web 2.0 and Social Media, Routledge, London, 2012, pp. 
71-88. 
93 Bowser, Anne, and Lea Shanley, “Did You Feel It?”, op. cit., 2013, p. 32. 
94 de Montjoye, Yves-Alexandre, César A. Hidalgo, Michel Verleysen and Vincent D. Blondel, “Unique in the 
Crowd: The privacy bounds of human mobility, Nature Scientific Reports, Vol. 3, No. 1376, 25 March 2013. 



D1.1: Understanding and mapping of big data 
   
   

 65 

can soon turn into a security risk in conflict contexts, which poses the larger question 
of production, dissemination, analysis, use and archival within conflict zones.95  

In addition, many of the new technologies currently being deployed for crisis informatics 
have specific and serious privacy and data protection risks. For example, scholars, privacy 
activists and regulators have heavily critiqued the use of drones or other remotely piloted 
vehicles in general.96 Using these technologies in crisis or disaster situations can compound 
their negative impacts, particularly because they are being deployed in situations where the 
population is extremely vulnerable. 
 
Data validity and accuracy 
When collecting and processing large amounts of data, the accuracy and validity of that data 
is of utmost importance to ensure that the decisions being based on that data will adequately 
meet the needs of people and organizations caught up in a crisis. While data quality is a 
recognised challenge for big data in general, in crisis informatics data validity and accuracy is 
entwined with the human-centric aspect of the sector. Specifically, collecting data from 
humans raises specific quality and accuracy issues, while at the same time, human computing 
plays an essential role in validating data collected and processed automatically by mechanical 
sensors.  
 
With respect to the use of data originating from humans, often via social media, data can be 
incomplete, inaccurate or be unrelated to the issue in question. Specifically, relying upon 
crowd sourced data by ad hoc volunteers or incidental data (e.g., social media information not 
directly intended for a crisis management audience) can result in low-quality and incomplete 
data.97 For example, people may be mistaken about locations, they may mis-read a situation 
or the data they produce might be only tangentially related to the issue being examined (e.g., 
“My bedroom reminds me of the destruction in XX”). Outside of social media, those without 
professional training, e.g., citizen scientists, can use measurement tools incorrectly or 
misunderstand the readings generated.98  In order to mitigate such issues, some organisations 
or networks “seed” volunteers in specific contexts who can be mobilised in the event of an 
incident. However, in these scenarios, volunteer participation requires or should be optimised 
thorough training and organisation. This has the benefit of ensuring the right population of 
volunteers are involved, that they collect high-quality data in a rigorous manner and that they 
understand their tasks and responsibilities during a crisis situation. However, this also 
requires funding for training, organisation and infrastructure creation.99  
 
On the other side, volunteers can be essential for interpreting data and assisting in machine 
learning with respect to automated processing of data. The many mapping platforms use 
volunteers to “score” information coming from social media in terms of accuracy and 
relevance. This helps automated processing algorithms to distinguish between false positive 
matches and true matches. In the USGS project, machine readings and automated processing 
resulted in a high rate of false positives that significantly undermined the accuracy of the 
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system.100 In one example, the absence of cars parked in a large parking lot was incorrectly 
tagged by the system as infrastructure damage. In response, volunteers were used to score the 
data and reduce the overall rate of false positive alerts. Thus, while volunteers can be a source 
of inaccuracy, they can also be essential elements of a system that reduces inaccuracies. 
 
Interpretation, bias and unequal power relations 
Finally, relying upon technological solutions to assist in solving problems with a significant 
social element almost always introduces social issues around discrimination and inequality. 
Access to technology and the ability to use it invoke inequalities related to power and 
resources that may exist within societies or between one society and another. Many 
applications of big data in crisis informatics rely upon social media, and use of such 
technology raise significant issues around digital inequality. Specifically, data from social 
media may be incomplete as it necessarily requires Internet connectivity, digital skills and the 
resources to acquire hardware. On a global scale, this is disproportionately skewed against 
individuals who are rural, poor, elderly, female and educated to a lower level.101 The ICRC 
notes that while Internet connectivity and smart phone penetration is certainly increasing in 
the developing world, “in many countries, men may be more likely to own the only mobile 
phone in the family”.102 In addition, relying on one social media source alone can also result 
in a sample that is biased towards particular groups of people. As Crawford notes, findings 
from the PEW Research Centre indicate that “only 16 percent of online adults in the United 
States use Twitter, and […] they skew younger and more urban than the general 
population.”103 Finally, linking this data with other resources may result a compounding of 
under-representation of particular groups as:  

Citizens, equipped with mobile digital devices and smart cards, and registered in – to 
name but a few systems –electoral rolls, electronic health systems (EHR), and social 
media networks naturally generate information that can be used for a range of 
different purposes, from e-government, to corporate services, to crisis management.104 

Those who do not appear in these additional systems may be further excluded in crisis 
situations.  
 
In addition to digital inequality, other biases and unequal distributions can impact crisis 
management. For example, Letouzé et al. note that in some contexts deliberate and targeted 
attempts at skewing the data can combine with digital inequality to direct resources to 
particular groups or interests.105 With respect to private versus public organizations, crisis 
informatics stakeholders need to rely upon data being held by private organizations, 
especially telecom companies.106 These organizations may be unwilling to share their data, or 
they may only release sub-sets of the data that can lead to particular biases or inaccurate 
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representation.107 Finally, the use of digital technologies is also dependent on the resources 
available to different humanitarian and response organizations. Thus, Letouzé et al. argue, 
large, multi-national and national relief organizations, rather than local organizations are 
more likely to be able to afford big data tools; furthermore, this has a knock-on effect on 
development of local capacity in crisis situations, which can reinforce inequalities on a global 
and local scale.108  
 

6.5 BIG DATA DEFINITION IN SMART CITIES 

Smart cities are complex systems of resource infrastructures such as energy, transport, and 
information. The many stakeholders of a smart city ecosystem, from infrastructure to service 
providers to end users, require a common understanding of these complexities and the 
potential synergies.  The concept of smart cities has been developing since the 90s with every 
technology push to enhance efficiency and welfare, to optimize costs and resource efficiency, 
and to engage more effectively and actively with its smarter citizens. The last waves since 
2004: Web2.0 (“the participatory Web”), Cloud Computing, Big Data Analytics, and Internet 
of Things can be subsumed under the greater umbrella of digitalization. Only if synergies in 
resource usage across all interdependent infrastructure of a city are leveraged with the aid of 
digitalization, can the complexities associated with big data in smart cities be addressed, i.e. 
potentially massive amounts of data coming from intelligent infrastructures and especially 
always connected end users giving way to unnecessary data storage and potential profiling.   
  
The number of smart cities worldwide will quadruple between 2013 and 2025 according to a 
report from IHS Technology. In this report smart cities are described as the integration of 
information, communications and technology (ICT) solutions across three or more different 
functional areas of a city mobile and transport, energy and sustainability, physical 
infrastructure, governance, and safety and security109. ICT solutions can be narrowly defined 
as data, communication, management and analytics algorithms efficiently enabled through 
platforms. Analytics, i.e. the discovery, conveying, and usage of meaningful patterns (see 
Figure 8), are playing a bigger role in the recent discussions as it becomes evident, that 
analysed insights from big data and open data in the cities are defining the smartness, of 
decisions made by connected humans and machines: 
 

 “Two of the biggest technological trends of the last five years -- analytics, including 
big-data analytics, and the Internet of Things, represented by sensors, smart meters, 
and even our smartphones -- are converging to reshape our urban environment 
drastically”110. Open data and sensor data, from digitalized processes as well as crowd 
sourced, augmented with social media data, provide the foundation for making cities 
smarter by enabling new services and acting as a feedback loop for improving 
existing services111. Linked data could address some of the issues of co-relating social 
data and open data. This is also happening at a grassroots level i.e. by empowering 
citizens and hackers, so-called civic hackers, to create apps and new services to solve 

                                                
107 boyd and Crawford, op. cit., 2012. 
108 Letouzé, et al., op. cit., 2013. 
109 http://press.ihs.com/press-release/design-supply-chain-media/smart-cities-rise-fourfold-number-2013-2025  
110 http://www.ubmfuturecities.com/author.asp?section_id=459&doc_id=526799  
111 http://www.opengardensblog.futuretext.com/wp-content/uploads/2012/08/Big-Data-for-Smart-cities-How-
do-we-go-from-Open-Data-to-Big-Data-for-Smart-cities.pdf  



D1.1: Understanding and mapping of big data 
   
   

 68 

a specific problem112. Many cities are currently co-relating Open data and Smart cities 
for example through hackathons113 and for public institutions like the NHS114, or 
Berlin115 . 
 

The city data is manifold, multidimensional: data streams in real-time with time 
synchronization and geo-positioning expose flows of electricity, gas, water, heating, flows of 
people and goods along digitized infrastructure. The dataspace will extend to spatial financial 
market data: housing markets and point of sales data pertaining to other kinds of 
consumption. Analysing and interpreting this data will require new theories about the short-
term behaviour of people at a very fine spatial scale116. Building a digital copy of a city’s 
infrastructures and movements therein – this will have profound consequences. If the issue is 
only addressed technically, as storage and computing scalability issue, or only economically, 
as how to create value from data, then we are missing the point that the system that can be 
predicted and optimized includes us, the users, the citizens. 
 
In the following sub-section, we will list applications of big data in the smart city context, 
with a special focus on big data applications that do have potential for cross-optimization 
across different functional areas of a city. These cross-domains not only expose the immense 
efficiency potentials both in big data as well as smart city, but also crystallize the challenges 
of big data in the city that need to be carefully considered in constructing sustainable 
solutions for liveable cities. 
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Figure 8 Overview of generating meaning117 via analytics (Data Warehousing vs. Big Data) in the context 

of a smart city. 

 
6.5.1 Big Data Applications in the Smart Cities Sector 

The problems to be solved will be complex and not known in advance: this delivers the 
underlying motivation to think in terms of big data. 
 
City planning will move from longer term strategic planning to short-term operational 
optimization. For example, transport or utility planning has always been concerned with peak 
daily flows, but these are assumed to pertain to a much longer period. The theory and 
planning has been focussed on what happens to cities over planning horizons that relate to 
years the short term being 5 years and the long term 20 or 50 years. This is significantly 
changing through big data technology which enables real-time insights and decisions or 
actions. Big data applications in smarter cities can be characterized as a new top-down 
discipline that is more ‘open’ to bottom-up responses from a multiple range of actors. It also 
looks to limit choice but still allow infinite possibilities. It is therefore, by its nature, freedom 
within constraints.118 
 
Digitalized “Physical” Infrastructure 
Energy, Mobility, and Information networks make up the digitalizing physical infrastructure 
of smarter cities. Situational awareness on the multimodality and cross-optimization or -
utilization is a secondary trend, which is allowed by the convergence of technological 
advancements and platforms. Each entity or mode in these infrastructures, can be seen as a 
big data application in itself: a solution that makes use of big data and adds to the body of 
data.  
 

                                                
117 http://www.opengardensblog.futuretext.com/archives/2012/08/big-data-for-smart-cities-%E2%80%93-for-
hackers-data-scientists-and-citizens.html  
118 http://engagingcities.com/post/5012064472/massive-small-the-operating-system-for-smart-urbanism  
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Smarter mobility: Traffic can be reduced with dynamic road pricing or smart parking: 
systems that detect where the nearest available parking slot is119, i.e., providing timely 
information to locate parking slot quickly in order to save time and fuel. Available traffic 
resources can be utilized more efficiently and/or more personalized by utilizing all modes 
available in a customizable, real-time adaptive manner: Origin and destination information is 
transformed into a real-time multi-layered map of the different means of transport sorted by 
the individuals real-time preferences across multiple dimensions such as environmental 
friendliness, time, or mood (matching the weather or the music the person is currently 
listening to via spotify120).  
 
Smarter energy: Current technology allows generation and consumption of energy to be 
optimized not only on the level of buildings (i.e. prosumers, e.g. a household capable of 
generating power via distributed energy resources, covering its own consumption need at 
times or exceeding it and hence becoming a producer) but also across the different modes 
energy is being utilizes, such as gas, water, heating, and electricity – both locally and system-
wide. Acquiring, time-synchronizing this information via smart metering of energy, making it 
available via platforms, and utilizing it in new energy-related services is not necessarily 
confined to the borders of a city – however, again, the cross-optimization potentials across 
the different modes can be today best taken advantage of by local municipal utilities who still 
do own all or many of the energy modes. Of course through platforms and ICT the cross-
optimization should be feasible across competing organizations as well. But this will still take 
time. 
 
In a smart city, another cross-optimization potential through big data applications becomes 
feasible: the cross-optimization of energy and mobility, e.g. in scenarios like energy-efficient 
city logistics: In energy efficient city logistics the flow of goods, vehicles, and electricity is 
forecast, optimized, monitored, and controlled both long-term and in real-time. City hubs and 
logistics consolidation nodes play an important role for coordination, as they are where goods 
are stored and sorted for the following optimized in-city distribution. These logistics 
consolidation hubs offer options for energy efficiency, through cooling and heating, water 
management, as well as electricity optimization. There are already energy demand response 
service providers targeting these logistics centres to become part of so-called “energy saving 
fleet,” which then offer flexibility (i.e. saved energy when power supply is low) to local 
utilities. Together with fleets of smart electric trucks the margin of efficiency increase is of 
course much higher per “user.”  An integrated positioning and on-trip vehicle re-routing 
based on recent traffic, order, and weather data leads to improved transparency in fleet 
management. The utilization of electric vehicles, energy management system, dynamic 
vehicle routing, order management, and electric mobile city hubs can reduce the 
environmental impact of commercial traffic in urban areas. Integration of an order 
management, for logistic processes, hubs and service models enables cities, logistics service 
providers, and logistics hubs as well as major internet retailers to save resources and gain 
efficiency, enable better quality of life in cities. 
 
Participatory Sensing  
Smart Santander project121, a public-private partnership, is placing sensors around various 
European cities in order to gather data, as well as take advantage of what citizens are willing 

                                                
119 http://www.scielo.org.mx/pdf/jart/v11n5/v11n5a11.pdf  
120 http://apps.moodagent.com/spotify   
121 http://www.smartsantander.eu/  
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to contribute through their smartphones and specialized software122. The Smart Santander 
project includes 'participatory sensing.' The participatory sensing service aims at exploiting 
the use of citizens’ smartphones to make people to become systematic observers and 
contributors of data. It takes advantage of the ability of these devices to be connected to 
people as well as to the core network. Data analytics, IoT, and some aspects of social media 
is blended so that problems are found in real time and conveyed back those who can fix them. 
For example a malfunctioning streetlamp is reported to all the users that have previously 
subscribed to this type of event via their mobile phones. One of these users could be a 
municipality technician that after receiving the notification can log in a repair job. The result 
would be a well-functioning city made smarter by the people living in it, sharing their data. 
 
Linked City  
Dublinked123 is an innovative new data-sharing network. The network is seeking to link data, 
sectors, skills and people to generate new commercial opportunities for the Dublin Region. 
Dublinked will also provide the Dublin Region’s first Open Data Platform which makes 
public data available for research and reuse. The city is explicitly utilizing data as a resource 
to invite new data-driven economy actors: “The most valuable data is often valuable because 
someone invested a lot of money in collecting it.  These forms of data are often the most 
valuable for the creation of new services, and Dublinked is focussed on making this data as 
accessible to as many people and companies as possible for the purposes of research and 
development.  This creation of a pool of high-value data for research purposes, in 
combination with all the normal "open" data, is unique in the world and will give Dublin-
based companies a significant advantage.”124 
 
Public Safety 
Open data and cloud-based big data analytics can be used to improve the efficiency of police 
and fire services by capturing and correlating the analysis of all data coming from various 
systems installed in the city, including surveillance cameras, emergency vehicle GPS 
tracking, and fire and smoke sensors125. Predictive policing uses historical crime data to 
automatically discover trends and patterns in the data. Such patterns help in gaining insights 
into crime related problems a city is facing and allow a more effective and efficient 
deployment of mobile forces126 and significant decrease in crime. 
 
Big Data Challenges in the Smart Cities Sector 
The predictive policing is a good example for showing both sides of big data: the promise and 
the peril, as depicted popularly in the movie Minority Report. The good and the bad is easily 
conveyed to the majority of citizens, without the need for technology foresight: it is great to 
decrease number of crimes by predicting, but it does diminish the primitive that a person is 
innocent unless proven otherwise.  
 
Additionally, in conclusion, one can say, that the main challenges are not related to big data 
but to trust and new rules and regulations for data access, usage, and sharing, as well as the 
mind-set that big data businesses are being carried out in ecosystems not by individual 
companies. 

                                                
122 http://www.ubmfuturecities.com/author.asp?section_id=459&doc_id=526800  
123 http://www.dublinked.ie/  
124 http://www.dublinked.com/?q=aboutus  
125 http://www.accenture.com/us-en/blogs/technology-blog/archive/2015/02/11/iiot-and-big-data-analytics-help-
smart-city-development.aspx  
126 http://www.predpol.com/  
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User Acceptance, Privacy & Confidentiality Concerns 
No infrastructure – whether it is a road, a building, a broadband network or an intelligent 
energy grid – will have a transformative effect on a city unless it engages with individuals in 
a way that results in a change of behaviour. One strain of big data analytics application is to 
implement dynamic pricing (road, water, electricity) based upon real-time demand data. In 
many cases this meets the resistance from citizens, and needs a very thorough communication 
strategy and involvement of users.  
 
Maintaining the privacy and security of the data being collected is also a very important 
challenge. Different stakeholders need to be allowed access to different portions of the data 
being stored and collected and this security must be maintained at all levels of the network. 
The data must also be anonymized sufficiently so that the customers cannot be individually 
identified even after the data analysis. This is very difficult as the following example 
shows127: “Only four spatio-temporal points, approximate places and times, are enough to 
uniquely identify 95% of 1.5M people in a mobility database. The study further states that 
these constraints hold even when the resolution of the dataset is low, mobility datasets and 
metadata circumvent anonymity.” 
 
Cost-effectiveness Better Models vs. More Data 
All one needs to look for in big data, so the argument goes, are more and more correlations 
vs. what we need to look for in big data can only ever be discovered through the lens of 
theory128. However, if the analytics should also give insights about what actions need to be 
undertaken (i.e. prescriptive analytics) then theory of system behaviour is absolutely 
necessary. At the same time the system may be changing in different ways than initial models 
can predict, hence a real-time monitoring of both data and model is necessary to capture so-
called concept drift.  
 
Model- and data-driven analytics is at the core of the required smart data infrastructure as 
opposed to the purely data-driven approach of big data. Data-driven analytics, e.g. data 
mining and machine learning, can be is used to reveal characteristics of the systems not 
known before or to learn solely based on the data, when the programming of rule-based 
algorithms are infeasible. Data-driven analytics is required when dealing with data-rich but 
theory-poor domains such as online communities and neuroscience.  
 
The city, however, is a planned, constructed, and engineered system, consisting of 
increasingly digitized physical infrastructure. Models based on physical laws such as the flow 
network models use known external knowledge of the physical processes. At the same time, 
in today’s complex systems and increasing dynamics through liberalized economic 
transactions, end user participation with their shared resources – e.g. cars to provide 
transportation, or PV installation to provide energy – numerical analysis to solve these 
models becomes very hard.  
 
The digitization also extracts digital copies of domain know-how entered by domain or 
planning experts using software tools, e.g. how a distribution network for electricity is setup. 
Finally, the digitization of infrastructure not only enables combining domain models, e.g. the 
concrete topology implementation, with physical models, multimodal flow networks to 
                                                
127 de Montjoye, Yves-Alexandre, César A. Hidalgo, Michel Verleysen, Vincent D. Blondel (2013, March 25): 
"Unique in the Crowd: The privacy bounds of human mobility". Nature srep. doi:10.1038/srep01376 
128 http://archive.wired.com/science/discoveries/magazine/16-07/pb_theory  
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explain the system with static but hard facts, but also to analyse real-time data coming from 
that infrastructure to discover unknown facts caused by stochastic and behavioural processes 
such as end user participation. 
 
Finally, the power lies in semantically capturing the existing knowledge as well as the 
knowledge discovered from model- and data-driven analytics. This continuous semantic 
knowledge modelling allows continuous model improvement through real-time and historical 
data. Real-time data, thus, is not only used for determining when to take corrective actions 
according to the prescriptive analytics but also to improve models and the precision of the 
prescribed actions. As such with model- and data-driven analytics, more data leads to better 
models, and better models lead to smarter data – enabling actionable knowledge without 
invading privacy or compromising confidentiality. 
 
These are all new frontiers, which will require years of research before producing feasible 
answers.   
 
City-wide Information Infrastructure & Investments 
FI-WARE “future internet platform” project, addressed this topic and identified the specific 
challenges that local innovators need help to overcome, and that could be provided by city 
information infrastructures. The challenges included: real-time access to information from 
physical city infrastructures; tools for analysing “big data“; and access to technologies to 
ensure privacy and trust129. 
 
Investment into ICT infrastructure is still the biggest question: Whether the above 
applications are profitable is an open question. The stakeholders are still assessing and 
investigating pilots instead of investing. For example, while there are a growing numbers of 
mobile ticketing success stories for public transportation, retrofitting stations with the ability 
to accept payments from smartphones is a significant investment for transit agencies130.  
 
Although there are many benefits to energy efficient electric multi-modal city logistics, the 
cases are supported by external funding. But if freight companies, store owners and 
municipality join forces, there should be no reason for why this successful and popular 
solution could support its own. 
 
The addition of sensors and data collection and transmission infrastructure adds some 
additional maintenance requirements to the system. These costs, if not offset by the benefit 
provided by the advanced diagnostics, could make the project impractical to implement. 
 
Variety of Data & Data Sharing 
Transport for London (TfL) has very detailed data on buses and trains that give us precise 
geo-positioning, times and delays with respect to timetables. In principle, these can be 
matched against the travellers using the Oyster card. These demand and supply data sets, 
however, are entirely incompatible131. This vision of big data enabled urban mobility hinges 
upon transportation providers — both public and private — sharing data, collaborating, and 
supporting innovation. In the existing cases challenges in data sharing results in inability to 
plan a single trip that uses multiple modes, which is important both in personal mobility as 
well as city logistics. 
                                                
129 http://theurbantechnologist.com/2012/08/13/the-amazing-heart-of-a-smarter-city-the-innovation-boundary/  
130 http://www.citylab.com/commute/2014/04/true-future-transportation-has-two-big-barriers-entry/8933/  
131 http://www.complexcity.info/files/2013/12/BATTY-DHG-2013.pdf  
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Hence, central to the development of an intelligent energy efficient transportation system in 
cities for both people and goods, is open data, that is compatible yet feasible to manage in a 
distributed loosely coupled way. To understand and monitor the complete network of 
available transportation modes – and energy modes –, each modal provider must be willing to 
make their data available to an aggregator or to develop open apis for open (linked) data. The 
closer that data is to real time the better it is for the system operations. 
 
Many private-sector service providers see a competitive advantage in keeping data 
proprietary132. This may be the case in certain situations, but there are many benefits 
associated with a private company opening its data: these include increasing system 
efficiency, expanding the market of users, fostering innovation ancillary to the service, and 
other benefits associated with transparency (e.g., emission and fuel-use reductions). 
 
Skills & Socio-demographic Silos 
We need a different skill set than that of a data scientist for cities133 i.e. someone who 
understands city services, data analysis, co-relation of data etc. This is similar to how 
digitalization of healthcare and the need for specialized information science resulted in 
bioinformatics. The analytics provided through big data allows for more informed system 
planning, however, without employees capable of using the new information properly, the 
benefits of using big data can be lost. 
  
The “skills shift” is a phenomenon also encountered in the smart city scenarios: The skilled 
workers are currently retiring in waves. This enforces the trend of digitization and automation 
to model expert systems and model knowledge into the infrastructures. Hence, a lot of the 
new jobs that are being created along this trend are in the knowledge and information 
intensive segments. However, there is also a “skills mismatch” that the EU struggles to fill 
these ICT jobs. 
 
The dependability of many of the big data applications on smart phones highlights the 
establishing of socio-demographic cohorts, the digital and socio-demographic divide in the 
world134: e.g. Of U.S. residents who are making less than $30,000 per year, less than half own 
a smartphone. Conversely, over 78 percent of people earning $75,000 or more own one. 
Educational attainment and age show a similar correlation, with older and less educated 
people less likely to own a smartphone than younger, more educated individuals. In Europe 
the numbers must be similar. 

 

6.6 BIG DATA DEFINITION IN SHIPPING 

The shipping industry is a very diverse sector and it often includes actors from different 
corners of the world. There is no clear cut boundary/definition of shipping industry. At the 
centre are, of course, sectors such as ship owner, ship operator, ship yards, naval authorities 
(national & international), class societies, port authorities, naval academies, etc.; which 
exclusively serve shipping whereas other actors may also serve other industries such as 
machinery providers, equipment producers, travel agencies, etc. Therefore, there will be no 

                                                
132 http://mappable.info/one-week-of-carsharing/ was forced to take data from car2go offline. 
133 http://www.opengardensblog.futuretext.com/archives/2012/08/big-data-for-smart-cities-%E2%80%93-for-
hackers-data-scientists-and-citizens.html  
134 http://www.citylab.com/commute/2014/04/true-future-transportation-has-two-big-barriers-entry/8933/  
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crisp common understanding what is meant by big data in the shipping sector but at most a 
rather fuzzy comprehension of this term. 
 
The sector at large is known as a very slow adopter of new technological solutions. The main 
reason lies in the simple fact that the primary focus of their business model is on earning 
money through profitable transport deals and less on cutting costs. Introduction of new 
technologies is to a large extent about doing things faster, better, cheaper, which is mainly 
about cutting cost and will therefore get secondary priority. In other words, there is reluctance 
in adopting new technology unless they have to. In shipping it has become very clear that 
authorities have a central and importing role in the introduction of new technologies by 
forcing ship owner through legislation. It must be pointed out that the authorities’ sole focus 
is on technologies increasing safety and environmental protection. 
 
Some of the current changes in the maritime industries seem to, by the new data reality and 
the increased connectedness of ships and players in the maritime industry (more satellites and 
reduced prices enable 24/7 ship-to-shore connection).  
 
To our understanding a good definition of big data in Shipping can be formulated as 
following: data with high-volume, -variety, -velocity, -veracity and -value information assets 
that demand cost-effective, innovative forms of information processing for enhanced insight 
and decision-making.  
 
Big data often means collections of data sources that produce data in such a speed and 
volume that the capturing, the storage and the analysis exceed the limitations of traditional 
solutions, such as standard database management systems. If novel forms of data 
management are successfully applied, new information, facts, relationships, indicators and 
trends can be extracted from the vast amount of data entries. The ability of effectively 
manage information and derive knowledge of it is now seen as a key competitive advantage. 
 
A classic definition of big data identifies three to five key characteristics (the 5Vs): 

• Volume: the amount of data that needs to be ingested and analysed. Typical data set 
sizes today vary between the scale of a few terabytes to hundreds of petabytes or even 
exabytes. However, this is dependent on industry and reflects its maturity. 

• Variety: the different types of data to be combined or integrated, for deriving 
information. New, earlier hidden, unexplored, or undiscoverable information from big 
data are often obtained today by effectively combining different data types.  

• Velocity: how fast data is being produced, changed and the speed with which data 
needs to be transferred, recorded, and processed. Typical high speed figures here are 
today around gigabits per second and teraflops concerning transmission and 
processing speeds, respectively. 

• Veracity: It refers to the quality, provenance and trust of the data. For deriving 
knowledge out of volumes of data, the accuracy of the data sources (or even of the 
data entries) needs to be evaluated as well. 

• Value: potential gain for an organisation when exploiting the data 
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6.6.1 Big Data Applications in the Shipping Sector 

There have been a number of applications where data driven services have implemented 
within the following main areas of the shipping industry; 

-­‐ Technical operation and maintenance  
-­‐ Energy efficiency (cost and environment) 
-­‐ Safety performance  
-­‐ Management and monitoring of accident and environmental risks from shipping 

traffic 
-­‐ Commercial operation (as part of a logistics chain) 
-­‐ Automation of ship operation (long-term development) 

 
Technical operation and maintenance 
Remote operation and maintenance has been enabled by increased use of sensors in 
components and systems on-board ships. It has allowed implementing improved monitoring 
component; this allowed vendors implement advanced analytics for conditions of systems 
and advise ship management on system operation and predictive maintenance.  
 
This may eventually lead to new business models where one can lease equipment and 
systems or subscribe to specific functions performed by the system and components as is 
occurring in aviation. Some examples are as follows:  

-­‐ Electronic Power Design Inc., which provides diesel electric propulsion for some of 
the most sophisticated DP3 vessels in the world;  

-­‐ Rolls Royce Hemos System, a system that draws on their system in aviation, for 
transmitting sensor data from various components to land-based service centres where 
system specialists create health asset reports for the customers;  

-­‐ Wärtsilä’s Propulsion Condition Monitoring Service, which enables detection of 
maintenance requirements some 2–6 months in advance. 

-­‐ Engineering Software Reliability Group (ESRG) that has built a commercial cross-
silo analytic platform for ships, the OstiaEdge® Monitoring Suite for real-time 
analytics. This is derived on past engagements with the US Navy, capturing and 
analysing more than 5000 data points for more than 120 USNavy ships. 

 
Energy efficiency and environmental performance 
Improving fuel efficiency of ships is one of the easiest ways of reducing exploitation costs for 
ships; consequently, many ship owners have try using big data solutions and advanced 
analytics. For example, Maersk has created a proprietary solution for collecting, analysing, 
and presenting data from all the vessels in their fleet to drive continuous energy efficiency 
improvement.   
 
Another driver for adopting technologies specific for big data are new environmental 
requirements for emission control by 2018. Currently, EU is establishing guidelines for MRV 
reporting and has initiated projects to develop systems to manage such reporting. These 
initiatives are supported by national associations, such as the Norwegian Ship-owners’ 
Association, are encouraging and enabling their members to document emissions and prepare 
for the new legislation. Concomitantly, retailers, such as IKEA, require that shipping 
companies document their emissions for their product footprint documentation. It is likely to 
be a boost in availability of data and adoption of big data solutions by all actors in the 
shipping industry.  
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The market is composed from:  

-­‐ Niche vendors like Marorca, SRG group (offering energy efficiency optimisation 
strategies) and Maersk (offering a version of their own internal system in the market).  

-­‐ Class societies like ABS and DNV GL have been well established in this field for a 
long time with traditional advisory services founded in their in depth knowledge and 
competence and class customer base. The class societies are now actively seeking to 
move this to a more analytically based platform. Through the acquisition of a PMS 
vendor ABS has attained a position on board the vessels for data capture and analysis 
of performance (ABS Nautical Systems). Societies like DNV GL and NK have 
developed on-board reporting solutions from scratch or together with partners like 
NAPA. 

-­‐ Component-manufacturers/system integrators for example Rolls Royce, Wärtsilä and 
ESRG, provide offerings to providing energy efficiency advice and intelligent 
operations.  

 
Safety performance 
Class societies have as main activity domain the safety, performance, verification and 
assessment of ships; through their role as standard setters, delegated body and advisory 
offerings. 
 
These offerings are transitioning from a traditional approach based on empirical and 
analytical rules and ad hoc processing of disparate datasets towards a more data-supported 
offering for assessing and monitoring ship safety. Availability of data from a multitude of 
sources on-board ships may become available for safety assessment activities on a continuous 
basis.  
 
Regulatory bodies, for example EU pushes for increased transparency of safety of shipping, 
by requiring disclosure of more data and information directly from the ships. There has been 
established an initiative for developing methodologies for improving existing risk 
management procedures and processes for inspections, incident detection and recording, 
compliance monitoring, contingency plans and emergency responses. This requires dynamic 
collection, processing and use of real-time information from ships. System vendors of on-
board systems for operational support push services such as weather routing, or hull 
monitoring.  
 
Some actors in the market are: 

-­‐ RightShip has offered safety-rating services that are based on available data outside 
shipowners’ organizations (vetting, port state control, class, ship registration data, 
etc.). 

-­‐ Lloyd’s List Intelligence, offer advisory services founded in similar datasets.  
-­‐ Ocean Intelligence, are more concerned with financial risk aspects, use similar 

datasets as input to, for example, debt, and credit analyses.  
-­‐ Shipping KPI is another major initiative that provides independent safety assessments 

and performance management schemes for the shipping industry based on data 
reported from the ships. 
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Management and monitoring of accidents and environmental risks from shipping 
traffic 
Ship tracking data emerges as a platform for many new services. Examples of such 
applications could include continuous monitoring of emissions from shipping, and real-time 
monitoring of accident and emergency response risks (oil recovery, tug preparedness, pilot 
schemes etc.). Operational and navigational risk monitoring is one of the problems addressed 
in the European Maritime Safety Agency (EMSA) EU initiative.  
 
Busy ports and shipping lanes have used ship-tracking information to implement real-time 
traffic control centres to avoid collisions and accidents; we expect that similar approaches 
will be adopted other places also. These solutions will expand to include more complex risk 
models, enriched with data from multiple sources, including data from the ships themselves. 
Highly important will be to combine real-time information about course, speed etc., with 
facts concerning the safety condition and the weather, which will allow identifying those 
areas most exposed to risk accident. 
 
In the next years, the global satellite network exactEarth will cover all the oceans and the 
poles. This will improve the reliability and the availability of ship tracking data, which will 
change the way services are delivered, including monitoring the safety of ships based partly 
on knowledge of weather conditions to which the ship has been exposed at any time.  
 
Commercial operation (as part of a logistics chain) of ships and fleets 
Shipping companies have begun using analytics as part of the means to optimise their place 
in the value chains, and to optimise their own operations. Combining and analysing data 
about the availability of cargoes, space for cargoes, port slots, weather, ship performance, 
fuel prices, etc. could result in enormous business cases. 
 
Automation of ship operations 
Ships will become more automated, and, in the long-term, autonomous. Transmission of 
increasing amounts of sensor data to shore will require onshore operations centres. This trend 
will challenge regulatory aspects, as well as safety performance assessment and verification 
processes and roles.  
 
Big Data Challenges in the Shipping Sector 
There are several challenges in the shipping sector. Some of the most important are extraction 
of business-critical intelligence and insights from diverse data sources with different 
availability, in a complex environment of legacy diverse systems and fragmented and 
decentralized solutions that are common in the Shipping sector.  
 
Like generic big data, the Shipping Data is also characterized by the 5V:  
Table 10 5V in Shipping 

Volume 

 

-­‐ High resolution AIS  
-­‐ Engine and hull vibration  
-­‐ Note: most data sources are considered small volumes  

Variety 
-­‐ Structured: sub-systems measurements 
-­‐ Unstructured: video, audio 
-­‐ Semi-structured: voyage optimization 
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Velocity -­‐ Real-time AIS 

Veracity 
-­‐ Unreliable data sources 
-­‐ Unverifiable data from measurements due to suppliers competition 

Value -­‐ Reduce costs of exploitation, fuel costs in general 

 
Generally, Shipping companies are concerned with challenges associated with reducing 
exploitation cost of vessels and fleets. The industrial landscape is very wide and fragmented, 
often involved actors have conflicting interests. 
 
The common challenges and possible approach to tackle these challenges are listed in the 
Table 11. 
 
Table 11 Big Data Challenges in the Shipping Industry 

Challenges Approach 

Data from different sources 
(structured, unstructured  & real-
time) 

Need for low cost and low maintenance solutions 
such as RDBS, Hadoop, NoSQL databases for 
scalable information management systems in 
batch. Need for opportunistic and delay tolerant 
streaming to fulfill need for heterogeneous 
infrastructures. 

Conflicting interests Improved international legislation and regulatory 
support, with public funds support for adoption of 
new technologies for all actors involved with a 
high focus on the end user. 

Advanced decision support to 
enable use of data  to quickly and 
efficiently respond to current 
situation 

Enlarge education focus during exploitation of 
vessels to include advanced monitoring systems. 

Remote operations and 
maintenance 

Implement autonomous safety systems that can 
provide adaptive safe states for the systems. 
Changes in the legislation to create a viable 
support for implementing the necessary 
mechanisms. Including safety related 
requirements. 

 
  

6.7 BIG DATA DEFINITION IN CULTURE 

This section examines the meaning of big ‘cultural’ data, both in terms of reference to the 
BYTE project case study on big cultural data, and with a broader view that encompasses big 
data applications in the cultural sector. Understanding big cultural data will also assist in 
developing a meaningful and cross-sector definition of big data as one of the outputs of the 
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BYTE project. A definition of big cultural data that encompasses both the digitisation of 
works and their metadata, and the data that is generated by applying big data applications to 
the cultural sector to generate data for commercial use is pertinent as big cultural data 
matures. 
 
The cultural sector is facing new ways of disseminating cultural works, including literature, 
manuscripts, sound recordings and a variety of images. Big cultural data can thus refer to the 
digitisation of private and public collections of such works and their associated metadata. 
This interpretation bears much relevance to the BYTE project case study for big cultural data, 
which is focussed on the Europeana.135 For example, Europeana deals largely with open 
linked metadata for digitised copies of works, such as text, images, audio, manuscripts etc., 
held by cultural heritage organisations, including national libraries museums and archives. 
Beyond this understanding of big cultural data, it can also extend to encompass big data 
applications in the cultural sector. These include, but are not limited to, social media data 
relating to culture and cultural events, as well as cultural user behaviour and sentiment data. 
However, there does not appear to be a universally accepted definition of big cultural data, 
and the application of big data practices within the cultural sector is very much in its infancy. 
It follows that big cultural data as a means of creating value in a traditional economic sense 
has, to some extent, been overlooked, and there is limited literature about big cultural data per 
se and/ or big data applications in the cultural sector that could perhaps generate value in the 
commercial sense. Lilley observes, 
 

The current approach to the use of data in the cultural sector is out-of-date and 
inadequate. The sector as a whole and the policy and regulatory bodies that oversee it 
are already failing to make the most of the considerable financial and operational 
benefits which could arise from better use of data  

 
Instead, the value of big cultural data lies in its cultural and social contributions to society. 
This approach also reiterates the difficulty in understanding big cultural data as well as 
providing insight into prospective approaches to applying big data practices in the cultural 
sector in a way that could see commercial value derived from these data more in line with 
approaches in other industries and sectors. 
 
6.7.1 Defining big cultural data 

In light of the underdeveloped nature of big cultural data generally, there is license to view 
big cultural data in a narrow sense, namely the digitisation of cultural works and their 
associated metadata, or more broadly, by making reference to big data applications within the 
cultural sector that source social media traces and other data relating to culture and cultural 
events in societies. As there remains demand by educational and cultural institutions, as well 
as members of the public, for access to these digitised works, big cultural data will inevitably 
mature. The European Commission, in particular, is committed to supporting the growth and 
popularity of European culture by supporting the digitisation of cultural records.136 In that 
context, cultural data has been referred to as including: “statistical and economical cultural 

                                                
135 Europeana, “About”, no date. http://www.europeana.eu/portal/aboutus.html 
136 See for example, European Commission, Cultural Heritage Digitisation, Online 
Accessibility and Digital preservation, Report on the Implementation of Commission 
Recommendation 2011/711/EU, 2011-2013. 
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data, metadata, visual files from public domain works, etc.”.137  In addition, Manovich 
recognises the importance of understanding big cultural data as it relates to digital humanities 
to involve, “Analysing massive amounts of cultural content and peoples’ conversations, 
opinions, and cultural activities online – personal and professional websites, general and 
specialized social media networks and sites.”138  This broader view of what cultural data 
entails is more appropriate than the narrow view, which refers to the digitisation of works and 
their metadata, as the field of big cultural data expands. 
 
When understanding what is meant by big cultural data, we can also consider the extent to 
which big data in the cultural sector contends with the 5Vs definition adopted by this 
Deliverable, which is an extension of Gartner’s foundational meaning of big data. The 5Vs 
include: Volume; Variety; Velocity; Veracity; and Value. These Vs can be met by either 
stand-alone collections of cultural data held by cultural heritage institutions and organisations 
(or sizeable private collections if and where in existence) or the linking and aggregation of 
these data to form larger datasets. The 5Vs as they contend with cultural data are as follows:  

• Volume can be indicated by: massive datasets from aggregating cultural metadata; or 
large datasets of metadata of cultural items available at cultural heritage institutions 
(museums, libraries, galleries) and organisations. 

• Variety can be indicated by: quantitative data, e.g. cataloguing of metadata and 
indexed cultural datasets; qualitative data, e.g. text documents, sound recordings, 
manuscripts, images across a number of European and international cultures and 
societies; and transactional data, e.g. records of use and access of cultural data items. 

• Velocity can be indicated by: monitoring user behavioural and sentiment data, social 
media traces, and access rates of cultural data etc. 

• Veracity can be indicated by: improved data quality; and a combination of cultural 
data or user data from within the cultural sector at large. 

• Value can be indicated by: knowledge creation from the access and potential re-use of 
digitised cultural items; improved access to metadata and data, e.g. historical texts; 
and improving efficiency for students, researchers and citizens wishing to access the 
data and reducing overall operational of cultural institutions and organisations. 

The above indicators of the 5Vs are not an exhaustive list and as big cultural data measures, 
so too will the applications of big data to the cultural sector as prospective determinants of 
the value of big cultural data. Furthermore, whether we view big cultural data in the narrow 
sense or interpret it as all-encompassing of culturally-related data from within the sector, the 
extent to which is it is ‘big’ is variable. It is also relevant that that the immaturity of the big 
cultural data sector is indicated by the existence of few genuinely large data sets.139  
 
Having made reference the immaturity of big cultural data, it is important to consider why 
this is so and indeed the prospects of the sector in order to fully appreciate how and why big 
cultural data has not been universally defined or developed. First, the cultural sector inhabits 

                                                
137 This reference to ‘cultural data’ was made with reference to a partnership between the ministry of 
Communication and the Open Knowledge Foundation when referring to the development of a public domain 
calculator, which was developed with the assistance of the French National Library: European Commission, 
Cultural Heritage Digitisation, Online Accessibility and Digital preservation, Report on the Implementation of 
Commission Recommendation 2011/711/EU, 2011-2013, p. 27. 
138 Manovich, Lev, “How and Why Study Big Cultural Data”, Slidesharenet, 9 March 2012. 
http://www.slideshare.net/formalist/how-and-why-study-big-cultural-data 
139 Lilley, Anthony, “What Can Big Data Do for the Cultural Sector? An article Exploring the characteristics 
and Potential of Big Data for the Cultural Sector”, Audience Finder, no date. 
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the public sector, and the process of digitising works is carried out largely by public sector 
institutions and organisations. This means that these processes are subject to policy and 
funding restrictions. Second and again related to the public positioning of the cultural sector, 
there is a strong focus on deriving cultural and social value from the cultural data rather than 
monetising these data or applying big data applications to generate profit in a commercial 
sense. Thus, big cultural data is currently understood as a publicly funded investment in 
culture creation and preservation. As such, the value in big cultural data is difficult to assess 
in an economical sense, the method which is most commonly used to indicate the value of 
data in other sectors.140  Thus, as is the case with cultural data (big or other), “there exists a 
lag in its understanding due to an apparent conflict between the value of big cultural data 
being tangible only to the extent that it perpetuates and encourages culture, rather than in 
commercial, monetary terms.”141  What this means is that the social value of big cultural data 
is still viewed as the appropriate measurement tool. Lilley affirms that big cultural data “can 
contribute social capital and cultural value creation to digital societies.” Social capital was 
defined by the originator of the term, Hanifan, in 1916 when he remarked, “I do not refer to 
real estate, or to personal property or to cold cash, but rather to that in life which tends to 
make these tangible substances count for most in the daily lives of people, namely, goodwill, 
fellowship, mutual sympathy and social intercourse among a group of individuals and 
families who make up a social unit…”142 However, Lilley observes that despite these 
longstanding notions of cultural value and social capital, cultural data can also offer, “an 
opportunity to begin to measure both the economic benefits and those such as the formation 
and reinforcement of social and cultural capital which also arise from cultural activity.”143 
 
Importantly, what this means is that big data, and the possibilities it presents, has implications 
for culture and the arts. Manovich suggests that big cultural data, “offers unprecedented 
opportunities to understand cultural processes and their dynamics and develop new concepts 
and models which can be also used to better understand the past.”144 Lilley also opines, 
“Assuming that the foundation of the raw materials is strong enough, the analytics robust and 
the people in the room willing to listen; data-driven decision-making could and perhaps 
should be a key element of increasing artistic impact and commercial resilience both for 
individual organisations and for the sector as a whole.”145 In that same paper, it is suggested 
that sentiment or semantic analyses to measure aspects of artistic impact could also be an 
important new tool for the cultural sector.146  Thus, ultimately, studying big cultural data can 
assist by moving from (incomplete) knowledge to actual cultural data.147 This recognised 
potential can also involve collaborative prospects between the public and private sectors to 
achieve the wide application of big data practices in the cultural sector. Whilst limited in 
number, current and prospective applications of big data in the cultural sector can positively 
impact upon society as addressed below. 

                                                
140 Ordinarily, value is measured through ways in which data can add by value, such as the five ways identified 
by McKinsey: segmenting audiences to customise activity; creating transparency; supporting/ replacing human 
decisions/ enabling experimentation; and innovating new business models and services: Manyika, James, 
Michael Chui, Brad Brown, Jacques Bughin, Richard Dobbs, Charles Roxburgh and Angela Hung Byers, “Big 
Data: The Next Frontier for Innovation Competition, and Productivity”, The McKinsey Global Institute,  2011, 
p.5.  
141 Lilley and Moore, op. cit., 2013, p.23. 
142 Ibid., p.36. 
143 Ibid. 
144 Manovich, op. cit., 9 March 2012.  
145 Lilley, op. cit., no date.  
146 Ibid. 
147 Manovich, op. cit., 2012.  
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6.7.2 Big data applications in the cultural sector  
The following are some of the current and potential applications of big date in the cultural 
sector:  

• Broader dissemination of knowledge and culture 
• Access to greater cultural resources 
• Improved research and development for students, academics, practitioners and 

citizens 
• User behaviour and sentiment monitoring 
• Transparency of public institutions 

 
Broader dissemination of knowledge and culture  
Understanding cultures and history depends on the ability to access information about them. 
Big cultural data in the sense that cultural works are digitised and thus accessible in that 
manner can enable efficient and widespread access to cultural data, as well as providing 
information about where to locate and access additional resources or provide access via 
linked data and metadata. Thus, the combination of metadata and linked metadata can 
increase the value of cultural data simply by making it accessible. Further, the aggregation of 
all existing metadata enables access to a more complete picture of the subject matter. By 
facilitating access to big cultural data in a way that supports re-use and sharing of works and 
their dissemination, new discoveries, views and interpretations become possible. 
  
Access to greater resources  
Virtual access to big cultural data enables greater access to resources. In the public sector, 
initiatives such as Europeana are making cultural data open and accessible to all internet 
users and in turn, adding cultural and social value to the digital economy through virtual 
access to millions of items from a range of Europe's leading galleries, libraries, archives and 
museums. Another good example of re-use of cultural data is the CHContext widget 
developed by PSNC and released as open source.148 This JavaScript-based widget is, 

able to provide links to cultural heritage materials (from Europeana or Digital Public 
Library of America or Polish Digital Library Federation) based on predefined item of 
a website on which it is embedded (via given JQuery HTML selector). The widget can 
be used by anyone who has a website, but it may be especially valuable for cultural 
heritage institutions which would like to enrich their online catalogues or websites 
with links to Europeana. It may also be useful for bloggers who are writing about 
culture and related topics.149 

Outside of Europe, a number of players in digital humanities are working with digitised 
historical cultural archives, which were created by libraries and universities with funding 
from NEH and other institutions.150 Big data practices are enabling efficient access to 
resources in these areas by supporting a variety of access options, including linked and open 
access. A McKinsey Global report provides, “Simply making big data more easily accessible 
to relevant stakeholders in a timely manner can create tremendous value.”151  

                                                
148 “Git Hub”, no date. https://github.com/psnc-dl/chcontext  
149 “CH Context Widget”, Europeana Labs, no date. http://labs.europeana.eu/apps/ch-context-widget/  
150 Manovich, op. cit., 2012.  
151 Manyika, James, et al., op.cit., 2011, p.5.  
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Improved research and knowledge for students, academics and citizens 
Access to larger datasets of cultural data (including metadata), especially by way of linked 
data, can greatly improve research activities. This in turn fosters the development of new 
perspectives and contributions to discourse not previously made. This can also result in new 
insights into cultural data. Studying big cultural data in the broader sense that also includes 
data about societies through the social media traces using social computing and by studying 
society itself, produces a more inclusive understanding of history and the present. 152 This is 
especially so when using much larger samples that also enable stakeholders to map cultural 
variability and diversity. Large-scale cultural patterns can also be detected, as well it being 
the “best way” to follow global professionally produced digital culture and understand new 
developed cultural fields.153 
 
User behaviour and sentiment monitoring and  
User behaviour and sentiment data encourage thoughts about user participation in the arts and 
culture as well as being able to indicate usage levels and behaviours. Such data includes 
search queries for cultural objects, data that exists about cultural operations and events, e. 
tickets sales or access to cultural items through linked metadata, and social media traces of 
cultural activity. This is a result of the increasingly-sophisticated approaches to the 
measurement of such data that make it increasingly possible to track, measure and influence 
the spread of ideas and the coming together of groups of people and associated changes in 
their behaviour both on- and off-line.154 The emerging trend of computer scientists working 
in the area of computational humanities that analyse social media signals can also be applied 
to the cultural sector. Further, Transactional data can be of assistance because, 

If more transactional data were gathered and analysed by cultural organisations, it 
would give them the potential to run genuine experiments to discover the efficacy of, 
for instance, sales and marketing techniques and approaches. Knowing more about 
your audience allows you not only to segment more accurately but also, as a 
consequence, affords the ability to determine two similar groups and use one as a 
control, in the scientific sense, against which to test anything from a new slogan to the 
effectiveness of a marketing channel, even a casting decision.155 

Big data applications in the cultural sector provide a number of positive outcomes. These 
practices also expand the meaning of cultural data in a way that promotes the generation of 
value, in the traditional economic sense, for stakeholders. 
 
Transparency of public institutions  
Analysing big data from the cultural sector can assist cultural institutions and organisations in 
identifying performance opportunities for employees and institutions, as well as ensuring that 
these institutions meet public needs. This means that funding bodies and governments can 
also make more informed decisions about the allocation of funds in the cultural sector. Thus, 
data analytics for this purpose can be built into organisational plans in the pursuit of data 
driven decision-making.156  Further, big cultural data can assist the accountability of public 
funds in the arts and culture, although Lilley observes that currently, “a significant 

                                                
152 Manovich, op. cit., 2012.  
153 Ibid. 
154 Donovan, Anna, Rachel Finn, Kush Wadhwa, Lorenzo Bigagli, Guillermo Vega Gorgojo and Martin Georg 
Skjæveland, Open Access to Data, BYTE Project D2.3, 30 September 2014, p62. 
155 Lilley and Moore, op. cit., 2013, p.18. 
156 Lilley, op. cit., 2012.  
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opportunity to better understand and possibly increase the cultural and social impact of public 
expenditure is going begging.”157 Nevertheless, there is great potential in aggregating data 
about the behaviour of cultural consumers could provide powerful new arguments both for 
the provision and allocation of public funding and for the measurement of its impact. 158   
However, realising the potential of big data applications in the cultural sector and the 
facilitation of use and re-use of big cultural data (in the context of it referring to digitised 
works) to positively impact society, by for example the broader dissemination of information, 
raises challenges that are addressed below.  
 
Big ‘cultural’ data challenges  

Despite the potential benefits of access to big cultural data and the application of big data 
practices to the cultural sector, challenges have been identified that include: 

-­‐ Restrictions associated with the funding environment of the cultural sector; 
-­‐ A limited understanding of or interest in the use of data at senior levels in the cultural 

sector; 
-­‐ Inherent threats to intellectual property rights; and 
-­‐ In the case of user data, the risks to personal data and information privacy.  

This is not an exhaustive list of challenges and the extent of their impact have not yet been 
fully realised given the immaturity of the field of big cultural data. 
The funding environment 
The cultural sector inhabits the public sector making big data applications subject to funding 
constraints. The funding environment has limited the extent to which big data has been 
mobilised or considered in the cultural sector. In that regard, Lilley observes: “Too often, the 
gathering and reporting of data is seen as a burden and a requirement of funding or 
governance rather than as an asset to be used to the benefit of the artistic or cultural 
institution and its work”.159 Funding restrictions can also translate into a lag of technological 
tools and resources required to keep with the trends in analytics in other sectors. It also limits 
the budgets spent on salaries and re-training current employees, which can lead to a 
fragmentation of systems. However, there is some evidence that despite the current approach 
to supporting the extraction of value from big cultural data, the analysis of big data in other 
sectors is starting to uncover the possibility of new ways of measuring the impact of arts and 
cultural investment on our wider society in terms of social capital and cultural value 
creation.160  
 
Limited understanding of or interest in the use of big data in the cultural sector 
Big data in the cultural sector can enable access to cultural and historical records maintaining 
their relevance to contemporary society and also facilitating new discoveries by way of reuse. 
Aside from the recognised benefits of big cultural data, there is limited interest beyond this: 
“For many, the potential of data in the cultural sector is at best a ‘known-unknown’ or worse 
goes entirely unappreciated.”161  This may also be the reason that,  

in the cultural sector, there are few genuinely massive data sets currently 
available.  Audience Finder is an example, as is Channel Four’s 4oD, video-on-
demand service, given the broadcaster’s public service status.  The interaction 

                                                
157 Lilley, and Moore, op. cit., February 2013, p.3. 
158 Lilley, op. cit., no date. 
159 Lilley and Moore, op. cit., 2013, p.3. 
160 Donovan, et al., op. cit., 2014, p62. 
161 161 Lilley and Moore, op. cit., 2013, p.4. 
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between these data sets and others and their continued expansion and refinement are 
key planks of a truly big data approach to cultural policy and decision-making in the 
future.162   

Related to little interest is the little perceived value in, and understanding of, the metadata 
that represents the main data asset held by cultural institutions and organisations. Lilley 
observes,  

Put simply, almost all cultural organisations already live in a world of greater volume 
and variety of data – even if they don’t yet harness it.  Many are exploring the 
opportunities and challenges of velocity (for instance through the liveness of 
Twitter).  But very few have an integrated strategic approach and the skills and tools 
to make the most (or even much sense) of the potential that they are faced with.163 

Furthermore, deriving potential from big cultural data in general has also largely been 
overlooked and is “currently underused”.164 
 
However, limited interest and understanding may also be borne out of the contention that 
surrounds the idea of creating value from cultural data, when it is accepted as adding value by 
creating cultural value and social capital as discussed in the introduction of this report. 
Nevertheless, a solution to increasing interest and understanding of big data applications in 
the cultural sector could be attempted through funding R&D activity to help arts and cultural 
organisations understand their data ‘assets’ and systems and look at the relationship between 
cultural value/ social capital formation.165 This could also involve bringing data scientists 
from other, non-cultural fields into the sector as an important way to explore the needs of 
cultural organisations and to build capacity.166  
 
Licensing issues 
For cultural data to be lawfully re-used it needs to be done so in accordance with the relevant 
intellectual property legal framework. Arranging the necessary licensing agreements to 
enable re-use of cultural data can be a barrier to capturing the full value of the data in terms 
of it leading to new discoveries and innovations. This not only includes the technological 
challenge of making the data truly open and accessible, but also necessitates an attitudinal 
shift amongst traditional rights holders, as well as cultural heritage organisations that hold 
cultural data. Licensing arrangements in the sector are commonly tackled through applying a 
Creative Commons licensing regime. Europeana Creative provides a good example of how 
transparent licensing arrangements can support open cultural data, which enables re-use and 
the benefits that flow that re-use.  
 
Privacy and data protection issues 
In so far as the meaning of big cultural data extends to include big data applications in the 
cultural sector, such as collecting and analysing user behaviour and sentiment data, personal 
data protection issues will inevitably arise. For example, analysis of user information, 
including identifiable information can attract data protection rules safeguarding personal data. 
However, at this stage, the underuse of big data applications in the cultural sector makes this 
an issue to be aware of as a potential challenge for stakeholders. 
  
                                                
162 Lilley, “op. cit., no date. 
163 Ibid. 
164 Ibid.  
165 Lilley and Moore, op. cit., 2013, p.8. 
166 Lilley, op. cit., no date. 
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7 CARTOGRAPHY OF DATA FLOWS 

In this section we have mapped data as a resource on an international scale, examining where 
data originates, where it flows and where it is being processed. It examines which countries, 
industries, actors and companies are deriving economic and other benefits from big data 
internationally, as well as which regions, companies and actors are losing out. Here we have 
examined scientific, security, commercial as well as other types of data flows, and 
determined whether big data is being better utilised as a resource in some disciplinary 
contexts than in others. 
 
We measure the data flows on the main intermediation platforms. These platforms are 
particularly relevant since they operate essentially in all countries in the world, and occupy in 
most countries the top position with a very large traffic. An analysis of the traffic on these 
platforms thus allows us to gain a better idea of the global cross-country data flow.  
 
We have considered in addition to the USA and China, countries representative of the 
different regions in the world, Egypt, Brazil, France and Korea. For each country, we 
consider the first ten sites locally. It might seem too restrictive a view, but we believe that it 
is meaningful. Indeed, the traffic on sites decreases very fast. In France for instance, the Top 
10 sites represent a third of the traffic of the Top 500 sites. It is thus a good approximation of 
global activity. Second, the quality of the data harvested on top sites is most often higher and 
diversified than on platforms of lesser importance which are often more specialised.  

7.1 COUNTRY STUDY 

For each country, we consider the Top 10 sites, and present some analysis in a table. For each 
site, we recall its national origin, that is the location of it’s headquarter. Its global rank is 
extracted from Alexa, which produces a monthly rank calculated using a combination of 
average daily visitors and page views over the past month. The national rank is deduced from 
Alexa by taking the percentage in the given country. The global traffic is obtained from 
Traffic estimate, which is based on the number of monthly visits, and not the number of 
visitors, which generates subtle variations, but doesn't change the big picture. Traffic is 
measured in millions of visited167. For sites which have both a .com and a .xx, where xx in a 
country code, we indicate the ranks of both. As an example, Google.fr occupies global rank 
29th, while Google.com is number 1. 

 

                                                
167 The statistics of visits have been obtained the week of November, 4, 2013 from www.alexa.com and 
www.trafficestimate.com. 
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Table 12 Top 10 sites in the US 

 
 

7.1.1 USA 

Let's consider the Top 10 sites in the USA. The situation is quite regular, all of them are 
American. Moreover, as exhibited in Table 12, all of them are global systems, with a global 
cover. In average, national access represents only 31% of all accesses for the Top 7 sites.  
 

7.1.2 China 
For the second power online, China, a similar picture holds with only national sites among 
the Top 10 as shown in Table 13. Some of these sites are also global leaders, such as Baidu, 
second global search engine, with 18% global marketshare168, after Google which has 65%, 
but far ahead of other competitors. Google is on the other hand the only foreign site in the 
Top 20 in China. What drastically differs from the US at this stage is the global impact, 
although undoubtedly, China has strong international ambition, cf. Alibaba.  
 
If 87% of the activity of the Top 7 sites is national, a ratio close to countries like France, 
given the size of the country, the activity abroad is important. Baidu for instance, with 87.7% 
of activity on the national stage, and traffic of 1214 million monthly visits, enjoys 150 
million monthly visits abroad. The e-business platform Alibaba, 63rd global rank, with only 
43% of its activity locally, is ahead of the national industry for the international coverage and 
ambition, with a volume of good exchanged whose values is higher that eBay and Amazon 
combined.  
 

                                                
168 http://www.netmarketshare.com  
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Table 13 Top 10 sites in China 

 
 

7.1.3 France 
Let's consider now a country representative of Europe, namely France. As shown in Table 14, 
most Top sites used in France are American, including all of the Top 6. The Top 10 sites have 
traffic of 655 million monthly visits, 583 million on the Top American sites, and only 72 
million on the 2 European sites. Thus 89% of the visits are made on US sites. The ratio of 
French sites increases slightly beyond the Top 10. 
 
When considering the activity of the Top 7 French sites, 78% of their activity is national. 
Leboncoin, top French site is not even in the Top 500 in the USA.  Dailymotion.com, which 
is really an exception in the French landscape, belongs to the Top 500 in the USA (180th), 
enjoys a large territory of activity, including countries such as beyond the USA and France, 
Japan, India, Pakistan, etc. It makes only 11% of its activity at the national level, 86 million 
monthly visits abroad far ahead of Leboncoin with million monthly visits. 
 
Table 14 Top 10 sites in France 
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7.1.4 Korea 

Korea occupies a remarkable position, with powerful national sites, such as the Naver portal, 
which offers the first Korean search engine, or the communication portal daum.net. At the 
international level Korea enjoys more diversity, relying on sites from both the USA and 
China as shown in Table 15. Like for most countries, Korean sites have little visibility 
abroad, and the linguistic area is restricted. Naver though is among the Top 20 sites in Japan 
together with its competitor Baidu.  
 
Even in the influence of China is strong in Asia; its impact goes beyond the regional borders 
as shown by the following examples of Egypt and Brazil for instance. The Chinese portal 
hao123.com occupies in these two countries the respectively the 8th and the 20th positions for 
instance. 
Table 15 Top 10 sites in Korea 

 
 

7.1.5 Egypt 

Egypt is massively dependent on American sites, which are dominant in the region, but Egypt 
has also sites which have a national as well as regional influence in its linguistic sphere, 
among which the news site youm7.com, and the women portal - fatakat.com, which has a 
strong visibility in the Arabic world.  
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Table 16  Top 10 sites in Egypt 

 
 

7.1.6 Brazil 

The Web in South-America resembles its counterpart in other regions, with a strong 
American domination, and some local sites with limited regional influence as illustrated by 
the example of Brazil.  
 
Among the Top 10 sites in Brazil169, there are 7 Americans, and 3 regional from Brazil or 
Argentina.  
 
Table 17 Top 10 sites in Brazil 

 
 

7.1.7 Global perspective 
The Figure 9 shows the flows of data between the above-mentioned countries. It relies on the 
figures presented in Table 18, which exhibits a representative sample of the flows between 
                                                
169Alexa, 12/12/13 
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these six countries. For each country, we indicate the size of the online population, the traffic 
of the Top 10 sites in that country, the outgoing traffic on foreign sites as well as the 
incoming flow.  

 
Figure 9 Map of World Data Flow 

These measures do not take into account sites that would not be in the Top local sites, but 
have important activity abroad, such as DailyMotion for France.  
 
Table 18 Online population and flow balance 
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8 SUMMARY 

Big data has become the so called mother of invention, forcing different industries to take a 
fresh look at their data and ask themselves whether they are using it strategically. In order to 
uphold competitive advantage, industries must focus on a well-defined business goal, and 
persistently assess the business case for intensifying their analytics activities to encompass 
big data.  
 
A data driven world has the potential to improve the efficiencies of industry sectors and 
improve the quality of human life. No doubt big data brings new opportunities to modern 
society and, at the same time, challenges to data community. For instance, on one hand, big 
data hold great promises for discovering subtle patterns and heterogeneities that are not 
possible with small-scale data. On the other hand, the massive sample size and high 
dimensionality of big data introduce unique challenges, including scalability and storage 
bottleneck, and measurement errors. In this report an overview on the salient features of big 
data as well as a brief overview on big data problems, including opportunities and challenges 
in selected industry sectors, is presented. 
 
The Oil and Gas sector, known for its ability to adapt to challenges of the digital age, is 
entering a new generation of data driven transformation. The oil and gas industry is greatly 
dependent on data to make critical strategic decisions – yet they do not fully realise the value 
of this data. As industry captures petabytes of data daily, it is the ability to understand 
analytics trends, correctly interpret all geological, engineering, production and equipment 
data performance data swiftly and efficiently that warrants success. The ability to access and 
draw actionable insights from data sets is at the heart of profitability in this industry and in an 
industry where success relies on how rapidly one can predict potential and keeping costs low 
to realise that success. The oil and gas industry has undergone significant growth in 
unconventional resources markets. This increase in focus has not only brought on greater 
competition for assets, but a smaller margin for error. With projects demanding more 
expensive drilling and production technology and profound changes in government 
regulations and commodities, companies need to work-out operational wisdom and strategic 
foresight to ensure success. 
 
Data is taking over in an eloquent manner, and is transforming the healthcare industry. There 
is more data available than ever before, and applying accurate analytics can spur growth. 
Benefits extend to patients, providers, and physicians, and the technology can make 
integrated patient management a reality. Healthcare data definitely meets the definition of big 
data. The challenges enveloping the complete aggregation and use of healthcare data are not 
insuperable. Sustaining those challenges will require a culture shift in healthcare both internal 
to providers and between providers and other sections of the industry. The major challenge is 
determining the proper balance between protecting the patient’s information and maintaining 
the integrity and usability of the data. Robust information and data governance programs will 
address a number of these challenges. The sharing of data between organizations must be 
addressed before the full potential of big data in health care may be unlocked. Recall that 
Gartner defines big data as “high-volume, high-velocity, and high-variety information assets 
that demand cost-effective, innovative forms of information processing for enhanced insight 
and decision making” (Laney, 2012). Healthcare data meets the “3Vs” of the big data 
definition. By recognising the second part of the Gartner definition of big data, namely 
“innovative forms of information processing for enhanced insight and decision making,” 
(Laney, 2012) will make a considerable impact on not only the healthcare delivery system but 
the Europe as a whole. 
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Big Data is also expected to help the world solve some of its most intractable environmental 
problems. While solutions addressed in the Section 6.3 primarily the volume and velocity 
axes, other architectural and technological solutions are oriented to address the variety due to 
heterogeneity of datasets. The key utilization of big data is its ability to help assess 
environmental risks, both in real time and in the future. In order to tackle environmental 
issues, very different types of models need to be combined.  
 
The deployment of big data tools in crisis informatics can have significant, positive impacts 
on the life chances of individuals caught up in sudden, complex and difficult circumstances. 
Big data can assist across the crisis informatics lifecycle to help actors prepare for disasters, 
respond during disasters and evaluate the situation in the medium to long term. A review of 
these applications has indicated that big data is cyclical, and can have self-perpetuating 
impacts across the whole lifecycle of a crisis event. However, experts in the field note that the 
evidence of potential positive impacts of big data analytics in this area are mainly drawn from 
anecdotal evidence and there has not yet been any empirical evaluation, baseline assessment 
or systematic learning about these interventions.170 This is essential in order to realistically 
evaluate their impacts. Furthermore, Letouzé et al., point out that while big data offers 
descriptive information can help in understanding what is happening, it does not yet offer 
much information about why it is happening. Thus in crisis informatics contexts, significant 
further research needs to be done to understand the areas in which big data can offer analytic 
insight as well as descriptive insight.  
 
Moreover, the close integration of ordinary people in crisis management activities, and the 
proliferation of Internet-based communication in general, has been heralded as more 
participatory and democratic.171 This analysis has demonstrated that there is an ecosystem of 
stakeholders involved in big data and crisis informatics, which include authorities, 
humanitarian organisations, first responders, crisis managers and other professionals as well 
as members of the public. Yet, while ordinary people are getting more involved in 
information gathering and response activities, this does not necessarily mean that they are 
trained appropriately, that they are accessing people in most need of help, nor that they are 
acting responsibly and with due attention to best practice (including privacy and security). 
This is particularly significant as new information and communication technologies often 
reflect and reinforce existing power relations between authorities and citizens, and between 
different groups of people.172 As such bringing any new technology into use has to be 
sensitive to these potentials, and directly and proactively address them. In the area of crisis 
management, development and associated areas, the use of big data can have significant 
impacts on life chances, and these should be distributed as equally and equitably as possible. 
 
Smart cities and big data are buzz themes in recent times, but the implications of how the city 
is being wired, how it is generating new data, how this data might force new theories and 
models relevant to our understanding, how to use intelligence to plan the city, building on 
this new understanding ̶	
   these are all key questions to be explored. The shift from cities to 
Smart Cities depends on the efficiency with which information is shared among citizens and 
private and public companies. This information brings challenges, and, following the big data 
revolution, novel processing schemes must be adopted to enable the possibilities that exist of 
                                                
170 OCHA, op. cit., 2013, p. 7. 
171 Ibid. 
172 McCahill, Michael and Rachel L. Finn, Surveillance, Capital and Resistance: Theorizing the surveillance 
subject, Routledge, London, 2014. 
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this domain. All the possibilities enabled by smart cities, like improved quality of life or 
energy efficiency, shall build on top of efficient data processing and users’ privacy protection 
schemes. 
 
To enable better decision-making, efficiency, and cost savings for its customers, shipping 
industry analyses live sea traffic conditions and metrics from multiple carriers. These data 
sets are massive, and the speed at which they must be analysed is primarily real time. The 
data is also varied, coming from wired and wireless devices. The big shipping data sets 
significant demand on data storage, event processing, and analytics. The shipping industry is 
beginning to embrace the opportunities provided by technical, engineering data that allows 
condition based maintenance, efficiency and engine health monitoring, but the data prospect 
is far wider. The smart collection and analysis of massive commercial datasets are driving 
transparency across the industry.  
 
Big cultural data is largely undefined, and research suggests that the potential of big cultural 
data is yet realised. However, in the context of the BYTE project case study on big cultural 
data, it refers to public or private collections of digitised cultural works, including their 
associated metadata, as held by cultural organisations and institutions. However, as the field 
matures, a pertinent definition of big cultural data is one that also includes big data 
applications in the cultural sector and the related data that is captured and used by these 
applications. Whilst the numbers of current applications appear minimal, and are perhaps 
restricted by the longstanding sentiment that cultural data is a cultural investment rather an 
investment that can be quantified in economic terms, the potential for big cultural data is far 
reaching.  
 
The broader definition adopted by this report reflects the reach of big data. As this field of big 
data matures, so too will the understanding and adoption of the number of potential uses of 
big data in various sectors, as well as applications of big data practices in the various sectors. 
This will produce positive societal impacts, both in terms of adding social capital and value, 
as well as commercial oriented outcomes. It follows that challenges will be better identified 
and overcome. 
 
Finally, the data flows on the main intermediation platforms are described. We have 
considered different countries representing different regions in the world. An analysis of the 
traffic has provided a better understanding of the global cross-country data flow. 
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