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Abstract— Due to the recent explosion of ‘identity theft’ cases,
the safeguarding of private data has been the focus of many
scientific efforts. Medical data contain a number of sensitive
attributes, whose access the rightful owner would ideally like
to disclose only to authorized personnel. One way of providing
limited access to sensitive data is through means of encryption.
In this work we follow a different path, by proposing the fusion
of the sensitive metadata within the medical data. Our work
is focused on medical time-series signals and in particular on
Electrocardiograms (ECG). We present techniques that allow
the embedding and retrieval of sensitive numerical data, such
as the patient’s social security number or birth date, within
the medical signal. The proposed technique not only allows
the effective hiding of the sensitive metadata within the signal
itself, but it additionally provides a way of authenticating the
data ownership or providing assurances about the origin of the
data. Our methodology builds upon watermarking notions, and
presents the following desirable characteristics: (a) it does not
distort important ECG characteristics, which are essential for
proper medical diagnosis, (b) it allows not only the embedding
but also the efficient retrieval of the embedded data, (c) it
provides resilience and fault tolerance by employing multistage
watermarks (both robust and fragile). Our experiments on real
ECG data indicate the viability of the proposed scheme.

I. I NTRODUCTION

In the years to come, the Healthcare system is expected
to experience a drastic change in its structure and organi-
zation. These changes are partly driven by changes in the
human genographics, and also reinforced by the recent climatic
changes and the various events and disasters throughout the
world. This shift is clearly reflected on recent Healthcare
reports. For example, theHealthcare 2015 report1 shows
that governments, health regions, hospitals, and healthcare
providers are allotting billions of dollars into multiple medical
initiatives.

One very important effort is the creation of electronic health
records (EHR’s). As health care (and health care data) grows
more complex, storage and accessibility of medical informa-
tion is not only invaluable but also necessary. The long-term
goal for electronic health records is to make patient data
securely available to health care providers such as hospitals

1http://healthnex.typepad.com/web log/2007/02/
web seminar rep.html

and emergency personnel, when and where the information
is needed. Disasters, such as Hurricane Katrina, for example,
have shown the practical utility of being able to store and
retrieve information like prescription histories and dosages
electronically in an emergency.

One of the major technological and ethical issues governing
electronic records is the issue of data privacy. Protectionfrom
unauthorized access on medical history data and personal
patient data, is something that can not only protect a patient’s
private data hindering potential identity thefts, but can also
safeguard the healthcare and insurance system from fraudulent
claims. With this in mind, this work proposes techniques
for hiding sensitive patient metadata within the actual med-
ical measurements, which are stored into a patient’s medical
record. In specific, we focus on electrocardiograms (ECG’s)
and how to embed numerical metadata within the ECG signals.

A prerequisite of this embedding is, of course, not to destroy
the data usability. We indeed show that the usefulness of the
data is not affected, because of the imperceptible distortion
induced through the fusion of the metadata within the actual
data. For most watermarking applications this requirement
can simply be stated as preserving the visual/audio quality
of the signal (i.e., for image and audio processing). When
dealing with medical data this means that our watermarking
algorithms should not change the diagnosis of a physician. For
example, when dealing with ECG signals, common tasks are
the detection of arrhythmia or other heart related conditions.
Therefore, the diagnosis on the watermarked signal should not
deviate from the diagnosis on the original signal.

The privacy of the embedded data is assured because we
do not embed directly the private metadata, but instead we
embed a surrogate random sequence, that is generated by a
cryptographically safe hash function using the metadata asthe
input and a secret key as the seed. Hence, we avoid leaking
or revealing any information about the patient’s sensitive
information to the public. Even though the privacy of sensitive
data attributes can be addressed through encryption, such an
approach is inherently a blocking factor in data dissemination.
Additionally, the use of encrypted fields in medical records
directly suggests the existence of private data, which may be
something that one would like to avoid in the first place.

The tight coupling of the metadata within the actual medical
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measurements presents several desirable properties: 1) Private
information is effectively concealed in the signal and therefore
can serve as an additional authentication seal regarding the
originality of the data. 2) The fusion of the metadata withinthe
actual data can potentially eliminate the need for recording the
patient metadata separately. This could provide an additional
level of security on the private information of a patient, by
thwarting deliberate changes on the medical records, or even
by providing a source for data verification which may occur
due to accidental errors during a laborious replicating/typing
process of a patient’s record fields. 3) Finally, the techniques
that are delineated here could also be applied for establishing
the provenance [1] of the data. Therefore, if every recipient
(or processor) of the data embeds a different secret watermark,
then one can trace the lineage of how the data was produced,
processed and distributed in a methodical fashion.

In the experimental section we also demonstrate that the
fusion of the metadata with the data is achieved in such a
way, so that the data usability is not hindered or affected. The
upcoming sections, will explicate in more detail the challenges
and also the advantages of the proposed embedding.

II. OVERVIEW

In order to embed metadata within the medical signals,
we will utilize notions from data watermarking and channel
coding. The sensitive metadata (social security number (SSN),
birth date, and so on) will be embedded as a hidden watermark
within the medical measurements of the patient. In order to
provide additional protection and data resilience we propose
to embed two types of watermark on the medical signal; a
robust one for storing the actual metadata and a fragile one
for identifying possible tamperings on the data:

1) The robust watermark will encode an encrypted ver-
sion of the patient’s metadata, employing additional data
redundancy for aiding data recovery in the case of data
corruption by a malicious attacker. We show that a robust
watermark cannot be easily removed without signifi-
cantly distorting the actual data, i.e., without obvious
attacks, which in any case will render the data useless.

2) The fragile watermark will be used for detecting
potential data tampering. As the name suggests, simple
operations can destroy the fragile watermark, but its
absence on the received data is an indication that the
data have been compromised or altered.

Here, we introduce novel robust and fragile watermarking
approaches and apply them to medical time-series data. We
use extensive randomization in every step of our algorithms
to alleviate potential vulnerabilities of the algorithms against
malicious attackers or common alterations on the host sig-
nal. The robust watermark encoding the actual metadata is
embedded in the frequency domain, and the data is masked
effectively in certain frequencies that are selected basedon
a secret key. This type of embedding makes the embedded
data resilient to transformations such as translations, least
significant bit alternations, small noise additions, resampling
and decimation. Furthermore, the regions where the private
metadata are embedded are selected based on a secret key.

A fraction of the hidden metadata bits will be allocated
for employing error correction codes, in order to provide
additional resiliency due to malicious attacks, or even dueto
transmission errors. In this sense, our watermarking approach
not only uses ideas from spread spectrum based algorithms [2],
but also has connections to watermarking techniques motivated
by traditional cryptography [3].

The fragile watermark will be embedded after the robust
watermark on the least significant bits at specially selected
positions of the ECG signal. The fragile embedding will
introduce virtually no distortion. Notice, that even though the
fragile watermark is embedded on top of the robust, it cannot
destroy the robust watermark which is able to withstand such
minor (or even more significant) transformations. An overview
of this architecture is provided in Figure 1.

Once the metadata are effectively fused within the medical
signal, there are three supported modes of operation:

1) Tamper Detection by examining the presence of the
fragile watermark.

2) Data Authentication through correlation with the orig-
inally embedded metadata. For example, if the SSN of
a patient is embedded in an ECG signal, then using the
SSN and a secret key, one can verify that the data indeed
belong to the patient with a specific Social Security
Number.

3) Metadata Retrieval. The rightful owner of the data can
provide the secret key to someone else, who is now at
a position to retrieve the embedded metadata from the
medical signal.

A. Related Work

Watermarking research in multimedia data is a very rich
field. Compared to traditional watermarking our work exhibits
various differences, such as the fact that we provide the ability
of retrieving backthe embedded metadata. For this reason we
also augment our watermarking technique with coding redun-
dancy schemes, in order to achieve better data preservationand
provide the ability for error correction. Additionally, because
we are dealing specifically with medical ECG signals, we can
exploit their regularity for tailoring more appropriatelythe
metadata encoding scheme.

Previous research work dealing with the watermarking
of medical signals have appeared for electroencephalograms
(EEG’s) [4] and for ECG data [5]. In [4], the authors study
three different fragile watermarking techniques for checking
the integrity of EEG signals. The watermarking techniques are
applied to the prediction error of an autoregressive filter,which
is used to model EEG signals. In our work, we investigate
not only fragile watermarking, but also robust watermarking
concurrently. Unlike [4], our fragile watermarking algorithm
has the ability to localize tampering due to random locations
chosen to embed the actual watermark. Each patch of fragile
watermark only depends on the hash values, i.e., variables that
reflect the properties of that particular segment, of that seg-
ment. Hence, this segmentation provides localized tampering
information as explained in the text. Furthermore, as shownin
[6], the types of watermarking algorithms investigated in [4],
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Fig. 1. Overview of our approach

using known watermark locations, are highly susceptible to
estimation type of attacks and can be easily removed without
any tampering on the original signal.

In [5], the authors investigate a robust watermarking al-
gorithm for ECG signals. The watermarking used is the
multiplicative spread spectrum type watermark applied to third
order wavelet decomposition of ECG signals. The random-
ization is only provided in the watermark signal generation.
As pointed out above, this type of watermarks are highly
susceptible to estimation type of attacks. In a similar setup,
[6] demonstrated that the embedded watermark signal can
be easily estimated and removed from the original signal if
the watermark locations are known. In our work, we use
both random locations as well as randomized binary sequence
generation to avoid such kind of estimation type of attacks.
Additionally, to our knowledge, this is first work that consid-
ers metadata fusion within the medical signal, not only for
reasons of authentication, but also for providing the ability of
heterochronous metadata retrieval.

Related is also the work of [7] which watermarks numeric
streams, by embedding the watermark on easily identifiable
stream positions, such as the local maxima and minima.
However, such an approach might not be ideally suited for
ECG signals, where one would like to preserve as well as
possible such areas, because of their significance in medical
diagnosis. Therefore we spread the intensity of the robust
watermark using a spread spectrum approach. Additionally,
the Least Significant Bit (LSB) alteration that we employ in
the fragile watermark is quite more advanced, in the sense that
it can also pinpoint the area and type of tampering.

Watermarking work has also been used in relational data-
bases either using direct LSB alterations [8], [9] or using
hierarchical Binning approaches [10]. Finally, there is a vast
literature on the topic of privacy preserving data-mining [11]–
[15]. Compared to the above areas, our approach is different
regarding the goals and the methodological approach that we
follow.

In the upcoming sections we will describe the embedding
and the retrieval of the robust and the fragile watermarks. We
will also demonstrate the minimal distortion that is introduced
by their embedding and in the experimental section we will
empirically assess the resilience of our scheme.

III. ROBUST WATERMARKING

A. Preliminaries and Notation

Consider an ECG signal as a one dimensional time-series
sequence, represented as a vectorx = {x1, . . . , xn}, where
xk ∈ R. In such a signal, we will embed private numeric
metadata by adapting onwatermarkingtechniques. However,
we will also show how to retrieve back the hidden information,
which is something that traditional watermarking applications
do not consider. Therefore, our technique gracefully fuses
watermarking and channel coding techniques. Thesecret in-
formation that will be hidden inside each ECG signal itself
is encoded as a watermarkW ∈ {−1, 1, 0}n, which has the
same length asx and can take3 distinct values. Later we will
show how we can use the sequenceW to encode numeric
metadata consisting ofl-bits. The embedding of the watermark
consists of a composition function that, givenx andW , returns
a modified signal which issimilar to x andenclosesW . The
original ECG signal should not be significantly distorted and
a technique to retrieve/detectW in the watermarked signal
should be provided. We call this watermarkrobust because it
is able to withstand a variety of possible data transformations.
We will not embed the watermark in the originalSpace-Time
domainbut into theFrequency domain, which will guarantee
better resilience against malicious attacks.

Every ECG signalx will thus be represented with the set
of its Fourier descriptorsX = {X1, . . . ,Xn} wheren is the
number of points ofx as well as the number of its frequency
components. The mappings from one domain to the other are
described by the discrete Fourier transformdft(x):

Xj =
1√
n

n�
k=1

xk exp �−i
2π

n
(j − 1)(k − 1)�

and the inverse discrete Fourier transformidft(X):

xj =
1√
n

n�
k=1

Xk exp �i2π

n
(j − 1)(k − 1)� .

Every coefficientXj can be described in terms of itsmagni-
tudeρj andphaseφj , that is,Xj = ρje

φji.
We use an additive embedding of the watermark which

alters only the magnitudes but retains the original phase:
Definition 1 (Additive Fourier Embedding):For a signal

x ∈ R
n and a watermarkW ∈ R

n, the additive Fourier
embeddinggenerates a watermarked signalx̂ by replacing the
magnitudes of each Fourier descriptor ofx with a watermarked
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magnitudeρ̂j :
�
ρj = 〈ρj + pWj〉 def

= max(0, ρj + pWj)

wherepowerp > 0 specifies the intensity of the watermark.
Notice that we use the function〈 · 〉, in order to ensure that

we have no resulting negative magnitudes, whenWj = −1.
Using the modified magnitudeŝρj and the original phasesφj ,
we go back from the frequency domain to the time domain
and reconstruct the watermarked sequence using the inverse
discrete Fourier transform.

B. Watermark Construction

Let us describe now how the private metadata are embedded
into the hidden watermark. First, let’s recall that the watermark
W will consist of the values +1, -1 and 0. Understandably, only
thoseWj ’s that contain +1 or -1 will introduce some alteration
in the respective signal frequencies. Thus, only thoseWj can
encode some information. Conversely, the zero values ofW
determine the descriptors that we do not want to modify.

The choice of which Fourier descriptors (frequencies) are
most suitable to be altered, i.e., to be actually used for the
embedding, can affect the goodness of the detection process.
Our goal is to build an unbreakable bond between a signal and
a embedded watermark. On the other hand, a potential attack
cannot alter the overall shape of the ECG plot, i.e. damage its
usability. Therefore we should tie the embedded metadataW
with the most important frequencies. It is well establishedthat
the first descriptors hold almost all the energy of ECG signals,
which means that they describe very accurately the data.

Driven by these considerations, we will focus on embedding
the watermark in the lowest frequencies. However, we will
not embed any portion of the watermark on the first Fourier
descriptorX1, since the DC component of the signalx (X1 =∑

j xj/
√

n) is easily susceptible to attacks. For example, a
simple translation will change the DC level ofx (that is,X1)
without affecting its shape, but it will erase this part of the
watermark. Therefore we embed the watermark into the2nd

and up to the(l + 1)th Fourier descriptor, wherel is the
number of non zero elements ofW . Then, the watermarkW
is formally defined as follows:

Wj =

��
�

0 if j = 1 (DC component)
{−1, 1} if 2 ≤ j ≤ l + 1

0 if l + 2 ≤ j ≤ n

The metadata that one wishes to embed in an ECG signal
will be represented with a sufficiently long bit-string. In
order to provide additional resilience to attacks, we introduce
additional pre-processing before materializing the watermark
W . Let B(I) be the binary representation of the information
I (e.g., metadata), which is randomly generated using the
original information and part of the secret keyκ. Details
of this pre-processing would be clear later on. We prefer a
randomized representation of the metadata in order to protect
the private information of the patient. We next produce an error
correcting code ofH7,4(B(I)) using theHamming(7,4)cod-
ing. Introducing channel coding is mainly used to detect errors
during the transmission of bit-streams over a noisy channel.
This process introduces a controlled level of redundancy by
mapping an input of4 bits into a code of7 bits. Due to this

added redundancy, the receiver of the message will be able to
correct 1-bit errors anddetect2-bit errors. In the same way,
we will detect malicious attacks that mayflip one or more bits
of the embedded watermark. We adopted the Hamming(7,4)
encoding for its simplicity, but more complicated and effective
techniques could be utilized as well. The Reed-Solomon code,
for instance, is currently used in CDs and DVDs and it
provides augmented correction capabilities.

Given the above, the embedded watermark that can encode
the metadataI is defined as follows:

Wj =

���
��

0 if j = 1 (DC component)
1 if (j − 1)-th bit of H7,4(B(I)) = 1

−1 if (j − 1)-th bit of H7,4(B(I)) = 0
0 if l + 2 ≤ j ≤ n

where l = |B(I)| is the length of the binary representation
of I.

As explicative example, for the rest of the paper we will
use the social security number (SSN) as the metadata to be
embedded in a given ECG plot. The SSN in the United States,
consists of 9 digits in the form999− 99− 9999. Any number
< 109, can be represented with a30-bit long string, which for
conciseness let us callbinary(SSN). This initial representation
can be as simple as the binary conversion of the decimal SSN.
The binary representationbinary(SSN) is then inserted into a
cryptographically secure hash function withκ as the secret key
to produce the final randomized 30 bit long stringB(SSN) as
seen in Figure 2. This representation is then divided into seven
chucks of four bits each and then Hamming coding is applied
independently to each chuck. The result is al = 57 bits long
error correcting code enclosing a given SSN.

SSN

999-99-9999

Decimal to

binary

binary(SSN)

30-bit

Hash

function

�

B(I)

30-bit

Hamming

code(7,4)

Fig. 2. Randomized binary representation of SSN metadata, through hashing
and Hamming coding.

C. Embedding the metadata

After the watermark is created based on the given metadata,
we use a spread spectrum approach [2] for embedding it into
the host medical signal. Our technique will embed the same
watermark multiple times in a single time-series sequence.A
given ECG signal is partitioned into a set of subsequencesS.
Then in each of these sub-ECGs the watermark is embedded.
This distributes the power of the watermark across multiple
frequencies of the signal subsequences, making its removal
particularly difficult, while at the same time preserving the im-
portant data characteristics. In other words, we get a stronger
watermark with less power, i.e. less noise introduced in the
original ECG by spreading the watermark signal over the
whole data.

More specific, given an ECG signalx = {x1, . . . , xn},
we first select a random starting pointtk using κ as the
seed of a pseudo-random number generator. We then splitx
into |S| = bn/mc adjacent subsequences, starting fromtk.
However, when we reach to the last point ofx, i.e., xn,
we cyclically continue embedding the watermarkW from
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x1 until the remainingn − m ∗ s points of x. We ignore
these lastn − m ∗ s remaining points beforextk

. We denote
the set of these subsequences withS and from now on we
will call them characteristic subsequences. We chose each
characteristic subsequence to containm = 3∗l points such that
each subsequence is 3 times longer than the bit-string to be
hidden into the data. This simply allocates enough bandwidth
in order to embed the watermark in the lowest frequencies of
each subsequence, since the length should be at least 2 times
the length of the watermark due to the conjugate symmetry
of Fourier coefficients. The magnitudes of each subsequence
are then updated according to the additive embedding scheme
described before.

The embedding process returns the second part of the secret
key β to be used during the detection process described later.
The vectorβ is defined as the average values of the variousρj

of the subsequences inS, only for thosej such thatWj 6= 0:

βj(x) =
1

|S|
�
s∈S

ρj(s)

Note that the vectorβ is calculated on the original ECG, i.e.
before the watermarking takes place.

Unlike a non-blind watermarking approach, where in order
to retrieve the watermark it is necessary to have access to
the original data, in our case, we will only need the vector
θ = [κ β]. In this sense we avoid revealing the original data
to the users, hence avoiding any obvious security risks.
Resilience of the Embedding:Potential transformations in
a medical signal include vertical shifts, re-sampling (upsam-
pling or downsampling) and cropping. By construction, our
technique is resistant to vertical shifts, which only affect the
first frequency component (the DC), where no part of the
watermark is embedded. In the experimental section, we also
evaluate the resilience of our scheme to other types of attacks,
such as noise addition, upsampling and decimation.

D. Error introduced by the watermark.
We measure the amount of noise introduced in a water-

marked signal̂x as the relative errorε, w.r.t the originalx:

ε(x,
�
x) =

‖x − �
x‖

‖x‖
where,‖ · ‖ signifies theL2 norm of a vector.

If we consider a single subsequences of x, then due to Par-
seval’s theorem [16], and after some algebraic manipulations,
it is easy to see that:

‖s − �
s‖2 = ‖S −

�
S‖2 = ‖ρ − �

ρ‖2 + 2
�

j

ρj

�
ρj [1 − cos(φj −

�
φj)]

= ‖ρ − �
ρ‖2 (since φj =

�
φj )

= ‖ρ − 〈ρ + pW 〉‖2 ≤ ‖pW‖2 = l p2

The above gives an upper bound to the error introduced in a
single subsequence, assuming that〈ρ + pW 〉 = (ρ + pW ). It
also shows that an additive watermarking introduces an error
which is proportional to the square root of key length and to
the watermarking power. To get an upper bound on the error,
εp, for the whole signalx, we apply the previous result for
each segment, yielding

εp =
1

‖x‖ ��
s∈S

lp2 = p�|S|l
‖x‖ .

E. Metadata retrieval

In order to retrieve the embedded metadata, we essentially
need to retrieve the enclosed robust watermark, based on
the knowledge of the secret keyθ = [κ β]. The process is
illustrated in Figure 3. We want to allow only the owners of
this secret key to retrieve the sensitive metadata present in
the data. Note that the first part of key vectorκ is randomly
selected from the key space and the second part of key vector
β depends only on the data and does not have any correlation
with the watermark. By disclosing the secret keyθ, not the
watermarked data, no information can be inferred about the
secret metadata.

WM

Encoder

x

W

θ

x̂ Channel
WM

Decoder

Ŵ

watermarked?

θ

y

WM embedding WM retrieval/detection

Fig. 3. Illustration of the watermark embedding and detection/retrieval
process.

For retrieving the private metadata, we reverse the water-
marking process by comparing the value ofβ that we have
from the original ECG and the new valueβy that we calculate
from the received ECG signaly. The received signaly is equal
to the watermarked datâx if there is no distortion (attack) on
the signal.

Given a received (watermarked) signaly, we split y into
a new set of characteristic subsequencesSy, exactly as done
during the watermark embedding process. The metadata are
retrieved as follows:

Definition 2 (Metadata Retrieval):Let x̂ and y be water-
marked and received signals, respectively. The characteristic
subsequencesSy is the set derived from the received signaly,
which is equal tôS if there is no distortion on the watermarked
signal x̂. Let the calculated statistics from the received signal
y be βy, then we define the binary vectorZ as

Zi = � 1 if βy
i − βi ≥ τ

0 if βy
i − βi < τ

where the threshold is selected to control the trade-off
between false alarm (FA) and false rejection (FR) rate. Then,
the receivedB(SSN) is given by

R = H−1

7,4 〈Z〉.
whereR is equal toB(SSN) if there is no error in retrieval.

If βy
j − βj ≥ τ we have a hint that thej-th element

of the embedded watermark is equal to0 (Wj = 0), and
symmetrically equal to1 if βy

j − βj < τ . In order to get
the actual data, we must apply the Hamming decoderH−1

7,4 .
Using decoder we retrieve two pieces of information. First we
infer whether there has been some error in the retrieval ofR,
and secondly we can try to remove such an error.
Example: Suppose that we are embedding a 9 digit SSN of a
patient as the secret metadata. We first convert 9 digit decimal
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SSN into a 30-bit long binary stream. We input the resulting
binary representation to a cryptographically safe hash function
(with κ as the secret key) to get, again, 30-bit long random
sequence. Applying Hamming(7,4) for each 4-bit blocks of
this data would yield a watermark signal of 56-bit long, i.e.,
d30/4e ∗ 7 = 56. Given an ECG signalx, this W would be
embedded for each segment of size3 × 56. After decoding
the watermarked signal, we getZ. If there is no attack on
x, than it is easy to see thatZ should be equal toW , since
βy − β = β̂ − β = pW . In the presence of an attack one can
measure the goodness of the watermarking as:

Goodness= 1 −
∑

Z XOR W

56

i.e. the percentage of bits correctly retrieved.

F. Watermark Detection

Given the secret keyθ, one can also simply detect the
presence of the watermark without retrieving back the embed-
ded metadata. This is achieved using a generalized correlation
detector which is given in the following definition:

Definition 3 (Watermark Detection):Let x, x̂ andy be the
original, watermarked and received signals, respectively. The
characteristic subsequencesSy is the set derived from the
received signaly and equal toŜ if there is no distortion on
the watermarked signal̂x. Let the calculated statistics from
the received signaly be βy, then we define the generalized
correlation detector as�

βy − β,
�
β − β�

‖
�
β − β‖2

> τ watermarked
≤ τ not-watermarked (1)

where the thresholdτ is selected based on the desired false
acceptance and false rejection rate, and〈x, y〉 =

∑
i xiyi.

The above correlation detector is decision-theoretic optimal
when the disturbance on̂x is white Gaussian noise [17]. How-
ever, in case of non-Gaussian disturbances, we also introduce
following updated correlation detectors which work directly
on the received bits instead ofβ values:

〈Z, W 〉
‖W‖2

> τ watermarked
≤ τ not-watermarked (2)

and
〈R, B(SSN)〉
‖B(SSN)‖2

> τ watermarked
≤ τ not-watermarked (3)

In the experimental section, we include detailed experiments
regarding the performance of the above three watermark
detectors.

IV. FRAGILE WATERMARK

After the robust watermark which encloses the private meta-
data is embedded in the ECG signal, a fragile watermark will
be added on top of the resulting signal. The fragile watermark
can be used to efficiently detect subsequent alterations to
a marked data. Although, the robust watermark is designed
to be resilient against most of the benign signal processing
operations (such as compression, cropping, decimation) and/or
against malicious attacks that intentionally attempt to remove
the underlying watermark, fragile watermarks are designedto

detect (with high probability) even the slightest changes on the
underlying watermarked data. Although conceptually different,
the embedding and detection of fragile watermarks is similar to
that of robust watermarking framework. In the details provided
later on, we stress on the importance of the randomized aspect
of our algorithms, since a randomization approach will protect
the watermark against most of the intentional attackers trying
to estimate the watermark.

A. Fragile Watermark Embedding

For our particular application, we desire our fragile water-
marking to have the following properties:

1) The embedded watermark should not interfere with the
underlying usage of the signal. This requirement reduces
the candidate algorithms that one can use on the fragile
watermark, in order to induce only minimal effects on
the underlying ECG signal.

2) The fragile watermarking should be able to detect the
presence of tampering on the medical signal.

3) The fragile watermarking should provide localized in-
formation about tampering. To satisfy this, the fragile
watermark needs to be localized. The candidate fragile
watermark should also be able to quantify the nature
of the underlying alterations or attacks on the corre-
sponding signal. For some applications this property
is essential, since most of benign signal processing
operations such as compression or change of axis by DC
addition/subtraction will destroy the fragile watermark,
however, the underlying signal is still useful for all
practical purposes. Hence, the fragile watermark should
quantify the underlying cause of the alteration as much
as possible in order to assist the final judgment on the
usability of the tampered signal.

Since our first motivation is to detect any alteration on
the underlying ECG signal and we desire to have minimal
effect on the underlying signal, we embed the watermark in
the spatial domain on theleast-significant-bits(LSB’s) of the
ECG signal. This type of algorithms that alter the LSB’s are
extremely effective for detection of random perturbations, but
in their most basic form [8] are very susceptible to malicious
attacks. One can easily change the underlying watermarked
signal (in the extreme case completely replace with another
signal) without touching the LSB’s. In the literature, there are
many different variations of the basic approach to reduce this
kind of vulnerability to malicious attacks by including context
information into the watermark [18]–[20] . In this paper, we
require, the embedded watermark signal to be both context
and data dependent in a randomized manner in order to avoid
any possibility of an attacker to either replace the watermark
partially or completely, or alter the watermarked signal. The
fragile watermark embedded in the LSB’s depends on ran-
domly generated semi-global data statistics, which we believe
would capture the essential features of the underlying signal
[21]. We extensively use randomization in order to eliminate
the possibility for an attacker to retrieve any informationabout
the original key. Since, an attacker which has access to the
original key could use this key for watermarking arbitrary data.
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Next, we provide the basic fragile watermarking algorithm
and the motivation of each step. The complete description of
the embedding and detecting of the algorithm are given in
Figure 5 and in Figure 7, respectively.

Embedding Algorithm: Given an ECG signalx =
{x1, . . . xn}, we first separate the underlying signal into sep-
arate blocks based on heart-beats, i.e., we use each heart-beat
duration as a segment, wherexi is the portion of the ECG
signal corresponding to theith heart beat. To achieve a beat
to beat signal separation we utilize an energy based filter, since
the ECG signal should exhibit higher energy at the frequency
indicated by the heart beat. Note, that the heart beat separation
does not have to be exact, since this block processing is merely
a way of providing broad localization information upon the
fragile watermark. In a sense, we are exploiting the fact that
we work on ECG signals, and we use their inherent pattern
regularity in establishing an effective localization capability
for the fragile watermark.

Subsequently, we remove the LSB from eachxi
k to get x̃i

k,
i.e., x̃ is the ECG signal where all LSB’s are set to zero. We
useκ as the seed for a pseudo random number generator to
generatep randomly located intervals with lengthw, where
{ti

1
, . . . , tip} are the randomly selected starting points for each

interval, in Figure 4.

ECG portion corresponding to a heart beat

i
t
1

1
1

wt
i

i

pt 1wt
i

p

i
t

2
1

2
wt

i

Fig. 4. Localization of the fragile watermark is achieved through data
’blocking’ into heart-beats. Subsequent selection of randomly generated
windows within the heart-beat for embedding the fragile watermark.

Naturally, eachtij is selected to avoid any interference with
the next segment, i.e.,tij+w−1 should be less than the starting
point of the next segment. The length of these windowsw is
a design parameter. There is a trade off in selectingw, since a
largew would capture the essential (or global) characteristics
of the signal better, but a smallw would capture the local
characteristics of the signal better [22]. Given a randomly
selected location and a window of lengthw, we generate
semi-global statistics from this portion of the data. These
statistics can also have random components in their generation,
however in this work we do not use any randomization, except
their locations. Our algorithms are generic such that this kind
of alterations can readily be incorporated. The windows can
be overlapping so that we avoid constraining the selection
of locations to reveal limited information to an attacker.
These local and randomly generated features are essential and
would be calledhash values. We use these hash values (after
appropriate quantization) and the patient metadata, as theseed

of a random number generator to generate the final fragile
watermark which is comprised of zeros and ones of length
equal to heart-beat duration. The resulting fragile watermark
is embedded to the LSB’s of the corresponding heart-beat.
We repeat the same process for each heart-beat to create the
watermarked ECG signal.

We generate several different statistics (or hash values)
per window to capture different features of the data in that
window. Per window, we generate three different hash values
gi
1,j , g

i
2,j , g

i
3,j , j = {1, . . . , p}, by calculating: the power of

the corresponding signal filtered by a low pass filter, a band
pass filter and a high pass filter as seen in Figure 6. Hence for
each heart-beat segment

gi
1,j = T1({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}
gi
2,j = T2({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}
gi
3,j = T3({x̃i

tj
, . . . , x̃i

tj+w−1}), j ∈ {1, . . . , p}

whereT1(x) (T2(x),T3(x)) represents the composite opera-
tion of first lowpassing (bandpassing, highpassing) the signal
x and then calculating the power of lowpass ((bandpass, high-
pass) filtered signal. We collect all hash values corresponding
to all segments and windows ing = {gi

l,j}. Apparently, these
three different hash values would capture the different features
of the data. For example, a local shift of the heart-beat data,
i.e., a DC addition or subtraction, will not affect the hash
values generated by the high pass or band-pass filters, hence
revealing and localizing the corresponding tampering. The
amount of tampering could also be determined as the amount
of change in the corresponding hash values. Even a local tem-
pering could be pinpointed since we use several overlapping
windows for each heart-beat segment. Although we use simple
outputs of straightforward DSP filters, more sophisticatedfil-
ters or algorithms that are tuned for a particular application or a
signal database can be easily introduced in the algorithm. Each
new addition will introduce further localization or capture
different features of the data. After collecting the hash values
for each interval for each segment of a heart-beat, we append
the patient metadata with appropriately quantized values of
these hash values as the seed of a random number generator:
κi = CONCAT(κ {gi

l,j}) to generate the fragile watermark
for this segmentW i

fra. The fragile watermark,W i
fra, is the

same length as theith segment and comprised solely of zeros
and ones. This randomly generated WM will be the LSB’s of
this particular segment. We replicate this procedure for each
heart-beat segment to get the final fragile watermarked signal.

0
3

00
3 3

2
00

3

2

)(H )(H)(H

Fig. 6. Filters used for extracting the various window statistics

B. Fragile Watermark Detection
For detecting of the fragile watermark, we follow similar

steps as the embedding. Given a watermarked ECG signalx̂
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Embedding:

Step 1: Let x ∈ R
n be an ECG signal of sizen × 1.

Step 2: For each sample ofx, remove the LSB to get̃x.
Step 3: Split x̃ into disjoint segments̃xi where each̃xi corresponds to a single heart-beat
and x̃ is the union ofx̃i i =∈ {1, . . . , N}
Step 4: For eachi = {1, . . . , N}
Step 4.1:Given x̃i, generatep possibly overlapping intervals (each with sizew × 1) with time stamps{ti

1, . . . , t
i
p},

Step 4.2:For each interval generate three semi-global features:g1,i = T1({x̃i
tj

, . . . , x̃i
tj+w−1}),

g2,i = T2({x̃i
tj

, . . . , x̃i
tj+w−1}) andg3,i = T3({x̃i

tj
, . . . , x̃i

tj+w−1}) where
T1(.) is the power of low-passed filtered{x̃i

tj
, . . . , x̃i

tj+w−1} with pass band[0, π/3],
T2(.) is the power of band-passed filtered{x̃i

tj
, . . . , x̃i

tj+w−1} with pass band[π/3, 2π/3],
T3(.) is the power of high-passed filtered{x̃i

tj
, . . . , x̃i

tj+w−1} with pass band[2π/3, π]

Step 4.3:Constructκi by appendingκ with appropriately quantized version ofgi
l,j ,

κi = CONCAT(κ {gi
l,j}).

Step 4.4:Generate a random vector of the same size ofxi comprised of zeros and ones,W i
fra

usingκi as the seed of a random number generator.
Step 4.5:Replace LSB’s of̃xi with this random vector.

Fig. 5. Embedding of fragile watermark.

and hash valuesg of the original data as the side information,
we first remove and store the LSB’s for eachx̂k. The hash val-
ues are generated for each heart-beat segment using the same
random number generator withκ as the seed. After getting
the time stamps,{ti

1
, . . . , tip}, we calculate the following hash

values,
�
gi
1,j = T1({

�
xi

tj
, . . . ,

�
xi

tj+w−1}), j ∈ {1, . . . , p}
�
gi
2,j = T2({

�
xi

tj
, . . . ,

�
xi

tj+w−1}), j ∈ {1, . . . , p}
�
gi
3,j = T3({

�
xi

tj
, . . . ,

�
xi

tj+w−1}), j ∈ {1, . . . , p}

where with an abuse of notation we usedx̂ to represent the
watermarked signal with LSB’s removed. We then generate the
final random signal using concatenatedκ and the quantized
hash values as the seed of a random number generator,κ̂i =
CONCAT(κ {ĝi

l,j}). We next compare this random sequence

Ŵ i
fra with the stored LSB’s to reveal any alteration. If these

two sequences differ, then we announce a possible tampering.
One can check to see whether this tampering can be localized
through the use of the hash values by calculating

Tampering(i, l, j) =
|
�
gi

l,j − gi
l,j |

|gi
l,j |

, j = {1, . . . , p}, l = {1, 2, 3}

for each segmenti. The absolute relative change in the hash
values would reveal the possible tampering in the respective
region. Although most of the tampering should be localized by
the hash values, small changes on the data (intentional or not
intentional) may not be caught by the hash values (although
they will be caught by our fragile watermarking).

V. EXPERIMENTS

We evaluate empirically the robustness of the proposed
metadata embedding technique. We demonstrate that the meth-
ods introduce only imperceptible variations that do not distort
important ECG features and, as sequence do not alter the
diagnosis of a cardiologist or physician. Additionally, weshow
that the embedding techniques are able to withstand various
attacks. We utilize ECG signals extracted from the MIT
arrhythmia database [23] which include normal signals as well
as arrhythmic signals annotated as malignant ventricular or
supra ventricular arrhythmias. The datasets used are available
by emailing the contact author.

Normal ECG 1 SNR=40, power=0.007 SNR=30, power=0.0215 SNR=20, power=0.0755

Normal ECG 2 SNR=40, power=0.005 SNR=30, power=0.0155 SNR=20, power=0.0495

Fig. 8. Distortion of ECGs for various embedding powers and the resulting
signal-to-noise ratio

A. Determining the embedding power

In order to determine the proper embedding power of the
metadata, we solicited the expertise of co-author Helga van
Herle, who is a cardiologist. She examined a random subset
of over 100 normal and abnormal ECG’s, on which various
random SSN’s were embedded using increasing embedding
powers on the robust watermark. A subset of such ECG’s is
demonstrated in Fig. 8. Obviously, larger embedding powersof
the watermark lead to lower SNR rates, and hence introduce a
larger distortion on the untampered ECG signal. The result of
this user study with a topic expert, indicated that for SNR=20
the diagnosis might change for certain ECG’s, because of
various distortions that were introduced near the P-wave
region. However, for SNR’s of30 or 40 the diagnosis would
not be affected for any of the examined ECG’s. Therefore, for
our experiments we use embedding powersp that would lead
to SNR > 30 for each ECG signal.

B. Class-Label Preservation

One the major features that a cardiologist examines on
ECG data is the presence of arrhythmias which can be an
indication of various heart pathologies. Atrial fibrillation is
the most common cardiac arrhythmia [24] which can be
a strong indication for the possibility of a stroke. Spectral
[25] and bispectral [26] techniques have reported success in
detecting arrhythmias in medical data. Here, we utilize the
spectral distance measure of [25] for quantifying the similarity
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Detection:

Step 1: Let
�
x ∈ R

n be a watermarked ECG signal of sizen × 1
andg ∈ Rm be a vector of side informations.
Step 2: For each sample of

�
x, remove the LSB and store it.

Step 3: Generate the side information sequence
�
g following the exact same lines of WM embedding

Step 4: Generate fragile WM using
�
g and SSN and compare it with the stored LSB’s

Step 5: If they are different than the signal is tampered
Step 6: If tampering is present, check Tampering(i, l, j).

Fig. 7. Detection of fragile watermark

between 10 normal and 10 arrhythmic ECG’s into which we
have embedded random SSN’s. After the pairwise distances
between the 20 ECG’s are evaluated we create the resulting
dendrogram, which is illustrated in Fig. 9. With the darker
color are shown the abnormal ones and with lighter color the
normal ECG’s. One can observe that even on the ECG’s with
the embedded metadata there is a clear separation between the
two classes of data. Similar results we obtain for the remaining
portion of ECG datasets. This example, serves as a simple
demonstration that the metadata embedding does not distort
significant ECG features, which are important for a proper
medical diagnosis.
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Fig. 9. Dendrogram of ECG’s with embedded metadata. We observethat class
labels are not distorted. One can still discriminate clearlybetween arrhythmic
(dark color) and normal (light color) ECGs.

C. Resilience Under Attacks for Robust Watermarking

We test the efficacy of metadata retrieval and watermark
detection under various data transformations (or potential
attacks). In this section we quantify the performance of the
robust watermark that carries the metadata, however we note
that both robust and fragile watermarks are embedded on the
ECG’s. The fragile watermark can detect the presence and
location of the transformation, and its efficiency we quantify in
the upcoming section. For the robust watermark, we examine
the effect of the following transformations:

Noise addition in the space domain:This is a critical at-
tack because it can potentially destroy the embedded metadata.
We first test metadata retrieval when we translate randomly the
baseline of the ECG signal (which doesn’t destroy the ECG
usability) and we add up to 20% relative noise on the original

ECG signal. In Figure 10(a) we plot metadata retrieval (as
the percentage of correctly recovered bits) versus noise level.
From the figure, we observe that up to 14% of distortion
(which would anyway destroy the ECG usability) one can
retrieve the whole amount of the embedded metadata. This
is possible due to the redundancy schemes that we employ in
the encoding of the hidden metadata.

Noise addition in the frequency domain:An adversary
may also add Gaussian noise in the frequency domain, which
is where the metadata are embedded. The results for this attack
are depicted in Fig. 10(b). We observe similar results for this
attack as well, which again validate the robustness of our
approach.

Decimation: On this attack an ECG is represented by
a smaller set of points that best approximate the original
ECG signal. A shorter sequence is obtained by sampling
equidistant points from the spline associated with the original
ECG sequence. Decimation is a significant attack, because
even though it does not change significantly the shape of the
ECG signal, it allows the adversary to generate a new sequence
which has no points in common to the original sequence. In
our tests (see Figure 10(c)), even when the ECG signals are
represented using only 70% of the original number of points,
all of the metadata bits are retrieved correctly.

Cropping: This is another severe attack on ECG signals.
In a cropping attack, the ECG signal is shortened by a fixed
amount by eliminating portions of the ECG signal. Since, the
size of the cropped ECG signal is shorter than the expected
length, we perform a local search based on the correlation
between the receivedβy and original β over a window.
The point where this correlation is maximized is used for
watermark retrieval and detection. As seen in Figure 10(d),
we plot the watermark retrieval with respect to the amount
of cropping performed on the ECG signal. We observe that
the retrieval performance gracefully degrades as the cropping
amount increases. We observe no distortion up to 5% percent
and minimal distortion up to 20% croppings.

Therefore, the above experiments have shown that the
effective coding scheme which also carries redundancy, can
effectively retrieve the embedded metadata even under the
presence of significant transformations. Additionally, a ma-
licious adversary would have to destroy the usability of the
signal (distort the shape significantly) in an effort to erase the
hidden data.
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Fig. 10. (a) Noise addition in space domain, (b) Noise addition in Frequency Domain (c) ECG downsampling (d) ECG cropping

D. Detection of Robust Watermark

In addition to retrieving the metadata, one can also simply
detect the presence of the watermark using one of the three
watermark detectors presented in section III-F. We evaluate
the performance of these detectors under the same data
transformations as in the previous experiments, using false
acceptance/false rejection curves (FA-FR curves).

Noise addition in the space domain:Here, the ECG
signals are normalized to have maximum amplitude equal to
1 with zero DC and the average power of an ECG signal
is 0.05. The attack consists of additive Gaussian noise with
standard deviations:σ = 0.001, σ = 0.01, σ = 0.05, σ = 0.1.
Hence some of these attacks can be considered severe. In
Figure 11(a), we plot the FA-FR curves for four different noise
powers for the correlation detector introduced in Equation(1).
As seen, for noise powers0.001 and 0.01 the FA-FR curves
are on the x-y axes, i.e., the algorithm perfectly separates
detection regions (hence there are no errors in detection).
As expected, the detection performance gracefully degrades
as the noise power increases. Similar performance results are
observed in the other algorithms introduced in Equation (2)
and (3), respectively. To compare the performance of these
three different detectors, we also plot corresponding FA-FR
curves forσ = 0.05. We observe that for additive Gaussian
noise (even though the additive noise is in space domain) the
first watermark detection algorithm based on correlation ofβ’s
outperforms the other two.

Similar results we obtain for the FA-FR curves for frequency
domain attacks, which are omitted for brevity.

Decimation attack: We next present the FA-FR curves for

decimation attack in Figure 12, for different decimation fac-
tors, down to retaining only 20% of the original signal length.
We observe that our watermark detection algorithm is very
effective even when reducing the length of sequence by 50%
in length, which is a quite severe distortion. We attribute this
robustness due to using lower part of the frequency spectrum
for mark embedding, since in decimation type of attacks, the
higher frequencies are more effected due to lowpass filtering
to avoid aliasing. Finally, in the same figure we also present
a comparative graph regarding the performance of all the
watermark detectors under the same decimation attack level.

Cropping attack: We finally present the FA-FR curves
for cropping attacks in Figure 13. We examine the detection
performance under several different amount of croppings from
10% up to 50%. We observe the same robustness properties
for this attack also.

E. Fragile Watermarking

This section studies the performance of the fragile water-
mark and in specific the behavior of hash values under several
different attacks on the ECG signals. For fragile watermarking,
we choose a window size of50 samples and for each region we
collect hash values from 4 different subintervals. We observe
that the hash values are not that sensitive to window length,
and 50 samples provide a fair trade-off between localized
information and capturing of semi-global robust statistics [22].
For generation of hash values, we use 8th order low pass,
band pass and high pass filters where each filter is designed
using a Butterworth algorithm. We choose an 8th order filter
to decrease the effect of initial transients due to the use50
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Fig. 11. FA-FR curves for three different watermark detectors for four different noise levels added in space domain. (a) Watermark detector from Equation (1)
(b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3) (d) FA-FR for all watermark detection algorithms together forσ = 0.05.

sample sub-intervals. We observe that the effect of this initial
transients are unavoidable but acceptable.

We simulate an attack with additive Gaussian noise (as done
in the robust watermarking experiments) since this kind of
attack (or disturbance) is common due to both intentional or
unintentional changes, e.g., data compression. In Figure 14,
we plot the histogram of percentage changes in hash values
for two different noise levels:σn = 0.1 representing a severe
attack (Figure 14(a)) andσn = 0.001 (Figure 14(b)) repre-
senting a less-severe attack. We observe that the hash values
corresponding to all three filters are effected by this attack.
The changes in hash values reflect the degree of the attack,
since the percentage change in the severe attack is an order
of magnitude larger than the less-severe case. A change in all
hash values shows a broadband attack on ECG signals since
all the frequency components are effected. Almost identical
results we obtain for the same attack in the frequency domain.

For decimation attacks we plot the histogram of percentage
changes in hash values in Figure 14 (c) and (d), which
correspond to decimation amounts down to 50% and 25% of
the original ECG’s length. Naturally, since the decimationof
a signal effects mainly the higher frequencies due to lowpass

filtering to avoid aliasing (and if lowpass filtering is not
present, due to aliasing), we observe large changes in hash
values generated from bandpass and highpass filters. The hash
values generated from lowpass filters are relatively unchanged.

Finally, we present the results for the cropping experiment
and plot the changes in hash values in Figure 14(e) and (f)
for cropping amounts 20% and 40% providing the sensitivity
of hash values under cropping.

We point out that in all cases, the fragile watermarking
is destroyed, hence showing presence of an alteration on
ECG signals. In all cases the hash values provide relevant
information, allowing an analyst to deduce the nature of the
underlying attack.

VI. CONCLUSION

In this paper we introduced the topic metadata fusion
within medical time-series data. To our knowledge, this is
the first work that examined this problem. We show that
this embedding does not distort the visual appearance of the
medical signal and it also does not induce any changes in
the diagnosis. On a technical level we offer the following
contributions:
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Fig. 12. FA-FR curves for three different watermark detectors when reducing the signal length down to 50%, 33%, 25% and 20%, of the original signal
length. (a) Watermark detector from Equation (1) (b) Watermark detector from Equation (2) (c) Watermark detector from Equation (3) (d) FA-FR for all
watermark detection algorithms together for 50% decimation.

• We effectively combine watermarking and channel coding
schemes for providing the sufficient resilience on the
metadata retrieval

• We augment the above robust technique with localized
fragile watermarks that can pinpoint the type and location
of a potential tampering

• Finally, we evaluate the robustness of the proposed
schemes under various transformations and attacks using
publicly available ECG datasets.

Even though we presented our techniques on statically
stored ECG signals, due to the inherent windowing of our
technique and the existence of online versions for the Fourier
Transform [27], our method can be directly extended on
streaming medical data. Such types of data, are even more
prevalent nowadays, with the advent of economic sensor
devices that can transmit various measurements of interest.
Streaming medical measurements are, for example, transmitted
during aeronautical exercises for measuring the stress level
of a pilot or an astronaut. Telemedical applications are not
uncommon for people that require continual monitoring but
reside in remote areas, including scenarios such as combat

areas or space travels. The various methodologies proposedin
this work, can function as an additional authentication step,
regarding the originality of the transmitted streaming medical
measurements.
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Fig. 14. Fragile watermarking. Percentage change in hash values. (a) Additive noise in space domain. Noise standard deviation σ = 0.001. (b) Additive
noise in space domain. Noise standard deviationσ = 0.1. (c) Decimation attack. Decimate down to 50% of sequence length. (d) Decimation attack. Decimate
to 25% of sequence length. (d) Cropping attack. 20% cropping. (f) Cropping attack. 40% cropping.


