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Abstract— Due to the recent explosion of ‘identity theft’ cases, and emergency personnel, when and where the information
the safeguarding of private data has been the focus of many js needed. Disasters, such as Hurricane Katrina, for exampl
scientific efforts. Medical data contain a number of sensitive | 5ve shown the practical utility of being able to store and

attributes, whose access the rightful owner would ideally like tri inf Hi lik it histori d
to disclose only to authorized personnel. One way of providing retrieve information like prescription histories and dgss,

limited access to sensitive data is through means of encryption. €lectronically in an emergency.

In this work we follow a different path, by proposing the fusion One of the major technological and ethical issues governing
of the sensitive metadata within the medical data. Our work electronic records is the issue of data pri\/acy_ Protedtiom

is focused on medical time-series signals and in particular on \nathorized access on medical history data and personal
Electrocardiograms (ECG). We present techniques that allow . . - .

the embedding and retrieval of sensitive numerical data, such papent data, 'S, somethlng tha.t cgn no.t only protect a piien
as the patient's social security number or birth date, within Private data hindering potential identity thefts, but cdsoa
the medical signal. The proposed technique not only allows safeguard the healthcare and insurance system from fietdul
the effective hiding of the sensitive metadata within the signal claims. With this in mind, this work proposes techniques
itself, but it additionally provides a way of authenticating the for hiding sensitive patient metadata within the actual med

data ownership or providing assurances about the origin of the . | t hich tored int tient’ Bdi
data. Our methodology builds upon watermarking notions, and ical measurements, which are stored into a patients medica

presents the following desirable characteristics: (a) it does not record. In specific, we focus on electrocardiograms (ECG's)

distort important ECG characteristics, which are essential for and how to embed numerical metadata within the ECG signals.
proper medical diagnosis, (b) it allows not only the embedding A prerequisite of this embedding is, of course, not to dgstro

but also the efficient retrieval of the embedded data, (C) it ne gata usability. We indeed show that the usefulness of the
provides resilience and fault tolergince by emplqylng multistage data i t affected. b fthe i tible distorti
watermarks (both robust and fragile). Our experiments on real . ala IS not aftected, e_cause ot the 'mperceP '_ e disrort

ECG data indicate the V|ab|||ty of the proposed scheme. |nduced through the fUS|0n Of the metadata W|th|n the aCtual

data. For most watermarking applications this requirement

can simply be stated as preserving the visual/audio quality

|. INTRODUCTION of the signal (i.e., for image and audio processing). When

In the years to come, the Healthcare system is expecg%a"r_]g with medical data this means thf.it our wate_rrr_]arking
to experience a drastic change in its structure and orgaﬂ‘gor'thms should not change the diagnosis of a physician. F

zation. These changes are partly driven by changes in mple, when dealing with ECG signals, common tasks are

human genographics, and also reinforced by the recenttidim . € deftectlorr: o;arrhythmm %r other hearli rgla_ted lcorr:uhnlg
changes and the various events and disasters throughout nge ore, the diagnosis on the watermarked signal shald n

world. This shift is clearly reflected on recent Healthcar eviate fr_om the diagnosis on the origi_nal signal
reports. For example, thelealthcare 2015 reporf shows The privacy of the embedded data is assured because we

that governments, health regions, hospitals, and heaﬁhcgo not embed directly the private metadata,_ but instead we
providers are allotting billions of dollars into multipleadical embed a surrogate random sequence, that is generated by a
initiatives. cryptographically safe hash function using the metadataes

One very important effort is the creation of electronic kieal Input and_ a secret key as _the seed. Hence, we ?\v0|d Ieg_klng
records (EHR'’s). As health care (and health care data) gro ?revee_lllng any mfo_r mation  about the patients sensitive
more complex, storage and accessibility of medical infarm ?rmztatu%n tto the pubbllc. dlfjven thgut?]h thehprlvacy ct)_f sameit h
tion is not only invaluable but also necessary. The longiter ata attributes can be addressed through encryption, such a

goal for electronic health records is to make patient da proach is inherently a blocking factor in data dissenonat

securely available to health care providers such as hdrspigdd't'ona”y’ the use of_encrypted fl_elds n med'c?" records
irectly suggests the existence of private data, which ney b
lht t p: // heal t hnex. t ypepad. coml web_| og/ 2007/ 02/ something that one would like to avoid in the first place.

web_seni nar _rep. ht m The tight coupling of the metadata within the actual medical



measurements presents several desirable propertiesivd)ePr A fraction of the hidden metadata bits will be allocated
information is effectively concealed in the signal and #ffiere for employing error correction codes, in order to provide
can serve as an additional authentication seal regardieg #udditional resiliency due to malicious attacks, or even ttue
originality of the data. 2) The fusion of the metadata witthia transmission errors. In this sense, our watermarking ambro
actual data can potentially eliminate the need for recgrtive not only uses ideas from spread spectrum based algoritims [2
patient metadata separately. This could provide an additio but also has connections to watermarking techniques ntetiva
level of security on the private information of a patient, byy traditional cryptography [3].
thwarting deliberate changes on the medical records, an eve The fragile watermark will be embedded after the robust
by providing a source for data verification which may occuvatermark on the least significant bits at specially setkcte
due to accidental errors during a laborious replicatirgfty positions of the ECG signal. The fragile embedding will
process of a patient’s record fields. 3) Finally, the techedy introduce virtually no distortion. Notice, that even thbuipe
that are delineated here could also be applied for estéfdishfragile watermark is embedded on top of the robust, it cannot
the provenance [1] of the data. Therefore, if every recipiedestroy the robust watermark which is able to withstand such
(or processor) of the data embeds a different secret watkrmaninor (or even more significant) transformations. An ovewi
then one can trace the lineage of how the data was producefdthis architecture is provided in Figure 1.
processed and distributed in a methodical fashion. Once the metadata are effectively fused within the medical
In the experimental section we also demonstrate that thignal, there are three supported modes of operation:
fusion of the metadata with the data is achieved in such al) Tamper Detection by examining the presence of the

way, so that the data usability is not hindered or affectéek T fragile watermark.
upcoming sections, will explicate in more detail the chefles  2) pata Authentication through correlation with the orig-
and also the advantages of the proposed embedding. inally embedded metadata. For example, if the SSN of
a patient is embedded in an ECG signal, then using the
1. OVERVIEW SSN and a secret key, one can verify that the data indeed
belong to the patient with a specific Social Security

In order to embed metadata within the medical signals,
we will utilize notions from data watermarking and channel
coding. The sensitive metadata (social security numbeN)SS
birth date, and so on) will be embedded as a hidden watermark
within the medical measurements of the patient. In order to
provide additional protection and data resilience we psepo
to embed two types of watermark on the medical signal; a
robust one for storing the actual metadata and a fragile oAe Related Work

for identifying possible tamperings on the data: Watermarking research in multimedia data is a very rich
1) The robust watermark will encode an encrypted ver- fie|d. Compared to traditional watermarking our work extsibi
sion of the patient's metadata, employing additional dat@rious differences, such as the fact that we provide tHéyabi
redundancy for aiding data recovery in the case of dagf retrieving backthe embedded metadata. For this reason we
corruption by a malicious attacker. We show that a robugfso augment our watermarking technique with coding redun-
watermark cannot be easily removed without signifidancy schemes, in order to achieve better data presenaatibn
cantly distorting the actual data, i.e., without obviougrovide the ability for error correction. Additionally, beuse
attacks, which in any case will render the data uselesge are dealing specifically with medical ECG signals, we can
2) The fragile watermark will be used for detecting exploit their regularity for tailoring more appropriatetpie
potential data tampering. As the name suggests, simpitadata encoding scheme.
operations can destroy the fragile watermark, but its previous research work dealing with the watermarking
absence on the received data is an indication that t¢ medical signals have appeared for electroencephalagram
data have been compromised or altered. (EEG’s) [4] and for ECG data [5]. In [4], the authors study
Here, we introduce novel robust and fragile watermarkinfree different fragile watermarking techniques for chiegk
approaches and apply them to medical time-series data. We integrity of EEG signals. The watermarking technigues a
use extensive randomization in every step of our algorithrapplied to the prediction error of an autoregressive filtdrich
to alleviate potential vulnerabilities of the algorithmgainst is used to model EEG signals. In our work, we investigate
malicious attackers or common alterations on the host siget only fragile watermarking, but also robust watermagkin
nal. The robust watermark encoding the actual metadatacencurrently. Unlike [4], our fragile watermarking algibmn
embedded in the frequency domain, and the data is maskex the ability to localize tampering due to random location
effectively in certain frequencies that are selected based chosen to embed the actual watermark. Each patch of fragile
a secret key. This type of embedding makes the embeddeatermark only depends on the hash values, i.e., variates t
data resilient to transformations such as translatiorastlereflect the properties of that particular segment, of that se
significant bit alternations, small noise additions, reglamy ment. Hence, this segmentation provides localized tamgeri
and decimation. Furthermore, the regions where the privatdormation as explained in the text. Furthermore, as shiown
metadata are embedded are selected based on a secret[Bkythe types of watermarking algorithms investigated 4f [

Number.

) Metadata Retrieval. The rightful owner of the data can
provide the secret key to someone else, who is now at
a position to retrieve the embedded metadata from the
medical signal.
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Fig. 1. Overview of our approach
using known watermark locations, are highly susceptible to [1l. ROBUSTWATERMARKING

estimation type of attacks and can be easily removed without . )
any tampering on the original signal. A. Preliminaries and Notation

In [5], the authors investigate a robust watermarking al- Consider an ECG signal as a one dimensional time-series
equence, represented as a veator {z1,...,z,}, where

gorithm for ECG signals. The watermarking used is the | h anal i bed pri .
multiplicative spread spectrum type watermark appliediit ** € R. In such a signal, we will embed private numeric

order wavelet decomposition of ECG signals. The randorfietadata by adapting omatermarkingtechniques. However,

ization is only provided in the watermark signal generatiOI‘f\’e,W'"_also shovy how to retrlle.ve back the hldQen mforma,tlon
As pointed out above, this type of watermarks are high hich is som.ethmg that traditional watermarkmg applimas
susceptible to estimation type of attacks. In a similar [set 0 not cop3|der. Therefore, our technlque gracefully. fuses
[6] demonstrated that the embedded watermark signal ¢ ﬁterrr_]arklng and char!nel co_dm_g techniques. ﬂs_\eret n-

be easily estimated and removed from the original signal_ﬁrmat'onthat will be hidden inside each EC(.B signal itself
the watermark locations are known. In our work, we u§r$ encoded as a watermalk € {—1,1,0}", which has the

both random locations as well as randomized binary seque € length as and can take distinct values. Later we W'."
K&how how we can use the sequeriée to encode numeric

metadata consisting dfbits. The embedding of the watermark
d:ronsists of a composition function that, giveandW, returns
a modified signal which isimilar to z andenclosedV. The
original ECG signal should not be significantly distortedian
a technique to retrieve/detedt in the watermarked signal
Related is also the work of [7] which watermarks numerighould be provided. We call this watermadbust because it
streams, by embedding the watermark on easily identifiaideable to withstand a variety of possible data transforomati
stream positions, such as the local maxima and minimae will not embed the watermark in the originBpace-Time
However, such an approach might not be ideally suited fdbmainbut into theFrequency domainwhich will guarantee
ECG signals, where one would like to preserve as well @gtter resilience against malicious attacks.
possible such areas, because of their significance in medicagvery ECG signal: will thus be represented with the set
diagnosis. Therefore we spread the intensity of the robustits Fourier descriptorst = {X1,...,X,} wheren is the
watermark using a spread spectrum approach. Additionaljymber of points of: as well as the number of its frequency

the Least Significant Bit (LSB) alteration that we employ iomponents. The mappings from one domain to the other are
the fragile watermark is quite more advanced, in the serae thescribed by the discrete Fourier transfodyi()

it can also pinpoint the area and type of tampering.

generation to avoid such kind of estimation type of attac
Additionally, to our knowledge, this is first work that codsi
ers metadata fusion within the medical signal, not only f
reasons of authentication, but also for providing the ghof
heterochronous metadata retrieval.

Watermarking work has also been used in relational data- Xj= % > wpexp (*i%ﬁ(]’ -1k - 1)>
bases either using direct LSB alterations [8], [9] or using k=1
hierarchical Binning approaches [10]. Finally, there isastv and the inverse discrete Fourier transfoiafi (X ):
literature on the topic of privacy preserving data-minidd]F

[15]. Compared to the above areas, our approach is different xj; = % Zxk exp (i%r(j -1k - 1)) )
regarding the goals and the methodological approach that we k=1
follow. Every coefficientX; can be described in terms of itsagni-

tude p; andphaseg;, that is, X; = p;e®i’.
We use an additive embedding of the watermark which

In the upcoming sections we will describe the embeddin X . L
P v ghers only the magnitudes but retains the original phase:

ar_“]l tlhe :jetrleval toftth?hrobu_s'F anlddt_hf: f;_agllfhvvta_te_rmuscrlée(sj. W Definition 1 (Additive Fourier Embedding)or a signal
will also demonstrate the minimal distortion that Is in z € R" and a watermark¥V e R”, the additive Fourier

by their embedding and in the experimental section we wilmbeddingyenerates a watermarked sigfaby replacing the
empirically assess the resilience of our scheme. magnitudes of each Fourier descriptonoiith a watermarked



magnitudep;: added redundancy, the receiver of the message will be able to
R dof correct 1-bit errors anddetect2-bit errors. In the same way,
pi = {pi+pW;) = max(0,p; +pW;) we will detect malicious attacks that mélip one or more bits

wherepower p > 0 specifies the intensity of the watermark©f the embedded watermark. We adopted the Hamming(7,4)

Notice that we use the functioh- ), in order to ensure that €ncoding for its simplicity, but more complicated and efifez
we have no resulting negative magnitudes, wiep = —1. techniques could be utilized as well. The Reed-Solomon,code

Using the modified magnitudeg and the original phases;, for instance, is currently used in CDs and DVDs and it

we go back from the frequency domain to the time domaRfovides %ugrrl;ented hcorrectt)iogdcz(ijpabiIities. ‘ th g
and reconstruct the watermarked sequence using the inv%sg’%i?ag;; is?\:jeéf;[ngde;ns feo” Osvs_watermar that can encode
discrete Fourier transform. 0 it . (D'C )
i j= componen
1 if (j—1)-thbit of Hy 4(B(I)) =1
—1 if (j — 1)-th bit of H7 4(B(I)) =0
0 if I+2<j<n

W, =
B. Watermark Construction !

Let us describe now how the private metadata are embedded ] . )
into the hidden watermark. First, let's recall that the wiaiark ~ Wherel = [B(I)] is the length of the binary representation
W will consist of the values +1, -1 and 0. Understandably, onR/f 1. o )
thoselV;'s that contain +1 or -1 will introduce some alteration AS explicative example, for the rest of the paper we will
in the respective signal frequencies. Thus, only tHdgecan USe the social security number (SSN) as the metadata to be
encode some information. Conversely, the zero valueBof €mbedded in a given ECG plot. The SSN in the United States,
determine the descriptors that we do not want to modify. CONSIStS of 9 digits in the form99 — 99 —9999. Any number

The choice of which Fourier descriptors (frequencies) afe 10°, can be represented with3a-bit long string, which for
most suitable to be altered, i.e., to be actually used for tf@nciseness let us calinary(SSN). This initial representation
embedding, can affect the goodness of the detection proc&&d P as simple as the binary conversion of the decimal SSN.
Our goal is to build an unbreakable bond between a signal ah@® binary representatidsinary(SSN) is then inserted into a
a embedded watermark. On the other hand, a potential att&&xPtographically secure hash function wittas the secret key
cannot alter the overall shape of the ECG plot, i.e. damage i@ Produce the final randomized 30 bit long striBgSSN as
usability. Therefore we should tie the embedded metatiata S€€n in Figure 2. This representation is then divided inverse
with the most important frequencies. It is well establistieat Chucks of four bits each and then Hamming coding is applied
the first descriptors hold almost all the energy of ECG signaindependently to each chuck. The result i&-a 57 bits long
which means that they describe very accurately the data. €Tor correcting code enclosing a given SSN.

Driven by these considerations, we will focus on embedding
the watermark in the lowest frequencies. However, we will ss¥ w_,bmwpssm Hah | BO) Hamming
not embed any portion of the watermark on the first Fouriér””” 30-0i ool
descriptorX;, since the DC component of the signa(X; =

Zj x;/+/n) is easily susceptible to attacks. For example, Mgy. 2. Randomized binary representation of SSN metadatyghrhashing
simple translation will change the DC level of(that is, X;) and Hamming coding.

without affecting its shape, but it will erase this part oeth

watermark. Therefore we embed the watermark into ke

and up to the(l + 1)** Fourier descriptor, wheré is the

number of non zero elements @f. Then, the watermark’  C. Embedding the metadata

is formally defined as follows: . .
y After the watermark is created based on the given metadata,

0 if j=1 (DC component) we use a spread spectrum approach [2] for embedding it into
Wi=q {=L1} it 2<j <i+1 the host medical signal. Our technique will embed the same
0 if [+2<j<n . . . . . .
watermark multiple times in a single time-series sequeAce.

The metadata that one wishes to embed in an ECG siggalen ECG signal is partitioned into a set of subsequektes
will be represented with a sufficiently long bit-string. InThen in each of these sub-ECGs the watermark is embedded.
order to provide additional resilience to attacks, we idtree This distributes the power of the watermark across multiple
additional pre-processing before materializing the watek frequencies of the signal subsequences, making its removal
W. Let B(I) be the binary representation of the informatioparticularly difficult, while at the same time preserving im-

I (e.g., metadata), which is randomly generated using thertant data characteristics. In other words, we get a géon
original information and part of the secret key Details watermark with less power, i.e. less noise introduced in the
of this pre-processing would be clear later on. We preferaaiginal ECG by spreading the watermark signal over the
randomized representation of the metadata in order to girotevhole data.

the private information of the patient. We next produce aarer More specific, given an ECG signal = {z1,...,z,},
correcting code off7 4(B(I)) using theHamming(7,4)cod- we first select a random starting poif} using x as the

ing. Introducing channel coding is mainly used to deteatrsrr seed of a pseudo-random number generator. We thenasplit
during the transmission of bit-streams over a noisy channgito |S| = |n/m] adjacent subsequences, starting from
This process introduces a controlled level of redundancy biowever, when we reach to the last point of i.e., z,,
mapping an input oft bits into a code of7 bits. Due to this we cyclically continue embedding the watermaK from



z1 until the remainingn — m * s points of z. We ignore
these last: — m * s remaining points before;, . We denote
the set of these subsequences wsttand from now on we E. Metadata retrieval

will call them characteristic subsequence@/e chose each |, orqer to retrieve the embedded metadata, we essentially
characteristic subsequence to contain= 3/ points suchthat neeq to retrieve the enclosed robust watermark, based on

each subsequence is 3 times longer than the bit-string toRg knowledge of the secret ke = [ G]. The process is
hidden into the data. This simply allocates enough bandwidj strated in Figure 3. We want to allow only the owners of
in order to embed the watermark in the lowest frequencies @fs secret key to retrieve the sensitive metadata present i
each subsequence, since the length should _be at least 2 tifg8Syata. Note that the first part of key vectois randomly

the length of the watermark due to the conjugate symmey o ted from the key space and the second part of key vector
of Fourier coefficients. The magnitudes of each subseququgepends only on the data and does not have any correlation

are then updated according to the additive embedding schefig, the watermark. By disclosing the secret kiynot the

described before. . . .
The embedding process returns the second part of the selygjermarked data, no information can be inferred about the

key 3 to be used during the detection process described lafefcret metadata.
The vectorg is defined as the average values of the varigus

of the subsequences 8 only for thosej such thatiV; # 0: WM embedding WM retrievaldetection
1
Bi(x) == D pi(s) w
5] SGZS ! l A W

X WM ‘ X ‘ Channel ‘ Y ‘ WM o
Note that the vectop is calculated on the original ECG, i.e. ) Encoder_| \ | . | Decoder I::
before the watermarking takes place. L LA

Unlike a non-blind watermarking approach, where in order ) ) .

. . Fig. 3. lllustration of the watermark embedding and detedtairieval
to retrieve the watermark it is necessary to have accesspﬁg)cessl
the original data, in our case, we will only need the vector
6 = [ . In this sense we avoid revealing the original data ror retrieving the private metadata, we reverse the water-
to the users, hence avoiding any obvious security risks. marking process by comparing the value fthat we have
Resilience of the Embedding:Potential transformations in from the original ECG and the new valy# that we calculate
a medical signal include vertical shifts, re-sampling QS 5y, the received ECG signal The received signal is equal

pling or downsampling) and cropping. By construction, ou, e watermarked data f there is no distortion (attack) on
technique is resistant to vertical shifts, which only affféee the signal.

first frequency component (the DC), where no part of the Gian a received (watermarked) signal we split y into

watermark is embedded. In the experimental section, we alsQ .o\, set of characteristic subsequensgsexactly as done

evaluate the resilience of our scheme to other types oﬂm;tacduring the watermark embedding process. The metadata are
such as noise addition, upsampling and decimation. retrieved as follows:

D. Error introduced by the watermark. _ Definition 2 (Metadata Retrieval)Let Z and y be water-
We measure the amount of noise introduced in a watenarked and received signals, respectively. The charatiteri
marked signali as the relative errog, w.r.t the originalz: subsequences, is the set derived from the received sigpal
==z which is equal toS if there is no distortion on the watermarked
€(z,2) = signalz. Let the calculated statistics from the received signal

il y be 8Y, then we define the binary vectar as

where, || - || signifies theL, norm of a vector. i gy S
If we consider a single subsequencef z, then due to Par- Zi = { 1 !f 6% —BizT
seval's theorem [16], and after some algebraic manipuiatio 0 i Bi—fi<rt

it is easy to see that: where the threshold is selected to control the trade-off
Is—=317 = [IS=S8I2=1llp=pP+2> " p;7i[1 — cos(d; — & }between_ false alarm_ (FA) and false rejection (FR) rate. Then
; " " the receivedB(SSN) is given by
o — plI* (since ¢; = ¢; ) R=H;}Z).
= lo={o+pW)|* < IpW|* = 1 p° where R is equal toB(SSN if there is no error in retrieval.

The above gives an upper bound to the error introduced in df 3] — ; = 7 we have a hint that thg-th element
single subsequence, assuming that- pW) = (p + pW). It of the embedded watermark is equal Go(W; = 0), and
also shows that an additive watermarking introduces arr ersymmetrically equal tal if 5;’ — B < 7. In order to get

which is proportional to the square root of key length and {@¢ actual data, we must apply the Hamming decddéri.

the watermarking power. To get an upper bound on the errpy,. : . . . )
¢, for the whole signalz, we apply the previous result forgslng decoder we retrieve two pieces of information. Firet w

each segment, yielding infer whether there has been some error in the retrieva,of
and secondly we can try to remove such an error.
€ = 1 lez - p\/ﬂ. Example: Suppose that we are embedding a 9 digit SSN of a
=l cs [l patient as the secret metadata. We first convert 9 digit dgcim



SSN into a 30-bit long binary stream. We input the resultindetect (with high probability) even the slightest changeshe
binary representation to a cryptographically safe hashtion underlying watermarked data. Although conceptually déf,
(with x as the secret key) to get, again, 30-bit long randothe embedding and detection of fragile watermarks is sirtila
sequence. Applying Hamming(7,4) for each 4-bit blocks dhat of robust watermarking framework. In the details pded

this data would yield a watermark signal of 56-bit long,,i.elater on, we stress on the importance of the randomized taspec
[30/4] x 7 = 56. Given an ECG signat, this W would be of our algorithms, since a randomization approach will @cot
embedded for each segment of sizex 56. After decoding the watermark against most of the intentional attackelisdry
the watermarked signal, we get. If there is no attack on to estimate the watermark.

z, than it is easy to see that should be equal téV, since

pY — B =p—p=pW.Inthe presence of an attack one cap Fragile Watermark Embedding

measure the goodness of the watermarking as: ) L i )
For our particular application, we desire our fragile water

Goodness- 1 _ 2= 2 XORW marking to have the following properties:
56 1) The embedded watermark should not interfere with the
i.e. the percentage of bits correctly retrieved. underlying usage of the signal. This requirement reduces
the candidate algorithms that one can use on the fragile
F. Watermark Detection watermark, in order to induce only minimal effects on

the underlying ECG signal.

The fragile watermarking should be able to detect the
presence of tampering on the medical signal.

The fragile watermarking should provide localized in-
formation about tampering. To satisfy this, the fragile

Given the secret key, one can also simply detect the )
presence of the watermark without retrieving back the embed
ded metadata. This is achieved using a generalized coorelat 3)

detector which is given in the following definition:
Definition 3 (Watermark Detection)Let =, Z andy be the

original, watermarked and received signals, respectiviig watermark needs to be localized. The candidate fragile
characteristic subsequencés is the set derived from the watermark should also be able to quantify the nature
received signaly and equal toS if there is no distortion on of the underlying alterations or attacks on the corre-
the watermarked signat. Let the calculated statistics from sponding signal. For some applications this property
the received signaj be 3¥, then we define the generalized is essential, since most of benign signal processing
correlation detector as operations such as compression or change of axis by DC
< BY— 6,6 — ﬁ> ~ +  watermarked " addition/subtraction W_|II des_troy t_he fr_aglle watermark,
—HE—BHQ < r not-watermarked however, the underlying signal is still useful for all

practical purposes. Hence, the fragile watermark should
where the threshold is selected based on the desired false  quantify the underlying cause of the alteration as much

acceptance and false rejection rate, &ngy) = >, z;y;. as possible in order to assist the final judgment on the

) ) o ) ) usability of the tampered signal.
The above correlation detector is decision-theoretic nogiti : ' C .
when the disturbance Ghis white Gaussian noise [17]. How- Since our first motivation is to detect any alteration on
ever, in case of non-Gaussian disturbances, we also inteodfhe underlying ECG signal and we desire to have minimal
following updated correlation detectors which work ditgct effect on the underlying signal, we embed the watermark in

on the received bits instead ofvalues: the spatial domain on thieast-significant-bit{LSB’s) of the
(Z,W) > 1  watermarked ECG signal. This type of algorithms that alter the LSB’s are
[W]2 < 7 not-watermarked ) extremely effective for detection of random perturbatjdnst
and in their most basic forr_n [8] are very susceptiple to malisiou
(R,B(SSN) > 7  watermarked 3 attacks. One can easily change the underlying watermarked
IB(SSN)|2 < 7 not-watermarked signal (in the extreme case completely replace with another

In the experimental section, we include detailed expertmerp'dnal) without touching the LSB’s. In the literature, teere

regarding the performance of the above three watermdpany different variations of the basic approach to reduce th
detectors kind of vulnerability to malicious attacks by including dert

information into the watermark [18]-[20] . In this paper, we
require, the embedded watermark signal to be both context
and data dependent in a randomized manner in order to avoid
After the robust watermark which encloses the private metany possibility of an attacker to either replace the watekma
data is embedded in the ECG signal, a fragile watermark wihrtially or completely, or alter the watermarked signateT
be added on top of the resulting signal. The fragile watekmaifragile watermark embedded in the LSB’s depends on ran-
can be used to efficiently detect subsequent alterations dimmly generated semi-global data statistics, which weebeli
a marked data. Although, the robust watermark is designeduld capture the essential features of the underlyingasign
to be resilient against most of the benign signal processif#l]. We extensively use randomization in order to eliminat
operations (such as compression, cropping, decimatiaffpan the possibility for an attacker to retrieve any informataiout
against malicious attacks that intentionally attempt tmoee the original key. Since, an attacker which has access to the
the underlying watermark, fragile watermarks are designedoriginal key could use this key for watermarking arbitraatal

IV. FRAGILE WATERMARK



Next, we provide the basic fragile watermarking algorithrof a random number generator to generate the final fragile
and the motivation of each step. The complete description whtermark which is comprised of zeros and ones of length
the embedding and detecting of the algorithm are given @gual to heart-beat duration. The resulting fragile wasekm

Figure 5 and in Figure 7, respectively. is embedded to the LSB’s of the corresponding heart-beat.
We repeat the same process for each heart-beat to create the
Embedding Algorithm: Given an ECG signalx = watermarked ECG signal.

{x1,...x,}, we first separate the underlying signal into sep- We generate several different statistics (or hash values)

arate blocks based on heart-beats. i.e.. we use each leaartBE" window to capture different features of the data in that
Lo window. Per window, we generate three different hash values

dyratlon as a seg_ment, whemé is the portion of.the ECG N {1,....p}, by calculating: the power of
signal corresponding to theh heart beat. To achieve a beajhe cofresponding signal filtered by a low pass filter, a band
to beat signal separation we utilize an energy based filteres pass filter and a high pass filter as seen in Figure 6. Hence for
the ECG signal should exhibit higher energy at the frequenegch heart-beat segment

indicated by the heart beat. Note, t_hat the heart begt st_&para g =T{E . E ) G, p)

does not have to be exact, since this block processing idynere i S i ]
a way of providing broad localization information upon the 92.5 = T2({xfj""’xi_f+w—1})’ je{l....p}
fragile watermark. In a sense, we are exploiting the fact tha 935 = T3({Tt,, -, Tt,4w-1}), 5 €{1,...,p}
we work on ECG signals, and we use their inherent patte
regularity in establishing an effective localization chitity
for the fragile watermark.

Subsequently, we remove the LSB from eachto geti:,
i.e., 7 is the ECG signal where all LSB’s are set to zero.
usex as the seed for a pseudo random number generato
generatep randomly located intervals with lengtl, where
{ti,...,t,} are the randomly selected starting points for eag
interval, in Figure 4.

r\rﬂvhereTl(x) (Tz(x),T5(x)) represents the composite opera-
tion of first lowpassing (bandpassing, highpassing) theadig
x and then calculating the power of lowpass ((bandpass, high-
V\}oass) filtered signal. We collect all hash values corresipgnd
to all segments and windows in= {gf’ j}. Apparently, these
'HPee different hash values would capture the differertufes
f the data. For example, a local shift of the heart-beat,data
.e., a DC addition or subtraction, will not affect the hash
values generated by the high pass or band-pass filters, hence
revealing and localizing the corresponding tampering. The
amount of tampering could also be determined as the amount
~  of change in the corresponding hash values. Even a local tem-
pering could be pinpointed since we use several overlapping
windows for each heart-beat segment. Although we use simple
outputs of straightforward DSP filters, more sophisticdtkd
ters or algorithms that are tuned for a particular applicatr a
signal database can be easily introduced in the algorittach E
new addition will introduce further localization or capdur
different features of the data. After collecting the haslues
for each interval for each segment of a heart-beat, we append
Fig. 4. Localization of the fragile watermark is achievedotigh data the patient metadata with appropriately quantized valdes o
‘blocking into heart-beats. Subsequent selection of canly generated these hash values as the seed of a random number generator:
windows within the heart-beat for embedding the fragile watzk. k; = CONCAT(x {g;]}) to generate the fragile watermark

Naturally, eacht’ is selected to avoid any interference witHcOr this segmentVy,,,. The fragile watermarkiVy,,, is the

. . same length as thg&h segment and comprised solely of zeros
thg next segment, i.e;+w—1 should be less than the sta_rtmgand ones. This randomly generated WM will be the LSB’s of
point of the next segment. The length of these windaws

. . . o hi rticular ment. We repli his pr re f
a design parameter. There is a trade off in selectingince a this particular segment. We replicate this procedure fahea

largew would capture the essential (or global) characteristiggart_beat segment to get the final fragile watermarkecabign

of the signal better, but a small would capture the local
characteristics of the signal better [22]. Given a random H®) H(©6) H(0)
selected location and a window of length, we generate
semi-global statistics from this portion of the data. Thes

ECG portion corresponding to a heart beat

statistics can also have random components in their gémerat

however in this work we do not use any randomization, exce

their locations. Our algorithms are generic such that thisl k = 1 — o

of alterations can readily be incorporated. The windows c: 3 g R T S 0 EN

be overlapping so that we avoid constraining the selecti®iy. 6. Filters used for extracting the various window stits

of locations to reveal limited information to an attacker.

These local and randomly generated features are essemtfial B. Fragile Watermark Detection

would be callechash valuesWe use these hash values (after For detecting of the fragile watermark, we follow similar
appropriate quantization) and the patient metadata, ascib@ steps as the embedding. Given a watermarked ECG signal



Embedding:

Step 1l:Let x € R™ be an ECG signal of size x 1.

Step 2: For each sample of, remove the LSB to get.

Step 3: Split # into disjoint segments:‘ where eachi; corresponds to a single heart-beat
andz is the union ofi‘ i =€ {1,...,N}

Step 4: For eachi = {1,..., N}

Step 4.1:Given z’, generatep possibly overlapping intervals (each with sizex 1) with time stampsfti, ..., ¢},
Step 4.2:For each interval generate three semi-global features= Tl({jij,...,;i,iﬁw,l}),
g2,i = T‘Q({i;7 sy .%ijLw,l}) andgg_,i = T3({.’iz] yee ,i??éjer,l}) where

T:(.) is the power of low-passed filtere{(ﬁw -+ &t;4w—1} With pass band0, /3],

T>(.) is the power of band-passed filteréd; ,..., 2,1} with pass bandnr/3,27/3],
T3(.) is the power of high-passed filterdd; ., ..., %} ., 1} with pass band2r/3, 7]

Step 4.3:Constructs; by appendings with appropriately quantized version gf,j,

ki = CONCAT(x {g; ;})- _ _
Step 4.4:Generate a random vector of the same size'ofomprised of zeros and onéd/;,.,
using x; as the seed of a random number generator.

Step 4.5:Replace LSB’s ofi? with this random vector.

Fig. 5. Embedding of fragile watermark.

Normal ECG 1 SNR=40, power=0.007 SNR=30, power=0.0215 SNR=20, power=0.0755

and hash valueg of the original data as the side information,
we first remove and store the LSB’s for each The hash val- '
ues are generated for each heart-beat segment using the sa ¥ L”M ¥ Piny
random number generator with as the seed. After getting
the time stampsit, ... ,t,}, we calculate the following hash S poass S poeroois
values,
G =Ti({Z, Tt qwl}), 5 €{L,...,p} M i MJ/M W‘H" Mg
~i ~1 ~% .
g?’j - T2({x’f-7' Ty $§_7+w71})7 Je{lp} Fig. 8. Distortion of ECGs for various embedding powers arerésulting
G35 =T5({Zt,, -, Tt 4w-1}), J €{L,...,p} signal-to-noise ratio

where with an abuse of notation we usedo represent the
watermarked signal with LSB’s removed. We then generate t!& . .
final random signal using concatenatedand the quantized A- Détermining the embedding power

hash values as the seed of a random number genefater,  |n order to determine the proper embedding power of the
CONCAT(x {g; ;}). We next compare this random sequencgetadata, we solicited the expertise of co-author Helga van
W%, with the stored LSB's to reveal any alteration. If theselerle, who is a cardiologist. She examined a random subset
two sequences differ, then we announce a possible tamperiggover 100 normal and abnormal ECG’s, on which various
t?]?gu%?]ntﬁgelfget%fsﬁiV;I]ges}thhiglt&lass tﬁ;ngg{éﬂ?aﬁﬁg be localizgflyom sSN's were embedded using increasing embedding
powers on the robust watermark. A subset of such ECG’s is
demonstrated in Fig. 8. Obviously, larger embedding powérs
|97 ;1 the watermark lead to lower SNR rates, and hence introduce a

for each segment The absolute relative change in the hasfgr9€r distortion on the untampered ECG signal. The result o
values would reveal the possible tampering in the respectij!!S USer study with a topic expert, indicated that for SNR=2

region. Although most of the tampering should be localizgd B¢ diagnosis might change for certain ECG’s, because of
the hash values, small changes on the data (intentionaltor Ygious distortions that were introduced near the P-wave

intentional) may not be caught by the hash values (althougf"P'on' I—f|fowevefr, for SNfR":’] 080 or ,40 the diaygnoiis V\;ouldf
they will be caught by our fragile watermarking). ot be affected for any of the examined ECG’s. Therefore, for

V. EXPERIMENTS our experiments we use embedding powetbkat would lead

. to SN R > 30 for each ECG signal.
We evaluate empirically the robustness of the proposed

metadata embedding technique. We demonstrate that the meth ]

ods introduce only imperceptible variations that do notaits B- Class-Label Preservation

important ECG features and, as sequence do not alter th®©ne the major features that a cardiologist examines on
diagnosis of a cardiologist or physician. Additionally, eleow ECG data is the presence of arrhythmias which can be an
that the embedding techniques are able to withstand varidndication of various heart pathologies. Atrial fibrillati is
attacks. We utilize ECG signals extracted from the MIThe most common cardiac arrhythmia [24] which can be
arrhythmia database [23] which include normal signals dk wa strong indication for the possibility of a stroke. Spdctra
as arrhythmic signals annotated as malignant ventricular [@5] and bispectral [26] techniques have reported sucaess i
supra ventricular arrhythmias. The datasets used areabi@il detecting arrhythmias in medical data. Here, we utilize the
by emailing the contact author. spectral distance measure of [25] for quantifying the snty

S @,j*%ﬁﬂ . .
Tamperingi, [, j) = ———L j ={1,...,p},1 = {1,2,3}



Detection:

Step 1:Let ¥ € R™ be a watermarked ECG signal of sizex 1

andg € R™ be a vector of side informations.

Step 2: For each sample of, remove the LSB and store it.

Step 3: Generate the side information sequefc®llowing the exact same lines of WM embedding
Step 4: Generate fragile WM using and SSN and compare it with the stored LSB’s

Step 5: If they are different than the signal is tampered

Step 6: If tampering is present, check Tamperiid, j).

Fig. 7. Detection of fragile watermark

between 10 normal and 10 arrhythmic ECG's into which WeCG signal. In Figure 10(a) we plot metadata retrieval (as
have embedded random SSN’s. After the pairwise distandbde percentage of correctly recovered bits) versus noiss. le
between the 20 ECG’s are evaluated we create the resultfrgm the figure, we observe that up to 14% of distortion
dendrogram, which is illustrated in Fig. 9. With the darkefwhich would anyway destroy the ECG usability) one can
color are shown the abnormal ones and with lighter color thetrieve the whole amount of the embedded metadata. This
normal ECG’s. One can observe that even on the ECG’s withpossible due to the redundancy schemes that we employ in
the embedded metadata there is a clear separation betweeeritt encoding of the hidden metadata.
two classes of data. Similar results we obtain for the remgin
portion of ECG datasets. This example, serves as a simpl@ Noise addition in the frequency domain:An adversary
demonstration that the metadata embeddina does not distbgy also add Gaussian noise in the frequency domain, which
is where the metadata are embedded. The results for thik atta
are depicted in Fig. 10(b). We observe similar results fig th
attack as well, which again validate the robustness of our

iwwwwv@% approach.

Y it B PV P

15 b Sl A m Decimation: On this attack an ECG is represented by
f%“‘““"’w“ a smaller set of points that best approximate the original
L2 Ay ECG signal. A shorter sequence is obtained by sampling
1WV—L-L—WM equidistant points from the spline associated with theiaig
éwwwﬂ ECG sequence. Decimation is a significant attack, because
2 even though it does not change significantly the shape of the
: ECG signal, it allows the adversary to generate a new sequenc
7 which has no points in common to the original sequence. In
: our tests (see Figure 10(c)), even when the ECG signals are
10 represented using only 70% of the original number of points,
f all of the metadata bits are retrieved correctly.

Fig. 9. Dendrogram of ECG’s with embedded metadata. We obsieatelass u Cropping: This is another severe attack on ECG signals.

labels are not distorted. One can still discriminate clebefween arrhythmic In @ cropping attack, the ECG signal is shortened by a fixed
(dark color) and normal (light color) ECGs. amount by eliminating portions of the ECG signal. Since, the

size of the cropped ECG signal is shorter than the expected
length, we perform a local search based on the correlation
between the receivedy and original 5 over a window.

i . The point where this correlation is maximized is used for
We test the efficacy of metadata retrieval and watermaglgermark retrieval and detection. As seen in Figure 10(d),

detection under various data transformations (or potentige piot the watermark retrieval with respect to the amount
attacks). In this section we quantify the performance of thg cropping performed on the ECG signal. We observe that
robust watermark that carries the metadata, however we ngig retrieval performance gracefully degrades as the angpp
that both robust and fragile watermarks are embedded on §ifunt increases. We observe no distortion up to 5% percent
ECG's. The fragile watermark can detect the presence agSy minimal distortion up to 20% croppings.
location of the transformation, and its efficiency we quigmiti
the upcoming Section. For the I’ObUSt Watermark, we eXamineTherefore, the above experiments have shown that the
the effect of the following transformations: effective coding scheme which also carries redundancy, can
m Noise addition in the space domainThis is a critical at- effectively retrieve the embedded metadata even under the
tack because it can potentially destroy the embedded ntatadpresence of significant transformations. Additionally, a-m
We first test metadata retrieval when we translate randomely licious adversary would have to destroy the usability of the
baseline of the ECG signal (which doesn’t destroy the ECsignal (distort the shape significantly) in an effort to erése
usability) and we add up to 20% relative noise on the originhldden data.

C. Resilience Under Attacks for Robust Watermarking
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Fig. 10. (a) Noise addition in space domain, (b) Noise additioFrequency Domain (c) ECG downsampling (d) ECG cropping

D. Detection of Robust Watermark decimation attack in Figure 12, for different decimatior-fa
ors, down to retaining only 20% of the original signal ldmgt
e observe that our watermark detection algorithm is very
ective even when reducing the length of sequence by 50%

In addition to retrieving the metadata, one can also sim ﬁ
detect the presence of the watermark using one of the th%[
watermark detectors presented in section IlI-F. We evaluc:jln length, which is a quite severe distortion. We attributis t
the performance of these detectors under the same atg :

. ) . ) : robustness due to using lower part of the frequency spectrum
transformations as n Fhe previous experiments, usmgefal%r mark embedding, since in decimation type of attacks, the
accepta.mce/fals.g I’ej.eCtIOFI curves (FA'FR curves). higher frequencies are more effected due to lowpass fitferin

~m Noise addition in the space domain:Here, the ECG to avoid aliasing. Finally, in the same figure we also present
signals are normalized to have maximum amplitude equal f0comparative graph regarding the performance of all the

1 with zero DC and the average power of an ECG sign@latermark detectors under the same decimation attack level
is 0.05. The attack consists of additive Gaussian noise Wlth- Cropping attack: We finally present the FA-FR curves

|s_|tandard dewaufm:;: — O'(t)tOl’kU - O'OL’ 7= 00(15 Ud: 0.1. for cropping attacks in Figure 13. We examine the detection
ence some of hese attacks can be considere sever'ep ormance under several different amount of croppings fr

Figure 11(a), we plot the FA-FR curves forfour_different_sml 10% up to 50%. We observe the same robustness properties
powers for the correlation detector introduced in Equa¢ibn for this attack also

As seen, for noise powels001 and0.01 the FA-FR curves
are on the x-y axes, i.e., the algorithm perfectly separates
detection regions (hence there are no errors in detectioR). Fragile Watermarking

As expected, the detection performance gracefully degrade 1hg section studies the performance of the fragile water-

as the noise power increases. Similar performance res@lts @i and in specific the behavior of hash values under several
observed in the other algorithms introduced in Equation (glfterent attacks on the ECG signals. For fragile waterrimgrk

and (3), respectively. To compare the performance of theg@ choose a window size 6f) samples and for each region we

three different detectors, we also plot corresponding FA-Feqjiect hash values from 4 different subintervals. We obser

curves foro = 0.05. We observe that for additive Gaussiafyat the hash values are not that sensitive to window length,
noise (even though the additive noise is in space domain) 50 samples provide a fair trade-off between localized

first watermark detection algorithm based on correlatiod’sf sormation and capturing of semi-global robust statisf#2].

outperforms the other two. For generation of hash values, we use 8th order low pass,
Similar results we obtain for the FA-FR curves for frequencygng pass and high pass filters where each filter is designed

domain attacks, which are omitted for brevity. using a Butterworth algorithm. We choose an 8th order filter
m Decimation attack: We next present the FA-FR curves foito decrease the effect of initial transients due to the ise
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Fig. 11. FA-FR curves for three different watermark detesfor four different noise levels added in space domain. (aeWeark detector from Equation (1)
(b) Watermark detector from Equation (2) (c) Watermark detetom Equation (3) (d) FA-FR for all watermark detectionaighms together for = 0.05.

sample sub-intervals. We observe that the effect of thigalni filtering to avoid aliasing (and if lowpass filtering is not
transients are unavoidable but acceptable. present, due to aliasing), we observe large changes in hash
We simulate an attack with additive Gaussian noise (as dov@lues generated from bandpass and highpass filters. The has
in the robust watermarking experiments) since this kind &Rlues generated from lowpass filters are relatively ungedn
attack (or disturbance) is common due to both intentional or Finally, we present the results for the cropping experiment
unintentional changes, e.g., data compression. In Figdre @nd plot the changes in hash values in Figure 14(e) and (f)
we plot the histogram of percentage changes in hash valiiescropping amounts 20% and 40% providing the sensitivity
for two different noise levelss,, = 0.1 representing a severeof hash values under cropping.
attack (Figure 14(a)) and, = 0.001 (Figure 14(b)) repre- We point out that in all cases, the fragile watermarking
senting a less-severe attack. We observe that the hastsvaigedestroyed, hence showing presence of an alteration on
corresponding to all three filters are effected by this &ttacECG signals. In all cases the hash values provide relevant
The changes in hash values reflect the degree of the attdpkgrmation, allowing an analyst to deduce the nature of the
since the percentage change in the severe attack is an ottfterlying attack.
of magnitude larger than the less-severe case. A changé in al
hash values shows a broadband attack on ECG signals since VI. CONCLUSION
all the frequency components are effected. Almost idehtica In this paper we introduced the topic metadata fusion
results we obtain for the same attack in the frequency domaitithin medical time-series data. To our knowledge, this is
For decimation attacks we plot the histogram of percentage first work that examined this problem. We show that
changes in hash values in Figure 14 (c) and (d), whithis embedding does not distort the visual appearance of the
correspond to decimation amounts down to 50% and 25% rmokdical signal and it also does not induce any changes in
the original ECG’s length. Naturally, since the decimatadn the diagnosis. On a technical level we offer the following
a signal effects mainly the higher frequencies due to lowpasontributions:
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Fig. 12. FA-FR curves for three different watermark detectwhen reducing the signal length down to 50%, 33%, 25% and, 20%e original signal
length. (a) Watermark detector from Equation (1) (b) Watekn@atector from Equation (2) (c) Watermark detector from Higua(3) (d) FA-FR for all
watermark detection algorithms together for 50% decimation.

« We effectively combine watermarking and channel codingreas or space travels. The various methodologies proposed
schemes for providing the sufficient resilience on thehis work, can function as an additional authenticatiorpste
metadata retrieval regarding the originality of the transmitted streaming road

« We augment the above robust technique with localizedeasurements.
fragile watermarks that can pinpoint the type and location
of a potential tampering

« Finally, we evaluate the robustness of the proposed REFERENCES
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