
Noname manuscript No.
(will be inserted by the editor)

Service Oriented Evolutionary Algorithms

P. Garćıa-Sánchez · J. González · P. A. Castillo · M. G. Arenas · J. J.

Merelo

Received: date / Accepted: date

Abstract This work presents a Service Oriented Ar-
chitecture for Evolutionary Algorithms (SOA-EA), and

an implementation of this architecture using a specific

technology (called OSGiLiath). Service Oriented Archi-

tecture is a computational paradigm where users inter-

act using services to increase the integration between
systems. The presented abstract architecture is formed

by loosely coupled, highly configurable and language-

independent services. As an example of an implemen-

tation of this architecture, a complete process devel-
opment using a specific service oriented technology is

explained. With this implementation, less effort than

classical development in integration, distribution mech-

anisms and execution time management has been at-

tained. In addition, steps, ideas, advantages and disad-
vantages, and guidelines to create service oriented evo-

lutionary algorithms are presented. Using existing soft-

ware, or from scratch, researchers can create services to

increase the interoperability in this area.

Keywords Evolutionary Algorithms · Service Ori-

ented Architecture · Service Oriented Science · Web

Services · Interoperability · Distributed computing

1 Introduction

Research in Service Oriented Architectures (SOA) (Pa-

pazoglou and van den Heuvel, 2007) is an emerging

field, as can be seen in Figure 1, obtained from the

search terms “service oriented OR service-oriented” in

P. Garćıa-Sánchez
Dept. of Computer Architecture and Computer Technology,
E.T.S. Ing. Informática y Telecomunicación and CITIC-UGR
University of Granada, Granada, Spain
E-mail: pgarcia@atc.ugr.es

Fig. 1 Number of published papers (per year) about SOA
(obtained from Scopus database)

the Scopus 1 database. Each year more papers about

the area are published. This area seeks to promote ser-
vices usage and adoption, and to improve the way to

use them. For example, solving a problem combining

existing services in an automatic way (Moussa et al.,

2010).

Service Oriented Architecture is a computational

paradigm where the users interact with each other us-
ing the concept of service. A service is a distributed

entity (such as node, program, function), used to ob-

tain a result, increasing the integration of heteroge-

neous systems (several operating systems, protocols or

languages) due to this multi-platform nature. The ser-
vice users do not need to know the language used to

implement the service, and they are not forced to use a

specific technology to access that service. For example,

an evolutionary algorithms researcher could have access
to a fitness function made publicly available by another

researcher at the other side of the world without even

1 http://www.scopus.com

2 P. Garćıa-Sánchez et al.

knowing which programming language has been used

to implement it.

With the advancement of the Internet, new scientific

communities, based on interoperable and distributed

platforms are emerging. These communities allow sci-
entist to collaborate in their research, sharing data and

remote access to their programs. To achieve this, they

use SOA, due to standards usage. Users publish and use

flexible, interoperable and configurable services. These
services can be created from scratch or by leveraging

existing software. Foster (2005b) defines the term “Ser-

vice Oriented Science” as the pursuit of scientific re-

search using distributed and interoperable networks,

being the uniformity of these interfaces the key to suc-
cess. Thanks to it, researchers can discover and access

the services without developing specific access for each

data source, or program. Therefore, this paradigm has

the potential to increase the scientific productivity due
to these public and distributed services, and also to

increase the data analysis automation in computing.

There are many examples that attempt to boost this

paradigm, like Open Science Grid (Altunay et al., 2011)

and GLOBUS (Foster, 2005a). These projects are sci-
entific communities and globally distributed infrastruc-

tures that support scientific and integrated applications

of different domains. It is necessary to remark that ser-

vices implementation technology is not the great chal-
lenge in SOA (neither the specific technology presented

in this work). Its main goal is to increase the effort to

migrate the existing work and to change the mind of

researchers and practitioners.

The Evolutionary Algorithms (EAs) research area
should adapt to SOA due to several reasons: this kind of

algorithms usually require a lot of computational load,

and they are inherently distributable and very config-

urable, due to the composition of a large amount of
existing operators. For example, if the population is

a service instead a normal data structure, it could be

remotely accessed or undergo a change of its internal

structure without modifying the code that implements

it. The same happens with the rest of elements of an
EA (such as mutation or crossover): they could be dis-

tributed and implemented in several languages, facili-

tating the modification and usage of the algorithms.

Moreover, there exist a lot of EAs applications avail-

able, but in general, they are incompatible with each
other. Some of them use some kind of format to define

the algorithm (Guervós et al., 2003), but the commu-

nication protocols are not usually well-defined.

Many researchers are wasting time in re-programing
existing operators to be used in their frameworks, and

these operators are also incompatible outside them (due

to the programming language used, for example). If the

EA developers use SOA they could make profitable the

development effort: they could re-use existing compo-

nents and reconfigure their applications in real time.

Moreover, with minor changes, these services could be

accessed remotely by another researchers or could be
easily integrated in another frameworks, even with dif-

ferent programming languages.

In Gagné and Parizeau (2006), six criteria for qual-

ify EA frameworks were presented: generic representa-
tion, fitness, operator, model, parameters management

and configurable output. In this work we show how SOA

follows these lines of genericity, but can also extend

them:

– Genericity in the service interfaces: service inter-

faces are established to create new implementations.

Furthermore, these interfaces must be abstract enough

to avoid their modification.

– Programming language independence: for example,
services implemented in Java can use services im-

plemented in C++ and vice-versa.

– Distribution transparency: it is not mandatory to

use a specific library for the distribution, or modify
the code to adapt the existing operators.

– Flexibility: easy to add and remove elements to use

the self-adaptation or other mechanisms.

As there is no general agreement over how to define
interfaces to allow interoperability among researchers in

this area, this work presents a possible architecture to

implement Evolutionary Algorithms within a SOA. Us-

ing this architecture as a base, the EA researchers could

integrate their algorithms with services and computa-
tion nodes over the world, increasing the development

and capabilities of these algorithms. As an example,

an implementation of the proposed architecture using

a concrete SOA technology is presented.

With this implementation our aim is to prove that:

– The usage of services for developing EAs requires

less effort in integration and code editing, with a

lower number of lines of code.

– The distribution mechanisms for parallel EAs do not
add extra source code, and can be modified without

re-compiling the source.

– New services can be added in execution time and

can be accessed independently of the programming
language used to implement them.

The rest of the work is structured as follows: next,

the State of the art in SOA and existing EA frameworks

is presented. In Section 3, our SOA for EAs (SOA-
EA) is explained, with a guide for creating services for

Evolutionary Computation. Next, an implementation

of these services using a specific SOA technology (OS-

Service Oriented Evolutionary Algorithms 3

Fig. 2 Service interaction schema. The service provider pub-
lishes a service description that is used by the consumer to
find and use the service

Giliath) is shown. Finally, the presented work and the

conclusions are discussed (Section 6).

2 State of the Art

Figure 2 shows the basic interaction among services.

First, the service provider exposes the service, publish-

ing its interface in the service broker. The service con-
sumer (or requestor) finds in the broker a service to be

used and receives its interface. Then the request is per-

formed by the consumer (which uses or consumes the

service).

Moreover, several implementations of a specific ser-

vice can exist (in one or several machines). The broker

can choose which one to use each time, or offer another

if a service is unavailable. Implementations may also
have a different behavior, so the researcher can take

advantage to create an auto-adaptive algorithm to se-

lect different implementations according to some crite-

ria. Figure 3 shows this special interaction, where two

different implementations of an operator interface ex-
ist (even using different languages) and the broker has

chosen one of them.

The service broker in a SOA can be implemented in

several ways and have different behaviors: for example,
the implementations of the services to be used can be

defined in a text file (if the services do not change in

execution time). However, the broker can also assign

implementations to interfaces in an automatic way, or
using several rules, for example, to distribute a fitness

between several machines activated while the algorithm

is running.

An important SOA capability is that it is not fo-
cused on a specific implementation, but offers a set of

guidelines to help the developers. In (Arsanjani et al.,

2008) these guidelines and good practices, and also the

differences between SOA and Object Oriented Program-

ming (OOP) are explained: the main difference between

SOA and imperative programming or OOP is the or-

der of service execution. This order is not necessarily

static, because the services are designed to be used in
a non-established and configurable order. Furthermore,

another important difference is that services can be dy-

namically discovered and used (while in OOP must be

previously known and can not change during execu-
tion), being also one of the most important capabili-

ties the (optional) distribution in a network. Finally, in

OOP the programming language must be the same for

each method call.

There exist many SOA implementations, being the
most extended OSGi (OSGi Alliance, 2010b) and Web

Services (Papazoglou and van den Heuvel, 2007).

OSGi (Open Service Gateway Initiative) (OSGi Al-

liance, 2010b) defines a SOA specification for virtual

machines, like the Java Virtual Machine. In OSGi, the

service providers just implement Java interfaces (the
service description in Figure 2) with several implemen-

tations and the service consumers choose this imple-

mentations in several ways using SOA techniques. Thus

no specific code is needed, and new services can be
added and be discovered dynamically (even in a net-

work).

Although SOA is the most relevant part in OSGi,

it also includes other beneficial features (OSGi Alliance,

2010a), like package abstraction, life-cycle management,
packaging or versioning. This reduces the complexity in

the development, support and deployment of applica-

tions due to its plug-in based development. In Wagner

et al. (2007) the definition and advantages of using these

techniques in metaheuristic systems are explained. The
benefits of the dynamism in OSGi can be used in dy-

namic EAs: the applications in OSGi can register, ob-

tain, filter or wait for services (such as operators or

fitness functions) that appear or disappear and the pro-
grammer does not need to write code for these actions.

The other most extended SOA technology are web

services. A web service is a service whose interface is a

WSDL file (Web Services Description Language, equiv-

alent to the Service Description in Figure 2). The com-

munication is performed with the interchange of mes-
sages described with the Simple Object Access Protocol

(SOAP).

There exist many tools to convert existing code to

SOA without too much difficulty, like Axis and JAX-

WS2 for Java, gSOAP 3 for C++, o ZSI 4 for Python,
among others.

2 http://jax-ws.java.net/
3 http://gsoap2.sourceforge.net/
4 http://pywebsvcs.sourceforge.net/

4 P. Garćıa-Sánchez et al.

Fig. 3 Example of usage of a service implementation

Web services are also used in the GRID area for op-
timization problems, as can be seen in the works of Cox

et al. (2001); Song et al. (2003, 2004); Jiao et al. (2004),

where services are defined using WSDL interfaces and

other transmission mechanisms (such as Remote Proce-

dure Call (Ho et al., 2004; Xue et al., 2004)). Although
there also exist EAs to be executed in GRIDs (Lim

et al., 2007; Ng et al., 2005; Imade et al., 2004)) no in-

formation about how to design these services for EAs

is provided in previous works.

Even as SOA is used extensively in software de-

velopment, it is not widely accepted in the main EA
software. Firstly, there exist Object Oriented frame-

works, like Algorithm::Evolutionary (Merelo Guervós

et al., 2010), JCLEC (Ventura et al., 2008) or jMetal

(Durillo et al., 2010). Users implement specific inter-

faces of these frameworks (like individual or crossover)
and they group them in the source code. For exam-

ple, creating an operator object that groups several op-

erators. However, these frameworks are not compati-

ble among them. For example, the operators created in
JCLEC can not be used in jMetal (despite both are pro-

grammed in Java). Also, they can not control the ser-

vices (operators) outside the source code. Parallelism

and distribution are added in other frameworks, like

MALLBA (Alba et al., 2006), DREAM (Arenas et al.,
2002) or ECJ (Luke et al., 2009), but using external

libraries (such as MPI or DRM), so the code that uses

these libraries is mixed with the algoritmh’s code.

Even being distributed, these frameworks can not

communicate with each other. HeuristicLab (Wagner

and Affenzeller, 2005) is one of the few plug-in and ser-

vice oriented frameworks. It uses web services for com-
munication, but just to distribute the load, after con-

sulting a central database of available jobs. Finally, the

only service oriented optimization framework is GridUFO

(Munawar et al., 2010), but it only allows the modifica-
tion of the objective function and the addition of whole

algorithms, without combining existing services. Table

1 shows a summary of the previous frameworks.

In brief, although these frameworks follows the six
criteria for genericity of Gagné and Parizeau (2006),

they present some shortcomings when it is needed to

develop or add new features: the user is forced to mod-

ify the source code or stop the execution to add new

functionalities (like load balancing, dynamic control of
operators, or an user interface). The authors should

improve their frameworks adding SOA technologies in

order to facilitate the communication and integration

among them. As Parejo et al. (2012) suggest, a stan-
dardization of the presented (and other) frameworks

should be carried out.

Although all the approaches described above are fo-

cused on the implementation of distributed EAs, the ab-

straction level of each alternative can be quite different,

as shown in Figure 4. As SOA is a methodology and not
a technology, areas such as Evolutionary Robotics, or

EA classic frameworks (i.e. OSGiLiath) can use SOA to

be designed and developed. Implementation technolo-

gies, such as Web Services are the gap between SOA

(abstract) and GRID (infrastructure) where interfaces
are designed using SOA principles (dynamism, visibil-

ity, loose-coupling and heterogeneity). Finally, Cloud

Computing can be seen as a combination that extends

SOA adding the scalability of GRID (Jamil, 2009).

Finally, as stated in the introduction, there exist re-

search lines related to the intelligent composition and
discovery of services. The service composition is the ag-

gregation of several distributed services in an intelligent

way to solve a problem. To achieve this, the services in-

formation is used, like the execution cost, information,

inputs and outputs and another features (see the work
of del Val Noguera and Pedruelo (2008) for a survey).

For example, some authors have used metaheuristics

like the Genetic Algorithms (GAs) or Particle Swarm

Optimization (PSO) to compose service sequences (Fan
et al., 2011). So, these service composition techniques

can be applied to a Service Oriented Architecture for

EAs, like the one presented in this work.

Service Oriented Evolutionary Algorithms 5

Table 1 Comparison of EA frameworks. OO=Object-Oriented, SO=Service Oriented, PO=Plug-in Oriented

Name Design Language Distribution License Other

ECJ OO Java Sockets Academic Free Lic. Recently updated
MALLBA OO C++ MPI Freeware No new versions
jMetal OO Java N/A GNU/LGPL
DREAM OO Java DRM GNU/GPL No new versions
ParadiseEO OO C++ MPI CeCILL
HeuristicLab OO/PO .NET Web-Services GNU/GPL Recently updated
METCO OO C++ MPI N/A
JCLEC OO Java N/A GNU/GL
Algorithm::Evol. OO Perl N/A GNU/GPL
GridUFO SO Java Web Services N/A

Fig. 4 SOA as abstract paradigm to develop in different EAs areas. Using especific technologies such as Web Services allows
GRID integration.

3 Service Oriented Architecture for

Evolutionary Algorithms: SOA-EA

The evolutionary algorithms research area is a propi-

tious environment to migrate to SOA for several rea-

sons:

– Firstly, as seen in the previous section, there are a

large number of frameworks for EAs. Many of these

frameworks are open source, but all of them are in-
compatible (different programming languages, oper-

ating systems or communication protocols).

– New research trends, like self-adaptation (Babaoglu

et al., 2005), require many changes and modifica-

tions in the algorithms behavior in real-time.
– The increase of technologies like GRID and Cloud

Computing (Buyya et al., 2009), where the com-

putation elements are distributed in different ma-

chines, with many operating systems and program-
ming languages.

When developing within a SOA, Papazoglou and
van den Heuvel (2007) established that the services

must be:

– Abstract: many different implementations can use

the same interface.

– Well-defined: the interface of the service must be

fixed, and it can not change in time, because the

consumers or implementations of this interface should

be modified with it.
– Encapsulated: services can use other services, but

only the interface should be used to consume a ser-

vice.

– Reusable: services should be designed to be used by

as many applications as possible.

Starting from the general scheme (Eiben and Smith,

2005) of an EA, that can be seen in Figure 5, each step

(and also the algorithm) can be developed as a service.

Thanks to SOA, each part of the EA can be dynam-
ically selected. This increases the flexibility in the de-

velopment of new EAs or the modification of existing

ones.

Figure 6 shows a basic EA that uses specific im-

plementations of the services. Service implementations
(gray blocks) are used accessing to their interfaces (white

blocks, such as Initializer or Mutator). The services

have been chosen from the schema in the Figure 5 be-

cause it is the most abstract scheme of an EA and ser-
vices must be as abstract as possible. Gray blocks under

white blocks are implementations bound with the in-

terfaces in execution time. These implementations are

6 P. Garćıa-Sánchez et al.

BEGIN

INITIALISE population with random candidate solutions;

EVALUATE each candidate;

REPEAT UNTIL (TERMINATION CONDITION is satisfied) DO

1 SELECT parents;

2 RECOMBINE pairs of parents;

3 MUTATE the resulting offspring;

4 EVALUATE new candidates;

3 SELECT individuals for the next generation;

OD

END

Fig. 5 General scheme of an evolutionary algorithm in
pseudo-code

used accessing to their interfaces (noted with contin-

uous arrows) from other implementations. The imple-
mentations binding is not performed in the source code,

but with a SOA mechanism (for example, automati-

cally when the implementations are available, or in a

configuration file) in a transparent way. Also, these im-

plementations can be in different machines or different
languages and the programmer does not need to know

it. Although this is a basic example of how to apply

SOA to EC, this work explains how to implement and

develop it in a deeper way. Also more complicated ex-
amples and SOA mechanisms are presented.

As previously stated, Gagné and Parizeau (2006)

discuss about the genericity in software tools for evolu-

tionary computation. Although their work is based on

Object Oriented Programming, genericity in a frame-
work for EAs can be also applied in the development

of a service oriented architecture for this kind of algo-

rithms:

– Individual representation. Almost all services in an
EA (like mutation or selection) will accept individ-

uals as input data and produce/modify these indi-

viduals. Due to many kind of individuals may exist,

the operators should be as abstract as possible to

operate properly.
– Fitness evaluation. Each problem should implement

an interface of the fitness service that receives the

individual, allowing the distribution of this service

(instead of being a method in the individual class,
for example). However, to be more flexible, the fit-

ness service must receive a list of at least one indi-

vidual, to facilitate the parallelism.

– Definition or addition of every type of operator.

Thanks to the loose coupling of services, several
crossover or mutation implementations can be cre-

ated. Moreover, new operators can be added in exe-

cution time, without re-compiling the existing ones,

or combining them according to several parameters,
for example.

– Adaptation of the evolutionary model. The user can

manually select the services to be combined to cre-

ate a Genetic Algorithm or an Evolution Strategy,

for example.

– Dynamic adaptation of the parameters. Parameters

can also be a service, thus the EA developer ob-

tains two advantages: it is not mandatory to dis-
tribute the parameters among all services, and also

they can be dynamically modified in execution time

from an external service, facilitating self-adaptation

(Babaoglu et al., 2005).
– Flexible output mechanisms. The developers do not

need skills in GUIs (Graphical User Interfaces) or

logs programming, because as this kind of services

are not coupled to the operators, they can access

their information without any modification in the
operators.

As previously stated, the fitness should not be cal-

culated within a method of an Individual class. To be
less coupled, it should be implemented an an external

service that receives a list of individuals (facilitating the

load balancing). That way, the service is as abstract as

possible. Also the parameters should be a service for
the same reason, allowing the possibility of performing

experiments related to the parameter control or tuning

(Eiben and Smit, 2011) in an efficient way (being sepa-

rated from the code of the existing operators). Services

such as the recombinator or the mutator should not re-
ceive one or two individuals, since not all EAs have the

same behavior. They should receive a list of individu-

als to be crossed or mutated each generation. On the

other way, population should not be a list of individ-
uals: it should be a service to access the individuals

and allow the variation of its structure (for example,

a change from an unique population to a distributed

island model) without affecting the rest of the pieces

of the algorithm. So, other services external to the EA
could consult the population state and act accordingly

to some rules.

Using the previous indications as a base, SOA-EA

has been created. SOA-EA is an abstract architecture

to develop service oriented EAs, independently of the

technology to be used. Table 2 shows some reasons to
migrate to SOA and how services in SOA-EA should be

designed.

4 Example of SOA-EA usage

This section justifies the design of SOA-EA and the

steps to create services within it.

Service Oriented Evolutionary Algorithms 7

Fig. 6 Basic Service oriented Genetic Algorithm with example operators

4.1 Implementing a basic Genetic Algorithm

As stated above, a basic EA is formed by several steps.

These steps are common to every EA, so this part must

be fixed to allow the creation of services as abstract

as possible. The differences between two EAs are in
the operators, selectors or individual representation (as

suggested by Eiben and Smit (2011)). Therefore, to ac-

complish with the genericity presented in the previous

section the parameters and operators must be added

dynamically. This is done with the SOA service bind-
ing. Users can specify the operators they need in sev-

eral ways, for example, in a configuration file, or in an

intelligent manner (an algorithm). It is important to

remark that these “pieces” do not need to be modified
and compiled again, because the loose coupling and the

dynamic binding of SOA. Without SOA this behavior

is very difficult to achieve or maintain.

Figure 7 shows a complete service oriented genetic

algorithm, taking into account the proposed ideas. In

this figure (and in the following ones) white blocks are

the service interfaces. Gray blocks are specific imple-

mentations of these interfaces (that is, the source-code
of the service), and arrows indicate how a service im-

plementation can make use of other services via their

interface. For example, almost all implementations ac-

cess to the Parameters service using its interface. Ser-
vice implementations (gray blocks) can be selected in a

configuration file or be automatically bound when they

are available (among other options).

Fig. 7 Basic genetic algorithm. White blocks are interfaces
and gray blocks are implementations. In this case, we are
using specific implementations to solve the Griewank function
problem

The change from a problem instance to another is

quite simple. It is only necessary to notify the algorithm
a change in the implementation of the service Fitness

Calculator and the implementation of Parameters (be-

cause these can vary from a problem to another). Be-

cause some algorithms need to calculate the fitness ev-
ery time an individual is modified (and not only at the

end of a generation) the Figure 7 shows how the service

Fitness Calculator may be used inside the implementa-

8 P. Garćıa-Sánchez et al.

Table 2 Summary of migration from traditional EA programming to SOA

Element Current EAs
development

Using SOA Reason to migrate

Programming
language

Just one for all el-
ements of the al-
gorithm

Any Services are independent of the programming lan-
guage. Only the interface is required to use services

Operators Methods or func-
tions

Services Services allow the selection of a specific implemen-
tation during the algorithm execution, and also dif-
ferent programming languages or distribution mod-
els

Operators be-
havior

Methods applied
to a single individ-
ual

Service that receive
individual lists

It allows load balancing and distribution, and also
to modify the operators in execution time

Operator
selection

Modifying the
source code

In a flexible way out-
side the source code

It is not mandatory to recompile the source code
to integrate new operators

Fitness Method that eval-
uates an individ-
ual

Service that evaluates
an individual list

It allows the distribution, load balancing and addi-
tion of new fitness calculators in real time

Population Array or individ-
ual list

Population service It allows to change the population type and topog-
raphy, by selecting the service implementation

Self-
adaptation

Modifying source
code for a specific
experiment

Self-adapting service
that selects specific
operator implementa-
tions

It does not modify the created services and brings
more flexibility in the dynamic adaptation

Distribution Libraries like MPI SOA mechanisms SOA technologies allow changing the transmis-
sion protocol and using extra technologies without
adding extra code

tions that modify individuals (Initializer, Mutator or

Recombinator). Moreover, each service can be in the lo-
cal machine or distributed on the Internet, having the

same behavior.

4.2 Implementing a service oriented NSGA-II

The difference between the previous version of a GA
and the well known NSGA-II (Deb et al., 2002) lies

in the selection operator. Therefore, to change from

the basic GA to NSGA-II, the mutator and crossover

are kept and new selection operators are added. Figure
8 shows the service oriented version of NSGA-II algo-

rithm, where the new implementations are marked with

a thick border. The problem has also been set to the

multi-objective function MOP2 (Huband et al., 2006).

New auxiliary services have been added, like Crowd-
ing Distance Assignator or Pareto Assignator. As these

services may be used in other algorithms in the future,

they must be designed as abstract as possible. These

new services are called from the implementation (code)
of the services NSGA-II Replacer or Binary Crowding

Distance Selector (black arrows indicate an interface

call).

Fig. 8 Modification of the basic GA adding new service im-
plementations (grey blocks with thick lines)

4.3 Adding basic distribution

As every service must keep the same behavior, indepen-

dently of the machine that hosts it, distribution services
for load balancing of a specific service can be easily cre-

ated, for example, notifying the algorithm to use a dis-

tributed implementation for that service. As previously

Service Oriented Evolutionary Algorithms 9

stated, the service Fitness Calculator receives a list of

individuals to calculate their fitness, so, in this exam-

ple, the new fitness implementation (Basic Fitness Dis-

tributor) binds with every fitness service available (in

the same machine or in a network). The source code
of this basic implementation simply distributes the list

of individuals among the bound services and waits for

their termination. Although more complex implemen-

tations probably will be more efficient, the objective
of this section is to show how to distribute services,

thus, this basic implementation is sufficient. Figure 9

shows the modification from a sequential fitness calcu-

lator to a distributed one. Thanks to SOA, the number

of distributed fitness calculators is not fixed: calculators
can be added o removed in real time without stopping

the system. As can be see in the figure, if one of the

nodes is a cluster, it could also implement another fit-

ness distributor. This easy example can be adapted to
more complex necessities depending on the infrastruc-

ture or the problem to be solved. More complex dis-

tribution services can be created, for example, taking

into account communication latencies or computation

capabilities of the nodes.

One of the most extended model in parallel EAs

is the island model. Using SOA-EA, the Population

service implementation can be modified to become a

distributed population. Each certain time, this popula-

tion could exchange individuals with other populations
modified by other algorithms. These populations should

be added or deleted in execution time without affecting

the algorithm execution. Figure 10 shows this example,

where the Island Population implementation maintains
a list of references to other Population interfaces (which

can be local or remote). Also other Population imple-

mentations exist (List Population is the usual list of in-

dividuals). If one of these population services drop, the

others can continue working. The topology of these is-
lands can also be managed from services (like the Island

Population service, or another). The modification and

dynamism of the population structure is difficult to ap-

ply in existing frameworks without using SOA because
it is necessary to create mechanisms to modify the pop-

ulation behavior, the operators to modify it, the data

structures, and also the code to manage all. With he

usage of SOA, and due to the capability of accessing to

a population via its service interface, it is not necessary
to modify the source code to modify the population and

its behavior. Also, to avoid bottlenecks in distributed

executions, asynchronous communication must be pro-

vided to avoid idle time. This kind of communication
offers excellent performance when working with differ-

ent nodes and operating systems, as demonstrated by

Alba et al. (2002).

4.4 Self-adaptation in SOA-EA

There are several ways to create self-adaptable algo-

rithms using SOA-EA. For example, creating a service

that modifies the parameters in the Parameters service,
or activating and de-activating operators in real time.

An easier way is to create a service that manages all

available services of the same kind. For example aMuta-

tor service that binds all the available mutation imple-
mentations and use the most adequate one depending

on some rules during the execution (Serpell and Smith,

2010). This idea can also be extended to create a service

that implements several interfaces and selects the most

adequate implementation for each interface respect to
some criteria, as can be seen in Figure 11, where thick

lines represent the implementations used at the current

moment (they vary as time passes).

Finally, another important usage of EAs is its hy-

bridization with other metaheuristics, to obtain more

effective search algorithms (Lozano and Garcia-Martinez,
2010), increasing the performance of intensification and

diversificationmechanisms. With traditional frameworks

this task can be difficult, mainly because the source

code for each metaheuristic must be modified. Never-

theless, using SOA a combination of loosely coupled
services could be used.

5 Implementation of the proposed architecture

Although the previous examples can be developed using
any SOA technology, this section presents OSGiLiath

(OSGi Laboratory for Implementation and Testing of

metaHeuristics), an implementation of SOA-EA based

in OSGi. OSGi has been selected for the development of
this service oriented architecture instead Web Services

attending the following reasons:

– OSGi is faster, because it was designed for lightweight

devices (Lim et al., 2008). Therefore, it can be used

in embedded devices, like Evolutionary Robotics (Eiben

et al., 2010). Web services were created to integrate
complex data interchange among different compa-

nies.

– The transmission protocol in web services is SOAP,

which implies the transmission of an XML (eXten-

sion Markup Language) file (World Wide Web Con-
sortium, 2006). This file is usually too large (for ex-

ample, a complete list of workers in a company).

EAs often need to send minimal information, but

a large number of times (for example, the fitness
of several individuals), so a complex transmission

protocol is not recommended. OSGi includes a lot

of mechanisms for data transmission, allowing more

10 P. Garćıa-Sánchez et al.

Fig. 9 Fitness distributor. The thick line implementation also re-distribute the individuals

Fig. 10 Island model. From time to time, the implemen-
tation Island Population notifies the islands to initiate the
migration

flexibility depending on the execution environment

of the algorithms (for example, in a machine, in a
local network, over the Internet, or even in more

lightweight devices).

– Unlike web services, OSGi includes a blackboard

event-manager, that is, services inform what they
are doing without indicating any receiver. Other ser-

vices can filter this information and actuate accord-

ingly, so the synchronization is easier. For example,

it is not mandatory to create a variable to count the

number of times that the Fitness Calculator service
is executed: an external service can track this num-

ber.

– Due to the separation between OSGi and the source

code of the services, the code of OSGi-based ap-
plications can be used in other Java-based applica-

tions without OSGi. For the same reason, frame-

works written in Java can be migrated into services

in a easy way, because no specific code is required

to combine code from different programs.

– Finally, OSGi includes other features that, although

not related to SOA, facilitate the service develop-
ment: version and package control, security and life-

cycle management of the used components (as ex-

plained by Wagner et al. (2007)). These advantages

can be used by the EA developers if they work in a
team collaboration.

More information about the application of OSGi in

other areas, with good practices, benefices and lessons

learned are provided by the authors in (Garćıa-Sánchez

et al., 2012).

The objective of this implementation is to promote

SOA benefits and offer these features to programmers:

– Well defined interfaces. As previously stated, service

interfaces must be as abstract as possible.

– Asynchronous data sending/receiving. Due to the
distribution capabilities offered by OSGi, the pre-

sented implementation allows the direct distribution

of services, without the need to implement specific

functions in the source code, like MPI or other dis-
tribution mechanisms. EAs developers can use the

existing distribution services or create new ones, if

they want.

– Service oriented programming. New improvements

can be added without modifying the existing mod-
ules, that is, adding or modifying only the affected

service implementations without modifying the source

code of the other services.

– Server/client or distributed model. All the compo-
nents of this implementation can communicate in a

bi-directional way, so it is not mandatory to use a

central server to manage other nodes.

Service Oriented Evolutionary Algorithms 11

Fig. 11 Self-adaptable Algorithm. The Intelligent Operator Selector selects which service implementation is used each time

– Paradigm independent. Although the first develop-

ments are focused on EAs, this architecture can be
extensible to other kind of metaheuristics.

– Remote event handling. Users can handle a power-

ful synchronization tool among distributed services

using OSGi features.

The source code of OSGiLiath is available in http:

//osgiliath.sourceforge.net under a GNU/GPL li-

cense. This code is an updated version of the work pub-

lished in (Garćıa-Sánchez et al., 2010).

5.1 Service development in OSGiLiath

Users have to define three elements to add a new service

in OSGiLiath:

– Service interface. It is a Java interface. The user just

needs to specify the operations that the service will

perform.
– Service implementation. The programmer just writes

the code of the interface methods.

– Service description. It is an XML file that indicates

which interface is being implemented and which other
services needs to be activated.

The presented implementation includes the inter-

faces defined in section 3, such as Algorithm, StopCrite-

rion, Population or Recombinator. These interfaces are
grouped with another interfaces that do not need to

be a service. For example, the interface of the object

Individual. This interface is used in the Recombinator

interface, which receives a list of Individual objects to
be recombined, and returns another list with the recom-

bined ones. Also, several implementations are included,

like EvolutionaryAlgorithm (implementing Algorithm)

or the rest of services explained in previous section,

like the services for NSGA-II.

The source code of the method that executes the al-

gorithm in the class EvolutionaryAlgorithm (implemen-

tation) is shown in Figure 12. It also includes methods

to bind the six references to the service implementa-
tions that are needed: Population (pop in the code),

StopCriterion, ParentSelector, Recombinator, Mutator,

and Replacer.

This is the code needed by every EA, so it not nec-
essary to modify it. The Service Description appears

when the service interfaces are bound to execute the

service implementation. Each implementation of a ser-

vice has an XML file indicating which interface is be-

ing implemented, and also other properties. This file
is used by OSGi to automatically bind the services.

The service descriptor of the EA is shown in Figure 13.

This file describes that the EvolutionaryAlgorithm class

is an implementation of the Algorithm interface, and
that it needs implementations of the interfaces Popula-

tion, Mutator, ParentSelector, Replacer, StopCriterion

and Recombinator to be activated. It should be noted

that this file usually can be modified using a friendly

GUI, or from an assistant in Java IDEs, such as Net-
Beans or Eclipse (so, users do not have to care about its

XML structure). The user interface to create this file

in Eclipse is shown in Figure 14. The interface being

implemented is set in the lower part (Algorithm). The
necessary services to activate this implementation are

indicated in the upper part (with the cardinality and

functions to set and unset the service implementations

in the implementation source code).

This XML file is read by the OSGi execution en-

vironment, which is the responsible to bind the avail-

able services to this implementation. For example, if

12 P. Garćıa-Sánchez et al.

// References to the implementations to use
Population pop;

ParentSelector parentSelector;
Recombinator recombinator;

Mutator mutator ;
Replacer replacer ;

// Example of the method to obtain an implementation
//of the ParentSelector interface

//(one function per reference)
void setParentSelector(ParentSelector sel){

this.parentSelector = sel;
//now sel is a reference to an implementation
//of ParentSelector

}

// Implementation of the start () method of the
// Algorithm interface

public void start(){
pop.initializePopulation();
actualIteration = 0;

do{
// SELECT parents

List <Individual > parents
= parentSelector.select (pop);

// RECOMBINE parents
List <Individual > offspring

= recombinator.recombine(parents);

// MUTATE offspring
List mutatedOffspring

= mutator .mutate(offspring);

// SELECT new population.

// pop is modified here
replacer .select(pop, parents ,

offspring , mutatedOffspring);

actualIteration++;

}while(! stopCriterion.hasFinished());

}

Fig. 12 Java code of the class Evolutionary Algorithm. This
class implements the Algorithm interface, which defines the
operation start()

a ParentSelector is activated, automatically is bound

to the variable parentSelector through the function set-
ParentSelector. The cardinality is also set in the file,

in this case, only one implementation is necessary (not

multiple). This file can be modified in execution time,

so it is not required to re-compile the Java code to use
and set new services.

In brief, each implementation of a service (<im-

plementation>) indicates the interface to being imple-
mented (<provide interface>), and the other services

this implementation needs (<reference>).

Moreover, each service can provide properties to be
used by other services to obtain more information and

filtering. For example, in this case only the Replacers

whose property replacerName=nsga2 are used.

5.2 Managing services: implementing the NSGA-II

from the canonical GA

Following the development example showed in Section

4.2, some extra services have been developed to convert

the basic GA into a NSGA-II (and have also been added

to OSGiLiath to be available for users).
There exist many options for the EA to pick up the

appropriate service. The first of them is modifying the

source code of the implementations. Obviously this is

not recommended, because the service would not be
loose coupled due to the specific OSGi code, and this

is not a good SOA practice. The following ways makes

the service usage not code-dependent:

– De-activating the implementation Binary Tourna-

ment from the OSGi administration console, and

activating the implementation Crowding Distance
Selector (that is, manually). This technique is not

recommended, because all services are then man-

aged by hand, and this is very difficult with a large

number of services. However, the OSGi console al-
lows modifying services in execution time, so it can

be used in some cases (for example, to stop the ser-

vice in a machine while another big task is being

executed, and activate it again when this task is

over).
– Modifying the Service Descriptor of the Evolution-

ary Algorithm implementation to filter the desired

implementations (for example, the attribute target-

=“(selectorName=nsga2)” in Figure 13). This op-
tion is used when the algorithm is fixed and does

not need to be modified in execution time, and the

number of operators and types are known in ad-

vance. However, as previously stated, new services

can be added in execution time (for example, if the
cardinality is set to multiple).

– Using an external service that activates or de-activates

desired implementations or modify their status. This

technique must be used when self-adaptation prop-
erties are used in the algorithm, and it is presented

in next subsections.

None of these options needs to modify the source

code of the existing services: they just indicates which

services uses each time.

5.3 Adding distributed capabilities

As previously stated in Section 4.3, one of the main ad-

vantages in SOA-EA is that services can be distributed,
so the proposed implementation of the architecture should

also allow the distribution and load balancing of the

EA. In OSGiLiath all services can be distributed using

Service Oriented Evolutionary Algorithms 13

<?xml version=”1.0” encoding=”UTF-8”?>
<scr:component xmlns:scr=”http://www.osgi.org/xmlns/scr/v1.1.0” enabled=”false”

immediate=”true” name=”OsgiliathEvolutionary”>
<implementation class=”es.ugr.osgiliath.evolutionary.EvolutionaryAlgorithm”/>
<service>

<provide interface=”es.ugr.osgiliath.algorithms.Algorithm”/>
</service>
<reference bind=”setPopulation” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.Population”
name=”Population” policy=”static” unbind=”unsetPopulation”/>
<reference bind=”setMutator” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.Mutator”
name=”Mutator” policy=”static” unbind=”unsetMutator”/>
<reference bind=”setParentSelector” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.ParentSelector”
name=”ParentSelector” policy=”static” target=”(selectorName=nsga2)” unbind=”unsetParentSelector”/>
<reference bind=”setReplacer” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.Replacer”
name=”Replacer” policy=”static” target=”(replacerName=nsga2)” unbind=”unsetReplacer”/>
<reference bind=”setStopCriterion” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.StopCriterion”
name=”StopCriterion” policy=”static” unbind=”unsetStopCriterion”/>
<reference bind=”setRecombinator” cardinality=”1..1”
interface=”es.ugr.osgiliath.evolutionary.elements.Recombinator”
name=”Recombinator” policy=”static” unbind=”unsetRecombinator”/>
<property name=”algorithmName” type=”String” value=”EvolutionaryAlgorithm”/>

</scr:component>

Fig. 13 Service descriptor of the Evolutionary Algorithm implementation. Figure 14 shows the friendly user interface to
automatically create this file using the Eclipse program

Fig. 14 Graphic user interface in Eclipse that generates the
Service Descriptor of Figure 13
.

the OSGi features. In this case, the distribution is per-
formed using the service descriptor to set which service

is distributable and which is the distribution technology

that provides service discovering and data transmission.

OSGi allows several implementations for the ser-

vice distribution. ECF5 has been chosen because it is
the most mature and accepted implementation (Petzold

et al., 2011), and it also supports the largest number

of transmission protocols, including both synchronous

and asynchronous communication. ECF also separates
the source code from the discovery and transmission

mechanism, allowing users to apply the most adequate

technology to their needs, and providing the integra-

tion with existing applications. For example, the lines

of Figure 15 have been added to the service descriptor
of MOP2 Fitness Calculator to distribute it in the local

network.

In this case, it is only necessary to set the properties

that ECF uses to identify the services being distributed

in the network, indicating that all implemented inter-
faces are distributable (service.exported.interfa-

ces). Also, the communication technology to be used

is established (ecf.generic.server, although another

kind of protocol could be used), and finally, the service

URL (ecf.exported.containerfactoryargs).As pre-
viously stated, the service properties can be modified

from other services, so this properties can be added out-

side the XML. It should be noted that the source code

of the services has not been modified to distribute them

5 http://www.eclipse.org/ecf/

14 P. Garćıa-Sánchez et al.

<property name=”service.exported.interfaces” type=”String” value=”*”/>
<property name=”service.exported.configs” type=”String” value=”ecf.generic.server”/>
<property name=”ecf.exported.containerfactoryargs” type=”String” value=”ecftcp://localhost:3787/server”/>

Fig. 15 Lines added to the service descriptor to be discovered by other services in a network (this can also be done in the
GUI)

(as would happen if MPI had been used to perform the

distribution, for example).

5.4 Converting a basic algorithm into a self-adaptive
one

Previous sections remarked that the SOA-EA benefits

are also related to self-adaptation. A simple example

is presented here to demonstrate how easy is to con-

vert a basic evolutionary algorithm into a self-adaptive
one in OSGiliath. In this example, an intelligent ser-

vice manages all the available operators. In this case,

the service IntelligentRandomManager implements the

interfaces Parent Selector, Recombinator, Mutator and
Replacer. All operator implementations previously pre-

sented are added to the Manager in execution time (see

Figure 11) when they become activated in the system.

Every time the EA calls an operator, this simple man-

ager chooses randomly one of the available implemen-
tations it controls. To create this manager no code has

to be modified. The manager also does not need spe-

cific code to acquire all operators in execution time: it

is done automatically thanks to OSGi. As the rest of
services, these operators can be activated in execution

time and added to the manager.

5.5 Increasing interoperability with other systems

As previously stated, another advantage of SOA is the

programming language independence respect to the ser-
vice interfaces. Although OSGi is a kind of SOA, it does

not include the capability of interoperability with other

kind of services by default. However, adaptation ser-

vices can be added to transform OSGi interfaces into
other SOA interfaces, such as Web Services (presented

in section 2). So, services that are not written in Java,

neither OSGi-based, could use services implemented in

OSGiLiath (and vice-versa).

For example, using the Axis software inside OSGi

all OSGi service interfaces could be transformed into

WSDL interfaces automatically. Thus, these services

could be used from other systems, that do not need
to know the implementation language of the services

in OSGiLiath. An example where an OSGi interface is

transformed into a WSDL interface is shown in Figure

16. The computation node A, based on OSGi, uses the

OSGi interface of the computation node C to calculate

the fitness. Node B uses the WSDL interface to do the
same task. It is not necessary to modify existing ser-

vices source code to convert an OSGi interface into a

WSDL interface. This transformation is bi-directional:

given an WSDL interface, it can also be transformed

into a service to use inside OSGi. For example, the al-
gorithms in GridUFO framework (presented in section

2) could be used from OSGiLiath.

5.6 Experiments

One may think that working with services usually im-

plies an overhead. This is true when communication
protocols like SOAP are used, because the transmitted

XML must be generated and parsed. However, as SOA

is independent of the implementations, services also can

behave as normal method calls in the same machine.

The first experiment of this section is focused on
this issue, and will demonstrate that the use of a SOA

oriented implementation of an EA doesn’t have to af-

fect the execution time of the algorithm. To carry out

this experiment, the Java source code of OSGiLiath has

been run outside of the OSGi framework, and a normal
Java class has been used to integrate the interfaces and

implementations “as is”. The population has been set

to 64 individuals, parents have been selected using Bi-

nary Tournament, and the mutation rate has been fixed
to 0.1. Worst individuals (parents and off-spring com-

bined) are replaced, and the stop criterion has been set

to 200 generations. Each experiment has been launched

30 times to solve the OneMax problem Schaffer and Es-

helman (1991).

Since the OSGi framework adds features to the im-

plementation of the algorithm that are similar (and

even superior) to those offered by several of the frame-

works described in Section 2, the same algorithm (with

the same operators and parameters) has been coded
using several well known frameworks, such as Mallba

(C++), Algorithm::Evolutionary (Perl), and ECJ (Java).

Table 3 shows the execution time achieved, average so-

lution, and Lines of Code (LoC) needed to integrate the
algorithm for each framework. All the algorithm imple-

mentations have been executed on the same computer,

an Ubuntu 12.04 Linux Machine with Intel Core2 Quad

Service Oriented Evolutionary Algorithms 15

Fig. 16 Communication with other kind of services. Axis service automatically creates WSDL interfaces for the OSGi interfaces
to be used from other environments

CPU Q8200 @ 2.33GHz, 4 GB RAM, without any dis-

tribution mechanisms. The LoC have been calculated

using sloccount program.

Results show that time of services of OSGiLiath

is not affected by the OSGi framework: times are al-

most identical to the integration with Java code. Note

that, although are services developed under SOA, and
bound in runtime, they are not distributed. Algorithmi-

cally, all frameworks behaves the same, and results are

not quite different. The differences among frameworks

are produced because the different implementations of
random generators, operators or logs, for example. In

Merelo Guervós et al. (2010), these different behaviours

are also justified.

Regarding LoCs, MALLBA has the higher num-

ber: this is because every algorithm is created as a
“skeleton” and a duplication of code exist for each algo-

rithm and problem to execute. This is produced because

many operations affect global variables: for example the

method select offsprings() affects the global variables
parents or aux. Using this method as an external ser-

vice would require a whole change in many parts of the

code. Thanks the loose-coupling of Perl, many lines of

code are saved using Algorithm::Evolutionary, mainly

because many parameters and operators are defined by
default.

ECJ and OSGiLiath do not require code to com-

bine different operators, only modify configuration files

without re-compilation. The difference is in ECJ the
available operators must be known prior to execution

(the interfaces are linked in the source code), while in

OSGiLiath, all interfaces are bound in configuration

files, or even without them (for example, appearing in
the same network/machine). But there also exist limita-

tions, because ECJ only provides a fixed ways of distri-

bution mechanisms, and only certain parts of the frame-

work can be accessed remotely, while in OSGiLiath all

operators have the chance to be distributed if desired,

modifying the configuration files.

It must be remarked that OSGiLiath does not try

to compete with the other frameworks (they are widely

accepted, completed and tested), it is only an example

of how to develop EAs under the SOA paradigm.

6 Discussion

Previous sections have demonstrated that it is possible

to create a service oriented architecture for EAs using

a specific SOA technology. This architecture uses the

features that SOA offers. To do this:

– In Sections 3 and 4 loose coupling services for EAs

have been designed (SOA-EA), and they have been

implemented in Section 5.

– These services can be combined in several ways to
obtain different algorithms (from a canonical GA,

a NSGA-II has been created just adding new ser-

vices). These services are dynamically bound to cha-

nge the needed EA aspects. The source code of the

basic EA services have not been re-written or re-
compiled to achieve this task.

– New services can be added in execution time using

our implementation.

– No specific source code for a basic distribution have
been added, neither the existing source code has

been modified.

– Several techniques have been presented to combine

existing services in a flexible way.

However, after the explanation of the most impor-

tant issues of EAs in SOA (Algorithm representation,

dynamism, load distribution and self-adapting), we want

16 P. Garćıa-Sánchez et al.

Table 3 Comparison of tested EA frameworks in time and development.

Name Average solution Average Time (s) LoC

OSGiLiath 612.36 ± 6.05 0.19 ± 18.21 10
OSGiLiath (without OSGi) 613.36 ± 4.50 0.19 ± 22.74 103

MALLBA 578.76 ± 7.48 0.16 ± 0.0003 2073
ECJ 602.76 ± 6.08 1.40 ± 0.03 5

Algorithm::Evolutionary 617.60 ± 12.92 7.78 ± 0.29 41

to share the benefits of SOA with the rest of EA re-

searchers:

– Firstly, SOA fits with the genericity advantages in

the development of software for EAs (Gagné and

Parizeau, 2006) and adds new features, like language
independence and distribution mechanisms.

– SOA allows the addition and removal of services in

execution time without altering the general execu-

tion of the algorithm (that is, it is not mandatory
to stop it or to add extra code to support new op-

erators).

– It also increases the interoperability between differ-

ent software elements (for example, it is possible to

add communication libraries without modifying ex-
isting code).

– Related to the previous point, the existing EA frame-

works could be re-used thanks to SOA, because it

provides language independence.
– Easiness for code distribution: SOA does not require

the use of a concrete implementation or library.

– Access to already created and operative services.

– Collaboration among geografically distributed work

teams.

In brief, EAs users and practitioners should change

their mind and make an effort to migrate the existing

software to SOA, making their services publicly avail-

able and loosely coupled to support new research re-
sults.

7 Conclusions

Thanks to the Internet booming, there exist a paradigm

change from Object Oriented Programming to Service

Oriented Architectures, where the software is accessed
as interoperable services that allow researchers sharing

data and applications in a remote way. The usage of

services does not imply remote accessing, but a way to

develop and integrate without assumptions about im-
plementation technology. The EAs research is a con-

ducive area to migrate to SOA, because this kind of al-

gorithms is inherently configurable and paralellizable.

Moreover, there exist many software tools for EAs, al-

though impossible to be integrated. Also, the booming

of new trends, like Cloud Computing, and the usual

high cost of this kind of algorithms makes them ideal
to be transformed in loosely coupled and distributed

services for an easy integration.

This work proposes a Service Oriented Architecture
for EAs, with a specific implementation using a specific

SOA technology, that takes advantage of this paradigm.

Furthermore, new lines to follow in the development

of services for EAs, and advantages and disadvantages
have been presented.

Although the adoption of a new paradigm is not

easy, the importance of the new emerging engineering
problems must be taken into account. Therefore, it is

necessary to use flexible tools that allow EA researchers

to take advantage of all available computation nodes,

and make possible the self-adaptation of EAs in ev-

ery execution environment and for each problem type.
SOA-EA tries to be a base for services development:

even if the implementation technologies (like the ones

used in OSGiLiath) are changed by new ones, the EA

researchers should start to consider a migration from
their actual software to be accessed as services. This

work is the equivalent of what Gagné and Parizeau

(2006) presented in the OOP for EAs, but extending

their ideas to the SOA paradigm.

The software presented in this work (with all ex-

amples explained) is available in http://osgiliath.

sourceforge.net, under a GNU/GPL license, avail-
able to any interested reader. A web portal to central-

ize new implementations of services being offered to the

community will be created as a future task. Also, inter-

views with EA practioners with different skills in pro-

gramming and areas will be performed, to validate if
this change of paradigm is contributing to enhace their

work.

Acknowledgements This work has been supported in part
by FPU research grant AP2009-2942 and projects AmIVital
(CENIT2007-1010), EvOrq (TIC-3903), and TIN2011-28627-
C04-02. Authors wish to thank reviewers’ comments, whose
suggestion and guidelines have contributed to improve this
work.

Service Oriented Evolutionary Algorithms 17

References

Alba, E., Almeida, F., Blesa, M., Cotta, C., Daz, M.,

Dorta, I., Gabarr, J., Len, C., Luque, G., Petit, J.,

Rodrguez, C., Rojas, A., and Xhafa, F. (2006). Ef-

ficient parallel LAN/WAN algorithms for optimiza-

tion. the MALLBA project. Parallel Computing,
32(5-6):415–440.

Alba, E., Nebro, A. J., and Troya, J. M. (2002).

Heterogeneous computing and parallel genetic algo-

rithms. Journal of Parallel and Distributed Comput-
ing, 62(9):1362 – 1385.

Altunay, M., Avery, P., Blackburn, K., Bockelman, B.,

Ernst, M., Fraser, D., Quick, R., Gardner, R., Goas-

guen, S., Levshina, T., Livny, M., McGee, J., Olson,

D., Pordes, R., Potekhin, M., Rana, A., Roy, A., Se-
hgal, C., Sfiligoi, I., Wuerthwein, F., and Open Sci

Grid Executive Board (2011). A Science Driven Pro-

duction Cyberinfrastructure-the Open Science Grid.

Journal of GRID Computing, 9(2, Sp. Iss. SI):201–
218.

Arenas, M., Collet, P., Eiben, A., Jelasity, M., Merelo,

J. J., Paechter, B., Preuß, M., and Schoenauer, M.

(2002). A framework for distributed evolutionary al-

gorithms. In Parallel Problem Solving from Nature,
PPSN VII, pages 665–675.

Arsanjani, A., Ghosh, S., Allam, A., Abdollah, T.,

Ganapathy, S., and Holley, K. (2008). SOMA:

A method for developing service-oriented solutions.
IBM Systems Journal, 47(3):377–396.

Babaoglu, O., Jelasity, M., Montresor, A., Fetzer, C.,

Leonardi, S., and van Moorsel, A. (2005). The self-

star vision. Self-star Properties in Complex Informa-

tion Systems, pages 1–20.
Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and

Brandic, I. (2009). Cloud computing and emerging

it platforms: Vision, hype, and reality for delivering

computing as the 5th utility. Future Gener. Comput.
Syst., 25:599–616.

Cox, S. J., Fairman, M. J., Xue, G., Wason, J. L.,

and Keane, A. J. (2001). The grid: Computational

and data resource sharing in engineering optimisation

and design search. In 30th International Workshops
on Parallel Processing (ICPP 2001 Workshops), 3-

7 September 2001, Valencia, Spain, pages 207–212.

IEEE Computer Society.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.
(2002). A fast and elitist multiobjective genetic algo-

rithm: NSGA-II. IEEE Transactions on Evolutionary

Computation, 6(2):182–197.

del Val Noguera, E. and Pedruelo, M. R. (2008). A sur-

vey on web service discovering and composition. In
Cordeiro, J., Filipe, J., and Hammoudi, S., editors,

WEBIST 2008, Proceedings of the Fourth Interna-

tional Conference on Web Information Systems and

Technologies, Volume 1, Funchal, Madeira, Portugal,

May 4-7, 2008, pages 135–142. INSTICC Press.

Durillo, J. J., Nebro, A. J., and Alba, E. (2010). The
jmetal framework for multi-objective optimization:

Design and architecture. In IEEE Congress on Evo-

lutionary Computation, pages 1–8.

Eiben, A., Haasdijk, E., and Bredeche, N. (2010). Em-
bodied, on-line, on-board evolution for autonomous

robotics. In Levi, P. and Kernbach, S., editors, Sym-

biotic Multi-Robot Organisms: Reliability, Adaptabil-

ity, Evolution, volume 10, pages 361–382. Springer.

Eiben, A. and Smit, S. (2011). Parameter tuning for
configuring and analyzing evolutionary algorithms.

Swarm and Evolutionary Computation, 1(1):19–31.

Eiben, A. and Smith, J. (2005). What is an evolutionary

algorithm? In Rozenberg, G., editor, Introduction to
Evolutionary Computing, pages 15–35. Addison Wes-

ley.

Fan, X.-Q., Fang, X.-W., and Jiang, C.-J. (2011). Re-

search on Web service selection based on coopera-

tive evolution. Expert Systems with Applications,
38(8):9736–9743.

Foster, I. (2005a). Globus Toolkit version 4: Software

for service-oriented systems. In Jin, H and Reed,

D and Jiang, W, editor, Network and Parallel Com-
puting Proceedings, volume 3779 of Lecture Notes in

Computer Science, pages 2–13.

Foster, I. (2005b). Service-oriented science. Science,

308(5723):814.

Gagné, C. and Parizeau, M. (2006). Genericity in evo-
lutionary computation software tools: Principles and

case-study. International Journal on Artificial Intel-

ligence Tools, 15(2):173.

Garćıa-Sánchez, P., González, J., Castillo, P., Merelo,
J., Mora, A., Laredo, J., and Arenas, M. (2010). A

Distributed Service Oriented Framework for Meta-

heuristics Using a Public Standard. Nature Inspired

Cooperative Strategies for Optimization (NICSO

2010), pages 211–222.
Garćıa-Sánchez, P., González, J., Mora, A. M., and Pri-

eto, A. (2012). Deploying intelligent e-health services

in a mobile gateway. Expert Systems with Applica-

tions, (0):–. In press.
Guervós, J., Valdivieso, P., López, G., and Arenas, M.

(2003). Specifying evolutionary algorithms in xml.

Computational Methods in Neural Modeling, pages

1042–1043.

Ho, Q.-T., Ong, Y.-S., and Cai, W. (2004). ”gridifying”
aerodynamic design problem using GridRPC. InGrid

and Cooperative Computing, volume 3032 of Lecture

Notes in Computer Science, pages 83–90. Springer

18 P. Garćıa-Sánchez et al.

Berlin Heidelberg.

Huband, S., Hingston, P., Barone, L., and While, L.

(2006). A review of multiobjective test problems and

a scalable test problem toolkit. Evolutionary Com-

putation, IEEE Transactions on, 10(5):477 –506.
Imade, H., Morishita, R., Ono, I., Ono, N., and

Okamoto, M. (2004). A grid-oriented genetic algo-

rithm framework for bioinformatics. New Gen. Com-

put., 22(2):177–186.
Jamil, E. (2009). White Paper: What really is SOA.

A comparison with Cloud Computing, Web 2.0,

SaaS, WOA, Web Services, PaaS and others. .

Available at http://soalib.com/doc/whitepaper/

SoalibWhitePaper_SOAJargon.pdf.
Jiao, Z., Wason, J. L., Song, W., Xu, F., Eres, M. H.,

Keane, A. J., and Cox, S. J. (2004). Databases,

workflows and the grid in a service oriented environ-

ment. In Euro-Par 2004 Parallel Processing, 10th
International Euro-Par Conference, Pisa, Italy, Au-

gust 31-September 3, 2004, Proceedings, volume 3149

of Lecture Notes in Computer Science, pages 972–

979. Springer.

Lim, D., Ong, Y.-S., Jin, Y., Sendhoff, B., and Lee,
B.-S. (2007). Efficient hierarchical parallel genetic

algorithms using grid computing. Future Generation

Computer Systems, 23(4):658 – 670.

Lim, J., Choi, O., et al. (2008). An evaluation method
for dynamic combination among OSGi bundles based

on service gateway capability. IEEE Transactions on

Consumer Electronics, 54(4):1698 –1704.

Lozano, M. and Garcia-Martinez, C. (2010). Hybrid

metaheuristics with evolutionary algorithms special-
izing in intensification and diversification: Overview

and progress report. Computers & Operations Re-

search, 37(3, Sp. Iss. SI):481–497.

Luke, S. et al. (2009). ECJ: A Java-based Evolu-
tionary Computation and Genetic Programming Re-

search System. Available at http://www.cs.umd.

edu/projects/plus/ec/ecj.

Merelo Guervós, J., Castillo, P., and Alba, E. (2010).

Algorithm::evolutionary, a flexible Perl module for
evolutionary computation. Soft Computing - A Fu-

sion of Foundations, Methodologies and Applications,

14:1091–1109.

Moussa, H., Gao, T., Yen, I.-L., Bastani, F., and Jeng,
J.-J. (2010). Toward effective service composition for

real-time SOA-based systems. Service Oriented Com-

puting and Applications, 4(1):17–31.

Munawar, A., Wahib, M., Munetomo, M., and Akama,

K. (2010). The design, usage, and performance
of gridufo: A grid based unified framework for op-

timization. Future Generation Computer Systems,

26(4):633 – 644.

Ng, H.-K., Ong, Y.-S., Hung, T., and Lee, B.-S. (2005).

Grid enabled optimization. In Advances in Grid

Computing - EGC 2005, volume 3470 of Lecture

Notes in Computer Science, pages 296–304. Springer

Berlin Heidelberg.
OSGi Alliance (2010a). Benefits of using OSGi. Avail-

able at: http://www.osgi.org/About/WhyOSGi.

OSGi Alliance (2010b). OSGi service platform release

4.2. Available at: http://www.osgi.org/Release4/
Download.

Papazoglou, M. and van den Heuvel, W.-J. (2007). Ser-

vice oriented architectures: approaches, technologies

and research issues. The VLDB Journal, 16:389–415.

10.1007/s00778-007-0044-3.
Parejo, J., Ruiz-Corts, A., Lozano, S., and Fernandez,

P. (2012). Metaheuristic optimization frameworks: a

survey and benchmarking. Soft Computing - A Fu-

sion of Foundations, Methodologies and Applications,
16:527–561. 10.1007/s00500-011-0754-8.

Petzold, M., Ullrich, O., and Speckenmeyer, E. (2011).

Dynamic distributed simulation of DEVS models on

the OSGi service platform. Proceedings of ASIM

2011.
Schaffer, J. and Eshelman, L. (1991). On Crossover as

an Evolutionary Viable Strategy. In Belew, R. and

Booker, L., editors, Proceedings of the 4th Interna-

tional Conference on Genetic Algorithms, pages 61–
68. Morgan Kaufmann.

Serpell, M. and Smith, J. E. (2010). Self-Adaptation of

Mutation Operator and Probability for Permutation

Representations in Genetic Algorithms. Evolutionary

Computation, 18(3, Sp. Iss. SI):491–514.
Song, W., Keane, A., and Cox, S. (2003). Cfd-based

shape optimisation with grid-enabled design search

toolkits. In UK e-Science All Hands Meeting 2003,

pages 619–627. EPSRC.
Song, W., Ong, Y. S., Ng, H. K., Keane, A., Cox, S.,

and Lee, B. S. (2004). A service-oriented approach for

aerodynamic shape optimisation across institutional

boundaries. In Control, Automation, Robotics and

Vision Conference, 2004. ICARCV 2004 8th, vol-
ume 3, pages 2274 – 2279.

Ventura, S., Romero, C., Zafra, A., Delgado, J. A., and

Hervas, C. (2008). JCLEC: a Java framework for evo-

lutionary computation. Soft Computing, 12(4):381–
392.

Wagner, S. and Affenzeller, M. (2005). HeuristicLab:

A generic and extensible optimization environment.

In Ribeiro, B and Albrecht, RF and Dobnikar, A

and Pearson, DW and Steele, NC, editor, Adaptive
and Natural Computing Algorithms, Springer Com-

puter Science, pages 538–541. 7th International Con-

ference on Adaptive and Natural Computing Algo-

Service Oriented Evolutionary Algorithms 19

rithms (ICANNGA), Coimbra, Portugal, MAR 21-

23, 2005.

Wagner, S., Winkler, S., Pitzer, E., Kronberger, G., Be-

ham, A., Braune, R., and Affenzeller, M. (2007). Ben-

efits of plugin-based heuristic optimization software
systems. In Moreno Daz, R., Pichler, F., and Que-

sada Arencibia, A., editors, Computer Aided Systems

Theory EUROCAST 2007, volume 4739 of Lecture

Notes in Computer Science, pages 747–754. Springer
Berlin / Heidelberg.

World Wide Web Consortium (2006). Extensible

Markup Language (XML) 1.0 (Fourth Edition).

Xue, G., Song, W., Cox, S. J., and Keane, A. J. (2004).

Numerical optimisation as grid services for engineer-
ing design. J. Grid Comput., 2(3):223–238.

