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Motivation

The mathematical foundation of

◮ economics,

◮ artificial intelligence,

◮ and control

is the theory of subjective expected utility (SEU), leading to the
maximum subjective expected utility principle [Savage 1954].
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The Maximum SEU Principle

Simply stated, SEU theory says that, given:

◮ a set of policies Π,

◮ a set of outcomes X ,

◮ a utility function U : X → R,

◮ and beliefs P(x |π) of outcomes x given a policies π,

a rational decision maker chooses π∗ as

π∗ = arg max
π∈Π

∑

x

P(x |π)U(x).
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Designing a Rational Robobug

Objective: construct policy of simple robot using maximum
expected utility principle (anything else is irrational!)

max

E

max

E

...
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n
d
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◮ 1 minute at 2 interactions/second,
2 actions, 2 observations

◮ nodes of decision tree:

4120 − 1

4− 1
≈ 5.89 · 1071

◮ computation time at 1016 FLOPS:

1.12 · 1050 years
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Designing a Rational Robobug

Objective: construct policy of simple robot using maximum
expected utility principle (anything else is irrational!)

max
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◮ 1 minute at 2 interactions/second,
2 actions, 2 observations

◮ nodes of decision tree:

4120 − 1

4− 1
≈ 5.89 · 1071

◮ atoms in the world: 1050

◮ computation time at 1016 FLOPS:

1.12 · 1050 years

◮ age of the universe: 1.37 · 1010
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Problems of the Maximum Expected Utility Principle

3 Central Problems:

1. Intractability of policy search
or “no approximations allowed”

2. Causal precedence of policy choice
or “no delay of policy choice”

3. Self-Contradictory as a design principle
or “no unrationalized design choices”
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Problems of the Maximum Expected Utility Principle

3 Central Problems:

1. Intractability of policy search
or “no approximations allowed”

2. Causal precedence of policy choice
or “no delay of policy choice”

3. Self-Contradictory as a design principle
or “no unrationalized design choices”

⇒ The very theory of rationality has a intrinsic bottleneck!
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Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

2. Problems as a normative theory
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Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

◮ 1954: Allais’ showed systematic violation of EU.

◮ 1961: Ellsberg showed systematic violation of SEU.
◮ Revives Knight’s distinction between risk and ambiguities.

◮ ’60s & ’70s: more inconsistencies appeared (see Machina) . . .

◮ 1979 & 1992: Kahnemann & Tversky propose prospect
theory and cumulative prospect theory), solving most of
the behavioral inconsistencies.

2. Problems as a normative theory
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Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

2. Problems as a normative theory

◮ 1957: Simon proposes bounded rationality.

◮ 1989: Russell (& Wefald) — Metareasoning.
◮ Points out that bounded rationality is one of the most

important open problems in AI.

◮ 1998: Rubinstein — Bounded rationality.

◮ 2006: Gigerenzer — Heuristics.

◮ 2007: Hansen & Sargent — Robustness.

◮ –today: AI & control based on approximations of SEU.

◮ –today: No widely-accepted theory of bounded rationality.

Info-Theoretic Bounded Rationality



Perfect Rationality Bounded Rationality Transformations Variational Principle Sequential Decisions Conclusions

Bounded Rationality
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

◮ desired behavior:
U(x)

◮ reasoning about costs:

U ′(x , π) := U(x)− C (π)
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

◮ desired behavior:
U(x)

◮ reasoning about costs:

U ′(x , π) := U(x)− C (π)

◮ reasoning about costs of costs:

U ′′(x , π, π′) := U ′(x , π)− C ′(π′)
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

◮ desired behavior:
U(x)

◮ reasoning about costs:

U ′(x , π) := U(x)− C (π)

◮ reasoning about costs of costs:

U ′′(x , π, π′) := U ′(x , π)− C ′(π′)

◮ and so on. . .
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Caveat: Metareasoning does not work!

Problem of metareasoning:

◮ Unbounded metalevels + growing solution spaces:

X → (X × Π) → (X × Π× Π′) → · · ·

◮ We have to accept that metareasoning is not permitted.
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Caveat: Metareasoning does not work!

Problem of metareasoning:

◮ Unbounded metalevels + growing solution spaces:

X → (X × Π) → (X × Π× Π′) → · · ·

◮ We have to accept that metareasoning is not permitted.

◮ Solution: Interrupted Decisions.
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Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into
certainty.
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Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into
certainty.
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Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into
certainty.

Computation is interrupted → uncertainty is reduced, but
not eliminated!
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Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?
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Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?

Our Answer: A bounded rational decision maker can be thought
of as maximizing the functional

∑

x

p(x)

{

U(x)−
1

α
log

p(x)

q(x)

}

.
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Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?

Our Answer: A bounded rational decision maker can be thought
of as maximizing the functional

∑

x

p(x)

{

U(x)−
1

α
log

p(x)

q(x)

}

.

Why? Result is based on an information-theoretic assumption
about transformation costs, i.e. the cost of “changing”.
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Transformation Costs
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The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).

Info-Theoretic Bounded Rationality



Perfect Rationality Bounded Rationality Transformations Variational Principle Sequential Decisions Conclusions

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).

Examples:

◮ Biologists infer behavior from anatomy. Energy-efficient behavior is
more frequent than energy-inefficient behavior.

◮ Conversely, engineers design systems such that desirable behavior is
cheaper than undesirable behavior.

◮ Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before” and
“after” are distinguishable!

Info-Theoretic Bounded Rationality



Perfect Rationality Bounded Rationality Transformations Variational Principle Sequential Decisions Conclusions

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs”).

Examples:

◮ Biologists infer behavior from anatomy. Energy-efficient behavior is
more frequent than energy-inefficient behavior.

◮ Conversely, engineers design systems such that desirable behavior is
cheaper than undesirable behavior.

◮ Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before” and
“after” are distinguishable!

What is a Transformation? Chemical reaction, memory update,

consulting a random number generator, changing location. . .
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Measure-Theoretic Formalization of Transformations

X = 0

Y = 1

Z = 1

X = 0

Y = 1
Z = 1

◮ Sequential realizations are modeled as filtrations.

◮ An information state is a measurable set.

◮ A transformation is a condition on the information state:

State:
Measure:

A

P(S |A)
−→ “B is true” −→

(A ∩ B)
P(S |A ∩ B)
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Axioms of Transformation Costs

Let

◮ (Ω,Σ) measurable space;

◮ P(·|·) : (Ω× Ω) → [0, 1] conditional probability measure.

Then ρ(·|·) : (Σ× Σ) → R
+ is a transformation cost function iff

A1. ρ(A|B) = f (P(A|B)) for some real-valued, continuous f ,

A2. ρ(A ∩ B|C ) = ρ(B|C ) + ρ(A|B ∩ C ) (additive),

A3. ρ(A|B) > ρ(C |D) ⇔ P(A|B) < P(C |D) (monotonic),

for all A,B,C ,D ∈ Σ.
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Axioms of Transformation Costs

Let

◮ (Ω,Σ) measurable space;

◮ P(·|·) : (Ω× Ω) → [0, 1] conditional probability measure.

Then ρ(·|·) : (Σ× Σ) → R
+ is a transformation cost function iff

A1. ρ(A|B) = f (P(A|B)) for some real-valued, continuous f ,

A2. ρ(A ∩ B|C ) = ρ(B|C ) + ρ(A|B ∩ C ) (additive),

A3. ρ(A|B) > ρ(C |D) ⇔ P(A|B) < P(C |D) (monotonic),

for all A,B,C ,D ∈ Σ.

Solution: ρ must be

ρ(A|B) = −
1

α
logP(A|B), α > 0.

Info-Theoretic Bounded Rationality



Perfect Rationality Bounded Rationality Transformations Variational Principle Sequential Decisions Conclusions

What have we achieved?

The relation

ρ(A|B) = −
1

α
logP(A|B)

establishes a conversion between the cost of changing an
information state and conditional probabilities.

More importantly, this will serve as a primitive to establish a
relation between utility and information.
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Variational Principle
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Thermodynamic Example

1 432

Knowledge Determines Work:

◮ Particle bounces uniformly.

◮ Move each piston to control probabilities.
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Thermodynamic Example

1 432

Knowledge Determines Work:

◮ Particle bounces uniformly.

◮ Move each piston to control probabilities.

◮ The system does isothermal work:

W = −γ ln
V

V ′
, γ > 0.

because we don’t know where the particle is!
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Thermodynamic Example

1 432

Knowledge Determines Work:

◮ Particle bounces uniformly.

◮ Move each piston to control probabilities.

◮ The system does isothermal work:

W = −γ ln
V

V ′
, γ > 0.

because we don’t know where the particle is!

◮ If we knew the location x of the particle, then
the work would be

w(x) = −γ ln
v(x)

v ′(x)
.
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Thermodynamic Example II

Define:

W = −γ ln
V

V ′
w(x) = −γ ln

v(x)

v ′(x)
p(x) =

v ′(x)

V ′
q(x) =

v(x)

V

Total Work:

W = −γ ln
V

V ′

= −γ
∑

x

v ′(x)

V ′
ln

{

V

V ′
·
v(x)

v(x)
·
v ′(x)

v ′(x)

}

= −
∑

x

v ′(x)

V ′

{

γ ln
v(x)

v ′(x)

}

− γ
∑

x

v ′(x)

V ′
ln

{

v ′(x)

V ′

/

v(x)

V

}

= Ep [w(x)]− γD(p‖q)
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Thermodynamic Example III

The First Law:

Ep[w(x)] = W + γD(p‖q)

{Expected Work} = {Work} + {Waste}

∆U = W + Q

Interpretation:

1. Knowledge determines the amount of work.

2. Every change in expected work comes with a loss.

3. Total work is the negative free energy difference (NFED).
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Thermodynamic Example IV

The Variational Principle:

◮ The transformation from q(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

∀p̃, Ep̃[w(x)] − γD(p̃‖q) ≤ Ep[w(x)] − γD(p‖q)

which is concave in p̃.
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Thermodynamic Example IV

The Variational Principle:

◮ The transformation from q(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

∀p̃, Ep̃[w(x)] − γD(p̃‖q) ≤ Ep[w(x)] − γD(p‖q)

which is concave in p̃.

◮ Equivalently,

∀p̃, Ep̃[U(x)] − γD(p̃‖q) ≤ Ep[U(x)] − γD(p‖q)

where U(x) := w(x) + C .
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Thermodynamic Example IV

The Variational Principle:

◮ The transformation from q(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

∀p̃, Ep̃[w(x)] − γD(p̃‖q) ≤ Ep[w(x)] − γD(p‖q)

which is concave in p̃.

◮ Equivalently,

∀p̃, Ep̃[U(x)] − γD(p̃‖q) ≤ Ep[U(x)] − γD(p‖q)

where U(x) := w(x) + C .

◮ Only the differences in the U(x)’s matter!
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The Abstract Formulation
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The Abstract Formulation II

Transformation Cost q → p:

ρ(p|q) =
∑

x

P(x |p ∩ q)ρ(x ∩ p ∩ q|x ∩ q) +
1

α

∑

i

P(x |p ∩ q) log
P(x |p ∩ q)

P(x |q)

=
∑

x

p(x)̺(x) +
1

α

∑

x

p(x) log
p(x)

q(x)
,

where

p(x) := P(x |p ∩ q) q(x) := P(x |q) ̺(x) := ρ(x ∩ p ∩ q|x ∩ q).
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The Abstract Formulation II

Transformation Cost q → p:

ρ(p|q) =
∑

x

P(x |p ∩ q)ρ(x ∩ p ∩ q|x ∩ q) +
1

α

∑

i

P(x |p ∩ q) log
P(x |p ∩ q)

P(x |q)

=
∑

x

p(x)̺(x) +
1

α

∑

x

p(x) log
p(x)

q(x)
,

where

p(x) := P(x |p ∩ q) q(x) := P(x |q) ̺(x) := ρ(x ∩ p ∩ q|x ∩ q).

Variational Principle:

∀p̃,
∑

x

p̃(x)U(x)−
1

α

∑

x

p̃(x) log
p̃(x)

q(x)
≤

∑

x

p(x)U(x)−
1

α

∑

x

p(x) log
p(x)

q(x)
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Information-Geometric Picture

q

p1

p2

x3

x1 x2
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Sequential Decisions
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Free Energy Principle

Let q be a probability distribution and U be a real-valued utility
over X . Given α ∈ R, the negative free energy difference
(NFED) is given by

−∆Fα[p] :=
∑

x

p(x)U(x) −
1

α

∑

x

P(x) log
p(x)

q(x)
.

Interpretation

◮ NFED = expected utility - transformation costs

◮ models net utility gain obtained in transforming q into p

◮ relative entropy models information content of transformation

◮ inverse temperature α models (transformation-) bits per utile

◮ higher inverse temperature −→ higher net utility gain
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Equilibrium Distribution

The solution to the NFED is the equilibrium distribution

p(x) =
1

Z (α)
q(x) exp

{

αU(x)
}

,

where Z (α) is the partition function

Z (α) =
∑

x

q(x) exp
{

αU(x)
}

.

The NFED extremum is the certainty equivalent

1

α
logZ (α) =

1

α
log

(

∑

x

q(x) exp
{

αU(x)
}

)

.
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Certainty Equivalent

−15 −10 −5 0 5 10 15
0

1

2

3

4

5

6

7

8

9

10

11

α

−
∆
F
α

The inverse temperature α parameterizes the degree of control:

α → ∞ : 1
α
logZ −→ maxU(x) (maximum)

α → 0 : 1
α
logZ −→ Ex [U(x)] (expectation)

α → −∞ : 1
α
logZ −→ minU(x) (minimum)
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Operational Interpretation of Free Energy

What does it mean to solve the NFED?

◮ Given: prior q(x), utility U(x), and inverse temperature α.

◮ Problem: Obtain a sample from p(x). (This is what “solving” means!)

◮ Dramatically different from classical decision making: we do not have to
check all the outcomes!

Algorithm:

1. Obtain sample x ′ ∼ q(x).

2. Accept x ′ with probability

A(x ′|x) = exp
{

α(U(x ′)− U(x))
}

.

3. Rejection sampling: Compare against target utility U∗.

4. Metropolis-Hastings: Compare against sample from last iteration.
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Equilibrium Distribution
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Monte Carlo Simulation of Equilibrium Distribution
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◮ Rejection Sampling: If target value is larger or equal than maximum
utility, then samples come from equilibrium distribution.

◮ Metropolis-Hastings: If chain is “long enough”, then samples come from
equilibrium distribution.
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Number of Proposals for Different Number of Outcomes
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Number of Proposals for Different Number of Outcomes
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The number of proposals depends on the inverse temperature, not
on the number of outcomes!
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Number of Proposals

Theorem:
Let δ > 0 be a precision. The number of proposals in rejection
sampling needed for an acceptance probability (1− δ) is

n =
log δ

log(1− pα)
, where pα =

Zα

expαU∗
.
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Decision Trees

Expectimax Minimax Expectiminimax

max

E

max

E

max

min

max

min

E

max

E

min

◮ Sequential decision problems are stated as decision trees and
solved using backward induction.

◮ Decision rules depend on system: stochastic, cooperative,
competitive, hybrid, . . .

◮ This intuitive distinction between “types of systems” is
formally unsatisfactory.

◮ Decision rules can be reexpressed in a unified way using the
free energy functional.
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Goal: Generalized Decision Trees

General

Emax minmax Eminmax

◮ Different operators express different
degrees of control (DoCs):

◮ max ⇔ full control
◮ E ⇔ no control
◮ min ⇔ full anti-control

◮ Goal: Find a generalized operator �
that expresses

◮ the 3 classical DoCs,
◮ + all the other DoCs in between.
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Equivalent Lotteries

Definition
Two lotteries are said to be equivalent iff they have the same prior
q, posterior p, and the same certainty equivalent.

Theorem
Let p be the equilibrium distribution given α, U and q.

If α changes to β with fixed p and q, then U changes to V :

β
(

V (x)− 1
β
logZβ

)

= α
(

U(x)− 1
α
logZα

)

.
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Construction of Generalized Decision Trees

a) b) c)

a) q(x),U(x), α
∑

x

p(x)U(x) +
1

α

∑

x

p(x) log
p(x)

q(x)

b) q(xt |x1:t−1),S(xt |x1:t), α

∑

x≤T

p(x≤T )
T
∑

t=1

{

S(xt |x<t) +
1

α
log

p(xt |x<t)

q(xt |x<t)

}

c) q(xt |x<t),R(xt |x<t), β(x<t)

∑

x≤T

p(x≤T )
T
∑

t=1

{

R(xt |x<t) +
1

β(x<t)
log

p(xt |x<t)

q(xt |x<t)

}
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Generalized Optimality Equations

Given
Generalized decision problem q(xt |x<t), R(xt |x<t) and β(x<t).

...

V (x<t)

q(xt |x<t)
R(xt |x<t)

V (x≤t)

β(x<t)

Generalized Value/Utility

V (x<t ) =
1

β(x<t)
log

{

∑

xt

q(xt |x<t) exp
{

β(x<t )
[

R(xt |x<t) + V (xt )
]

}

}
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Conclusions
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Conclusions

1. The free energy principle serves as an axiomatic foundation
for bounded rational decision-making.

2. It formalizes a trade-off between the gains of maximizing the
utility and the losses of transformation costs.

3. It establishes clear links to information theory and
thermodynamics.

4. Inverse temperature parameterizes the resource
limitations/degree of control.

5. It allows generalizing decision trees.
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Open Questions

1. What are the exact relations to:
◮ game theory,
◮ search theory,
◮ and computational complexity?

2. What are the implications for search algorithms?

3. What are the causal implications?
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