Bounded Rationality

Transformations

s Variational Principle

Sequential Decisions

Information-Theoretic Bounded Rationality

Pedro A. Ortega

September 26, 2013

Bounded Rationality

Transformations

Variational Principle

Sequential Decisions

Outline

Perfect Rationality

Bounded Rationality

Transformations

Variational Principle

Sequential Decisions

Conclusions

Bounded Rationality

Transformations

Variational Principle

Principle Sequential Decisions

ons Conclusio

Perfect Rationality

<ロト < @ ト < 差 > < 差 > 差 の < 0</p>

al Principle Sequential Decisions

s Conclusions

Motivation

The mathematical foundation of

- economics,
- artificial intelligence,
- and control

is the **theory of subjective expected utility** (SEU), leading to the **maximum subjective expected utility principle** [Savage 1954].

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

The Maximum SEU Principle

Simply stated, SEU theory says that, given:

- a set of policies Π,
- a set of **outcomes** \mathcal{X} ,
- a **utility** function $U : \mathcal{X} \to \mathbb{R}$,
- and **beliefs** $P(x|\pi)$ of outcomes x given a policies π ,

a rational decision maker chooses π^* as

$$\pi^* = \arg \max_{\pi \in \Pi} \sum_{x} P(x|\pi) U(x).$$

Designing a Rational Robobug

Objective: construct policy of simple robot using maximum expected utility principle (anything else is irrational!)

- 1 minute at 2 interactions/second,
 2 actions, 2 observations
- nodes of decision tree:

$$\frac{4^{120}-1}{4-1}\approx 5.89\cdot 10^{71}$$

computation time at 10¹⁶ FLOPS:

 $1.12\cdot 10^{50}~\text{years}$

(4月) (日) (日)

Designing a Rational Robobug

Objective: construct policy of simple robot using maximum expected utility principle (anything else is irrational!)

- 1 minute at 2 interactions/second,
 2 actions, 2 observations
- nodes of decision tree:

$$\frac{4^{120}-1}{4-1}\approx 5.89\cdot 10^{71}$$

- ▶ atoms in the world: 10⁵⁰
- computation time at 10¹⁶ FLOPS:

 $1.12\cdot 10^{50}~\text{years}$

イロト イポト イヨト イヨト

▶ age of the universe: 1.37 · 10¹⁰

イロト 不得 とくまとう ほんし

Problems of the Maximum Expected Utility Principle

3 Central Problems:

- 1. Intractability of policy search or "no approximations allowed"
- 2. Causal precedence of policy choice or "no delay of policy choice"
- 3. **Self-Contradictory** as a design principle or "no unrationalized design choices"

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Problems of the Maximum Expected Utility Principle

3 Central Problems:

- Intractability of policy search or "no approximations allowed"
- 2. **Causal precedence** of policy choice or "no delay of policy choice"
- 3. **Self-Contradictory** as a design principle or "no unrationalized design choices"
- ⇒ The very theory of rationality has a **intrinsic bottleneck**!

Sequential Decisions

Shortcomings of Subjective Expected Utility Theory

- 1. Behavioral inconsistencies
- 2. Problems as a normative theory

イロト 不得 とくき とくき とうき

Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

- ▶ 1954: Allais' showed systematic violation of EU.
- ▶ 1961: Ellsberg showed systematic violation of SEU.
 - Revives Knight's distinction between risk and ambiguities.
- ▶ '60s & '70s: more inconsistencies appeared (see Machina) ...
- 1979 & 1992: Kahnemann & Tversky propose prospect theory and cumulative prospect theory), solving most of the behavioral inconsistencies.

2. Problems as a normative theory

Shortcomings of Subjective Expected Utility Theory

- 1. Behavioral inconsistencies
- 2. Problems as a normative theory
 - ▶ 1957: Simon proposes bounded rationality.
 - ▶ 1989: Russell (& Wefald) Metareasoning.
 - Points out that bounded rationality is one of the most important open problems in AI.
 - ▶ 1998: Rubinstein Bounded rationality.
 - ▶ 2006: Gigerenzer Heuristics.
 - ▶ 2007: Hansen & Sargent Robustness.
 - -today: AI & control based on approximations of SEU.
 - -today: No widely-accepted theory of bounded rationality.

Bounded Rationality

Transformations

Variational Principle

Sequential Decisions

(ロ) (部) (E) (E) (E)

Bounded Rationality

< □ > < □ > < 臣 > < 臣 > < 臣 > ○ < ○

Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

desired behavior:

U(x)

reasoning about costs:

$$U'(x,\pi):=U(x)-C(\pi)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

desired behavior:

U(x)

reasoning about costs:

$$U'(x,\pi):=U(x)-C(\pi)$$

reasoning about costs of costs:

$$U''(x, \pi, \pi') := U'(x, \pi) - C'(\pi')$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

desired behavior:

U(x)

reasoning about costs:

$$U'(x,\pi):=U(x)-C(\pi)$$

reasoning about costs of costs:

$$U''(x, \pi, \pi') := U'(x, \pi) - C'(\pi')$$

and so on...

Conclusions

Caveat: Metareasoning does not work!

Problem of metareasoning:

Unbounded metalevels + growing solution spaces:

$$\mathcal{X}
ightarrow (\mathcal{X} imes \Pi)
ightarrow (\mathcal{X} imes \Pi imes \Pi')
ightarrow \cdots$$

• We have to accept that metareasoning is **not permitted**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

Conclusions

Caveat: Metareasoning does not work!

Problem of metareasoning:

Unbounded metalevels + growing solution spaces:

$$\mathcal{X}
ightarrow (\mathcal{X} imes \Pi)
ightarrow (\mathcal{X} imes \Pi imes \Pi')
ightarrow \cdots$$

- We have to accept that metareasoning is **not permitted**.
- Solution: Interrupted Decisions.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

Interrupted Decisions

- Q: Given that the decision maker is not allowed to reason about his own resources, how do we capture the notion of **boundedness**?
- A: Assumption: Computation transforms uncertainty into certainty.

Interrupted Decisions

- Q: Given that the decision maker is not allowed to reason about his own resources, how do we capture the notion of **boundedness**?
- A: Assumption: Computation transforms uncertainty into certainty.

イロト 不得下 イヨト イヨト 二日

Interrupted Decisions

- Q: Given that the decision maker is not allowed to reason about his own resources, how do we capture the notion of **boundedness**?
- A: Assumption: Computation transforms uncertainty into certainty.

Computation is **interrupted** \rightarrow uncertainty is **reduced**, but not eliminated!

Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision maker is **bounded rational**, i.e. when his **processing resources** are limited?

Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision maker is bounded rational, i.e. when his processing resources are limited?

Our Answer: A bounded rational decision maker can be thought of as maximizing the functional

$$\sum_{x} p(x) \bigg\{ U(x) - \frac{1}{\alpha} \log \frac{p(x)}{q(x)} \bigg\}.$$

Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision maker is bounded rational, i.e. when his processing resources are limited?

Our Answer: A bounded rational decision maker can be thought of as maximizing the functional

$$\sum_{x} p(x) \bigg\{ U(x) - \frac{1}{\alpha} \log \frac{p(x)}{q(x)} \bigg\}.$$

Why? Result is based on an information-theoretic assumption about transformation costs, i.e. the cost of "changing".

Bounded Rationality Transformations

Variational Principle

Sequential Decisions

(日) (國) (문) (문) (문)

Transformation Costs

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

Examples:

- Biologists infer behavior from anatomy. Energy-efficient behavior is more frequent than energy-inefficient behavior.
- Conversely, engineers design systems such that desirable behavior is cheaper than undesirable behavior.
- Every action/observation/interaction of a system necessarily transforms its information state, simply because "before" and "after" are distinguishable!

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an event determines its probability ("probabilities encode costs").

Examples:

- Biologists infer behavior from anatomy. Energy-efficient behavior is more frequent than energy-inefficient behavior.
- Conversely, engineers design systems such that desirable behavior is cheaper than undesirable behavior.
- Every action/observation/interaction of a system necessarily transforms its information state, simply because "before" and "after" are distinguishable!

What is a Transformation? Chemical reaction, memory update, consulting a random number generator, changing location...

Measure-Theoretic Formalization of Transformations

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

 $\exists \rightarrow$

- **Sequential realizations** are modeled as **filtrations**.
- An information state is a measurable set.
- A transformation is a **condition** on the information state:

$$egin{array}{rcl} {
m State:} & A \ {
m Measure:} & P(S|A) & \longrightarrow ``B ext{ is true}'' & \longrightarrow & P(S|A\cap B) \ P(S|A\cap B) \end{array}$$

Axioms of Transformation Costs

Let

• (Ω, Σ) measurable space;

► $P(\cdot|\cdot) : (\Omega \times \Omega) \rightarrow [0,1]$ conditional probability measure.

Then $\rho(\cdot|\cdot) : (\Sigma \times \Sigma) \to \mathbb{R}^+$ is a transformation cost function iff

A1. $\rho(A|B) = f(P(A|B))$ for some real-valued, continuous f,

A2. $\rho(A \cap B|C) = \rho(B|C) + \rho(A|B \cap C)$ (additive),

A3. $\rho(A|B) > \rho(C|D) \Leftrightarrow P(A|B) < P(C|D)$ (monotonic),

for all $A, B, C, D \in \Sigma$.

Axioms of Transformation Costs

Let

• (Ω, Σ) measurable space;

► $P(\cdot|\cdot) : (\Omega \times \Omega) \rightarrow [0,1]$ conditional probability measure.

Then $\rho(\cdot|\cdot) : (\Sigma \times \Sigma) \to \mathbb{R}^+$ is a transformation cost function iff

A1. $\rho(A|B) = f(P(A|B))$ for some real-valued, continuous f,

A2. $\rho(A \cap B|C) = \rho(B|C) + \rho(A|B \cap C)$ (additive),

A3. $\rho(A|B) > \rho(C|D) \Leftrightarrow P(A|B) < P(C|D)$ (monotonic),

for all $A, B, C, D \in \Sigma$.

Solution: ρ must be

$$ho(A|B) = -rac{1}{lpha}\log P(A|B), \qquad lpha > 0.$$

Sequential Decisions C

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 つので

Conclusions

What have we achieved?

The relation

$$\rho(A|B) = -\frac{1}{\alpha} \log P(A|B)$$

establishes a conversion between the cost of changing an information state and conditional probabilities.

More importantly, this will serve as a **primitive** to establish a relation between utility and information.

Bounded Rationality

Transformations

Variational Principle

Sequential Decisions

Variational Principle

(ロ) (部) (E) (E) (E)

Sequential Decisions

Thermodynamic Example

Knowledge Determines Work:

- Particle bounces uniformly.
- Move each piston to control probabilities.

イロト イポト イヨト イヨト

3

Principle Sequential Decisions

ons Conclusion

3

Thermodynamic Example

Knowledge Determines Work:

- Particle bounces uniformly.
- Move each piston to control probabilities.
- ▶ The system does isothermal work:

$$W = -\gamma \ln rac{V}{V'}, \qquad \gamma > 0.$$

イロト イポト イヨト イヨト

because we don't know where the particle is!

Sequential Decisions

Thermodynamic Example

Knowledge Determines Work:

- Particle bounces uniformly.
- Move each piston to control probabilities.
- The system does isothermal **work**:

$$W = -\gamma \ln rac{V}{V'}, \qquad \gamma > 0.$$

because we don't know where the particle is!

If we knew the location x of the particle, then the work would be

$$w(x) = -\gamma \ln \frac{v(x)}{v'(x)}.$$

イロト イポト イヨト イヨト

(日) (國) (문) (문) (문)

Thermodynamic Example II

Define:

$$W = -\gamma \ln \frac{V}{V'} \qquad w(x) = -\gamma \ln \frac{v(x)}{v'(x)} \qquad p(x) = \frac{v'(x)}{V'} \qquad q(x) = \frac{v(x)}{V}$$

Total Work:

$$W = -\gamma \ln \frac{V}{V'}$$

= $-\gamma \sum_{x} \frac{v'(x)}{V'} \ln \left\{ \frac{V}{V'} \cdot \frac{v(x)}{v(x)} \cdot \frac{v'(x)}{v'(x)} \right\}$
= $-\sum_{x} \frac{v'(x)}{V'} \left\{ \gamma \ln \frac{v(x)}{v'(x)} \right\} - \gamma \sum_{x} \frac{v'(x)}{V'} \ln \left\{ \frac{v'(x)}{V'} \middle/ \frac{v(x)}{V} \right\}$
= $\mathbf{E}_{\rho}[w(x)] - \gamma D(\rho || q)$

Thermodynamic Example III

The First Law:

$\mathbf{E}_{p}[w(x)]$	=	W	+	$\gamma D(p \ q)$
$\{Expected Work\}$	=	$\{Work\}$	+	$\{Waste\}$
ΔU	=	W	+	Q

Interpretation:

- 1. Knowledge determines the amount of work.
- 2. Every change in expected work comes with a loss.
- 3. Total work is the negative free energy difference (NFED).

Thermodynamic Example IV

The Variational Principle:

The transformation from q(x) to p(x) can be thought of as maximizing the work with fixed local work w(x):

$$\forall \tilde{p}, \qquad \mathsf{E}_{\tilde{p}}[w(x)] - \gamma D(\tilde{p} \| q) \leq \qquad \mathsf{E}_{\rho}[w(x)] - \gamma D(\rho \| q)$$

which is concave in \tilde{p} .

Thermodynamic Example IV

The Variational Principle:

The transformation from q(x) to p(x) can be thought of as maximizing the work with fixed local work w(x):

$$\forall \tilde{p}, \qquad \mathsf{E}_{\tilde{p}}[w(x)] - \gamma D(\tilde{p} \| q) \le \mathsf{E}_{p}[w(x)] - \gamma D(p \| q)$$

which is concave in \tilde{p} .

Equivalently,

 $\forall \tilde{p}, \quad \mathbf{E}_{\tilde{p}}[U(x)] - \gamma D(\tilde{p} \| q) \leq \mathbf{E}_{p}[U(x)] - \gamma D(p \| q)$ where U(x) := w(x) + C.

Thermodynamic Example IV

The Variational Principle:

The transformation from q(x) to p(x) can be thought of as maximizing the work with fixed local work w(x):

$$\forall \tilde{p}, \qquad \mathsf{E}_{\tilde{p}}[w(x)] - \gamma D(\tilde{p} \| q) \le \mathsf{E}_{p}[w(x)] - \gamma D(p \| q)$$

which is concave in \tilde{p} .

Equivalently,

 $\forall \tilde{p}, \qquad \mathbf{E}_{\tilde{p}}[U(x)] - \gamma D(\tilde{p} \| q) \leq \mathbf{E}_{p}[U(x)] - \gamma D(p \| q)$

where U(x) := w(x) + C.

Only the differences in the U(x)'s matter!

Sequential Decisions Con

Conclusions

The Abstract Formulation

The Abstract Formulation II

Transformation Cost $q \rightarrow p$:

$$\begin{split} \rho(p|q) &= \sum_{x} P(x|p \cap q) \rho(x \cap p \cap q|x \cap q) + \frac{1}{\alpha} \sum_{i} P(x|p \cap q) \log \frac{P(x|p \cap q)}{P(x|q)} \\ &= \sum_{x} p(x) \varrho(x) + \frac{1}{\alpha} \sum_{x} p(x) \log \frac{p(x)}{q(x)}, \end{split}$$

where

$$p(x) := P(x|p \cap q)$$
 $q(x) := P(x|q)$ $\varrho(x) := \rho(x \cap p \cap q|x \cap q).$

The Abstract Formulation II

Transformation Cost $q \rightarrow p$:

$$\begin{split} \rho(p|q) &= \sum_{x} P(x|p \cap q) \rho(x \cap p \cap q|x \cap q) + \frac{1}{\alpha} \sum_{i} P(x|p \cap q) \log \frac{P(x|p \cap q)}{P(x|q)} \\ &= \sum_{x} p(x) \varrho(x) + \frac{1}{\alpha} \sum_{x} p(x) \log \frac{p(x)}{q(x)}, \end{split}$$

where

$$p(x) := P(x|p \cap q)$$
 $q(x) := P(x|q)$ $\varrho(x) := \rho(x \cap p \cap q|x \cap q).$

Variational Principle:

$$\forall \tilde{p}, \quad \sum_{x} \tilde{p}(x) U(x) - \frac{1}{\alpha} \sum_{x} \tilde{p}(x) \log \frac{\tilde{p}(x)}{q(x)} \leq \sum_{x} p(x) U(x) - \frac{1}{\alpha} \sum_{x} p(x) \log \frac{p(x)}{q(x)}$$

Sequential Decisions

(日) (图) (E) (E) (E)

Conclusions

Information-Geometric Picture

Bounded Rationality

Transformations

Variational Principle

Principle Sequen

イロト イポト イヨト イヨト

3

Sequential Decisions Conclu

Sequential Decisions

Free Energy Principle

Let q be a probability distribution and U be a real-valued utility over \mathcal{X} . Given $\alpha \in \mathbb{R}$, the **negative free energy difference** (NFED) is given by

$$-\Delta F_{\alpha}[p] := \sum_{x} p(x)U(x) - \frac{1}{\alpha}\sum_{x} P(x)\log \frac{p(x)}{q(x)}.$$

Interpretation

- NFED = expected utility transformation costs
- models net utility gain obtained in transforming q into p
- relative entropy models information content of transformation
- inverse temperature α models (transformation-) bits per utile
- ▶ higher inverse temperature \longrightarrow higher net utility gain

Bounded Rationality Transformations Variational Principle

Sequential Decisions

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Equilibrium Distribution

The solution to the NFED is the **equilibrium distribution**

$$p(x) = \frac{1}{Z(\alpha)}q(x)\exp\{\alpha U(x)\},\,$$

where $Z(\alpha)$ is the partition function

$$Z(\alpha) = \sum_{x} q(x) \exp\{\alpha U(x)\}.$$

The NFED extremum is the **certainty equivalent**

$$\frac{1}{\alpha} \log Z(\alpha) = \frac{1}{\alpha} \log \left(\sum_{x} q(x) \exp \left\{ \alpha U(x) \right\} \right).$$

Sequential Decisions

イロン イボン イヨン イヨン 三日

Conclusions

Certainty Equivalent

The inverse temperature α parameterizes the **degree of control**:

$$\begin{array}{rcl} \alpha \to \infty & : & \frac{1}{\alpha} \log Z & \longrightarrow & \max U(x) & (\max)\\ \alpha \to 0 & : & \frac{1}{\alpha} \log Z & \longrightarrow & \mathbf{E}_x[U(x)] & (\operatorname{expectation})\\ \alpha \to -\infty & : & \frac{1}{\alpha} \log Z & \longrightarrow & \min U(x) & (\min)\end{array}$$

Operational Interpretation of Free Energy

What does it mean to solve the NFED?

- Given: prior q(x), utility U(x), and inverse temperature α .
- Problem: Obtain a sample from p(x). (This is what "solving" means!)
- Dramatically different from classical decision making: we do not have to check all the outcomes!

Algorithm:

- 1. Obtain sample $x' \sim q(x)$.
- 2. Accept x' with probability

$$A(x'|x) = \exp\{\alpha(U(x') - U(x))\}.$$

- 3. Rejection sampling: Compare against target utility U^* .
- 4. Metropolis-Hastings: Compare against sample from last iteration.

Sequential Decisions

Conclusions

æ

Equilibrium Distribution

イロト イポト イヨト イヨト

Monte Carlo Simulation of Equilibrium Distribution

- Rejection Sampling: If target value is larger or equal than maximum utility, then samples come from equilibrium distribution.
- Metropolis-Hastings: If chain is "long enough", then samples come from equilibrium distribution.

Sequential Decisions Co

イロン イヨン イヨン イヨン

æ

Conclusions

Number of Proposals for Different Number of Outcomes

Sequential Decisions

イロト イポト イヨト イヨト

Number of Proposals for Different Number of Outcomes

The number of proposals depends on the inverse temperature, not on the number of outcomes!

Sequential Decisions C

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

Conclusions

Number of Proposals

Theorem:

Let $\delta > 0$ be a precision. The number of proposals in rejection sampling needed for an acceptance probability $(1 - \delta)$ is

$$n = rac{\log \delta}{\log(1 - p_{lpha})}, \qquad ext{where} \qquad p_{lpha} = rac{Z_{lpha}}{\exp lpha U^*}.$$

Decision Trees

- Sequential decision problems are stated as decision trees and solved using backward induction.
- Decision rules depend on system: stochastic, cooperative, competitive, hybrid, ...
- This intuitive distinction between "types of systems" is formally unsatisfactory.
- Decision rules can be reexpressed in a unified way using the free energy functional.

Sequential Decisions Conc

Goal: Generalized Decision Trees

- Different operators express different degrees of control (DoCs):
 - $\blacktriangleright max \Leftrightarrow \mathsf{full} \ \mathsf{control}$
 - ► E ⇔ no control
 - $\blacktriangleright \ \mathsf{min} \Leftrightarrow \mathsf{full} \ \mathsf{anti-control}$
- ▶ Goal: Find a generalized operator □ that expresses
 - ▶ the 3 classical DoCs,
 - ▶ + all the other DoCs in between.

イロト イポト イヨト イヨト

3

ciple Sequential Decisions

イロト 不得下 イヨト イヨト 二日

Equivalent Lotteries

Definition

Two lotteries are said to be equivalent iff they have the same prior q, posterior p, and the same certainty equivalent.

Theorem

Let p be the equilibrium distribution given α , U and q. If α changes to β with fixed p and q, then U changes to V:

$$\beta\Big(V(x)-\frac{1}{\beta}\log Z_{\beta}\Big)=lpha\Big(U(x)-\frac{1}{lpha}\log Z_{lpha}\Big).$$

Construction of Generalized Decision Trees

イロン イボン イヨン イヨン 三日

Generalized Optimality Equations

Given

Generalized decision problem $q(x_t|x_{< t})$, $R(x_t|x_{< t})$ and $\beta(x_{< t})$.

Generalized Value/Utility

$$V(x_{< t}) = \frac{1}{\beta(x_{< t})} \log \left\{ \sum_{x_t} q(x_t | x_{< t}) \exp \left\{ \beta(x_{< t}) \left[R(x_t | x_{< t}) + V(x_t) \right] \right\} \right\}$$

Bounded Rationality

Transformations

Variational Principle

Sequential Decisions

Conclusions

Conclusions

- 1. The free energy principle serves as an **axiomatic foundation** for bounded rational decision-making.
- 2. It formalizes a **trade-off** between the gains of maximizing the utility and the losses of transformation costs.

- 3. It establishes clear **links to** information theory and thermodynamics.
- 4. Inverse temperature **parameterizes** the resource limitations/degree of control.
- 5. It allows generalizing decision trees.

rinciple Sequential Decisions

イロト 不得 とくき とくき とうき

Conclusions

Open Questions

- 1. What are the exact relations to:
 - game theory,
 - search theory,
 - and computational complexity?
- 2. What are the implications for search algorithms?
- 3. What are the causal implications?

Perfect Rationality Bounded Rationality Transformations Variational Principle Sequential Decisions Conclusions

References

- Ortega, P.A. and Braun, D.A. *Thermodynamics as a theory of decision-making with information processing costs.* Proceedings of the Royal Society A (20120683), 2013.
- 2. Ortega, P.A. Free Energy and the Generalized Optimality Equations. European Workshop on Reinforcement Learning, 2012.
- Braun, D.A., Ortega, P.A., Theodorou, E. and Schaal, S. Path Integral Control and Bounded Rationality, IEEE Symposium on adaptive dynamic programming and reinforcement learning, pp. 202–209, 2011.
- 4. Ortega, P.A. A Unified Framework for Resource-Bounded Agents Interacting with Unknown Environments, PhD Thesis, Department of Engineering, University of Cambridge, 2011.

イロト 不得 とくき とくき とうき

References—Related Views

- Kappen, H.J. A Linear Theory for Control of Non-Linear Stochastic Systems, Physical Review Letters 95:200201, 2005.
- Todorov, E. Linearly Solvable Markov Decision Problems. NIPS, 2006.
- 3. Friston, K. *The Free-Energy Principle: A Unified Brain Theory?* Nat Rev Neurosci, 11:127–38, 2010.
- 4. Tishby, N. & Polani, D. *Information Theory of Decisions and Actions*, in Perception-Action Cyle, 601–636, Springer 2011.