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Perfect Rationality

Motivation

The mathematical foundation of
> economics,
» artificial intelligence,

» and control
is the theory of subjective expected utility (SEU), leading to the
maximum subjective expected utility principle [Savage 1954].
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Perfect Rationality

The Maximum SEU Principle

Simply stated, SEU theory says that, given:
» a set of policies I1,
> a set of outcomes X,

a utility function U : X — R,

and beliefs P(x|m) of outcomes x given a policies ,

v

v

a rational decision maker chooses 7* as

* = P .
T = arg Tgﬁ(ZX: (x|m)U(x)
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Perfect Rationality

Designing a Rational Robobug

Objective: construct policy of simple robot using maximum
expected utility principle (anything else is irrational!)

> 1 minute at 2 interactions/second,
2 actions, 2 observations

> nodes of decision tree:
Ly
................. %;/4.
7\
4120 _

~5.89 - 10"

4-1

> computation time at 10'® FLOPS:

1.12 - 10°° years

60 seconds
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Designing a Rational Robobug

Objective: construct policy of simple robot using maximum
expected utility principle (anything else is irrational!)
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60 seconds

> 1 minute at 2 interactions/second,
2 actions, 2 observations

> nodes of decision tree:

4120 _
4-1

~5.89 - 10"

> atoms in the world: 10°°

> computation time at 10'® FLOPS:

1.12 - 10°° years

> age of the universe: 1.37 - 10'°



Perfect Rationality

Problems of the Maximum Expected Utility Principle

3 Central Problems:

1. Intractability of policy search
or “no approximations allowed”

2. Causal precedence of policy choice
or “no delay of policy choice”

3. Self-Contradictory as a design principle
or “no unrationalized design choices”
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Perfect Rationality

Problems of the Maximum Expected Utility Principle

3 Central Problems:

1. Intractability of policy search
or “no approximations allowed”

2. Causal precedence of policy choice
or “no delay of policy choice”

3. Self-Contradictory as a design principle
or “no unrationalized design choices”

= The very theory of rationality has a intrinsic bottleneck!
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Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

2. Problems as a normative theory
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Perfect Rationality

Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

» 1954: Allais’ showed systematic violation of EU.
» 1961: Ellsberg showed systematic violation of SEU.
» Revives Knight's distinction between risk and ambiguities.

» '60s & '70s: more inconsistencies appeared (see Machina) . ..

> 1979 & 1992: Kahnemann & Tversky propose prospect
theory and cumulative prospect theory), solving most of
the behavioral inconsistencies.

2. Problems as a normative theory
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Perfect Rationality

Shortcomings of Subjective Expected Utility Theory

1. Behavioral inconsistencies

2. Problems as a normative theory

» 1957: Simon proposes bounded rationality.
» 1989: Russell (& Wefald) — Metareasoning.

» Points out that bounded rationality is one of the most
important open problems in Al.

> 1998: Rubinstein — Bounded rationality.

» 2006: Gigerenzer — Heuristics.

» 2007: Hansen & Sargent — Robustness.

» —today: Al & control based on approximations of SEU.

» —today: No widely-accepted theory of bounded rationality.
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Bounded Rationality
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

» desired behavior:
U(x)

> reasoning about costs:

U'(x,7) = U(x) — C(x)
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

» desired behavior:
U(x)

> reasoning about costs:
U'(x,7) = U(x) — C(x)
» reasoning about costs of costs:

U'(x,m,7") := U (x,m) — C' ()
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Caveat: Metareasoning does not work!

Straightforward solution: penalize choice costs [e.g. Russell]

» desired behavior:
U(x)

> reasoning about costs:
U'(x,m) = U(x) — C(n)
» reasoning about costs of costs:
U'(x,m,7") := U (x,m) — C' ()

» and so on...
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Bounded Rationality

Caveat: Metareasoning does not work!

Problem of metareasoning:

» Unbounded metalevels 4+ growing solution spaces:
X=X xM) = (X xNxN)—--.

» We have to accept that metareasoning is not permitted.
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Bounded Rationality

Caveat: Metareasoning does not work!

Problem of metareasoning:

» Unbounded metalevels 4+ growing solution spaces:
X=X xM) = (X xNxN)—--.

» We have to accept that metareasoning is not permitted.

» Solution: Interrupted Decisions.
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Bounded Rationality

Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into
certainty.

Info-Theoretic Bounded Rationality



Bounded Rationality

Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into

certainty.
Py(m*) Pr(n*)

o7 nr
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Bounded Rationality

Interrupted Decisions

Q: Given that the decision maker is not allowed to reason about
his own resources, how do we capture the notion of
boundedness?

A: Assumption: Computation transforms uncertainty into

certainty.
Py(m*) Pi(7*) Pr(m*)

onr mr

Computation is interrupted — uncertainty is reduced, but
not eliminated!
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Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?
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Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?

Our Answer: A bounded rational decision maker can be thought
of as maximizing the functional

Zp { x)—alo %}.
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Bounded Rationality

Information-Theoretic Bounded Rationality

Question: How do we characterize behavior when the decision
maker is bounded rational, i.e. when his processing resources
are limited?

Our Answer: A bounded rational decision maker can be thought
of as maximizing the functional

Zp { x)—alo %}.

Why? Result is based on an information-theoretic assumption
about transformation costs, i.e. the cost of “changing”.
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Transformations

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs").
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Transformations

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs").

Examples:

> Biologists infer behavior from anatomy. Energy-efficient behavior is
more frequent than energy-inefficient behavior.

» Conversely, engineers design systems such that desirable behavior is
cheaper than undesirable behavior.

> Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before” and
“after” are distinguishable!
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Transformations

The Cost of Transformations

Our Fundamental Assumption: The difficulty of producing an
event determines its probability (“probabilities encode costs").

Examples:

> Biologists infer behavior from anatomy. Energy-efficient behavior is
more frequent than energy-inefficient behavior.

» Conversely, engineers design systems such that desirable behavior is
cheaper than undesirable behavior.

> Every action/observation/interaction of a system necessarily
transforms its information state, simply because “before” and
“after” are distinguishable!

What is a Transformation? Chemical reaction, memory update,
consulting a random number generator, changing location. ..
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Transformations

Measure-Theoretic Formalization of Transformations

» Sequential realizations are modeled as filtrations.
» An information state is a measurable set.

» A transformation is a condition on the information state:

State: A — "B is true" — (AN B)
Measure:  P(S|A) a P(S|ANB)
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Transformations

Axioms of Transformation Costs
Let
> (€, X) measurable space;
> P(:]-) : (2 x Q) — [0, 1] conditional probability measure.
Then p(-|-) : (£ x £) — R" is a transformation cost function iff
Al. p(A|B) = f(P(A|B)) for some real-valued, continuous f,
A2. p(AN B|C) = p(B|C) + p(A|B N C) (additive),

A3. p(A|B) > p(C|D) & P(A|B) < P(C|D) (monotonic),
forall A,B,C,D € ¥.
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Transformations

Axioms of Transformation Costs

Let

> (€, X) measurable space;

> P(:]-) : (2 x Q) — [0, 1] conditional probability measure.
Then p(-|-) : (£ x £) — R" is a transformation cost function iff
Al. p(A|B) = f(P(A|B)) for some real-valued, continuous f,
A2. p(AN B|C) = p(B|C) + p(A|B N C) (additive),
A3. p(A|B) > p(C|D) & P(A|B) < P(C|D) (monotonic),
forall A,B,C,D € ¥.

Solution: p must be

1
p(A|B) = -3 log P(A|B), a>0.
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Transformations

What have we achieved?

The relation 1
p(A|B) = ——log P(A|B)

establishes a conversion between the cost of changing an
information state and conditional probabilities.

More importantly, this will serve as a primitive to establish a
relation between utility and information.
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Thermodynamic Example

Knowledge Determines Work:

> Particle bounces uniformly.

Info-Theoretic Bounded Rationality

» Move each piston to control probabilities.

Conclusions
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Thermodynamic Example

Knowledge Determines Work:

> Particle bounces uniformly.

» The system does isothermal work:

%4
W:—fylnv, v > 0.

Info-Theoretic Bounded Rationality

» Move each piston to control probabilities.

Conclusions

because we don’t know where the particle is!
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Thermodynamic Example

Knowledge Determines Work:

> Particle bounces uniformly.
» The system does isothermal work:

%4
W:—fylnv, v > 0.

the work would be

wix) = — n V(X)
(x) = —~I V)

Info-Theoretic Bounded Rationality

Move each piston to control probabilities.

Conclusions

because we don’t know where the particle is!

> If we knew the location x of the particle, then



Variational Principle

Thermodynamic Example [l

Define:
W=—yine:  w()=—yhn ((Xx)) ) = L0 g = 1)
Total Work:
W= —yin2

Vl

=—ZV§T){vln%}—vZV'§7) NECYES

X

= Ep[w(x)] = vD(pllq)
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Variational Principle

Thermodynamic Example Il

The First Law:

Ep[w(x)] = W + D(pllg)

{Expected Work} = {Work} + {Waste}

AU = w + Q

Interpretation:

1. Knowledge determines the amount of work.
2. Every change in expected work comes with a loss.

3. Total work is the negative free energy difference (NFED).
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Variational Principle

Thermodynamic Example IV

The Variational Principle:

» The transformation from g(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

VB,  Eplw(x)] —vD(plla) < Ep[w(x)] —~vD(pllq)

which is concave in p.
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Variational Principle

Thermodynamic Example IV

The Variational Principle:

» The transformation from g(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

vp,  Ep[w(x)] =vD(Bllg) < Ep[w(x)] —~D(pllq)
which is concave in p.
» Equivalently,
vph,  Ep[U(x)] —vD(Bllg) < Ep[U(X)]—~D(pllq)

where U(x) := w(x) + C.
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Variational Principle

Thermodynamic Example IV

The Variational Principle:

» The transformation from g(x) to p(x) can be thought of as
maximizing the work with fixed local work w(x):

vp,  Ep[w(x)] =vD(Bllg) < Ep[w(x)] —~D(pllq)
which is concave in p.
» Equivalently,
vph,  Ep[U(x)] —vD(Bllg) < Ep[U(X)]—~D(pllq)

where U(x) := w(x) + C.
» Only the differences in the U(x)'s matter!
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The Abstract Formulation

SN

)
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Variational Principle

The Abstract Formulation [l
Transformation Cost g — p:

P(x|p N q)

p(pla) = P(xlpna)p(xnpnalxnq) + é 2 Plxlpna)log =5 s

= 3 b)) + = 3 pl)log 2.

where

p(x):=P(xlpnq)  q(x):=P(xlg)  o(x):=p(xNpNaqlxnaq).
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Variational Principle

The Abstract Formulation [l
Transformation Cost g — p:

P(x|p N q)
P(x|q)

plpla) = P(xlpng)p(xNpnglxng)+ ZP x|pN q)log

= 3 b)) + = 3 pl)log 2.
where

p(x):=P(xlpnq)  q(x):=P(xlg)  o(x):=p(xNpNaqlxnaq).

Variational Principle:

VB, Zﬁ(x)u(x)_éz;")(x)log% Z p(x)U(x) ——Zp(x log Ei;

X
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Information-Geometric Picture

X3

P2
P
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Sequential Decisions
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Sequential Decisions

Free Energy Principle

Let g be a probability distribution and U be a real-valued utility
over X. Given a € R, the negative free energy difference
(NFED) is given by

~AFulpl = (UG — 5 Y PLlos 2

Interpretation

» NFED = expected utility - transformation costs

» models net utility gain obtained in transforming g into p

» relative entropy models information content of transformation
» inverse temperature o models (transformation-) bits per utile

> higher inverse temperature — higher net utility gain
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Sequential Decisions

Equilibrium Distribution

The solution to the NFED is the equilibrium distribution

pl) = Fraal) e lali(x)}.

where Z(a) is the partition function

Z(a) = q(x)exp{al(x)}.

X

The NFED extremum is the certainty equivalent

é log Z(c) = é log <Z q(x)exp {aU(x)}).

X
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Sequential Decisions

Certainty Equivalent

11
10

O

—AF,

BN ow s 0o N e

The inverse temperature o parameterizes the degree of control:

a — 00 . LlogZ — maxU(x) (maximum)
a—0 . LlogZ — E U(x)] (expectation)
a——00 : ZlogZ — minU(x) (minimum)
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Sequential Decisions

Operational Interpretation of Free Energy

What does it mean to solve the NFED?

> Given: prior g(x), utility U(x), and inverse temperature «.
> Problem: Obtain a sample from p(x). (This is what “solving” means!)

> Dramatically different from classical decision making: we do not have to
check all the outcomes!

Algorithm:

1. Obtain sample x" ~ g(x).
2. Accept x’ with probability

A(x'|x) = exp{a(U(x") — U(x))}.
3. Rejection sampling: Compare against target utility U™.

4. Metropolis-Hastings: Compare against sample from last iteration.
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Equilibrium Distribution

n=4 n=16 n=64 n=128
1 1 1 1
2
£ 0 0 0 0
5
-1 -1 -1 -1
0 0.5 1 0 0.5 1 0 0.5 1 0 05 1
4 4 4 4
3 3 3 3
2 2 2 2 2
[N

0 0 0 0
0 05 1 0 05 1 0 05 1 0 05 1
4 4 4 4
_3 3 3 3
=]
g2 2 2 2
3
a
1 1 1 1
0 0 0 0
0 05 1 0 05 1 0 05 1 0 05 1
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Sequential Decisions

Monte Carlo Simulation of Equilibrium Distribution

Rejection Sampling

Metropolis-Hastings

5 10 15 20 25 30 35 40 45 50 5 10 15 20 25 30 35 40 45 50

> Rejection Sampling: If target value is larger or equal than maximum
utility, then samples come from equilibrium distribution.

» Metropolis-Hastings: If chain is “long enough”, then samples come from
equilibrium distribution.
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Number of Proposals for Different Number of Outcomes

Number of Proposals versus Inverse Temperature

11 T T
10t 4
2
4
9 8
—16
8r —32 1
7k 1
sk 1
sk 1
n 1
sk 1
2k 1

Info-Theoretic Bounded Rationality



Sequential Decisions

Number of Proposals for Different Number of Outcomes

Number of Proposals versus Inverse Temperature

2
4
—8
—_—16
— 32

The number of proposals depends on the inverse temperature, not
on the number of outcomes!
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Sequential Decisions

Number of Proposals

Theorem:
Let § > 0 be a precision. The number of proposals in rejection
sampling needed for an acceptance probability (1 — ¢) is

Zy,
exp alU*’

log &

=— where =
log(1 — pa) P
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Sequential Decisions

Decision Trees

Expectimax Minimax Expectiminimax

» Sequential decision problems are stated as decision trees and
solved using backward induction.

» Decision rules depend on system: stochastic, cooperative,
competitive, hybrid, ...

» This intuitive distinction between “types of systems” is
formally unsatisfactory.

» Decision rules can be reexpressed in a unified way using the
free energy functional.
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Sequential Decisions

Goal: Generalized Decision Trees

General

» Different operators express different
degrees of control (DoCs):
» max < full control
» E < no control

» min < full anti-control

/ l \ » Goal: Find a generalized operator [
that expresses
g Q g i? g @? > the 3 classical DoCs,
> + all the other DoCs in between.

Emax minmax Eminmax
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Sequential Decisions

Equivalent Lotteries

Definition
Two lotteries are said to be equivalent iff they have the same prior
g, posterior p, and the same certainty equivalent.

Theorem
Let p be the equilibrium distribution given o, U and q.
If o changes to 3 with fixed p and q, then U changes to V':

ﬂ(V(x) - % log Zg) = a(U(x) —Liog Za>.
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Sequential Decisions

Construction of Generalized Decision Trees

Dy T

a) q(x),
> p()U(x) + &Zp(x log%

b) q(xe|xt:t-1), S(x¢|x1:t),

X - Xt |X 1 Py
> p(x<r ;{5( thx<e) + = log q(Xr|X<f)}

xX<T

o) q(xelx<e), R(xe|x<t), B(x<t)

- 1 plulxed)
ZP(X<T);{R(Xt|X<t) SO log }

2 ()
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Generalized Optimality Equations

Given
Generalized decision problem q(x¢|x<¢), R(x¢|x<¢) and B(x<¢).

Generalized Value/Utility

V(x<t) = @ IOg{Z q(xe|x<t) eXP{B(Xq) [R(Xt|x<t) + V(Xt)] }}

Xt
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Conclusions

Conclusions

1. The free energy principle serves as an axiomatic foundation
for bounded rational decision-making.

2. It formalizes a trade-off between the gains of maximizing the
utility and the losses of transformation costs.

3. It establishes clear links to information theory and
thermodynamics.

4. Inverse temperature parameterizes the resource
limitations/degree of control.

5. It allows generalizing decision trees.
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Open Questions

1. What are the exact relations to:

» game theory,
> search theory,
» and computational complexity?

2. What are the implications for search algorithms?

3. What are the causal implications?
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