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Abstract 
 
Prognosis can be defined as the course of predicting a failure of equipment or a 
component in advance, whereas prognostication refers to the act of prediction. The three 
main branches of condition based maintenance are diagnosis, prognosis, and treatment-
prognosis, however prognosis is admittedly the most difficult. Also, this area has been 
the least described in literature and the knowledge about it in a maintenance 
management context is still poorly systematized. To this day, formal professional 
attention to prognosis, in the field of maintenance management and engineering in the 
everyday care of machinery, is often relegated to a secondary status although the 
availability of prognostic information can considerably improve (e.g. reduce costs, 
maximize uptime) the performance of machinery and maintenance processes. 
 
Ideally, assessment of a prognosis of remaining useful life should be deliberate and 
explicit. In order to support the maintenance crew in the achievement of this objective 
an increasing amount of prognostic information is available. Over the last decade, 
system integration has grown in popularity as it allows organizations to streamline 
business processes. It is necessary to integrate management data from CMMS 
(Computer Maintenance Management Systems) with CM (Condition Monitoring) 
systems and finally SCADA (Supervisory Control And Data Acquisition) and other 
control systems, widely used in production but with a seldom usage in asset diagnosis 
and prognosis. The most obvious obstacle in the integration of these data is the disparate 
nature of the data types involved, moreover several attempts to remedy this problem 
have fizzled out. Although there have been many recent efforts to collect and maintain 
large repositories of these types of data, there have been relatively few studies to 
identify the ways these datasets could be related and linked for prognosis and 
maintenance decision making.  
After identifying what and how to predict incipient failures and developing a 
corresponding prognosis, maintenance engineers must consider how to communicate the 
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prediction. In this activity once again, technicians’ psychosocial attributes and values 
may influence how they discuss prognoses with asset managers. Regardless of whether 
prognostic assessments are subjective or objective, however, technicians should 
consider two major points. Firstly, the maintenance crew should clarify in their own 
minds the link, if any, between their prognostic assessment and their consequent 
decision making. Secondly, they should consider the ways that they and their assets 
might benefit from explicitly discussing how the prognostic assessment is linked with 
diagnostics and preventive maintenance recommendations. These and other steps that 
maintenance engineers should take in incorporating prognostic information into their 
decision making are discussed in this paper. The objective is to give an overview of how 
the integration of disparate data sources, commonly available in industry, can be 
achieved for maintenance prognosis and optimal decision making. 
 
1.  Introduction 
 
Probabilistic modelling of machine life and other nonparametric reliability methods 
developed over the past five decades mainly focus on age, and not condition, as a 
predictor of remaining life. Now that new sensor technologies offer means to track 
condition as well as age, better estimates of residual life can be made. The work by 
Jardine et al. [1] using the Cox's proportional hazard modeling concept integrates both 
age and condition information into an Age Replacement decision model without 
differentiating between various failure modes. Neural network models for estimating 
residual machine life have been proposed both as a "virtual" sensing technology [2] and 
as a means to estimate remaining life [3]. Damage accumulation models of residual 
machine life describe remaining life as a function of material creep, fatigue, 
embrittlement, or corrosion damage propagation until some failure limit is reached. 
These models presuppose knowledge of a "damage limit" which is analogous to current 
practice of establishing "alarm" limits currently in vogue within the predictive 
maintenance community. Variations on the theme of damage accumulation modelling 
estimate residual life as a direct function of various environmental parameters by 
assuming that these parameters are indeed causing material creep, fatigue, 
embrittlement, or corrosion damage propagation.  
 
Current industry practices for machinery condition monitoring are focused on diagnostic 
matters and, in terms of predicting remaining life, rely on end-users to establish their 
own "alarm" or "failure" levels for each deployed condition monitoring technology 
based on the end-user's experience or engineering judgment. Available software 
programs then employ simple regression models for time-to-alarm forecasting without 
benefit of any knowledge regarding the value of remaining life about to be discarded. 
To this problem, the use of prognostics in maintenance decision making can provide a 
solution. However, to perform a prognosis on remaining useful life of machinery, 
different disparate data sources, spread throughout the entire company are necessary. 
The objective of this paper is to present a methodology to collect, link and process these 
different data sources in order to assist in maintenance prognosis and decision making. 
Section 2 of this paper gives a description of the most important data sources and 
repositories of information for asset management. The focus is on two major data 
sources: CMMS and CM. An architecture for the integration of CMMS and CM 
systems for asset management is presented. A discussion on data-driven and model-
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based prognostics is given in Section 3. Furthermore, the use of prognostic information 
in maintenance decision making and support is discussed. In Section 4, all earlier 
discussed points on prognostics, data repositories and maintenance decision support are 
linked by presenting a framework based on asset cloud computing. Finally, Section 5 
gives the major conclusions and identifies possibilities for future research. 
 
2.  Data sources 
 
The need to improve asset performance through proper diagnosis and prognosis is 
considerable [4]. One barrier to improvement has been the absence of a performance 
management solution encompassing the various divisions of operations, maintenance, 
and finance, for example. With each division using its own performance metrics, it is 
difficult for optimal decisions to be made, such as balancing reliability goals against 
asset utilization goals. 
 
Many people have been chasing the "holy grail" of self-diagnostics and prognosis. 
Furthermore, there are many balanced scorecards and key performance indicator 
solutions being offered in today's market [5]. Many seem to be making similar claims 
including that their product will make a manufacturing process run better, faster, more 
efficiently, and with greater returns. However, one of the greatest challenges for 
effectively improving plant asset performance is that the necessary information is 
scattered across disconnected silos of data in each department. Furthermore, it is 
difficult to integrate these silos due to several fundamental differences. For example, 
control system data is real-time data measured in terms of seconds, whereas 
maintenance cycle data is generally measured in terms of calendar based maintenance 
time (e.g., days, weeks, months, quarters, semi -annual, annual), and financial cycle data 
is measured in terms of fiscal periods.  
 
CMMS and CM are the most popular repositories of information in maintenance, where 
most of the deployed technology is installed and unfortunately isolated information 
islands are usually created [6]. While using a good version of either technology can 
assist in reaching the defined maintenance goals, combining the two (CMMS and CM) 
into one seamless system can have exponentially more positive effects on maintenance 
and asset performance than either system alone might achieve. The combination of the 
strengths of a top-notch CMMS (preventive maintenance (PM) scheduling, automatic 
work order generation, maintenance inventory control, and data integrity) with the 
capabilities of a leading-edge CM system (multiple-method condition monitoring, trend 
tracking, and expert system diagnoses) in such a way that work orders are generated 
automatically based on information provided by CM diagnostic and prognostic 
capabilities. Just a few years ago, linking CMMS and CM technology was mostly a 
vision easily dismissed as infeasible or at best too expensive and difficult to warrant 
much investigation. Now, the available technology in CMMS and CM have made it 
possible to achieve such a link relatively easily and inexpensively (Figure 1). A top-
shelf CMMS can perform a wide variety of functions to improve maintenance 
performance. It is the central organizational tool for World-Class Maintenance (WCM). 
Among many other critical features, a CMMS is primarily designed to facilitate a shift 
in emphasis from reactive to preventive maintenance. It achieves this shift by allowing a 
maintenance professional to set up automatic PM work order generation. A CMMS can 
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also provide historical information which is then used to adjust PM system setup over 
time to minimize unnecessary or redundant maintenance actions or repairs, while still 
avoiding run-to-failure repairs. PMs for a given piece of equipment can be set up on a 
calendar schedule or a usage schedule that utilizes meter readings. A fully-featured 
CMMS also includes inventory tracking, workforce management, purchasing, in a 
package that stresses database integrity to safeguard vital information. The final result is 
optimized equipment up-time, lower maintenance costs, and better overall plant 
efficiency. 
 
On the other hand, a CM system should accurately monitor real-time equipment 
performance, and alert the maintenance professional to any changes in performance 
trends. There are a variety of measurements that a CM package might be able to track 
including vibration, oil condition, temperature, operating and static motor 
characteristics, pump flow, and pressure output. These measurements are squeezed out 
of equipment by monitoring tools like ferrographic wear particle analysis, proximity 
probes, triaxial vibration sensors, accelerometers, lasers, and multichannel spectrum 
analyzers. The very best CM systems are expert systems that can analyze measurements 
like vibration and diagnose machine faults. Expert system analysis like this puts 
maintenance procedures on hold until absolutely necessary, thus extracting maximum 
equipment up-time. In addition, the best expert systems offer diagnostic fault trending 
where individual machine fault severity can be observed over time. 
 

 
Figure 1. ICT architecture for the integration of CMMS and CM systems in 

maintenance and asset management. 
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Both CMMS and CM systems have strong advantages that make them indispensable to 
maintenance operation improvements. CMMS is a great organizational tool, but cannot 
directly monitor equipment conditions. A CM system excels at monitoring those 
equipment conditions, but is not suited to organizing your overall maintenance 
operation. The logical conclusion, then, is to combine the two technologies into a 
seamless system that avoids catastrophic breakdowns, but eliminates needless repairs to 
equipment that is running satisfactorily. 
 
The general opinion among the maintenance staff is that the application of information 
technology brings dramatic results in machine reliability and maintenance process 
efficiency. However, few maintenance managers can  show or calculate the benefits of 
the application of information technologies. Technology providers are  trying to develop 
more advanced tools while the maintenance departments seem to struggle with daily 
problems of implementing, integrating and operating such systems. The technology 
providers or the users do generally not know the feasibility of applying these 
technologies, but apparently they seem to improve the efficiency of the maintenance 
activities. The users combine their experience and heuristics in defining maintenance 
policies and in usage of condition monitoring systems. The resulting maintenance 
systems seem to be a heterogeneous combination of methods and systems in which the 
integrating factor of the information and business processes is the maintenance 
personnel. The information in the maintenance systems goes through these human 
minds forming an organisational information system and creating a high reliance on the 
expertise of the maintenance staff. Literature provides many models for maintenance 
decision support, however most of these models are too simple to represent real life 
cases conveniently [7]. Therefore, these models are definitely not widespread in 
industry. 
 
With emergence of intelligent sensors to measure and monitor the health state of the 
component and gradual implementation of information and communication technologies 
(ICT) in organizations, conceptualization and implementation of e-maintenance is 
turning into a reality [4]. While e-maintenance shows a lot of promise, seamless 
integration of information and communication technologies (ICT) into the industrial 
environment remains a challenge. It is very critical to understand and address the 
requirements and constraints from the maintenance as well as the ICT standpoints in 
parallel.  
 
3.  Prognostic information in DSS 
 
Many industrial systems exhibit increasing wear and tear of equipment during 
operation. Moreover, many companies want to extend the lifetime of their assets due to 
the increased competition and economical crisis. Prognostics are viewed as an add-on 
capability to diagnosis; they assess the current health of a system and predict its 
remaining life based on features that capture the gradual degradation in the operational 
capabilities of a system. Prognostics are critical to improve safety, plan successful 
missions, schedule maintenance, reduce maintenance cost and downtime. Unlike fault 
diagnosis, prognosis is a relatively new area and is becoming an important part of 
Condition-based Maintenance (CBM) of systems. 
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Currently, there are many prognostic techniques; their usage must be tuned for each 
application. The prognostic methods can be classified as being associated with one or 
more of the following two approaches: data-driven and model-based prognostics. Each 
of these approaches has its own advantages and disadvantages and, consequently they 
are often used in combination in many applications. The following overview of 
prognostic techniques and their applications is provided in the context of the 
advantageous systems and methods disclosed. 
 
3.1. Data-Driven Prognostics 
 
The data-driven approaches are derived directly from routinely monitored system 
operating data (e.g. power, vibration and acoustic signal, temperature, pressure, oil 
debris, currents, voltages). In many applications, measured input/output data is the 
major source for gaining a deeper understanding of the system degradation behavior. 
The data-driven approaches rely on the assumption that the statistical characteristics of 
data are relatively unchanged unless a malfunctioning event occurs in the system. That 
is, the common cause variations are entirely due to uncertainties and random noise, 
whereas special cause variations (e.g., due to degradations) account for data variations 
not attributed to common causes. 
 
The data-driven approaches are based on statistical and learning techniques from the 
theory of pattern recognition. These range from multivariate statistical methods (e.g., 
static and dynamic principle components analysis (PCA), to black-box methods based 
on neural networks (e.g., probabilistic neural networks (PNN), decision trees, multi-
layer perceptrons, radial basis functions and learning vector quantization (LVQ)), 
graphical models (Bayesian networks, hidden Markov models), self-organizing feature 
maps, signal analysis (filters, auto-regressive models, FFT, etc.) and fuzzy rule-based 
systems. 
 
The research on data-driven approaches has focused on monitoring of signals related to 
system health.  The strength of datadriven techniques is their ability to transform high-
dimensional noisy data into lower dimensional information for diagnostic/prognostic 
decisions. The main drawback of data-driven approaches is that their efficacy is highly-
dependent on the quantity and quality of system operational data. The data-driven 
approach is applicable to systems, where an understanding of first principles of system 
operation is not comprehensive. 
 
3.2. Model-Based Prognostics 
 
The model-based methods generally assume that an accurate mathematical model of the 
degradation process is available. The model-based methods use residuals as features, 
where the residuals are the outcomes of consistency checks between the sensed 
measurements of a real system and the outputs of a mathematical model. The premise is 
that the residuals are large in the presence of malfunctions, and small in the presence of 
normal disturbances, noise and modeling errors. Statistical techniques are used to define 
thresholds to detect the presence of faults. The three main ways of generating the 
residuals are based on parameter estimation, observers (e.g. Kalman filters) and parity 
relations. The model-based approach is generally applicable in situations where accurate 
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mathematical models can be constructed from first principles. The main advantage of 
the model-based prognostics approach is the ability to incorporate physical 
understanding of the system into the monitoring of the machinery. Another advantage is 
that, in many situations, the changes in feature vectors are closely related to model 
parameters. Therefore, it can also establish a functional mapping between the drifting 
parameters and the selected prognostic features. Moreover, if understanding of the 
system degradation improves, the model can be adapted to increase its accuracy and to 
address subtle performance problems. Consequently, it can significantly outperform 
data-driven approaches. Accordingly, advantageous model-based prognostic techniques 
are disclosed by combining singular perturbation methods of control theory, coupled 
with dynamic state estimation techniques for damage prediction. 
 
A hybrid model could combine some or all of the available model types (data-driven, 
and phenomenological), so that more complete information allows for more accurate 
recognition of the fault state. While most models incorporate some prior knowledge, 
little work has been done on explicit hybrid modeling for fault diagnostics and 
maintenance decision making. Gaps remain in understanding the overall relationships 
between production and reliability for systems that vary with time.  
 
One adtional challenge is the integration of descriptive information contained in 
maintenance work orders and reports. For this purpose, symbolic and linguistic models 
can be useful. They use empirical relationships described in words rather than as 
mathematical or statistical relationships. For example, a semantic description may be a 
rule for determining whether a fault exists under a set of conditions reported in a work 
order. These models are good for general descriptions of causal relationships, but verbal 
descriptions are not effective for detailed descriptions of complicated dependencies and 
timevarying behaviour. 
 
The goal for system reliability (indeed, any classification exercise) is to minimize Bayes 
risk, that is, to choose the lowest risk option based on the observed system outputs and 
conditional probabilities of what state the system is in, given the observed data. 
Minimum Bayes Risk decision making relies on conditional probabilities, which rely on 
a posteriori probabilities and prior probabilities of states of the system (in this case, fault 
modes). Since risk to the operation includes not only production loss but also safety 
hazards and environmental impacts, research is required to develop risk expressions that 
include these considerations in maintenance decision making. 
 
3.3. Use of prognostics in maintenance decision making 
 
Unlike conventional maintenance strategies, prognostic techniques predict system 
degradation based on observed system condition to support "just-in-time" maintenance. 
The ever increasing usage of model-based design technologies facilitates the integration 
of model-based diagnosis and prognosis of systems, leading to condition-based or 
prognostic maintenance. Condition-based maintenance is a well studied field in 
maintenance management. Many models in literature indicate that a condition-based 
maintenance policy is capable of reducing cost, increasing productivity and maintaining 
high equipment reliability and availability while at the same time ensuring a higher 
safety level. Marseguerra et al. [8] uses Monte Carlo simulation and genetic algorithms 
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to determine the optimal degradation level beyond which a preventive maintenance 
intervention should be taken by optimizing profit and availability. A multi-component 
simulation modeling approach is taken by Barata et al. [9] to find the optimal 
degradation threshold for performing preventive maintenance actions. Liao et al. [10] 
introduces a condition-based availability limit policy which achieves the maximum 
availability of a system by optimally scheduling maintenance actions. Other papers not 
only try to find the optimal degradation threshold, but at the same time optimize the 
inspection schedule or policy [11]. Although condition-based maintenance takes 
advantage of the known state of components, setting a degradation threshold beyond 
which preventive maintenance is carried out is not always an optimal solution compared 
to prognostic maintenance. Prognostic maintenance uses current and predictive 
information like the remaining useful lifetime of components to optimally schedule 
maintenance actions, while condition-based maintenance only uses current component 
state information. The benefit of also using information about future degradation over 
only using currently observed information is illustrated in different publications [12-15]. 
Proactive maintenance decisions can be made based on the prognostic information 
which results in a dynamic maintenance schedule with lower costs and higher uptime of 
the machinery. 
 
Two major challenges are presented in the context of prognosis and maintenance 
decision making. First relates to methods and systems for a prognostic assessment itself, 
secondly the management of this information to adopt the proper decision.  
 
4. Link between prognostic information in DSS and data sources 
 
Although there are a variety of systems and methods for monitoring and maintaining 
machinery and equipment, each has one or more inherent limitations which limit its 
usefulness. Prognosis algorithms (Section 3.1 and 3.2) operate by continuously 
comparing newly extracted features - i.e., machine conditions - to their corresponding 
baseline values. These baseline characteristics are essentially the statistical means of the 
features collected during the setup phase and decisions are taken based on their 
evolution. The prognosis capabilities of conventional predictive maintenance systems 
are based on applying different types of thresholds, templates, and rules, to quantify the 
relationship between the current feature values and their baseline counterparts. 
 
One limitation of this type of systems is that during the process of monitoring the 
machine features, the thresholds remain unchanged which is also a major assumption in 
most of the publications on maintenance optimization and decision making based on 
condition monitoring and prognostic information (Section 3.3). The only time when 
these thresholds are reconsidered is when an expert interferes to force their 
recalculation. This type of human intervention usually results from the observation of 
frequent false alarms caused by a process mean shift. Therefore, it would be desirable to 
have a method for predictive maintenance of a machine which utilizes unsupervised 
learning techniques, and which can identify a significant change in the pattern of 
monitored machine feaures. This dynamic benchmarking [16] is essential to take proper 
decisions based on the real age and condition of the machine and not just on the set-up 
values of its initial deployment. 
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Another limitation of conventional machine monitoring methods and condition-based 
maintenance (CBM) technologies is that their application is limited to a particular 
machine. Over time, there may be extensive characterization of the physical and 
mechanical principles that guide the equipment behavior and evolution. While this may 
lead to accurate information about a particular machine, such technologies are 
extremely limiting when it comes to widespread deployment for a wide variety of 
equipment. Therefore, it would be desirable to have a method for predictive 
maintenance of a machine, which developed a "generic" framework that was relatively 
independent of the type of physical equipment under consideration. 
 
This framework has to be based on a common set of data repositories and knowledge 
extraction tools. Cloud computing seems to be a feasible solution for integration 
purposes in this stage. The cloud in cloud computing provides the means through which 
everything from computing power to computing infrastructure, applications, business 
processes to personal collaboration can be delivered as a service wherever and 
whenever it is needed. The cloud itself is a set of hardware, networks, storage, services, 
and interfaces that enable the delivery of computing as a service. For asset management, 
the cloud seems to be the solution with such amounts of dispersed data in different 
repositories. The end user (maintenance or operators) do not really have to know 
anything about the underlying technology. The data collection and distribution 
applications may be dispersed throughout the network and collection of data may be 
accomplished at distributed locations. The collected data may then be converted to a 
common format at the distributed locations and sent to one or more central databases for 
subsequent distribution. These distributed databases will constitute the asset cloud. 
 
The data collection and distribution system, cloud, will collect the data from the 
different data sources in a common format or will convert that data, once received, to a 
common format for storage and use later by other elements, devices or applications in 
the process control system [17]. Once received and converted, the data is stored in a 
database in some accessible manner and is made available to applications or users 
within the asset cloud. Applications related to process control, alarming, device 
maintenance, fault diagnostics, predictive maintenance, financial planning, 
optimization, etc. may use, combine and integrate the data from one or more of the 
different data sources to operate better than these applications have been able to operate 
in the past without data from vastly different or previously inaccessible data sources.  
 
A more detailed data flow diagram illustrating data flow within the process control plant 
is provided in Figure 2. Beginning at the left side of the diagram, data associated with 
the process plant is collected by or at different functional areas or data sources within 
the plant: 

• Control data is collected by, for example, typical process control devices such as 
field devices, input/output devices, handheld or remote transmitters, or any other 
devices which may be, for example, communicatively connected to process 
controllers. 

• Equipment monitoring data associated with traditional equipment monitoring 
activities is collected by, for example, sensors, devices, transmitters, or any other 
devices within the plant. Process performance data may be collected by the same 
or other devices. 
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• Financial data may be collected by other applications run in computers in the 
process control plant as part of the performance monitoring data 

• Collected data may be from applications or sources outside of the traditional 
process control network, such as applications owned and operated by service 
organizations or vendors.  

This data may be collected in any manner including automatically or manually since 
many diverse sources can be used to monitor equipments. Thus, data collectors may 
include hand held collection devices, laboratory chemical and physical measurements, 
fixed or temporary on-line devices, devices which periodically (e.g., RF) telemeter data 
from remote process and equipment measurement devices, on-line device inputs or 
remote multiplexers and/or concentrators or any other data collection devices. 
 

 
Figure 2. Data flow diagram of info sources in process control. 

 
The process control data, equipment monitoring data and process performance data may 
be reconciled, verified, validated and/or formatted by data collection and reconciliation 
applications (which may be part of the cloud) run within the data collection device or 
within any other device such as at a central data historian, process controllers, 
equipment monitoring applications, etc. or any other device which receives or processes 
this data. After being reconciled in any known or desired manner or, in some cases, not 
being reconciled at all, the collected data may be provided to one or more applications 
typically associated with the different functional areas of the process control system. 
Further, one or more diagnostic applications may use the collected process control data 
to perform process control diagnostics. Such diagnostic applications may include, for 
example, applications which help an operator pinpoint problems within process control 
loops, instruments, actuators, etc. The diagnostic applications may also include expert 
diagnostic engines. Of course, the process diagnostic applications can take the form of 
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any other typical or standard process diagnostic applications and are not limited to these 
specifically mentioned herein. The outputs of these diagnostic applications can take any 
form and may, for example, indicate faulty or poorly performing loops, function blocks, 
areas, units, etc. within the process control system. 
 
The equipment monitoring functional block will receive the equipment condition data. 
The equipment monitoring functional block may include equipment or condition 
monitoring applications which may, for example, accept or generate alarms indicating 
problems with various pieces of equipment detect poorly performing or faulty 
equipment within the plant or detect other equipment problems or conditions which may 
be of interest to a maintenance person. Equipment monitoring applications are well 
known and typically include utilities adapted to the different specific types of equipment 
within a plant. Likewise, equipment diagnostic applications may be implemented to 
detect and diagnose equipment problems based on raw data measured pertaining to the 
equipment. Such equipment diagnostic applications may include, for example, vibration 
sensor applications, rotating equipment applications, power measurement applications, 
etc. Of course, there are many different types of known equipment condition monitoring 
and diagnostic applications which can produce many kinds of different types of data 
associated with the state or operating condition of different pieces of equipment within a 
process control plant. Still further, a historian may store raw data detected by equipment 
monitoring devices, may store data generated by the equipment condition monitoring 
and diagnostic applications and may provide data to those applications as needed. 
Likewise, equipment models may be provided and used by the equipment condition 
monitoring and diagnostic applications and in any desired manner.  
 
5.  Conclusions and future work 
 
This paper discusses how disparate data sources (i.e. CMMS and CM), commonly 
available in industry, can be integrated to perform maintenance prognosis and optimal 
maintenance decision making. An architecture for the integration of CMMS and CM 
systems in asset management is presented. Furthermore, the link with prognostic 
approaches and corresponding decision support tools is made. Cloud computing is 
believed to be a feasible solution for the integration of these disparate data sources, 
prognostics and maintenance decision support. Future work will be on the further 
development of a general framework for the integration of disparate data sources to 
perform maintenance prognosis and maintenance decision making. 
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