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Abstract: SpatialHadoop is a Hadoop framework supporting spatial information handling in light of 

MapReduce programming worldview. A huge number of studies leads to that SpatialHadoop outperforms 

the traditional Hadoop in both overseeing and handling spatial data operations. Indexing at 

SpatialHadoop makes it better than Hadoop. However, the design of a proficient and powerful indexing 

technique is stay as  a major challenge. This paper presents a novel partitioning technique in 

SpatialHadoop. It has a better performance compared to other partitioning techniques. The proposed 

technique performance has been studied in several cases utilizing a real datasets on a spatial range and k-

Nearest-Neighbour (kNN) queries. The experimental results have demonstrated the efficiency of the 

proposed technique. 
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1. Introduction 

 

Geospatial big data is comprised of both information and data that generated in so many ways. This can be 

done either passively or actively. Passively with little or no interaction such as utilizing different types of 

apps, websites, smartphones, satellites, in-situ sensor networks, sensing devices, etc. Actively with more 

interaction such as sharing GPS tracks, geo-locating social media posts, contributing to Volunteered GIS 

projects, etc. Extracting knowledge from such a big geospatial data has become an extensive challenge. The 

traditional geographical information systems (GISs) cannot deal with these aforementioned data [1, 2]. It 

lacks the adaptability of basic incorporated frameworks (e.g., local files frameworks and spatial database 

management systems (SDBMS)). Therefore, utilizing geographical information systems with cloud 

computing represents a new trend toward the progression of geospatial big data storing, processing, and its 

applications for GISs. Cloud computing represents the largest Information Technology (IT) transformation 
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and migration to the cloud become a mandatory demand. Doubtlessly, Cloud computing is expected to be 

the area of the most substantial growth and the most significant development. 

 

Recently, Hadoop [3, 4] released in 2007 as an open source cloud-computing platform. Hadoop was written 

in Java and funded by Apache. It is implemented for Google MapReduce. Hadoop utilizes MapReduce [5-

8] to build an effective large-scale data processing structure. MapReduce is a programming paradigm for 

distributed data processing [9]. It provides high scalability and fault tolerance mechanisms. Hadoop 

represents a solution for scalable big data processing in a variety of applications. Unlike traditional 

technologies which suffer low execution and the complexity experienced when processing and analysing 

big data, Hadoop can easily perform many operations in just a few seconds because it has a parallel clusters 

processing and a distributed file system. Hadoop is not a schema oriented so it can retain any kind of data, 

structured or not, from various sources. These heterogeneous data can be joined and processed in many 

arbitrary ways and enhancing further analysis [10].  

 

In this paper, a novel partitioning technique in SpatialHadoop is presented. The proposed technique takes 

into consideration the desired number of partitions in partitioning different spatial datasets. Additionally, 

the spatial proximity of these spatial data is highly preserved.  An expansive set of experiments on a 

different real datasets are executed to prove our contributions. The indexing time and query execution time 

is documented. The results show that the proposed technique overcomes all other techniques in terms of 

functionality and performance.  

 

This paper is organized as follows: Section 2 presents related works on SpatialHadoop partitioning and 

indexing techniques. Section 3 presents the proposed technique. Section 4 illustrates the experimental 

configurations, the performance measures, and the results of the experimentations. Finally, Section 5 

presents the conclusion and discusses future research directions. 

 

2. Related work  

 

Last few years, many researchers are oriented towards the usage of both Hadoop and the MapReduce 

environment that works on big geospatial data. Their work can be classified into two main categories: (1) 

spatial-operation oriented and (2) Full-system oriented. For the first, it is focus on a specific spatial 

operation. In this category, the essence idea is to build the MapReduce functions for a specific spatial 

operation. It can be viewed as an upper layer that works upon traditional Hadoop. Instances of such 

researches incorporate: (1) Range query [11-13], the input dataset is investigated, and each object is 

analyzed with respect to the query range. (2) k Nearest Neighbour (kNN) query [12, 14, 15], locates the k 

closest objects, utilizing distance metrics, from a specific object. (3) All Nearest Neighbour (ANN) query 

[9, 16], having N objects and process to know which is the closest neighbor for each one of those N objects, 

objects are divided by their Z-values to find out the result. (4) Reverse Nearest Neighbour (RNN) query 

[14], a reverse nearest neighbor query is to scan for all objects which a specific location is their closest 

neighbor. 

 

For the second, five systems were presented: (1) Parallel-Secondo [17] is a parallel and distributed spatial 

DBMS. it utilizations Hadoop to work as a distributed task scheduler, (2) MD-HBase [18] is a Hadoop non-
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relational database that supports multidimensional indexes. It represents as an expansion of HBase [19], (3) 

Hadoop-GIS [20] is a Hadoop information distribution center foundation that utilizes a uniform grid index 

for different spatial operations. it represents an expansion of Hive [4], and (4) GeoSpark [21, 22] is an 

execution of a few spatial operations on the Apache Spark. It is in-memory huge information framework. It 

focuses on in-memory processing for better performance.  

 

All aforementioned systems are built as an upper layer over Hadoop. They deal with Hadoop as a black box 

[23], and subsequently, they still have the limitations of the Hadoop system [24]. Hadoop does not support 

spatial data. Hadoop processes both non-spatial data and spatial data in a similar way. Hadoop has 

confinements and execution bottlenecks. Moreover, As Hadoop supports uniform grid index only, these 

systems are only suitable for uniform data distribution. These systems developed as a layer on top of 

Hadoop, so there is no way for the MapReduce programs to access any constructed spatial index. Thus, 

new spatial operations cannot be developed.   

 

Unlike these systems, SpatialHadoop [25, 26]  is developed to insert spatial data inside the essence of 

Hadoop. SpatialHadoop represents a Hadoop framework suited for spatial operations. By such a way, 

SpatialHadoop become more efficient to deal with spatial query processing. Moreover, SpatialHadoop 

introduces standard spatial indexes and MapReduce components that allow researchers and developers to 

implement new spatial operations efficiently in the framework [25, 27].   

 

In SpatialHadoop, spatial data is splitted according to their spatial closeness into partitions. These partitions 

are disseminated to the cluster nodes where they are indexed later. SpatialHadoop has the ability to support 

a set of spatial index structures utilizing a set of partitioning techniques like grid [23], R-tree [28], R+-tree 

[29], Z-curve [30, 31], Hilbert curve [32], Quadtree [33], and KD-tree [34, 35]. Each one of these 

techniques were developed in Hadoop Distributed File System (HDFS). Thus allowing developing effective 

algorithms for query processing that search a fraction of the data and still provide the valid query result. 

Subsequently, this makes SpatialHadoop special unique regarding supporting data distribution in geospatial 

data [25].  

 

3. The proposed technique 

 

Figure 1 shows the four layers of SpatialHadoop: (1) The Language layer named Pigeon [36] which enables 

users to assign their spatial queries to the framework without worrying about the processing details. It 

adapted to the Open Geospatial Consortium (OGC) standard. By such a way, the Pigeon language could 

easily integrate with different systems through exporting/importing data in OGC standard formats. (2) The 

Operations / Query Processing layer includes the spatial operations upheld by SpatialHadoop. Three main 

SpatialHadoop’s operations are range query, kNN, and spatial join.  In addition, The SpatialHadoop query 

processing engine based on Hadoop MapReduce allows users to develop custom spatial operations that 

utilizes the constructed spatial indexes. (3)  The MapReduce layer responsible for enabling the access to the 

spatial indexes. It contains two components, SpatialFileSplitter and SpatialRecordReader. The 

SpatialFileSplitter accesses the global index to return only file partitions that are related to the required 

query. On the other hand, the SpatialRecordReader works at the resultant partitions using the local index. 

(4) The Storage / Spatial Indexing layer has a two-layer index structure (one global index and many local 
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indexes). The global index splits data on the cluster nodes. Thereafter, using local index, each node indexes 

its partition separately. The separation of global and local indexes makes it easy to use MapReduce 

programming model.  

 

Building spatial index in SpatialHadoop goes into three stages: partitioning, local indexing, and global 

indexing [25]. For the first, the input data is divided to a number of partitions taking into consideration 

spatial proximity of different objects to be stored in the same partition. Each partition should be 64 MB to 

be stored in one HDFS block. Regardless of the spatial index type, the number of partitions are calculated 

based on the input files size, file block size, and the overhead of storing local indexes. Then, each partition 

is defined by a rectangle, differently according to the underlying index being constructed. Meanwhile, a 

MapReduce job initiated to physically splitting the input file. For the second, in local indexing stage, a 

local index structure is built upon the data contents of each partition. Here, records assigned to each 

partition are entered to a reduce function. The reduce function creates the local spatial index for that 

partition and then stores it in the local node index. For the last, all local indexes are aggregated into one file 

for all partitions. Then, the master node uses bulk loading and the rectangular boundaries of all file blocks 

as the index key to build an in-memory global index. 
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Figure 1. SpatialHadoop system architecture. 
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Figure 2. The history of  PR-Tree [37]. 

 

In order to improve the performance of SpatialHadoop indexing and partitioning phase, a new indexing and 

partitioning technique is proposed. Our proposal is mainly based on the Priority R-tree (PR-Tree) [38]. 

Figure 2 summarizes the history of Priority R-tree stages. The proposed technique starts, as shown in 

Algorithm 1, by calculating the maximum number of shapes that can be fit in one partition (leaf). Then, 

each input shape is converted to a 4D point. After that, a root node is created and the total number of shapes 

is checked. If it is less than or equal to the maximum number of shapes that can be fit in one partition (leaf), 

if so then the algorithm generates a scalar priority leaf 𝜈𝜌. Unless, it generates a priority leaf 𝒱𝑝
𝑥𝑚𝑖𝑛  that 

stores a B shapes with minimal x-coordinates. then, the algorithm is process in the same way to produce the 

other three priority On the other hand, if the root node has a number of shapes higher than 4B, then a two 

sub PR-Trees and  a four-priority leaves are produced. The algorithm recursively applies these calculations 

until no shapes remaining to be filled. 

 
  

Algorithm 1:  Building 4DPR-tree index 

Function 4DPRTree_Index_Building ( S, PNum ) 

 Input: S is a spatial data file that has a set spatial objects and PNum  is the number of required partitions 

 Output: a 4DPR-Tree as a stack 

Method: 

1.  Calculate B, which is the number of object, should be stored per each partition (leaf), by dividing the total 

number of shapes in the file by the desired number of partitions.  

2. Convert each object in the input data file to a 4D point with (𝑥𝑚𝑖𝑛 , 𝑦𝑚𝑖𝑛 , 𝑥𝑚𝑎𝑥 , 𝑦𝑚𝑎𝑥) and store it in a new 

stack. 

3. Create a root node that stores the minimum boundary rectangle of all input objects with depth equal to zero 
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and store that root node in a new stack, named tree_stack 

4. Foreach node in the tree_stack do  //  starting from the root node 

4.1. if the number of objects <= B then 

4.1.1. Create a single priority leaf that stores these objects 

4.2. Else If the number of objects <= 4* B then 

4.2.1. Create the first priority leaf that stores a B objects with the lowest (𝑥𝑚𝑖𝑛) values. 

4.2.2. If the number of remaining objects <= B then 

4.2.2.1. Create a single priority leaf that stores the remaining objects. 

4.2.3. Else  

4.2.3.1. Create the second priority leaf that stores a B objects with the lowest (𝑦𝑚𝑖𝑛) values. 

4.2.3.2. If the number of remaining objects <= B then 

4.2.3.2.1. Create a single priority leaf that stores the remaining objects. 

4.2.3.3. Else 

4.2.3.3.1. Create the third priority leaf that stores a B objects with the highest (𝑥𝑚𝑎𝑥) values. 

4.2.3.3.2. Create the fourth priority leaf that stores the remaining objects. 

4.3. Else 

4.3.1. Create the first priority leaf that stores a B objects with the lowest (𝑥𝑚𝑖𝑛) values. 

4.3.2. Create the second priority leaf that stores a B objects with the lowest (𝑦𝑚𝑖𝑛) values. 

4.3.3. Create the third priority leaf that stores a B objects with the highest (𝑥𝑚𝑎𝑥) values. 

4.3.4. Create the fourth priority leaf that stores a B objects with the highest (𝑦𝑚𝑎𝑥) values. 

4.3.5. Calculate the µ value equal to (⌊(⌊(𝑛 − 4 ∗ 𝐵) (4 ∗ 𝐵)⁄ ⌋ 2⁄ )⌋ ∗ 4 ∗ 𝐵) that is used to splitting 

the rest of the objects into two subsets. 

4.3.6. If current node depth remainder by four equal to zero then split based on (𝑥𝑚𝑖𝑛) values. 

4.3.7. Else If current node depth remainder by four equal to one then split based on (𝑦𝑚𝑖𝑛) values. 

4.3.8. Else If current node depth remainder by four equal to two then split based on (𝑥𝑚𝑎𝑥) values. 

4.3.9. Else, split based on (𝑦𝑚𝑎𝑥) values. 

4.3.10. Create a new two sub tree nodes with depth greater than the current tree node depth by one. 

4.3.11. Add these two sub trees nodes to the tree_stack. 
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4. Experimentation 

4.1 Experimental setup 
 

Amazon cluster consists of one master node and four slave nodes, all of type ‘m3.xlarge’, was used to 

perform all the experiments. Each ‘m3.xlarge’ node has 4vCPU Intel Xeon processors with a high 

frequency with 15 GB RAM and 2*40 GBSSD storage [39]. All cluster nodes have be configured to run 

Linux operating systems with Java 8. Hadoop2.7.2 and SpatialHadoop were installed and configured on 

all cluster nodes. A real datasets extracted from OpenStreetMap: Buildings (28.2 GB), Roads (25.9 GB), 

Lakes (9 GB), Cities (1.4 GB), and Sports (590 MB) [25] were used to test all partitioning and indexing 

techniques.   

 

4.2 Experimental results 

 

Table 4 shows the time in seconds that is required by the gplot function which responsible for plotting 

the different real datasets files. It is noted that the proposed 4DPR-Tree has the shortest plotting time for 

different datasets. This because 4DPR-Tree consider the preserved spatial proximity of the spatial 

shapes. 

 
Table 4. Plotting time of different real datasets 

 
Sports Cities Lakes Roads Buildings 

4DPTree 26.443 31.605 72.068 153.031 167.726 

Kd-tree 26.453 36.710 77.395 157.994 178.338 

Quadtree 41.505 47.256 122.864 254.828 319.729 

Z-curve 26.463 36.809 72.339 158.086 187.859 

Hilbert 31.643 33.678 72.377 148.016 168.645 

STR 31.731 46.691 77.110 153.505 168.187 

STR+ 26.561 46.563 77.390 148.431 168.212 

 

Table 5 presents partitions number generated by different partitioning techniques for the different real 

datasets. All partitioning techniques except STR, STR+, and Quadtree create the required partitions.   
 

Table 5. Partitions generated by different indexing techniques. 

Datasets  
Partitions Num. 

Sports Cities Lakes Roads Buildings 

4DPR-Tree 6 14 87 232 252 

KD-Tree 6 14 87 232 252 

Quadtree 25 34 246 593 705 

Z-curve 6 14 87 232 252 

Hilbert 6 14 87 232 252 

STR 6 18 91 241 252 
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STR+ 6 18 91 241 252 

 

Figure 3. Sports, Cities, Lakes, Roads, and Buildings index building time. 

 

Figure 3 shows Sports, Cities, Lakes, Roads, and Buildings indexing time. 4DPR-Tree has the best index 

building time especially for Roads, and Buildings. For the range query, Figure 4 (a, b, and c) shows the 

performance of range query on the Sports, Cities and Roads datasets. As noticed, Quadtree performance 

rapidly decreased with the changing in query window areas to 10-50% of the input dataset area. The 

reason behind that is the partitions number required to be accessed to answer the query is increased as 

the query window area is increased. Inversely to Quadtree, the proposed 4DPR-Tree technique 

outperforms other methods for 10-50% for the queries with query window 10-50% of the input dataset 

area. As it generates the required number of partitions and simultaneously it preserve the spatial 

proximity of the input objects. 

  

 

(a) Sports  
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 (b) Cities  

 

(c) Roads 

Figure 4. Sports, Cities, and Roads execution time for Range query. 

 

 (a) Lakes  

 

(b) Buildings 

Figure 5. Lakes and Buildings execution time for kNN query. 

 

Figure 5 (a and b) presents the performance of kNN for the Lakes and Buildings with different k values 

that has been changed from 1 to 10,000. It is obvious that Quadtree outperforms the other methods. 

However, Quadtree does not committed with the required partitions that should be generated. As shown 

in table 5, although the required partitions for Lakes and Buildings datasets are 87 and 252, Quadtree has 

partitioned the Lakes and Buildings datasets into 246 and 705 partition. Furthermore, the proposed 

technique outperforms all other techniques that obligated to the required partitions especially for high k 

values (1000, and 10000). 
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5. Conclusions and Future Work  

 

In this paper, 4DPR-Tree is proposed as a novel partitioning technique in SpatialHadoop. Various 

SpatialHadoop partitioning techniques have been experimentally evaluated. The experiments show that 

spatial query processing is very reliant on the size and nature of the dataset. Indexing and partitioning 

techniques demonstrate diverging performance with the alternative datasets types. The experimental results 

show that Quadtree, STR, STR+ generate a number of partitions higher than the desired and take the 

maximum indexing time. In addition, for Range query, all other techniques performance is highly 

decreased as the input dataset size and the query window area become larger. On the other hand, 4DPR-

Tree has a better indexing time and a better Range query execution time for all datasets sizes as it generates 

the desired number of partitions and highly preserves the spatial proximity of the input objects. Moreover, 

for kNN query, the performance of 4DPR-tree becomes better than all other techniques as the k values and 

the dataset size become higher. As part of our future work, we will develop new multi-dimensional spatial 

data types on SpatialHadoop and a new indexing technique for these data types will be developed with the 

goal of further enhancing query response time. 
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