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ABSTRACT: In diffraction tomography (DT), the measured scattered
data are unavoidably contaminated by noise. Because the detectabil-
ity of an object in a noisy image relies strongly on the signal-to-noise
ratio, it is important in certain applications to reduce the statistical
variation in the reconstructed image. Recently, we revealed the exis-
tence of statistically complementary information inherent in the scat-
tered data and proposed a linear strategy that makes use of this
information to achieve a bias-free reduction of the image variance in
two-dimensional (2D) DT. This strategy leads to the development of
an infinite class of estimation methods, that from the measured scat-
tered data, can estimate the Radon transform of the scattering object
function. From the estimated Radon transforms, one can readily
reconstruct the object function by using a variety of existing recon-
struction algorithms. The estimation methods in the class are math-
ematically equivalent, but they respond to noise differently. We inves-
tigated the noise properties of these estimation methods by use of
computer simulation studies. The results of our simulation studies
demonstrate quantitatively that it is possible to achieve a bias-free
variance reduction in the reconstructed scattering object by utilizing
complementary statistical information that is inherent in the scattered
data. © 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 10, 437-446,
1999

. INTRODUCTION

When the scattering object is weakly scattering, the Helmholtz
equation can be linearized through the use of the Born (or Rytov)
approximation (Ishimaru, 1978; Heidbreder, 1967). When the inci-
dent radiation is plane-wave, one can derive the Fourier diffraction
projection (FDP) theorem (Pan and Kak, 1983; Kaveh et al., 1984;
Grassin et al., 1991), which relates the Fourier transform (FT) of the
measured scattered fields to the FT of the scattering object function.
The FDP theorem provides the basis for reconstruction algorithms
such as the filtered back/propagation (FBPP; Devaney, 1982) and
direct Fourier (DF) algorithms (Pan and Kak, 1983).

In practice, the measured scattered data are contaminated by
noise that arises in the measurement process and from random
inhomogeneities in the scattering or background medium. Several
researchers have used approaches that are based on the FDP theorem
to characterize statistically varying media (Rouseff and Porter, 1991;
Fischer and Wolf, 1997). With the exception of the work in refer-
ence (Tsihrintzis and Devaney, 1993a), however, it appears that little
effort has been devoted to utilizing the statistical information con-
tained in the scattered data to reduce the variance of the recon-
structed image. In ultrasonic DT imaging of the female breast, for
example, the signal in the image can be subtle. Therefore, it is
particularly important to enhance the signal-to-noise ratio, which
generally requires that the image variance be reduced. When strong

Diffraction tomography (DT) is a multiview imaging technique that scattering effects are present, linear DT reconstruction algorithms
seeks to determine the distribution of the index of refraction of apgzsed on the Born or Rytov weak scattering approximations may not
scattering object. It has found applications in the fields of medicabroduce accurate images. However, many nonlinear DT reconstruc-
imaging, underwater sound, nondestructive evaluation of materialg;gn algorithms (Chew and Wang, 1990; Lu et al., 1996) attempt to
and geOPhV_S'CS (Andre etal., 1995; Rouseff. and Porter, 1991; GeliuSrcumvent the limitations of the Born and Rytov approximations by
etal., 1991; Langenberg, 1985; Kino, 1979; Robinson, 1984; Mu€ljinearizing the forward scattering problem and solving a linear
ler et al., 1979). Unlike conventional X-ray computed tomographyinyerse problem at each step of an iterative procedure. Therefore, in
(CT), the acoustical or electromagnetic radiation in DT is generallyoroler to properly regularize the nonlinear DT reconstruction prob-

treated in terms_of wave fields and satisfies the inhomogeneoqgm, it remains important to have an understanding of the noise
Helmholtz equation (Ishlmaru, _19_78; _Chernov, 1969; Morse _andpropagation properties of linear DT reconstruction algorithms.
Ingard, 1986). To obtain the distribution of the scattering object Recently, we have revealed the existence of statistically comple-
ttered dat ds 10 i t the inh Helmh elr%entary information inherent in the scattered data and proposed a
scaltered gata, one needs to nvert the INhomogeneous Helm Oﬁﬁear strategy that makes use of this information to achieve a
equation. Computationally intensive iterative algorithms are genery. « free reduction of the image variance in two-dimensional (2D)
ally required for the exact inversion of the inhomogeneous Helm

holtz equation (Chew and Wang, 1990; Lu et al., 1996; Johnson an

_QT (Pan, 1998b). Using this strategy, one can derive infinite classes
Tracy, 1983a,b).

of estimation methods for obtaining the 2D Radon transform of the
scattering object function from the measured scattered data. These
estimation methods are mathematically equivalent, but they propa-
gate noise and numerical errors differently (Pan, 1998b). From the
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13 lossless and homogeneous background medium and is illuminated
by monochromatic plane-wave radiation with complex amplitude
U, and frequency,, propagating along thg-axis. The total field

45 measured along the ling = | with an orientation angle> can be
written as a sum of the incident plane-wave fia|dé, ¢) and the
scattered wave fieldi (¢, ¢). The task in DT is to determine a
scattering object functiora(r, 6), using the transmission data
measured at various angles about the object. The underlying phys-
ical property of the scattering object that is mapped in DT is the
refractive index distributiom(r, 6), which is related to the scatter-

X
ing object function by the equatica(r, 0) = n?(r, §) — 1.
& Let U(v,, &) = J7.. U(&, d)e 127 mdé be the 1D FT of the
scattered wave field with respect & and let M@,, ¢) be a
modified version of (v, ¢), which is given by

jv o
M(vp, @) = Ufvy, @) 27870, e >, 1

Measured Data

Figure 1. The classical scan configuration in DT. The incident plane-

wave propagates in the & direction and the scattered wave field is

measured along the line = /. wherev’ = Vv3 — v2. Then, under the Born approximation (i.e.,
lul < |u;]), one can obtain a relationship betweenu\|( ¢) and

_ ) a(r, 0) that can be expressed as
estimated Radon transform, one can readily reconstruct the scatter-

ing object function by use of a wide variety of reconstruction
algorithms, such as the FBPJ and DF algorithms. The different I R P
reconstruction algorithms are mathematically equivalent, but they M(¥m ¢) = a(fe TP if[vn| = v @)
also respond differently to noise and errors. e )

In this work, we implemented and evaluated the estimation =0 if|v| > v,
methods for obtaining the Radon transform of the scattering object
function. From these estimated Radon transforms, we reconstructeghere the polar coordinates, (9) and rotated coordinates, () are
the scattering object functions by using the FBPJ or DF algorithmrelated through = r cos@ — 6) andn = —r sin($ — 6). Equation
(It should be noted that, as described below, the DF algorithm?2), referred to as the FDP theorem (Pan and Kak, 1983), states that
investigated in this paper differs from the conventional DF algo-the modified FT of the scattered data in Eq. (1) gives the values of
rithm that involves a 2D interpolation.) Therefore, each recon-the 2D FT of the scattering object function along a semicircular arc
structed scattering object function is obtained from the scattered daigf radius v, (Fig. 2).
by use of a combination of an estimation method and a reconstruc-
tion algorithm. We conducted computer simulations to investigateB. The Radon transform and Scattered Data. The Radon
noise properties of the scattering object functions obtained withransform (Barrett, 1984) of the scattering object functgn 6) is
different combinations of the estimation methods and reconstructiogiven by
algorithms. The results of our numerical studies demonstrated quan-
titatively that the reconstructed scattering object functions are vir-
tually identical in the absence of noise but are noticeably differentin
the presence of noise, confirming our theoretical assertions. For each [
reconstruction algorithm, we identified the estimation method that P}
minimizes the global image variance when the scattered data contain //
uncorrelated Gaussian noise with constant variance. / measured scattered data

The paper is organized as follows. Section Il discusses the
estimation methods for obtaining the Radon transform of the scat-
tering object function from the scattered data in DT and briefly ¢ Vg
reviews the algorithms for reconstruction of the scattering object O
function from the estimated Radon transform. Section Il describes ;
the simulation studies, including the noise model employed. Section /
IV presents the results of our numerical simulations such as the ,
calculated image variances obtained with different combinations of /
estimation methods and reconstruction algorithms. Section V dis-
cusses the significance of the results and topics for future work.

Fourier transform of

4 A

joxd

B

In. THE_ORY ) . ~ Figure 2. The FT of the data measured along the line n = I is
A. Basic Formulation of 2D DT. The classical geometry used in mapped to a semicircle of radius v, in the Fourier space {u,, 1}, where

2D DT is shown in Figure 1. A scattering object is placed in aw, and v, are the spatial frequencies of x and y, respectively.
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Figure 3. Sampling Fourier domain coverages obtained in a DT experiment. (a) Coverage produced by the arc OA. (b) Coverage produced by

the arc OB.

1
p(gv (bO) - E

jx a(r, 0)8(& —r cog ¢y — 0))dr,

®)

wheredy, is the projection angle = r cosi, — 6), andn = —r

sin(¢g — 0). Itis important to note that the arguments of the function

P(vg, K) = (=D {y(rm)]*M(=vp, k), (6)

where M({v,,,, k) is given by

Mo 10 = 5 f M 9 do, @

p(&, o) are not the familiar polar coordinates, but rather define a 2D
space spanning the range of the Radon transform. The ia{(agé)
can be reconstructed exactly from its Radon transforé ¢f) by

use of a wide variety of computationally efficient and numerically
stable reconstruction algorithms, such as the FBPJ and DF algo-

rithms.

The 2D FT of p§, ¢,) is defined as

1 27
P(v k) = sz f

wherewv, is the spatial frequency with respectgpand the integer
k is the angular frequency index with respectdig. The angular

B3

p(§: ¢O)e7jzwva§e7jkd)0 dg dd)(): (4)

3

frequency index is discrete because §(¢,) is periodic ind,. In
this context, “the 2D FT” we refer to iS, in faCt, a combination of a two segments OA and OB of the semicircle AOB. It can read”y be

1D FT and a 1D Fourier series expansion. From_PK), one can
readily obtain the Radon transformé&p(p,) by invoking the 2D
inverse FT. Therefore, the task of estimating, pfo) is equivalent
to estimating its 2D FT R(, k). Also, it can be shown that the
object functiona(r, 6) can be reconstructed from knowledge of
P(v,, k) with v, = 0. Therefore, we will focus only on estimating
P(v,, k) for v, = 0.

It was shown (Pan, 1998b) that, for#8 v,, = v,,

P(va, K) = [v(rn) I'M(v, K), ©)

and

Vo = Va4 15, = (Vi — 4, = wo), andy(uy) = Vg, — Vi

(Ym + v,). We summarize the derivation (Pan, 1998b) of Egs. (5)
and (6) in the Appendix.

Equations 5 and 6 indicate thatiB( k) (or, equivalently, the
Radon transform of the scattering object function) can be deter-
mined from M(,, k) (or, equivalently, the measured scattered
data). From the estimated #( k) (i.e., the Radon transform), one
can subsequently reconstruct the scattering object function by use of
computationally efficient reconstruction algorithms.

The physical origins of Egs. (5) and (6) can be understood by
examining the Fourier-space sampling pattern that is generated in a
DT experiment. As the incident radiation angpe(i.e., the orienta-
tion angle of the semicircle AOB in Fig. 2) is varied between 0 and
24, two distinct coverages of the Fourier space are generated by the

shown that M¢,,,, k) and M(—v,,,, k) can be obtained by use of the
two distinct coverages of the Fourier space in Figures 3a and 3b,
respectively.

C. Linear Estimation of P(v,, k). Because, in practice, the
scattered data will contain noise (Goodman, 1986), the scattered
data can be represented by a complex stochastic pragésso)

with expected valuei (¢, ¢). (Here and in the following, bold and
normal typefaces denote a stochastic process and its expected value,
respectively.) Therefore, the 2D modified FM,(v,, k), that is
obtained from the scattered datg ¢, ¢) is also a complex stochas

tic process with expected value M, k). In the absence of noise,
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both Egs. (5) and (6) yield identical values ofi2(k). When noise Reconstruction with the DF AlgorithmAccording to the central

is present, however, the two estimates of Pk) in Egs. (5) and (6)  slice theorem, the 1D FT of the Radon transform corresponds to the
are different and hence th&d (v, k) and M(—v,, k) contain 2D FT of the scattering object functi@{r, 6) in a polar coordinate
statistically complementary information (Pan, 1998b). We will ex- system. The implementation of the DF reconstruction algorithm
ploit this information contained iM(v,,, k) and M(—v,,, k) to generally involves a conversion of the samples6i,, ¢,) on a

achieve a bias-free variance reduction of the final estifR@tg, k), polar grid to samples of the 2D FR(v,, v,), of the scattering
which generally leads to a reconstructed scattering object functionbject function on a Cartesian grid, so that one can apply the inverse
with reduced variances. fast FT (FFT) to the samples 8f(v,, v,) for obtaininga(r, 6). The

A possible strategy for using the statistically complementaryconversion from the polar to the Cartesian grid can generally be
information inherent itM (v,,,, k) andM (—»,,,, k) isto form alinear  achieved by utilizing 2D interpolation approaches such as bilinear
combination (Pan, 1998b) of the two estimates in Egs. (5) and (6)interpolation. However, according to the central slice theorem (Bar-
which is expressed as rett, 1984) A(v,, v,) can also be calculated froR(v,, k) by use of

Eq. (10) directly. In particular, whem(r, 6) is real (i.e., the
P(va K) = o[ y*M (v, K] + (1 = 0)[(=1)*y M (—vm K], (8) scattering object is lossless)(v,, v,) at a point ¢,, v,) on the
Cartesian grids can be determined fra¥w,, k) by use of the
wherew is a weighting coefficient. Using Egs. (5) and (6), one canfollowing relationship (Metz and Pan, 1995)
show thatP(v,, k) is an unbiased estimate of ( k). Therefore,
the coefficientw allows the two estimates in Egs. (5) and (6) to be ©
combined in a way that controls the variance of the final estimaten (,, ) = P(v, 0) + 2 2 [Re[P(v,, 2k)eiZ}
P(v,, k) without introducing any bias. Because each valuewof k=1
gives rise to a particular final estimal®v,, k), Eqg. (8) can, in
effect, be interpreted as an estimation method for obtaiR{ng, k)
(i.e., the Radon transform). Also, because, in principl&an have
any real and/or complex value, Eq. (8) represents an infinite class a¥herev, = Vv v + vy andy = tan * v /v,
estimation methods. In this work, we will investigate the noise  Unlike 2D interpolation approaches, the calculatiogb,, v,)

properties of the infinite subclass of estimation methods that arisBY use of Eq. (11) requires only a 1D interpolation alog In this
whenw is chosen to be real in Eq. 8. work, we use Eq. (11) to obtain the samplesAgi,, v,) from the

estimated®(v,, k). The object function can then be reconstructed by

D. Reconstruction Algorithms. We use the FBPJ and DF al- inverse 2D FT ofA(v,, »,), which is given by
gorithms to reconstruct the scattering object function from the final
estimateP(v,, k). It should be pointed out that, as will be shown
below, our DF algorithm differs from conventional DF algorithms alx, y) = J f A(vy, vy)elZm ey dy, dy,, (12)
(Pan and Kak, 1983) because it only employs an explicit 1D inter- b
polation.

Reconstruction with the FBPJ AlgorithnThe computationally
efficient FBPJ algorithm is commonly used in X-ray CT. From the
estimated 1D FTP(v,, ¢,), of the Radon transform, the FBPJ IIl. SIMULATION STUDIES

algorithm can be used to reconstruct the scattering object function, ™ ° o ] -
which is given by We implemented the class of estimation methods in Eq. (8) specified

by the combination coefficiend satisfying 0= » = 1. We used
, 5 computer simulation to evaluate the noise properties of images
v » obtained by use of different combinations of the estimation methods
alx,y) =5 P el dy, d 9 y use i
¥ =3 J . J (var o)l vl va ddo ©) and reconstruction algorithms.

+ Im{P(v,, 2k — 1)e!® V1] (11)

where D= {v,, v|vi + vJ = 203}

\@’0

A. Data. The scattering object was taken to be a lossless, uniform
cylindrical disk. It was assumed that the scatterer was weakly
scattering, so that the Born approximation may reasonably be taken
* to hold. In this way, noise in the reconstructed images can be
P(v, ¢o) = E P(v,, k)elk#, (10) attributed to noise in the scattered data and numerical errors, with no
k== risk of confusion with artifacts arising from the breakdown of the
weakly scattering assumption. The FDP theorem can then be used to
The limits =\/2y, of the integration ovew, in Eq. (9) are deter  calculate the simulated scattered data from the scattering object
mined by the highest frequenay, in the scattered data. This is function (Pan and Kak, 1983).
because Egs. (5) and (6) can only be used to estimatg R for
—\V2v, = v, = V2v,. Physically, this corresponds to the fact that B. Noise Model. To simulate the effects of a stochastic scattering
evanescent (i.e., nonpropagating) waves, which specify, MK) object, we treated the scattered dai§t, ¢) as a complex stochastic
for v,, > v,, are not commonly utilized in DT. In our implemen process with a real and an imaginary component denotad'b,
tation of the FBPJ algorithm, an unapodized ramp filter was used$) andul’(¢, ¢), respectively. Let(” = ul” + Aul” andul® =
The interpolation necessary to align the backprojected data onto the” + Aul’, whereu{” andu{’ are the means af{” and uf’,
discrete image matrix was performed using bilinear interpolation. respectively. The statistics of the deviatas(” and Au{’ are

where
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described by a bivariate normal density function (Takai et al., 1986)betweenv, and v, the uniform sampling points at which, is to
which is given by be evaluated do not generally correspond to values, pat which
1 1/AG?  AG? the FFT evaluateM (v,,,, k). Becausev;, = v5 + v2, for a given
p(Au®”, Au?) = X exp{ _Z (72 + 72> ] (13a) value ofv,, Eq. (8) indicates tha®(v,, k) can be determined from
2m0i0, 2\ o o] M(vm = V2 + 2, k) andM(v,, = —VZ + 12, K). In this
work, we used linear interpolation to determine the values of
M(vy, = V3 + vo, K) andM (v, = — Vi + v3, k) from the

where the constants? ando? are the variances afu{” (¢, ¢) and
sampled values of1 (v,,,, k) andM (—v,,, K).

AU (&, ¢), respectively. We also assume (Tsihrintzis and Devaney
1993b) that the noise is uncorrelated in thend ¢ coordinates, i.e.,
when¢ # ¢ andlor¢ # ¢', the covariance IV. RESULTS

From the computer simulated noiseless scattered data, we obtained
Cov(uy(§, ¢), u(é', ¢')) = 0. (13b)  two estimates of the Radon transform of the scattering object func-

tion by use of two estimation methods of Eq. (8) specifieduby
C. Computer Simulations. To study the noise properties of the 0.5 and 1.0. From the two estimates of the Radon transform, using
reconstructed images quantitatively, we generled 1,000sets  the FBPJ and DF algorithms, we subsequently reconstructed two
of noisy scattered data by using the noise model in Eq. (13) withscattering object functions as shown in Figures 4 and 5, respectively.
o, = o; = 0.5 and reconstructed 1,000 noisy images from theserne images associated with different valueswofn Figure 4 are
data sets by using different combinations of estimation methods anghserved to be virtually identical except for minor differences at-
reconstruction algorithms. The matrix size of the reconstructedyipytable to numerical errors caused by finite sampling. A similar
images was 128< 128 pixels. The wavelength of the incident opservation can be made for the images in Figure 5 as well. The
radiation was equal to 2 pixels, and the distance from the center afgyits shown in Figures 4 and 5 confirm quantitatively our assertion
the scattering object to the measurement line was 200 pixels. Th@at the two estimates of P(, k) in Egs. (6) and (7) (and hence their

local image variance was calculated empirically from fheets of  |inear combinations with differens values in Eq. 8) are identical in
reconstructed images as the absence of noise.

Using the computer simulated noisy scattered data, we obtained
N N z two estimates of the Radon transform of the scattering object func-
2 a)| |, (@14 tion by use of two estimation methods of Eq. (8) specifieddby
i=1 0.5 and 1.0. From the two estimates of the Radon transform, using
the FBPJ and DF algorithms, we subsequently reconstructed the two
whereg(F) is theith image obtained with a particular combination noisy scattering object functions shown in Figures 6 and 7. The
of an estimation method and a reconstruction algorithm. The globaimages associated with different values wfin Figure 6 are ob-
image variance provides a convenient index for comparing theerved to be clearly different from each other. A similar observation
overall statistical variability of reconstructed images. The empiricalcan be made for the images in Figure 7 as well. Therefore, the results
global image variance, GV, was calculated by integrating the locain Figures 6 and 7 confirm quantitatively our assertion that the two

1
Var{a(?)} = m

image variance Vag(r)} over all image space, i.e., estimates of P(,, k) in Egs. (6) and (7) (and hence their linear
combinations with different values in Eq. 8) respond to noise
o [ differently. Also, different reconstruction algorithms propagate
GV:f f Var{a(F)} df. (15) noise and numerical errors differently. This can be verified, for
R example, by observation of the conspicuous differences between the

noiseless images in Figures 4a and 5a and between the noisy images
(Although in this work we compare the different reconstruction in Figures 6a and 7a fap = 0.5.
algorithms using the GV, it should be noted that, from a signal Figure 8 displays empirical image-variance profiles calculated
detection perspective, the global variance metric may not be verfrom noisy images obtained from 1,000 sets of computer simulated
useful because it does not contain information regarding the noisgoisy scattered data. The solid and dotted curves show the variance
texture. Comparing the different reconstruction algorithms on theprofiles calculated from noisy images that were reconstructed with
basis of signal detectability is beyond the scope of this study anghe DF algorithm from 1,000 sets of estimates of the Radon trans-
remains a topic for future investigation.) form by use of the estimation methods specifieddby= 0.85 and

0.5, respectively. The dashed and dashed-dotted curves show the
D. Calculation of M(v,,,, k) and P(v,, k). The 2D FT of the variance profiles of noisy images reconstructed with the FBPJ algo-
modified scattered dat&/i(v,, k), was calculated from the mea rithm from 1,000 sets of estimated Radon transforms by use of the
sured scattered data(é, ¢). For each anglep, uy(¢, ¢) was  estimation methods specified bBy= 0.85 and 0.5, respectively. It is
zero-padded by a factor of 2 prior to calculatidy(v,,, ¢), result seen from Figure 8 that the variances of images associatedowwith
ing in a doubling of the sampling density along thgaxis inU(v,,, 0.5 are smaller than those of the images associatedawitt0.85 for
k) (and consequently (v, k)). This increase in sampling density both reconstruction algorithms. As we already observed in Figures 3
is necessary to increase the accuracy of the interpolation,dhat ~ and 4, for both values o, the variances of the images recon-
is required for calculating(v,, k) from M (v,,,, k) andM (— v, k) structed by the DF algorithm are higher than those of the images
as described below. reconstructed by the FBPJ algorithm. Qualitatively similar results

The FBPJ or DF algorithm requires tHatv,, ¢,) be uniformly ~ were also obtained for different values of and different noise-

sampled onv,. However, because of the nonlinear relationship model parameters, ando;. This is explained by the well-known
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the estimation method witlw = 0.5 produces images that have
smaller global image variance than any other estimation method in
the class. This observation is in agreement with the theoretical

osl _ predictions made in Pan (1998b), where it was proved analytically
that, for uncorrelated data noise (see Eg. 13b} 0.5 determines
— 0.354 , i F the optimal estimation method that yields the smallest global image
> // I’ V “ variance. In addition, it was predicted [23] that the global image
B o024 ‘ ‘ o variance is a parabolic function of and that the ratio between the
S ﬂf , maximum and minimum global image varianceé. i$hese theoret-
0.054 ““‘; ” ical predictions are verified by the results in Figures 9a and 9b.
ool ol \\\\\
° 75 /,, V. DISCUSSION

75 It is known that the measured scattered data in DT with the classical
scan geometry provide two distinct sets of samples of the FT of the

: i \u\
o
< ,/Wff}{'i’ | J"W‘“\‘ I r K

75

(b)
Figure 4. Noiseless images of a lossless cylindrical scattering ob- 0.5 v
ject function obtained by using the (a) @ = 0.5 and (b) @ = 1.0 e 0.354
estimation methods with the FBPJ reconstruction algorithm. > s
B o247
3

fact that the DF algorithm is more sensitive to noise and numerical ~ 0.054- "
errors than is the FBPJ algorithm (Anastasio et al., 1998).

We calculated sets of 1,000 estimated Radon transforms by use
of several estimation methods specified by valuessof [0, 1].
From each set of estimated Radon transforms, sets of images were
reconstructed by use of the FBPJ and DF reconstruction algorithms.
Therefore, for images obtained using each reconstruction algorithm y
(DF or FBPJ), the global image variance can be interpreted as a
function of w. Figures 9a and 9b display the global image variances
as functions ofw calculated from images obtained by use of the (b)
FBPJ and DF reconstruction algorithms, respectively. The curves in
Figure 9 indicate that, for each reconstruction algorithm, differentrigure 5. Noiseless images of a lossless cylindrical scattering ob-
global image variances are obtained when different estimation methect function obtained by using the (@) @ = 0.5 and (b) @ = 1.0
ods are used to estimate the Radon transform. Figure 9 reveals thaftimation methods with the DF reconstruction algorithm.

—0ade
75

i
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obtaining the Radon transform of the scattering object function from
the scattered data in DT.

We have implemented the estimation methods in this infinite
class and investigated the noise properties of these estimation meth-
ods and the FBPJ and our DF reconstruction algorithms by using a
large number of computer simulated scattered data sets. The numer-
ical results corroborated the theoretical assertions, demonstrating
that the estimation methods propagate noise in the scattered data
differently and that the noise properties of the reconstructed images
depend on the choice of estimation methods and reconstruction
algorithms. Through our simulation studies, we have demonstrated
that it is possible to achieve a bias-free reduction of the statistical
variation in the reconstructed scattered object function by utilizing
complementary statistical information inherent in the scattered data.

EW |

75

(b)

P M
. k
'ln, | \'U“

Figure 6. Noisy images of a lossless cylindrical scattering object
\ «u\ 1.4’

function obtained by using the (a) ® = 0.5 and (b) @ = 1.0 estimation 0354 .‘
methods with the FBPJ algorithm. ) e l
g '1;.'\\,’ I“
,"\\, ol ‘v/ bl l
AR ‘,‘
RS \
i

.““ ,p\‘
' ' A\\
005 """"“ \‘“‘\““‘
. ; ) . o 4’ ¥
DF algorithm, one often reconstructs the scattering object function ,,/‘ e
from only one set of the samples, simply discarding the other set v
(Pan and Kak, 1983; Gelius et al., 1991). However, we showed that, y 0o X
in the presence of data noise, the two sets of samples contain
statistically complementary information and that this information
can be used to achieve a bias-free reduction of variance in the (b)
reconstructed scattering object function. In an attempt to make use
of this information, we introduced a linear combination of the Figure 7. Noisy images of a lossless cylindrical scattering object
knowledge derived from the two sets of samples, which leads to theunction obtained by using the (a) @ = 0.5 and (b) » = 1.0 estimation
development of an infinite class of estimation methods (Eq. 8) foimethods with the DF algorithm.

i ’ "‘wl

scattering object function (Pan and Kak, 1983; Devaney, 1982). In
principle, the scattering object function can be reconstructed from
either of these two distinct sets of samples. Using the conventional
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Figure 8. Variances calculated from images obtained by using the
o = 0.5 estimation method with the DF reconstruction algorithm
(dotted line) and the FBPJ reconstruction algorithm (dashed-dotted
line) and by using the w = 0.85 estimation method with the DF
reconstruction method (solid line) and the FBPJ reconstruction
method (dashed line). The variances obtained using the o = 0.5
estimation method are smaller than those associated with the o =
0.85 estimation method for both the FBPJ and DF reconstruction
algorithms.

(The use of an explicit smoothing operation generally introduce

bias in the reconstructed scattering object function.)

Single-photon-emission-computed tomography (SPECT) is
medical imaging modality that collectgrays emitted from radio-

of the isotopes in the object can be reconstructed. It is interesting to
note that despite the fact that SPECT with uniform attenuation and
DT are two imaging modalities that are based on very different
physical processes, the mathematics and statistical analyses of the
image reconstructions are virtually identical. For example, it can be
shown that the 2D FT of the measured data in SPECT with uniform
attenuation is related to P{, k) by equations completely analogous
to those derived for DT (Eqgs. 5 and 6). As for the DT problem,
infinite classes of methods for estimating the Radon transform in
SPECT are obtained by forming different linear combinations of the
two estimates R, k). For a detailed comparison of the SPECT and
DT reconstruction problems, see Pan (1998a).

In this work, we implemented and evaluated the estimation
methods. In particular, we investigated the noise properties of the
estimation methods with real-valued It can be shown, however,
that the optimak that minimizes the variance of the final estimate
P(v,, k) is a complex function of,,, andk. The noise properties of
estimation methods witkb being a complex function of,,, andk
require further investigation. It was shown [23] that, for a family of
estimation methods index witw(v,, k), where o(v,, k) +
o(—v,, k) = 1, there exists a corresponding family of generalized
FBPP reconstruction algorithms. The well-known FBPP algorithm
proposed by Devaney (1982) can be interpreted as a special member
of the GFBPP family withw = % Extension of the current work to
3D DT and 2D DT with nonclassical imaging geometries is under
way and will be reported elsewhere.

APPENDIX: DERIVATION OF THE RELATIONSHIP
BETWEEN P(v,, k) AND M(v,,, K)

For completeness, we outline the derivation (Pan, 1998b) of the

active isotopes that are administered to the object (Metz and Panglationship between B(, k) and M(v,, k). Using Eq. (3) and
1995). The emittedy-rays are subject to attenuation before mea-noticingé = r cos, — 6), the 1D FT of the Radon transform&(
surement. From the measured attenuated projections, the distributiaby) is given by

0.6 ™
0.55
0.5r

> 0.45r

0.4f

G

0.35r

0.3f

0.25

(a)

(b)

Figure 9. Global image variances as functions of w for (a) the FBPJ reconstruction algorithm and (b) the DF reconstruction algorithm. For the
uncorrelated noise model in Eq. (13b), both reconstruction algorithms produce the minimum global image variances at » = 0.5.
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o

P(va, do) = f P(E, poe 2™ dé

f=—w

a(f)eizmacoddo=Or dr dp. (A1)

We now turn to Eq. (2), which, fojv,| = v, can be rewritten as

M(vm, @) = Jm fx a(f)exp —j2m vy + (v — o)’ cod¢

+¢' — 0)]di, (A2)
where
¢ o d sing’ v (A3)
cos = ———=—and siIn =
VA + (v — v)? A+ (1 — v)?

Comparison of Egs. (Al) and (A2) yields the relationship

P(Va, d)O) = M(va d’)! (A4)
where
¢ =do— ¢ (A5)
and
o g (%)
Vi = vg{l (21/0) ] (A6)

The 1D Fourier series expansions obB(¢,) and M(v,,, ¢) are

defined as
1 (% )
P(ra, k) = 5 f P(va, doje® ddy, (A7)
$o=0
and
1 (2 )
M(v, k) = erf M (v, d)e* do, (A8)
$=0

respectively. For simplicity, we refer to P{, k) and M(v,,,, k) as

2
Va

1_r]%

Vm+ = T Vm- = Vm = Va (Alo)

Substitution ofv,,,, andv,,_ into Eq. (A9) yields the two estimates
of P(v,, k) in Egs. (5) and (6):

P(vg, K) = [v(vm) 'M (v, K) (A11)

= (=D Ty(v ] *M(= v, k). (A12)
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