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ABSTRACT: In diffraction tomography (DT), the measured scattered
data are unavoidably contaminated by noise. Because the detectabil-
ity of an object in a noisy image relies strongly on the signal-to-noise
ratio, it is important in certain applications to reduce the statistical
variation in the reconstructed image. Recently, we revealed the exis-
tence of statistically complementary information inherent in the scat-
tered data and proposed a linear strategy that makes use of this
information to achieve a bias-free reduction of the image variance in
two-dimensional (2D) DT. This strategy leads to the development of
an infinite class of estimation methods, that from the measured scat-
tered data, can estimate the Radon transform of the scattering object
function. From the estimated Radon transforms, one can readily
reconstruct the object function by using a variety of existing recon-
struction algorithms. The estimation methods in the class are math-
ematically equivalent, but they respond to noise differently. We inves-
tigated the noise properties of these estimation methods by use of
computer simulation studies. The results of our simulation studies
demonstrate quantitatively that it is possible to achieve a bias-free
variance reduction in the reconstructed scattering object by utilizing
complementary statistical information that is inherent in the scattered
data. © 2000 John Wiley & Sons, Inc. Int J Imaging Syst Technol, 10, 437–446,
1999

I. INTRODUCTION
Diffraction tomography (DT) is a multiview imaging technique that
seeks to determine the distribution of the index of refraction of a
scattering object. It has found applications in the fields of medical
imaging, underwater sound, nondestructive evaluation of materials,
and geophysics (Andre et al., 1995; Rouseff and Porter, 1991; Gelius
et al., 1991; Langenberg, 1985; Kino, 1979; Robinson, 1984; Muel-
ler et al., 1979). Unlike conventional X-ray computed tomography
(CT), the acoustical or electromagnetic radiation in DT is generally
treated in terms of wave fields and satisfies the inhomogeneous
Helmholtz equation (Ishimaru, 1978; Chernov, 1969; Morse and
Ingard, 1986). To obtain the distribution of the scattering object
(also referred to as the scattering object function) from the measured
scattered data, one needs to invert the inhomogeneous Helmholtz
equation. Computationally intensive iterative algorithms are gener-
ally required for the exact inversion of the inhomogeneous Helm-
holtz equation (Chew and Wang, 1990; Lu et al., 1996; Johnson and
Tracy, 1983a,b).

When the scattering object is weakly scattering, the Helmholtz
equation can be linearized through the use of the Born (or Rytov)
approximation (Ishimaru, 1978; Heidbreder, 1967). When the inci-
dent radiation is plane-wave, one can derive the Fourier diffraction
projection (FDP) theorem (Pan and Kak, 1983; Kaveh et al., 1984;
Grassin et al., 1991), which relates the Fourier transform (FT) of the
measured scattered fields to the FT of the scattering object function.
The FDP theorem provides the basis for reconstruction algorithms
such as the filtered back/propagation (FBPP; Devaney, 1982) and
direct Fourier (DF) algorithms (Pan and Kak, 1983).

In practice, the measured scattered data are contaminated by
noise that arises in the measurement process and from random
inhomogeneities in the scattering or background medium. Several
researchers have used approaches that are based on the FDP theorem
to characterize statistically varying media (Rouseff and Porter, 1991;
Fischer and Wolf, 1997). With the exception of the work in refer-
ence (Tsihrintzis and Devaney, 1993a), however, it appears that little
effort has been devoted to utilizing the statistical information con-
tained in the scattered data to reduce the variance of the recon-
structed image. In ultrasonic DT imaging of the female breast, for
example, the signal in the image can be subtle. Therefore, it is
particularly important to enhance the signal-to-noise ratio, which
generally requires that the image variance be reduced. When strong
scattering effects are present, linear DT reconstruction algorithms
based on the Born or Rytov weak scattering approximations may not
produce accurate images. However, many nonlinear DT reconstruc-
tion algorithms (Chew and Wang, 1990; Lu et al., 1996) attempt to
circumvent the limitations of the Born and Rytov approximations by
linearizing the forward scattering problem and solving a linear
inverse problem at each step of an iterative procedure. Therefore, in
order to properly regularize the nonlinear DT reconstruction prob-
lem, it remains important to have an understanding of the noise
propagation properties of linear DT reconstruction algorithms.

Recently, we have revealed the existence of statistically comple-
mentary information inherent in the scattered data and proposed a
linear strategy that makes use of this information to achieve a
bias-free reduction of the image variance in two-dimensional (2D)
DT (Pan, 1998b). Using this strategy, one can derive infinite classes
of estimation methods for obtaining the 2D Radon transform of the
scattering object function from the measured scattered data. These
estimation methods are mathematically equivalent, but they propa-
gate noise and numerical errors differently (Pan, 1998b). From theCorrespondence to:M. A. Anastasio; e-mail: anastasi@jedi.bsd.uchicago.edu
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estimated Radon transform, one can readily reconstruct the scatter-
ing object function by use of a wide variety of reconstruction
algorithms, such as the FBPJ and DF algorithms. The different
reconstruction algorithms are mathematically equivalent, but they
also respond differently to noise and errors.

In this work, we implemented and evaluated the estimation
methods for obtaining the Radon transform of the scattering object
function. From these estimated Radon transforms, we reconstructed
the scattering object functions by using the FBPJ or DF algorithm.
(It should be noted that, as described below, the DF algorithm
investigated in this paper differs from the conventional DF algo-
rithm that involves a 2D interpolation.) Therefore, each recon-
structed scattering object function is obtained from the scattered data
by use of a combination of an estimation method and a reconstruc-
tion algorithm. We conducted computer simulations to investigate
noise properties of the scattering object functions obtained with
different combinations of the estimation methods and reconstruction
algorithms. The results of our numerical studies demonstrated quan-
titatively that the reconstructed scattering object functions are vir-
tually identical in the absence of noise but are noticeably different in
the presence of noise, confirming our theoretical assertions. For each
reconstruction algorithm, we identified the estimation method that
minimizes the global image variance when the scattered data contain
uncorrelated Gaussian noise with constant variance.

The paper is organized as follows. Section II discusses the
estimation methods for obtaining the Radon transform of the scat-
tering object function from the scattered data in DT and briefly
reviews the algorithms for reconstruction of the scattering object
function from the estimated Radon transform. Section III describes
the simulation studies, including the noise model employed. Section
IV presents the results of our numerical simulations such as the
calculated image variances obtained with different combinations of
estimation methods and reconstruction algorithms. Section V dis-
cusses the significance of the results and topics for future work.

II. THEORY
A. Basic Formulation of 2D DT. The classical geometry used in
2D DT is shown in Figure 1. A scattering object is placed in a

lossless and homogeneous background medium and is illuminated
by monochromatic plane-wave radiation with complex amplitude
U0 and frequencyn0, propagating along theh-axis. The total field
measured along the lineh 5 l with an orientation anglef can be
written as a sum of the incident plane-wave fieldui(j, f) and the
scattered wave fieldus(j, f). The task in DT is to determine a
scattering object functiona(r , u ), using the transmission data
measured at various angles about the object. The underlying phys-
ical property of the scattering object that is mapped in DT is the
refractive index distributionn(r , u ), which is related to the scatter-
ing object function by the equationa(r , u ) 5 n2(r , u ) 2 1.

Let Us(nm, f) 5 *2`
` us(j, f)e2j2pnmjdj be the 1D FT of the

scattered wave field with respect toj, and let M(nm, f) be a
modified version of Us(nm, f), which is given by

M~nm, f! 5 Us~nm, f!
jn9

2p2n0
2U0

e2j2pn9l, (1)

wheren9 5 =n0
2 2 nm

2 . Then, under the Born approximation (i.e.,
uusu ! uui u), one can obtain a relationship between M(nm, f) and
a(r , u ) that can be expressed as

M~nm, f! 5 E
2`

` E
2`

`

a~rW!e2j2p@nmj1~n92n0!h#drW if unmu # n0

5 0 ifunmu . n0,

(2)

where the polar coordinates (r , u ) and rotated coordinates (j, h) are
related throughj 5 r cos(f 2 u) andh 5 2r sin(f 2 u). Equation
(2), referred to as the FDP theorem (Pan and Kak, 1983), states that
the modified FT of the scattered data in Eq. (1) gives the values of
the 2D FT of the scattering object function along a semicircular arc
of radiusn0 (Fig. 2).

B. The Radon transform and Scattered Data. The Radon
transform (Barrett, 1984) of the scattering object functiona(r , u ) is
given by

Figure 1. The classical scan configuration in DT. The incident plane-
wave propagates in the â direction and the scattered wave field is
measured along the line h 5 l.

Figure 2. The FT of the data measured along the line h 5 l is
mapped to a semicircle of radius n0 in the Fourier space {nx, ny}, where
nx and ny are the spatial frequencies of x and y, respectively.
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p~j, f0! 5
1

2p E
2`

` E
2`

`

a~r , u!d~j 2 r cos~f0 2 u!!drW,

(3)

wheref0 is the projection angle,j 5 r cos(f0 2 u), andh 5 2r
sin(f0 2 u). It is important to note that the arguments of the function
p(j, f0) are not the familiar polar coordinates, but rather define a 2D
space spanning the range of the Radon transform. The imagea(r , u )
can be reconstructed exactly from its Radon transform p(j, f0) by
use of a wide variety of computationally efficient and numerically
stable reconstruction algorithms, such as the FBPJ and DF algo-
rithms.

The 2D FT of p(j, f0) is defined as

P~na, k! 5
1

2p E
0

2p E
2`

`

p~j, f0!e
2j2pnaje2jkf0 dj df0, (4)

wherena is the spatial frequency with respect toj, and the integer
k is the angular frequency index with respect tof0. The angular
frequency indexk is discrete because p(j, f0) is periodic inf0. In
this context, “the 2D FT” we refer to is, in fact, a combination of a
1D FT and a 1D Fourier series expansion. From P(na, k), one can
readily obtain the Radon transform p(j, f0) by invoking the 2D
inverse FT. Therefore, the task of estimating p(j, f0) is equivalent
to estimating its 2D FT P(na, k). Also, it can be shown that the
object functiona(r , u ) can be reconstructed from knowledge of
P(na, k) with na $ 0. Therefore, we will focus only on estimating
P(na, k) for na $ 0.

It was shown (Pan, 1998b) that, for 0# nm # n0,

P~na, k! 5 @g~nm!#kM~nm, k!, (5)

and

P~na, k! 5 ~21!k@g~nm!#2kM~2nm, k!, (6)

where M(nm, k) is given by

M~nm, k! 5
1

2p E
0

2p

M~nm, f!e2jkf df, (7)

nm
2 5 na

2 1 nm
2, nm 5 j(=n0

2 2 nm
2 2 n0), andg(nm) 5 =nm

2 2 nm
2/

(nm 1 nm). We summarize the derivation (Pan, 1998b) of Eqs. (5)
and (6) in the Appendix.

Equations 5 and 6 indicate that P(na, k) (or, equivalently, the
Radon transform of the scattering object function) can be deter-
mined from M(nm, k) (or, equivalently, the measured scattered
data). From the estimated P(na, k) (i.e., the Radon transform), one
can subsequently reconstruct the scattering object function by use of
computationally efficient reconstruction algorithms.

The physical origins of Eqs. (5) and (6) can be understood by
examining the Fourier-space sampling pattern that is generated in a
DT experiment. As the incident radiation anglef (i.e., the orienta-
tion angle of the semicircle AOB in Fig. 2) is varied between 0 and
2p, two distinct coverages of the Fourier space are generated by the
two segments OA and OB of the semicircle AOB. It can readily be
shown that M(nm, k) and M(2nm, k) can be obtained by use of the
two distinct coverages of the Fourier space in Figures 3a and 3b,
respectively.

C. Linear Estimation of P(na, k). Because, in practice, the
scattered data will contain noise (Goodman, 1986), the scattered
data can be represented by a complex stochastic processus(j, f)
with expected valueus(j, f). (Here and in the following, bold and
normal typefaces denote a stochastic process and its expected value,
respectively.) Therefore, the 2D modified FT,M (nm, k), that is
obtained from the scattered dataus(j, f) is also a complex stochas-
tic process with expected value M(nm, k). In the absence of noise,

Figure 3. Sampling Fourier domain coverages obtained in a DT experiment. (a) Coverage produced by the arc OA. (b) Coverage produced by
the arc OB.
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both Eqs. (5) and (6) yield identical values of P(na, k). When noise
is present, however, the two estimates of P(na, k) in Eqs. (5) and (6)
are different and hence thatM (nm, k) and M (2nm, k) contain
statistically complementary information (Pan, 1998b). We will ex-
ploit this information contained inM (nm, k) and M (2nm, k) to
achieve a bias-free variance reduction of the final estimateP(na, k),
which generally leads to a reconstructed scattering object function
with reduced variances.

A possible strategy for using the statistically complementary
information inherent inM (nm, k) andM (2nm, k) is to form a linear
combination (Pan, 1998b) of the two estimates in Eqs. (5) and (6),
which is expressed as

P~na, k! 5 v@gkM ~nm, k!# 1 ~1 2 v!@~21!kg2kM ~2nm, k!#, (8)

wherev is a weighting coefficient. Using Eqs. (5) and (6), one can
show thatP(na, k) is an unbiased estimate of P(na, k). Therefore,
the coefficientv allows the two estimates in Eqs. (5) and (6) to be
combined in a way that controls the variance of the final estimate
P(na, k) without introducing any bias. Because each value ofv
gives rise to a particular final estimateP(na, k), Eq. (8) can, in
effect, be interpreted as an estimation method for obtainingP(na, k)
(i.e., the Radon transform). Also, because, in principle,v can have
any real and/or complex value, Eq. (8) represents an infinite class of
estimation methods. In this work, we will investigate the noise
properties of the infinite subclass of estimation methods that arise
whenv is chosen to be real in Eq. 8.

D. Reconstruction Algorithms. We use the FBPJ and DF al-
gorithms to reconstruct the scattering object function from the final
estimateP(na, k). It should be pointed out that, as will be shown
below, our DF algorithm differs from conventional DF algorithms
(Pan and Kak, 1983) because it only employs an explicit 1D inter-
polation.

Reconstruction with the FBPJ Algorithm.The computationally
efficient FBPJ algorithm is commonly used in X-ray CT. From the
estimated 1D FT,P(na, f0), of the Radon transform, the FBPJ
algorithm can be used to reconstruct the scattering object function,
which is given by

a~x, y! 5
1

2 E
0

2p E
2Î2n0

Î2n0

P~na, f0!unauejnaj dna df0, (9)

where

P~na, f0! 5 O
k52`

`

P~na, k!ejkf0. (10)

The limits 6=2n0 of the integration overna in Eq. (9) are deter-
mined by the highest frequencyn0 in the scattered data. This is
because Eqs. (5) and (6) can only be used to estimate P(na, k) for
2=2n0 # na # =2n0. Physically, this corresponds to the fact that
evanescent (i.e., nonpropagating) waves, which specify M(nm, k)
for nm . n0, are not commonly utilized in DT. In our implemen-
tation of the FBPJ algorithm, an unapodized ramp filter was used.
The interpolation necessary to align the backprojected data onto the
discrete image matrix was performed using bilinear interpolation.

Reconstruction with the DF Algorithm.According to the central
slice theorem, the 1D FT of the Radon transform corresponds to the
2D FT of the scattering object functiona(r , u ) in a polar coordinate
system. The implementation of the DF reconstruction algorithm
generally involves a conversion of the samples ofP(na, f0) on a
polar grid to samples of the 2D FT,A(nx, ny), of the scattering
object function on a Cartesian grid, so that one can apply the inverse
fast FT (FFT) to the samples ofA(nx, ny) for obtaininga(r , u ). The
conversion from the polar to the Cartesian grid can generally be
achieved by utilizing 2D interpolation approaches such as bilinear
interpolation. However, according to the central slice theorem (Bar-
rett, 1984),A(nx, ny) can also be calculated fromP(na, k) by use of
Eq. (10) directly. In particular, whena(r , u ) is real (i.e., the
scattering object is lossless),A(nx, ny) at a point (nx, ny) on the
Cartesian grids can be determined fromP(na, k) by use of the
following relationship (Metz and Pan, 1995)

A ~nx, ny! 5 P~na, 0! 1 2 O
k51

`

@Re$P~na, 2k!ej2kc%

1 Im$P~na, 2k 2 1!ej~2k21!c%#, (11)

wherena 5 =nx
2 1 ny

2 andc 5 tan21 ny/nx.
Unlike 2D interpolation approaches, the calculation ofA(nx, ny)

by use of Eq. (11) requires only a 1D interpolation alongnm. In this
work, we use Eq. (11) to obtain the samples ofA(nx, ny) from the
estimatedP(na, k). The object function can then be reconstructed by
inverse 2D FT ofA(nx, ny), which is given by

a~x, y! 5 E E
D

A ~nx, ny!e
j2p~xnx1yny! dnx dny, (12)

where D5 { nx, nyunx
2 1 ny

2 # 2n0
2}.

III. SIMULATION STUDIES
We implemented the class of estimation methods in Eq. (8) specified
by the combination coefficientv satisfying 0# v # 1. We used
computer simulation to evaluate the noise properties of images
obtained by use of different combinations of the estimation methods
and reconstruction algorithms.

A. Data. The scattering object was taken to be a lossless, uniform
cylindrical disk. It was assumed that the scatterer was weakly
scattering, so that the Born approximation may reasonably be taken
to hold. In this way, noise in the reconstructed images can be
attributed to noise in the scattered data and numerical errors, with no
risk of confusion with artifacts arising from the breakdown of the
weakly scattering assumption. The FDP theorem can then be used to
calculate the simulated scattered data from the scattering object
function (Pan and Kak, 1983).

B. Noise Model. To simulate the effects of a stochastic scattering
object, we treated the scattered dataus(j, f) as a complex stochastic
process with a real and an imaginary component denoted byus

(r )(j,
f) andus

(i )(j, f), respectively. Letus
(r ) 5 us

(r ) 1 Dus
(r ) andus

(i ) 5
us

(i ) 1 Dus
(i ), whereus

(r ) and us
(i ) are the means ofus

(r ) and us
(i ),

respectively. The statistics of the deviatesDus
(r ) and Dus

(i ) are
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described by a bivariate normal density function (Takai et al., 1986),
which is given by

p~Du~r!, Du~i!! 5
1

2ps isr
3 expF2

1

2 SDu~r!2

sr
2 1

Du~i!2

s i
2 DG , (13a)

where the constantssr
2 andsi

2 are the variances ofDus
(r )(j, f) and

Dus
(i )(j, f), respectively. We also assume (Tsihrintzis and Devaney,

1993b) that the noise is uncorrelated in thej andf coordinates, i.e.,
whenj Þ j9 and/orf Þ f9, the covariance

Cov~us~j, f!, us~j9, f9!! 5 0. (13b)

C. Computer Simulations. To study the noise properties of the
reconstructed images quantitatively, we generatedN 5 1,000sets
of noisy scattered data by using the noise model in Eq. (13) with
sr 5 si 5 0.5 and reconstructed 1,000 noisy images from these
data sets by using different combinations of estimation methods and
reconstruction algorithms. The matrix size of the reconstructed
images was 1283 128 pixels. The wavelength of the incident
radiation was equal to 2 pixels, and the distance from the center of
the scattering object to the measurement line was 200 pixels. The
local image variance was calculated empirically from theN sets of
reconstructed images as

Var$a~rW!% 5
1

N 2 1 SO
i51

N

ai~rW!2 2
1

N S O
i51

N

ai~rW!D 2D , (14)

whereai(rW) is the i th image obtained with a particular combination
of an estimation method and a reconstruction algorithm. The global
image variance provides a convenient index for comparing the
overall statistical variability of reconstructed images. The empirical
global image variance, GV, was calculated by integrating the local
image variance Var{a(rW)} over all image space, i.e.,

GV 5 E
2`

` E
2`

`

Var$a~rW!% drW. (15)

(Although in this work we compare the different reconstruction
algorithms using the GV, it should be noted that, from a signal
detection perspective, the global variance metric may not be very
useful because it does not contain information regarding the noise
texture. Comparing the different reconstruction algorithms on the
basis of signal detectability is beyond the scope of this study and
remains a topic for future investigation.)

D. Calculation of M(nm, k) and P(na, k). The 2D FT of the
modified scattered data,M (nm, k), was calculated from the mea-
sured scattered dataus(j, f). For each anglef, us(j, f) was
zero-padded by a factor of 2 prior to calculatingUs(nm, f), result-
ing in a doubling of the sampling density along thenm axis inUs(nm,
k) (and consequentlyM (nm, k)). This increase in sampling density
is necessary to increase the accuracy of the interpolation ofnm that
is required for calculatingP(na, k) from M (nm, k) andM (2nm, k)
as described below.

The FBPJ or DF algorithm requires thatP(na, f0) be uniformly
sampled onna. However, because of the nonlinear relationship

betweenna andnm, the uniform sampling points at whichna is to
be evaluated do not generally correspond to values ofnm at which
the FFT evaluatesM (nm, k). Becausenm

2 5 na
2 1 nm

2 , for a given
value ofna, Eq. (8) indicates thatP(na, k) can be determined from
M (nm 5 =na

2 1 nm
2 , k) and M (nm 5 2=na

2 1 nm
2 , k). In this

work, we used linear interpolation to determine the values of
M (nm 5 =na

2 1 nm
2 , k) andM (nm 5 2=na

2 1 nm
2 , k) from the

sampled values ofM (nm, k) andM (2nm, k).

IV. RESULTS
From the computer simulated noiseless scattered data, we obtained
two estimates of the Radon transform of the scattering object func-
tion by use of two estimation methods of Eq. (8) specified byv 5
0.5 and 1.0. From the two estimates of the Radon transform, using
the FBPJ and DF algorithms, we subsequently reconstructed two
scattering object functions as shown in Figures 4 and 5, respectively.
The images associated with different values ofv in Figure 4 are
observed to be virtually identical except for minor differences at-
tributable to numerical errors caused by finite sampling. A similar
observation can be made for the images in Figure 5 as well. The
results shown in Figures 4 and 5 confirm quantitatively our assertion
that the two estimates of P(na, k) in Eqs. (6) and (7) (and hence their
linear combinations with differentv values in Eq. 8) are identical in
the absence of noise.

Using the computer simulated noisy scattered data, we obtained
two estimates of the Radon transform of the scattering object func-
tion by use of two estimation methods of Eq. (8) specified byv 5
0.5 and 1.0. From the two estimates of the Radon transform, using
the FBPJ and DF algorithms, we subsequently reconstructed the two
noisy scattering object functions shown in Figures 6 and 7. The
images associated with different values ofv in Figure 6 are ob-
served to be clearly different from each other. A similar observation
can be made for the images in Figure 7 as well. Therefore, the results
in Figures 6 and 7 confirm quantitatively our assertion that the two
estimates of P(na, k) in Eqs. (6) and (7) (and hence their linear
combinations with differentv values in Eq. 8) respond to noise
differently. Also, different reconstruction algorithms propagate
noise and numerical errors differently. This can be verified, for
example, by observation of the conspicuous differences between the
noiseless images in Figures 4a and 5a and between the noisy images
in Figures 6a and 7a forv 5 0.5.

Figure 8 displays empirical image-variance profiles calculated
from noisy images obtained from 1,000 sets of computer simulated
noisy scattered data. The solid and dotted curves show the variance
profiles calculated from noisy images that were reconstructed with
the DF algorithm from 1,000 sets of estimates of the Radon trans-
form by use of the estimation methods specified byv 5 0.85 and
0.5, respectively. The dashed and dashed-dotted curves show the
variance profiles of noisy images reconstructed with the FBPJ algo-
rithm from 1,000 sets of estimated Radon transforms by use of the
estimation methods specified byv 5 0.85 and 0.5, respectively. It is
seen from Figure 8 that the variances of images associated withv 5
0.5 are smaller than those of the images associated withv 5 0.85 for
both reconstruction algorithms. As we already observed in Figures 3
and 4, for both values ofv, the variances of the images recon-
structed by the DF algorithm are higher than those of the images
reconstructed by the FBPJ algorithm. Qualitatively similar results
were also obtained for different values ofv and different noise-
model parameterssr andsi. This is explained by the well-known
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fact that the DF algorithm is more sensitive to noise and numerical
errors than is the FBPJ algorithm (Anastasio et al., 1998).

We calculated sets of 1,000 estimated Radon transforms by use
of several estimation methods specified by values ofv [ [0, 1].
From each set of estimated Radon transforms, sets of images were
reconstructed by use of the FBPJ and DF reconstruction algorithms.
Therefore, for images obtained using each reconstruction algorithm
(DF or FBPJ), the global image variance can be interpreted as a
function ofv. Figures 9a and 9b display the global image variances
as functions ofv calculated from images obtained by use of the
FBPJ and DF reconstruction algorithms, respectively. The curves in
Figure 9 indicate that, for each reconstruction algorithm, different
global image variances are obtained when different estimation meth-
ods are used to estimate the Radon transform. Figure 9 reveals that

the estimation method withv 5 0.5 produces images that have
smaller global image variance than any other estimation method in
the class. This observation is in agreement with the theoretical
predictions made in Pan (1998b), where it was proved analytically
that, for uncorrelated data noise (see Eq. 13b),v 5 0.5 determines
the optimal estimation method that yields the smallest global image
variance. In addition, it was predicted [23] that the global image
variance is a parabolic function ofv and that the ratio between the
maximum and minimum global image variances is1

2
. These theoret-

ical predictions are verified by the results in Figures 9a and 9b.

V. DISCUSSION
It is known that the measured scattered data in DT with the classical
scan geometry provide two distinct sets of samples of the FT of the

Figure 5. Noiseless images of a lossless cylindrical scattering ob-
ject function obtained by using the (a) v 5 0.5 and (b) v 5 1.0
estimation methods with the DF reconstruction algorithm.

Figure 4. Noiseless images of a lossless cylindrical scattering ob-
ject function obtained by using the (a) v 5 0.5 and (b) v 5 1.0
estimation methods with the FBPJ reconstruction algorithm.
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scattering object function (Pan and Kak, 1983; Devaney, 1982). In
principle, the scattering object function can be reconstructed from
either of these two distinct sets of samples. Using the conventional
DF algorithm, one often reconstructs the scattering object function
from only one set of the samples, simply discarding the other set
(Pan and Kak, 1983; Gelius et al., 1991). However, we showed that,
in the presence of data noise, the two sets of samples contain
statistically complementary information and that this information
can be used to achieve a bias-free reduction of variance in the
reconstructed scattering object function. In an attempt to make use
of this information, we introduced a linear combination of the
knowledge derived from the two sets of samples, which leads to the
development of an infinite class of estimation methods (Eq. 8) for

obtaining the Radon transform of the scattering object function from
the scattered data in DT.

We have implemented the estimation methods in this infinite
class and investigated the noise properties of these estimation meth-
ods and the FBPJ and our DF reconstruction algorithms by using a
large number of computer simulated scattered data sets. The numer-
ical results corroborated the theoretical assertions, demonstrating
that the estimation methods propagate noise in the scattered data
differently and that the noise properties of the reconstructed images
depend on the choice of estimation methods and reconstruction
algorithms. Through our simulation studies, we have demonstrated
that it is possible to achieve a bias-free reduction of the statistical
variation in the reconstructed scattered object function by utilizing
complementary statistical information inherent in the scattered data.

Figure 7. Noisy images of a lossless cylindrical scattering object
function obtained by using the (a) v 5 0.5 and (b) v 5 1.0 estimation
methods with the DF algorithm.

Figure 6. Noisy images of a lossless cylindrical scattering object
function obtained by using the (a) v 5 0.5 and (b) v 5 1.0 estimation
methods with the FBPJ algorithm.
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(The use of an explicit smoothing operation generally introduces
bias in the reconstructed scattering object function.)

Single-photon-emission-computed tomography (SPECT) is a
medical imaging modality that collectsg-rays emitted from radio-
active isotopes that are administered to the object (Metz and Pan,
1995). The emittedg-rays are subject to attenuation before mea-
surement. From the measured attenuated projections, the distribution

of the isotopes in the object can be reconstructed. It is interesting to
note that despite the fact that SPECT with uniform attenuation and
DT are two imaging modalities that are based on very different
physical processes, the mathematics and statistical analyses of the
image reconstructions are virtually identical. For example, it can be
shown that the 2D FT of the measured data in SPECT with uniform
attenuation is related to P(na, k) by equations completely analogous
to those derived for DT (Eqs. 5 and 6). As for the DT problem,
infinite classes of methods for estimating the Radon transform in
SPECT are obtained by forming different linear combinations of the
two estimates P(na, k). For a detailed comparison of the SPECT and
DT reconstruction problems, see Pan (1998a).

In this work, we implemented and evaluated the estimation
methods. In particular, we investigated the noise properties of the
estimation methods with real-valuedv. It can be shown, however,
that the optimalv that minimizes the variance of the final estimate
P(na, k) is a complex function ofnm andk. The noise properties of
estimation methods withv being a complex function ofnm andk
require further investigation. It was shown [23] that, for a family of
estimation methods index withv(nm, k), where v(nm, k) 1
v(2nm, k) 5 1, there exists a corresponding family of generalized
FBPP reconstruction algorithms. The well-known FBPP algorithm
proposed by Devaney (1982) can be interpreted as a special member
of the GFBPP family withv 5 1

2
. Extension of the current work to

3D DT and 2D DT with nonclassical imaging geometries is under
way and will be reported elsewhere.

APPENDIX: DERIVATION OF THE RELATIONSHIP
BETWEEN P(na, k) AND M(nm, k)

For completeness, we outline the derivation (Pan, 1998b) of the
relationship between P(na, k) and M(nm, k). Using Eq. (3) and
noticingj 5 r cos(f0 2 u), the 1D FT of the Radon transform p(j,
f0) is given by

Figure 8. Variances calculated from images obtained by using the
v 5 0.5 estimation method with the DF reconstruction algorithm
(dotted line) and the FBPJ reconstruction algorithm (dashed-dotted
line) and by using the v 5 0.85 estimation method with the DF
reconstruction method (solid line) and the FBPJ reconstruction
method (dashed line). The variances obtained using the v 5 0.5
estimation method are smaller than those associated with the v 5
0.85 estimation method for both the FBPJ and DF reconstruction
algorithms.

Figure 9. Global image variances as functions of v for (a) the FBPJ reconstruction algorithm and (b) the DF reconstruction algorithm. For the
uncorrelated noise model in Eq. (13b), both reconstruction algorithms produce the minimum global image variances at v 5 0.5.
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P~na, f0! ; E
j52`

`

p~j, f0!e
2j2pnaj dj

5 E
u50

2p E
r50

`

a~rW!e2j2pnarcos~f02u!r dr du. (A1)

We now turn to Eq. (2), which, forunmu # n0, can be rewritten as

M~nm, f! 5 E
2`

` E
2`

`

a~rW!exp@2j2pÎnm
2 1 ~n9 2 n0!

2r cos~f

1 f9 2 u!# drW, (A2)

where

cosf9 5
nm

Înm
2 1 ~n9 2 n0!

2
and sinf9 5

n9 2 n0

Înm
2 1 ~n9 2 n0!

2
. (A3)

Comparison of Eqs. (A1) and (A2) yields the relationship

P~na, f0! 5 M~nm, f!, (A4)

where

f 5 f0 2 f9 (A5)

and

nm
2 5 na

2F1 2 S na

2n0
D 2G . (A6)

The 1D Fourier series expansions of P(na, f0) and M(nm, f) are
defined as

P~na, k! ;
1

2p E
f050

2p

P~na, f0!e
2jkf0 df0 (A7)

and

M~nm, k! ;
1

2p E
f50

2p

M~nm, f!e2jkf df, (A8)

respectively. For simplicity, we refer to P(na, k) and M(nm, k) as
the 2D FTs of the Radon transform and modified data function,
respectively. Using Eqs. (A4) and (A5) in Eq. (A7) yields

P~na, k! 5
1

2p E
f50

2p

M~nm, f!e2jk~f1f9! df 5 g~nm!kM~nm, k!, (A9)

whereg(nm) 5 e2jf9 5 =nm
2 2 nm

2/(nm 1 nm) with nm 5 j(=n0
2 2 nm

2

2 n0). It can be shown thatg(2nm) 5 2g(nm)21.
Notice that for a given real value ofna satisfying 0# na # 2n0,

there are two values ofnm that satisfy Eq. (A6):

nm1 5 2nm2 5 nm 5 naÎ1 2
na

2

4n0
2 (A10)

Substitution ofnm1 andnm2 into Eq. (A9) yields the two estimates
of P(na, k) in Eqs. (5) and (6):

P~na, k! 5 @g~nm!#kM~nm, k! (A11)

5 ~21!k@g~nm!#2kM~2nm, k!. (A12)
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