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1 Introduction

With the advent of high-speed networking technology and multimedia com-
pression, various network-based multimedia services have become available.
One of most popular ones is media streaming, which delivers multimedia con-
tent as continuous data so that clients can browse this online without waiting
for entire multimedia files to be downloaded. Such technologies have been
widely explored to enable a variety of network-based multimedia applications
like video-on-demand distance learning, video conferencing, and so on.
A QoS-aware media grid [17] aims at presenting a scalable, robust and se-

cure media access over grid environments [21]. An ever-increasing demand in
computational resources has prompted the growth of grid techniques, and has
increased the heterogeneity of network services and connections. QoS-aware
media streaming [18] is considered a critical part of a media grid, and involves
the access of text, graphics, audio and video content. As the main components
of multimedia services, audio and video streaming require qualified network
resources, such as high bandwidth and low latency. Since media streaming
servers operate in a shared network environment, an efficient traffic predic-
tion mechanism on available bandwidth is important for choosing appropriate
media streaming servers and resolutions of media content to provide Quality
of Service (QoS) of media streaming in distributed heterogeneous grid en-
vironments. To support QoS-aware streaming services, multiple versions of
media content with different resolutions are provided for adapting to varia-
tions in network conditions. If prediction of available bandwidth can be made
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beforehand, a suitable version of media content can be chosen based on this
prediction, which could help decrease degradation, such as lost packets and
jitter caused by insufficient in bandwidth.

Typical data mining (DM) tasks include prediction, classification, clustering,
and discovery of association rules. With the objective of discovering unknown
patterns from data, DM methodologies have been derived from the fields of
machine learning (ML), artificial intelligence (AI), and statistics. Data min-
ing techniques have begun to serve fields outside of computer science, scien-
tific research and artificial intelligence, such as the financial area and factory
assembly lines. DM has been shown to lead to improved efficiency in man-
ufacturing, prompting marketing campaigns, detecting fraud, and predicting
diseases based on medical records. With ever increasing demands on com-
puting resources, DM applications have become desirable in grid computing
environments.

Being an integrated environment, Grids are autonomous, share resources,
heterogenous, and distributed in nature. A Media Grid shares these charac-
teristics, but as well emphasizes media streaming functions. Many prediction
techniques have been applied to media streaming for improving QoS Services
through predicting the following:

1. bandwidth – in order to adapt to dynamic media content streaming;
2. media streaming service request patterns – in order to automatically du-

plicate media content;
3. workload and resource availability of media servers – to determine intelli-

gent scheduling strategies;
4. usage patterns of grid computing environments;
5. user request patterns in the media grid.

Data are accumulated from heterogeneous resources in media grids, but there
is currently a lack of an efficient data mining framework and appropriate
techniques for analyzing data generated in such grids. The quality of media
streaming is mainly affected by network capacity, bandwidth, and through-
put. Capacity is the maximum possible bandwidth over a network path. There
are two types of bandwidth: (i) available bandwidth is the maximum allow-
able bandwidth, and (ii) consumption bandwidth is the amount of bandwidth
consumed. With bandwidth prediction, we could avoid congestion caused by
heavy network loads and reduce overestimation (underestimation) of the band-
width requirements from clients. In this chapter, we focus on applying neural
networks for predicting bandwidth, which facilitates QoS in media streaming.

The chapter is organized as follows. Section 2 describes related work. Sec-
tion 3 presents a media grid framework. Section 4 describes the data mining
strategy for bandwidth prediction in media grids. Experiments of bandwidth
prediction are presented in Section 5. Section 6 concludes the chapter.
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2 Related Work

Grid computing is a relatively reecent technology that aggregates large
amounts of geographically distributed resources – such as PC clusters, su-
percomputers, network storages/caches – to make applications which are
impossible for a local machine/cluster to be possible over networks. Dur-
ing the last decade, grid technologies have been applied to computationally
intensive applications in the field of high energy physics, and projects like
GriPhyN[22], PPDG[23], BIRN[24], DataTAG[25] have achieved much suc-
cess in data processing and distribution. While most current research focuses
on providing high capacity computational services on grids, there is increasing
interest in exploring the deployment of grid technologies for providing mul-
timedia services over networks. Recent developments of media grids involve
using industry standard streaming protocols [26] (for instance, RTP, RTSP,
and RTCP) and integrating various grid technologies (for example, informa-
tion, data management and resource management services) into media grids
[17] to support a large population of internet streaming users. In this section,
we review previous work on network bandwidth prediction over media grid
environments, and briefly introduce neural networks.

2.1 Network Bandwidth Prediction

In [28] and [29], the bandwidth of out-going link of network node is modelled
according to wavelet transformation coefficients. Neural networks are applied
as well to predict these coefficients. However, it is difficult to determine the
coefficients in the wavelet modelling method. The network traffic is dynamic
and might vary dramatically under different conditions or during different
time periods. It is therefore inappropriate to fix the coefficients for predicting
the dynamic bandwidth in wavelet modelling.

The Network Weather Service (NWS) [34] is a well-known network perfor-
mance measurement and has been used to predict network traffic in Grid
computing. Besides probes which are used to record network performance,
NWS uses prediction methods such as mean-based, median-based and autore-
gression to forecast the network traffic. Despite its strengths, this approach
does have disadvantages similar to the wavelet modelling method – in other
words, it is difficult to adapt to the dynamic network conditions of grid envi-
ronments.

As a popular data mining tool, neural networks have been employed to pre-
dict network bandwidth. For example, [5] used neural networks to predict
available network bandwidth. In their work, the recorded network traffic is
divided into non-overlapped and continuous bins. The time stamp, minimum
packet rate, maximum packet rate, average packet rate, minimum bit rate,
maximum bit rate, and average bit rate are derived from each bin data and
used as the inputs to neural networks. The outputs of the neural network
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predictor are the bandwidth of later K-step bins, K being defined by the user.
This method holds promise for predicting network bandwidth. Our network
bandwidth prediction method is similar to this method. However, we pro-
pose a new performance metric to better evaluate the performance of neural
network predictors.

2.2 Brief Overviews on Neural Networks

It is estimated that there are 50?? different types of artificial neural networks
(ANNs) in use today [ref??]. ANNs can be categorized according to differ-
ent aspects, such as learning algorithm, the number of network layers, the
direction of signal flow, the activation function, and so on.

Based on the learning algorithm, neural networks can be classified into three
major categories:

• In supervised learning, pairs of input and target vectors are required to
train networks, so that appropriate outputs corresponding to input sig-
nals are generated accordingly. With an input vector applied, the error
between the output of the neural network and its target output is calcu-
lated, which is then used to tune weights in order to minimize this error.
The least mean square (LMS) method is a well-known method in mini-
mizing errors.???? Supervised learning includes error-correction learning,
reinforcement learning and stochastic learning.;
• Unsupervised learning does not require target vectors for the outputs.
Without input-output training pairs as external teachers, unsupervised
learning is self-organized to produce consistent output vectors by modify-
ing weights. Paradigms of unsupervised learning include Hebbian learning
and competitive learning. Kohonen’s self-organizing map (SOM)is a typ-
ical neural network whose learning is unsupervised.;
• Some neural networks employ hybrid learning . For example, coun-
terpropagation networks and radial basis function (RBF) networks use
both supervised (at the output layer) and unsupervised (at the hidden
layer) learning. Counterpropagation neural networks combine network
paradigms of SOM and Grossberg’s outstar [33]. The counterpropagation
neural network can be used to produce corresponding outputs when an
input vector is incomplete, noisy or partially in error.

According to the direction of signal flow, neural networks can be categorized as
feedforward – in which weight connections are fed forward from inputs through
hidden neurons to output neurons – and recurrent – in which feedback con-
nections are present. Compared with feed-forward neural networks, recurrent
neural networks can be unstable and dynamic. Hopfield neural networks [33]
are well-known recurrent neural networks. Recurrent neural networks have
been studied as examples of chaotic systems [30][31]. The bidirectional as-
sociative memory (BAM) network is another type of neural network which
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employs feedback. The BAM is heteroassociative. Both BAM and Hopfield
neural networks are able to produce correct outputs when inputs are partially
missing or incorrect.

Adaptive resonance theory (ART) networks [33] deal well with the stability-
plasticity dilemma.???????? ART classifies an input vector into its class ac-
cording to the stored pattern with which it is most similar. The stored pattern
is tuned to make it closer with the input vector. Without finding its matching
pattern – it is within a predefined tolerance for matching purposes – a new
category is generated by storing a pattern which is similar to the input vector.

Another important category of neural networks is based on how the activa-
tion of a hidden unit is determined. In multi-layer perceptron (MLP) neural
networks, the activation of a hidden unit is determined by the scalar prod-
uct of the input vector and its corresponding weight vector. In Radial basis
function (RBF) neural networks the activation is determined by the distance
between the input vector and a prototype vector.

In this paper, we employ MLPs exclusively.

3 System Model of Data Analysis over Media Grid

In this section, we describe our data analysis system model in which data
mining techniques are employed.

3.1 Architecture

Our media grid multi-agent data analysis system adopts distributed analysis
agents to provide on-line monitoring services for heterogeneous Internet users.
Figure 1 shows the layout of the agent-based data analysis system where me-
dia servers, clients, and analysis agents are geographically distributed over
the network. Each analysis agent can work independently or cooperatively to
monitor and predict the resource usage of media servers over a certain area
so as to improve the global resource utilization. Distributed analysis agents
reduce the processing burden of streaming servers and are sufficiently flexible
to deal with various streaming applications. Such a system is highly scal-
able and can ameliorate the effects of failure and overloading in a centralized
monitoring system.

A Media Grid is a distributed infrastructure which brings together vari-
ous distributed resources into a virtual environment and provide customized
streaming services in a cost-effective way. It accumulates various types of
abundant resources on the Internet (such as network storage, Personal Com-
puters, or PC clusters) to improve the system computation and storage ca-
pacity. Figure ?? shows the hierarchical layered architecture of a media grid.
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Analysis
Agent

Client

Media
Server

Fig. 1. Topology layout of a multi-agent based data analysis system

The lowest layer is the resource layer which manipulates distributed phys-
ical resources – media servers, storage, camera, and the like – to support
higher level grid services. Above the resource layer is the grid middleware
layer which includes the grid component services, e.g., information service
[19], data management service [20], and so on. The grid middleware provides
a firm foundation to support large-scale streaming services. It inherits such
features of grids generally as the integration of loosely-coupled network re-
sources, a service-oriented structure, and self-organization and decentralized
methods of resource management. Media grid components are built above
the grid component layer to provide multimedia-related services for Internet
users. The media grid portal serves as an abstraction layer for the various
media grid components. Through this portal, clients can subscribe to access
media content with their QoS requirements such as playback time, bit rate,
resolution, and so forth.
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3.2 System Components

A media grid multi-agent data analysis system monitors and predicts network
resource usage over distributed media grid environments. It consists of four
main components: an analysis agent, a web portal, data storage, and a grid
information service.

• Analysis Agent: The analysis Agent collects QoS information from a
streaming server/client or (both), analyze it, provide feedback to the user,
and store the data into a database.

• Web Portal: The web portal is a web service based interface which al-
lows users to customize the quality monitoring by specifying their quality
metrics or measurement conditions.

• Data Storage: QoS information and results are stored in a distributed
database for archiving or long-term analysis.

• Grid Information Service [19]: When the user submits requests to web
portal, the system needs to find a suitable analysis agent. The Grid Infor-
mation Service will help to provide information on the available resources.

Analysis
AgentAnalysis

AgentAnalysis
Agent

Web
Service
Portal

User

12

3

4
5 6

Database

Media
Server

Streaming
Client

Grid
Information
Service

Fig. 2. Architecture and component interaction

Figure 4 demonstrates a working scenario of the multi-agent data analysis
service, including and the interaction between each component. Each analysis
agent will register itself to the grid information service as a computational
resource over the network. The data analysis time sequence includes:

1. clients submit requests via the web service portal;
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2. data is collected from the streaming servers and passed to the analysis
agent for analysis;

3. the analysis agent performs data processing and predicts bandwidth con-
sumption;

4. results are stored into the database for archiving or future analysis;
5. the results of the analysis or quality reports are sent back to the service

providers to assist with resource management.

For a large scale network with multiple media servers distributed over different
domains, it is not practical to use only one centralized server to monitor
and analyze the system information due to the limited CPU and bandwidth
resources. Such a system connects multiple agents and improves capacity by
utilizing distributed computation power such as CPU and workstations over
the Internet.

4 Data Mining Strategy for Bandwidth Prediction

In this section, we briefly introduce MLPs as neural network predictors for
predicting network traffic in media grids. A data mining strategy for training
these neural networks are is presented later (Sect.??).

4.1 Multi-Layer Perceptron Neural Network

A typical multi-layer perceptron (MLP) neural network classifier is shown in
Figure ??.

A hidden layer is required for MLPs to classify linearly inseparable data
sets and make prediction. The input nodes do not carry out any processing.
A hidden neuron in the hidden layer is shown in Figure ??.

The jth output of a feed-forward MLP neural network is:

yj = f(
K∑

i=1

W
(2)
ij ∗ φi(x) + b

(2)
j ) (1)

where W
(2)
ij is the weight connecting hidden neuron i with output neuron j,

K is the number of hidden neurons, b
(2)
j is the bias of output neuron j, φi(x)

is the output of hidden neuron i, and x is the input vector.

φi(x) = f(W(1)
i · x + b

(1)
i ) (2)

where W(1)
i is the weight vector connecting the input vector with hidden

neuron i, and b
(1)
i is the bias of hidden neuron i.

A common activation function f is the sigmoid or logistic function:

f(z) =
1

1 + e−βz
(3)



Data Mining in QoS-aware Media Grids 9

1i
x

2i
x

1,  mi
x

im
x

.  .  .

... ...

... ...

1
y

k
y

M
y

Fig. 3. A two-layer MLP neural network with one hidden layer
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where β is the gain.
Another activation function often used in MLP neural networks is the

hyperbolic tangent, which takes on values between -1 and +1 (instead of 0..1,
as with the sigmoid):

f(z) =
eβz − e−βz

eβz + e−βz
(4)

There are many training algorithms for MLP neural networks reported
in the literature, for example [11]: gradient decent error back-propagation
(BP), back-propagation with adaptive learning rate, back-propagation with
momentum, Quasi-Newton back-propagation, Bayesian regularization back-
propagation, conjugate gradient back-propagation, and the Levenberg-Marquardt
algorithm.

The back-propagation technique [15] is commonly used to train MLPs. This
technique could learn more than two layers of network. The key idea of the
back-propagation technique is that the error obtained from the output layer
is propagated backward to the hidden layer and is used to guide training of
the weights between the hidden layer and the input layer.

[6] showed that the BP algorithm is very sensitive to initial weight selection.
Prototype patterns [4] and the orthogonal least square algorithm [13] can be
used to initialize the weights. The initialization of weights and biases has a
great impact on both the network training (convergence) time and general-
ization performance. Usually, the weights and biases are initialized to small
random values. If the random initial weights happen to be far from a good
solution or they are near a poor local minimum, training may take a long
time or become trapped there [8]. Proper weight initialization will place the
weights close to a good solution, which reduces training time and increases
the possibility of reaching a good solution.

[8] proposed initialization of weights using a clustering algorithm based on
mean local density (MLD). This method easily leads to good performance,
whereas random weight initialization leads to a wide variety of different re-
sults, many of which are poor. However, it is noted that the best result from
random weight initialization was much better than the result obtained from
the MLD initialization method.

4.2 Data Mining Strategy

Rather than streaming high resolution media content which suffers jitter or
long delays due to insufficient bandwidth, smooth streaming of content using
a relatively lower resolution might be preferable. Media content is available in
multiple formats with different resolutions. By having knowledge of bandwidth
in advance, our strategy could be to automatically switch to an appropriate
resolution of media content in order to adapt to changing network traffic con-
ditions. Another reason for predicting network traffic is to better allocate the
job load to different media servers distributed in different physical locations.
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The Data mining model is as follows:

1. Raw data collection – data is collected for training neural networks in
order to predict future network traffic;

2. Data cleaning and transformation – The collected raw data is in the
form of a time-series, and therefore needs to be transformed into multi-
dimensional format prior to inputting to the neural network. Moreover,
when noise is present in the data, de-noising (filtering) is usually required;

3. Neural networks are trained according to historical data – The performance
of neural network predictors is evaluated to meet the needs of media grid
QoS;

4. The trained neural network predictors are used for predicting network
traffic, and for determining an adaptive streaming media strategy.

Data Collection for Network Bandwidth

In order to predict network traffic, it is important to collect historical data.
Future trends can then be discovered (predicted) using various techniques,
based on this historical data. In general, if the network varies dramatically
day-by-day, at least two-weeks of data is preferred. In order to collect histori-
cal network traffic data for training and testing purposes, a C-based program
– Info Daemon – is used to capture the server incoming and outgoing band-
width every 2 seconds. The captured data is then passed to the analysis agent
for processing and analysis. In this chapter, we focus on the analysis and pre-
diction of the outgoing bandwidth consumption, since most traffic is caused
by streams transmitted from media servers.

Data Preprocessing

Data preprocessing is critical due to its significant influence on the perfor-
mance of data mining models. Data preprocessing usually includes noise elim-
ination, feature selection, data partition, data transformation, data integra-
tion, and missing data processing.

The time-series data representing the network bandwidth can be written as:

Y = {y(t)|t = 1, 2, ..., N} (5)

where N is the number of data records. The data are transformed into the
format which are used as the inputs to neural network predictors. The one-
dimensional (1D) data are transformed into multi-dimensional data, as fol-
lows:

Y1 =




y(1) y(m + 1) y(2m + 1) · · ·
y(2) y(m + 2) y(2m + 2) · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
y(m) y(2m) y(3m) · · ·


 (6)
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where m is the size of the window which divides the 1D time-series data into
m-dimensional, m being determined by the user according to media streaming
strategy. If a longer period of bandwidth prediction is needed, m is set as a
larger number.

Including the m bandwidth rates in one vector, we need to add additional
variables which are significant for prediction, and these are transformed from
the m variables. They include time stamp, minimum bandwidth rate, maxi-
mum bandwidth rate, and average bandwidth of the m bandwidth rates. Thus
a new datum X with m + 4 dimensions is generated accordingly:

X =




y(1) y(m + 1) y(2m + 1) · · ·
y(2) y(m + 2) y(2m + 2) · · ·
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
y(m) y(2m) y(3m) · · ·
t t + 1 t + 3 · · ·
a(1) a(2) a(3) · · ·
mi(1) mi(2) mi(3) · · ·
ma(1) ma(2) ma(3) · · ·




(7)

where a(i), mi(i) and ma(i) are the average, minimum and maximum band-
width of the vector Y1(i) = {y(i ∗ m + 1), y(i ∗ m + 2), · · · , y((i + 1) ∗ m)},
respectively. t is the initial time stamp, and which can be set as t = 1.

4.3 Performance Metrics

Several performance metrics for measuring the accuracy of a predictor exist
in the literature. For instance, the coefficient of determination which is the
mean squared error (MSE) normalized by the variance of the actual data is
used as the performance metric in [9]. The disadvantage of the coefficient of
determination lies in that the performance evaluation is inappropriate when
the actual data only vary around the mean value. In [14], the maximum and
mean error are used as the measurement of performance. In [5], the relative
prediction error is used as the metric to evaluate predictor performance:

err =
PredictedV alue−ActualV alue

ActualV alue
(8)

The mean error and relative mean error suffer the same problem in which the
performance values produced are affected significantly if there are isolated
errors with a large magnitude in value.

In order to overcome the aforementioned disadvantages, we propose a new
multi-level performance metric represented by the vector, P = {p1, p2, ..., pl},
where l is determined empirically by the user, and reflects the level of perfor-
mance metric needed. The relative prediction errors from Eq. 8 are sorted in
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ascending order. Assume l = 6. p1, p2,...,p6 are the mean relative errors of the
first 20%, 40%, 60%, 80%, 90%, 100% of sorted relative errors, respectively.
This multi-level performance metric is represented by a multi-level relative
mean error vector. l can be set empirically; in this chapter, we set l = 6.

The network traffic data is recorded every day. The neural network is trained
according to one day’s data, and then used to predict the the next day’s
network traffic. The data are transformed into a (m+4)-dimensional data set
according to Eq. 6 and Eq. 7. For example, if m = 5, the neural network is
trained to predict the average bandwidth of the next 10 seconds according to
the preceding 10-second traffic (recall that the original data is recorded every
two seconds).

5 Experimental System and Performance Evaluation

Internet

Client

Client

Client

Media Server 0

Data sensor

Info Daemon

Streaming Server

Media Server 1

Media Server n

WAN

Emulator

WAN

Emulator

WAN

Emulator

Client

Web Server

Apache + php QoS analysis

Data listener

Analysis Agent 0

Analysis Agent 1

Analysis Agent m

Client

Database

Fig. 5. Experimental system setup

5.1 System Hardware and Software

Figure 5 illustrates the prototype system which consists of analysis agents, a
web service portal, media servers, and clients. The media servers are Linux
PCs with Fedora Core 4, running Darwin Streaming Server version 5.5.1. Dar-
win Server – an open source server developed by Apple Computer Inc. –
streams media to clients over industry standard protocols (such as RTP,
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RTSP, RTCP). To monitor certain streaming sessions, users (either the service
provider or streaming clients) can query the web server and customize their
measurement metrics for quality measurement and assessment. The web por-
tal runs on the web server, which is in charge of accepting/rejecting requests
for quality measurement and assessment. Once a request has been accepted by
the web portal, it will be allocated to an analysis agent. In our experimental
system, each analysis agent is a Java program located on a Linux machine;
however, it is suitable for both MS-Windows and Linux platforms. Table 5.1
summarizes the hardware and software used in the prototype system.

Table 1. Hardware and Software

Function OS Mem Number Software

Media server Linux 1GB 3 Darwin server, Data Sensor, Info Daemon
WAN emulator Linux 1GB 3 Iproute2
Analysis agent Linux 512 2 Data Collector, QoS Analyzer

Clients WinXP 256 n Quicktime/Realplayer/IBMToolkitForMPEG4

5.2 Request Arrival Pattern

We consider a request rate reported in [35], where a client submits requests to
VWHs with various probability at different time in a 24-hour period. Requests
arrive in Poisson distribution according to the probability described in Figure
6. There are three media servers, and 1500 users are randomly generated to
stream videos from any server according to the request arrival pattern.

5.3 Results and Analysis

The data files are generated by Info Daemon located at each media server
(Figure 5), which records the bandwidth incoming and outgoing traffic every
two seconds. Simple noise detection is carried out by detecting those samples
with the extreme values and isolating them.

The neural networks are used to predict the network bandwidth of media
streaming in a grid environment. In this work, 20 neurons are used in the
first layer, and 10 neurons are used in the second layer of the neural network
predictor. The activation function is a sigmoid. The weights of the neural
network predictors are determined automatically during the training process.

Figures 7 through 12 show the target and predicted values with m=5, 10, 15,
20, 25, 30, which represent the size of bandwidth records with 10s, 20s, 30s,
40s, 50s and 60s, respectively. For one-day data, there are originally 24 ∗ 60 ∗
60/2 = 43200 samples. The horizontal axis shows the number of data samples
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Fig. 6. Request rate per user over 24 hours.

following transformation. A different number of training samples is generated
with m. For example, when m = 5, there are 43200/5 = 8640 samples with
m + 4 = 9 dimensions.

Fig. 7. Targets and predicted values with m = 5

Fig. 8. Same as Fig.7 with m = 10

Fig. 9. Same as Fig.7 with m = 15

Fig. 10. Same as Fig.7 with m = 20
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Fig. 11. Same as Fig.7 with m = 25

Fig. 12. Same as Fig.7 with m = 30

From Figures 7 through 12, it is clear that a bigger window size of band-
width records lead to a lower prediction accuracy to the mean bandwidth
value. The multi-level relative mean error vectors for different values of m are
shown in Table 2 and Figure 13. In the relative mean error vector, there is
a sharp increase from 90% sorted relative errors to the whole relative mean
error (100%). This means there are isolated relative errors of very large magni-
tude. This also shows that bigger window size corresponds to lower prediction
accuracy.

Table 2. The mean relative prediction errors

The multi-level mean error

m 20% 40% 60% 80% 90% 100%

5 1.540% 3.510% 5.690% 8.726% 11.302% 16.231%

10 2.302% 5.055% 8.021% 11.928% 14.786% 20.936%

15 2.622% 5.852% 9.484% 14.027% 17.143% 24.059%

20 3.464% 7.407% 11.567% 16.654% 19.848% 27.282%

25 3.771% 8.383% 13.017% 18.577% 22.198% 31.932%

30 4.632% 9.950% 15.336% 21.471% 26.068% 36.931%

Fig. 13. The multi-level prediction errors with different m

6 Conclusions

In this chapter, we presented a practical multi-agent based data analysis sys-
tem which employs MLP neural networks to predict network traffic over media
grids. Instead of using the mean square error and relative mean error as the
performance metric for evaluating neural network predictor performance, we
proposed a multi-level performance metric which presents the relative mean
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errors of predictors with a vector. Each item of the vector represents a certain
percentage of the relative mean error of the relative prediction errors, sorted in
ascending order. The metric can reflect overall performance of the predictors
in a multi-level way, at the same time revealing isolated large errors. There is
a lot of scope for applying data mining techniques in media grid environments.
In our future work, DM techniques will be applied in real time to other media
streaming tasks.
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