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“What being walks sometimes on two feet, sometimes
on three, and sometimes on four, and is weakest when
it has the most?”

—The Sphinx’s Riddle

ABSTRACT: Pattern recognition is one of the most important func-
tionalities for intelligent behavior and is displayed by both biological
and artificial systems. Pattern recognition systems have four major
components: data acquisition and collection, feature extraction and
representation, similarity detection and pattern classifier design, and
performance evaluation. In addition, pattern recognition systems are
successful to the extent that they can continuously adapt and learn
from examples; the underlying framework for building such systems is
predictive learning. The pattern recognition problem is a special case
of the more general problem of statistical regression; it seeks an
approximating function that minimizes the probability of misclassifi-
cation. In this framework, data representation requires the specifica-
tion of a basis set of approximating functions. Classification requires
an inductive principle to design and model the classifier and an
optimization or learning procedure for classifier parameter estimation.
Pattern recognition also involves categorization: making sense of
patterns not previously seen. The sections of this paper deal with the
categorization and functional approximation problems; the four com-
ponents of a pattern recognition system; and trends in predictive
learning, feature selection using “natural” bases, and the use of
mixtures of experts in classification. © 2000 John Wiley & Sons, Inc. Int J
Imaging Syst Technol, 11, 101–116, 2000
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I. INTRODUCTION
Pattern recognition is one of the most important functionalities for
intelligent behavior and it is displayed by both biological and
artificial systems. Biological organisms have to recognize specific
patterns and respond appropriately for survival. For example, anti-
bodies attack foreign intruders, our ears capture sound and speech,

and animals locate edible plants and capture prey. In artificial
systems, remote sensing involves the classification of spectral data
for ecosystem and land management, optical character readers
(OCRs) have to comprehend written text, and biometrics seeks
human identity from the way people look—face, iris, and retina—or
act—gait, fingerprints, and/or hand geometry. Furthermore, robots
are faced with recognizing obstacles, including the layout and iden-
tities of surrounding objects for safe navigation and efficient ma-
nipulation, and bioengineering involves, for example, the reading
and interpretation of electrocardiogram (EKG) charts. When the
patterns are of a visual nature, one can regard pattern recognition as
supplementary to computer vision, providing the abilities of inter-
pretation and classification. Excellent reference books on pattern
recognition include the classic texts of Duda and Hart (1973) and
Fukunaga (1972, 1990), and more recently, those of Bishop (1995),
Vapnik (1995, 1998), Ripley, (1996), Cherkassky and Mulier
(1998), and Duda et al. (2000).

Pattern recognition systems have four major components: data
acquisition and collection, feature extraction and representation,
similarity detection and pattern classifier design, and performance
evaluation. In addition, pattern recognition systems are successful to
the extent that they can continuously adapt and learn; they require a
flexible memory capable of learning from examples and of similar-
ity-based classification (Poggio, 1990). The underlying framework
for building pattern recognition systems is that of predictive learn-
ing. The pattern recognition problem is a particular case of the more
general problem of statistical regression; it seeks an approximating
function that minimizes the probability of misclassification error. In
this framework, data representation requires the specification of a set
of approximating functions, called a dictionary (“features”), to
choose from; an inductive principle to design and model the classi-
fier; and an optimization (learning) procedure for the full-fledged
definition of the classifier using proper parameter estimation. The
inductive principle is fundamental, as it provides a general prescrip-
tion for what to do with the training data in order to learn the
classifier. Conversely, a learning method is a constructive imple-
mentation of an inductive principle, i.e., an optimization or param-
eter estimation procedure, for a given set of approximating functionsCorrespondence to:Azriel Rosenfeld
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in which some specific classifier model is sought, such as feedfor-
ward nets with sigmoid units or decision trees (DTs).

As the last sentence suggests, pattern recognition is closely
related to connectionist neural networks. Renewed interest in the
early 1980s in connectionist networks, as an alternative to statistical
pattern recognition and artificial intelligence (AI), can be attributed
to two factors. The first is the realization that an approximating
function of sufficient complexity can approximate any (continuous)
target function with arbitrary accuracy; the second is the ability to
train multilayer and nonlinear networks using backpropagation. An
excellent perspective on neural networks is provided by Grossberg
(1988). An early attempt at establishing both beneficial relationships
and basic differences between (statistical) pattern recognition and
neural networks was made by Cherkassky et al. (1994). There is a
wide range of opinions on the utility of artificial neural networks
(ANNs) for statistical inference. The following differences between
the two approaches have been listed by Cherkassky et al. (1994):

1. Goals of modeling: In statistics, the goal is interpretability,
which favors structured models; in ANN research, the main
objective is generalization/prediction.

2. Model complexity: Usually, although not always, ANNs
deal with a large amount of training data (i.e., thousands of
samples), whereas statistical methods use much smaller
training sets. Hence, ANN models usually have higher com-
plexity (number of parameters or weights) than statistical
methods.

3. Batch vs. flow-through processing: Most statistical methods
utilize the whole training set (batch mode), whereas ANNs
favor iterative processing, known as flow-through methods
in statistics. Iterative ANN processing requires many pre-
sentations of the data and uses slow computational methods
such as gradient descent. Statistical methods are usually
much faster.

4. Computational complexity: Because statistical methods ex-
tract information from the entire training set, they tend to be
more complex and more difficult for nonstatisticians to use.
ANN methods tend to be computationally simpler, albeit at
the expense of recycling (multiple presentation of) the train-
ing data. ANN methods can usually be easily understood and
applied by novice users.

5. Robustness: ANNs appear to be more robust than statistical
methods with respect to statistical tuning. Confidence inter-
vals are routinely provided in statistical methods but are
usually lacking in most ANN application studies, even
though there is a growing interest in using them (see Section
VIII, “Predictive Learning”).

The outline of this survey is as follows. The next two sections
consider the categorization and functional approximation problems
that arise in pattern recognition and the means and ways to solve
them. Each of the following four sections is devoted to one of the
major components making up a pattern recognition system: data
acquisition, feature extraction, pattern classifiers, and performance
evaluation. The next three sections address forthcoming develop-
ments and trends in predictive learning, natural bases, and mixtures
of experts.

II. CATEGORIZATION
Pattern recognition tasks include classification or identification (i.e.,
recognizing a previously seen object as such) and categorization

(i.e., making sense of novel shapes not previously seen). As an
example, face recognition belongs to identification, whereas gender
and ethnicity classification correspond to categorization. (We will
often use face recognition as an example in this paper, because it is
a problem of great current interest.) The distinction between these
two recognition tasks can be traced to categorization requiring a
larger degree of generalization than mere recognition. “Barring
special (albeit behaviorally important) cases such as face recogni-
tion, entry-level (Jolicoeur et al., 1984) names of objects correspond
to categories rather than individuals, and it is the category of the
object that the visual system is required to determine” (Duvdevani-
Bar and Edelman, 1999, p. 203). In the remainder of this paper,
recognition and categorization will be used interchangeably, as both
of them are ultimately concerned with pattern classification.

A “fundamental question about cognition concerns how knowl-
edge about a category is acquired through encounters with examples
of the category” (Knowlton and Squire, 1993, p. 1747). The obvious
dichotomy for encoding categories would provide for the corre-
sponding regions of identity to be induced by either specific exem-
plars or their abstracted representations. Categorization is also char-
acteristic of recall and reasoning, when one realizes that youngsters
reason by recall, whereas adults recall by reasoning. Memory-based
reasoning, characteristic of the exemplar approach to categorization,
supports the view that categorical concepts are implicitly defined in
terms of some of the exemplars encountered; it does not call for
stored abstractions and/or prototypes (Estes, 1993). This view is
shared by Knowlton and Squire, who suggest (p. 1747) that “cate-
gory-level knowledge has no special status but emerges naturally
from item memory,” and that a novel probe “would be endorsed as
belonging to a particular category as a function of the similarity
between the new item and the exemplars of that category already
stored in memory.”

The abstractive approach, on the other hand, defines regions of
identity in terms of prototypes induced through any of the available
learning methods. For face recognition, memory-based reasoning
defines the face space in terms of face exemplars; this is known as
absolute-based coding (ABC). Driven by clustering and density
measures, ABC regards typicality, e.g., for ethnicity, as depending
on the local density surrounding some exemplar face(s). Sparseness
of the exemplar space is to be sought as it leads to a lesser number
of misclassification errors. The abstract-competing alternative for
face space definition, norm-based coding (NBC), defines typicality
in terms of the distance from a prototype that abstracts learned faces
and draws from cognitive research on schemata (Neisser, 1967).
Recent experiments reported by Rhodes et al. (1998) seem to sug-
gest that the ABC model compares favorably with the NBC model,
even though it may not provide a complete account of all known
effects related to face recognition.

Explanations of the caricature advantage (caricaturized faces are
recognized faster than veridicals) usually involve an encoded norm
(NBC) face model (Rhodes et al., 1987). Most recently, further
support for the ABC exemplar model came from Lewis and
Johnston (1999) who suggested that faces are encoded in a multi-
dimensional Voronoi diagram based on normally distributed face
space representations. The Voronoi tessellation model accounts for
many of the empirical findings on face recognition and caricaturing
without requiring a norm face. The questions that still require an
answer for both memory-based and abstract representations are:
How are patterns described as (compact and discriminating) cate-
gorically self-contained concepts? How is similarity measured and
under what metric (Valentine, 1991; Beale and Kiel, 1995; Burton
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and Vokey, 1998)? The apparent and unifying solution to these
questions is that both models must be represented in terms of some
basis whose “natural” dimensions evolve over time in response to
the spatiotemporal statistics of the patterns that are encountered. It is
most likely that the dimensions for such a representation are ab-
stracted rather than involving physical features.

If one were to accept the NBC explanation for memory encod-
ings, one follow-up question is: Why restrict ourselves to one norm
only? Edelman (1999) indeed considers this very question when he
advances the concept of a chorus of prototypes. Using Shepard’s
(1968) notion of second-order isomorphism, Edelman suggests that
a pattern, restricted for now to shape only and not accounting for
structural relationships, is represented internally by the response of
a few tuned modules. Each module is broadly selective for some
reference shape, and measures the similarity of that shape to the
stimulus. Categorization for Edelman now calls for pattern repre-
sentationof similarity instead of representationby similarity and it
provides for both generalization and shape constancy. The approach
draws from research on regularization networks (Poggio and Girosi,
1990), which are similar in concept to radial basis function (RBF)
classifiers (see Section VI) for which the prototypes or modules are
the result ofk-means clustering or estimation-maximization (EM)-
like methods (Bishop, 1995).

III. FUNCTIONAL APPROXIMATION
If what pattern recognition does is mostly about categorization, the
way to achieve this is through functional approximation, as it seeks
optimal classification (I/O) mappings, i.e., pattern classifiers, within
the predictive learning framework. Functional approximation deals
with a system characterized by several, possibly many, measurable
(observable) quantities, called variables. The variables are divided
into two groups. The variables in one (input) group are referred to as
independent variables (in applied mathematics), explanatory/predic-
tor variables (in statistics), or input variables (in neural networks/
machine learning). The variables in the other (output) group also
have different names depending on the field of study: dependent
variables (applied mathematics), responses (statistics), or output
variables (neural networks/machine learning). The goal is to develop
a computational relationship (formula/algorithm) between the inputs
and the outputs for determining/predicting/estimating the values of
the output variables, given the values of the input variables (Fried-
man, 1994). Different techniques are available for such functional
approximation, including regression and density estimation, corre-
sponding to the input variables being continuous, and classification,
corresponding to the variables being discrete/categorical. Another
taxonomy for functional approximation consists of supervised vs.
unsupervised methods, corresponding to the case where the true
output labels are provided, vs. the case when they are not provided
and probability density function estimation and/or clustering is
required.

Functional approximation is an old problem. Two basic strategies
have been employed in the past for solving it. One strategy, char-
acteristic of engineering disciplines, attempts to solve it using first/
analytical principles, whereas the other strategy, characteristic of
biological systems, employs empirical/adaptive modeling. Func-
tional approximation can be thought of as a relationshipy 5 f( x) 1
“error,” where the error is due to (measurement) noise and possibly
also to “unobserved” input variables. The main issues to be ad-
dressed are related to prediction (generalization) ability, data and
dimensionality reduction (complexity), and explanation/interpreta-
tion capability (Cherkassky et al., 1994). An important problem,

arising repeatedly in this review, relates to the fact that functional
approximation in general, and pattern recognition in particular, can
become relevant to real applications only when one realizes that the
set of data available for learning the proper mappings is both finite
and noisy. To address this problem, specific training strategies, and
tradeoffs between observed training errors and complexity-driven
confidence intervals, have to be considered using the framework of
predictive learning (see Section VIII).

Functional approximation methods can be discussed in terms of
the representation scheme used for the target function, the optimi-
zation strategy used to derive the target function, and the interpre-
tation capability (Friedman, 1994). The representation scheme usu-
ally assumes that the target function is estimated as a linear combi-
nation of basis functions (“atoms”), drawn from an appropriate
dictionary, and corresponds to a basis function expansion. The
availability of an appropriate dictionary should not be taken for
granted and can involve much effort. An up and coming trend, that
of finding some natural basis for defining the proper dictionary, is
discussed in Section IX. We describe the putative role that adaptive
and evolutionary methods can play in defining the atoms making up
such dictionaries.

There are many possible ways to perform functional approxima-
tion in terms of the three dimensions mentioned above, and it is of
interest to compare them. If the comparison relates to representation,
one is tempted to consider the number of terms involved in the
expansion. This criterion is not enough by itself (the bases used can
differ in complexity); so, one needs to assess representational com-
plexity in terms of minimum description length (MDL) codes (see
also the discussion in Section V on the quality of image reconstruc-
tion). As an example, ANNs use fixed (sigmoid) univariate basis
functions of linear combinations (projections) of input variables.
Projection pursuit regression (PPR), characteristic of statistical
methods, uses arbitrary univariate basis functions of such projec-
tions. Because PPR employs more complex basis functions than
ANN, its estimates generally involve fewer terms than those em-
ployed by ANN for the same parameter estimation problem
(Cherkassky and Mulier, 1998).

Regarding optimization strategies, pattern recognition usually
involves parameter estimation, whereas the closely related (see
Section I) neural networks are characteristic of nonparametric esti-
mation methods. Parameter estimation corresponds to nonadaptive
methods if a preselected set of basis functions is available and only
expansion coefficients are sought (using least-squares approxima-
tion). As the form of the target function is assumed known, param-
eter estimation thus introduces strongly biased assumptions about an
unknown target function. Nonparametric methods, on the other
hand, seek optimal bases, belong to the class of adaptive methods,
and are characteristic of neural networks. Nonparametric methods
make no assumptions about the target function and instead consider
a family (structure) of approximating functions indexed (ordered) by
some complexity parameter. The length description of a network and
the VC (Vapnik-Chervonenkis) dimension are examples of com-
plexity parameters used to induce a structure on a network archi-
tecture. Adaptive methods involve difficult nonlinear problems and
optimization becomes very important. Stepwise selection, where the
basis functions are estimated one at a time, is characteristic of
backfitting (statistical) methods. Optimization over the whole set of
basis functions is characteristic of connectionism.

Both parametric and nonparametric estimation methods can be
further classified as global or local. Global methods include linear
and polynomial regression; their local counterparts include kernel

Vol. 11, 101–116 (2000) 103



smoothers and splines. Local parametric methods are applicable
only to low-dimensional problems due to the inherent sparseness of
small-sample statistics in high-dimensional spaces. Multilayer and
PPR networks are examples of global connectionist methods. Kernel
and fuzzy methods are characteristic of local connectionist methods.
Generalized memory-based learning is another example of an adap-
tive local connectionist method and corresponds to case-based rea-
soning and memory-based learning as employed in artificial intelli-
gence. Note that all learning (estimation) algorithms employ a bias
mechanism, referred to as inductive bias, to restrict the hypothesis
space, in terms of the target functions under consideration, and/or to
rank the functional approximations (hypotheses). Induction is not
necessarily truth preserving, as compared to deduction, where truth-
preserving operators only expand existing knowledge. As an exam-
ple, learning by induction, a fundamental incremental and (sym-
bolic) machine learning method, trains over both positive and neg-
ative (counter-) examples. It uses generalization and specialization
operators to define a minimal version space (Mitchell, 1997b) for
concept (category) formation, subject to biases similar to MDL.

Functional approximation theory can be traced back to Weier-
strass. The well-known Weierstrass approximation theorem states
that for any continuous real-valued functionf defined on a closed
interval [a, b], and for any given positive constante, there exists a
(real-coefficient) polynomialy such thatuy( x) 2 f( x)u , e for
everyx in [a, b]. In other words, every continuous function can be
uniformly approximated by a polynomial, and polynomials can thus
serve as universal approximators. Several theoretical results, starting
with one due to Kolmogorov (1937), have shown that multilayer
feedforward networks can also serve as universal approximators.
Specifically, Kolmogorov’s theorem shows that for any given con-
tinuous functionf: [0, 1]n3 Rm, f can be realized by a three-layer
feedforward neural network havingn fanout processing elements in
the first (input) layer, (2n 1 1) processing elements in the middle
(hidden) layer, andm processing elements in the top (output) layer.

Theoretical rather than constructive, Kolmogorov’s result shows
that mapping of arbitrary continuous functions from then-dimen-
sional cube [0, 1]n to the real numbers,R, in terms of functions of
only one variable, is possible. Similar results regarding the ability of
neural networks to serve as universal approximators have been
obtained by Cybenko (1989) and by Wang and Mendel (1992) using
a fuzzy (systems) framework. Wang and Mendel have considered
fuzzy systems represented as a series of expansions of fuzzy basis
functions—algebraic superpositions of fuzzy membership functions.
They were able to show that linear combinations of fuzzy basis
functions are capable of uniformly approximating any real contin-
uous function on a compact set to arbitrary accuracy. Note, however,
that universal approximation refers to functional approximation
rather than to estimation from small-sample statistics where asymp-
totic convergence does not hold. As a consequence, universal ap-
proximation is necessary but not sufficient, and it can become
irrelevant as one attempts to learn from a limited number of obser-
vations.

According to Friedman (1994, p. 40), there are actually two ways
to obtain an accurate estimate of the target functionf( x). One way
is “to place a very restrictive set of constraints on the approximation
f *( x), defining a small set (class) of eligible solutions. This ap-
proach corresponds to regularization; it is effective to the extent that
a good choice of constraints becomes available and it requires
knowledge (outside the data) concerning the properties of the target
function.” Friedman goes on to say that “in the absence of such
knowledge (outside the data)—constraints—one must appeal to the

second alternative for obtaining a good approximation: a training
sample large enough to densely pack the input space. Although this
is often feasible for input variable spaces of low dimension (few
input variables), it is not possible for high-dimensional spaces, even
with very large training sets. There are many manifestations of this
curse of dimensionality, all of which tend to make geometrical
intuition, gained in low-dimensional settings, inapplicable to higher-
dimensional problems.”

As an example, Friedman (1994, p. 11) lets “n be the dimen-
sionality of the input space andN be the training sample size; the
sampling density is then proportional toN1/n. Thus, if N 5 100
represents the sampling density for a single input problem, then 1020

is the sample size required to achieve the same sampling density
using 10 inputs. Thus, in high dimensions, all (feasible) training
samples populate the input space very sparsely. As a consequence,
the interpoint distances between sample points are all large and
approximately equal. Therefore, neighborhoods that contain even
only a few sample points have large radii; the average (expected)
edge length of a hypercubical neighborhood (volume) containing a
fractionp of the training points isen( p) 5 p1/n, so thate10 (.01) 5
0.63 ande10 (.1) 5 0.80. Theedge length corresponding to the
entire training sample is 1.0. To capture 10% of the data points, one
must include over 80% of the range of each input variable. Such
neighborhoods are not very ‘local’.” One much-talked about benefit
of neural networks comes from their “uncanny” ability to apparently
handle the curse of dimensionality, whereas statistical methods fail
on the same task. Plausible explanations for neural networks “suc-
cessfully” coping with the curse have been given. Among them is
the suggestion that they employ clever preprocessing (decorrelation)
and clustering methods to achieve an effectively lower dimension.

Fundamental links have been recently (re)established between
statistical pattern recognition and neural networks by showing the
network outputs to possess specific statistical significance. As an
example, backpropagation learning, the method of choice for train-
ing multilayer perceptrons (MLP) or hyperplane classifiers, is de-
fined over the error surfacee( f ) 5 S[ yi 2 f( xi)]

2. Geman et al.
(1992) showed that, among all the functions ofx, the regression is
the best predictor ofy givenx in the minimum square error (MSE)
sense, i.e.,E[( y 2 f( x))2/x] $ E[( y 2 E( y/x))2/x]. Another
recent but related result, due to Richard and Lippmann (1991), states
that MSE approximation estimates Bayesian probabilities according
to the degree to which the training data reflect true likelihood
distributions and a priori probabilities. The Geman et al. and Rich-
ards and Lippmann results were known earlier; they hold only
asymptotically, when the number of training samples becomes in-
finite, and thus they give little insight about learning from small-
sample statistics. The applicability of neural networks was also
expanded to inverse problems, as they were shown to implement the
equivalent of statistical maximum a posteriori (MAP) estimation.

IV. DATA ACQUISITION
Any pattern recognition system has to sense its environment and
acquire an initial representation of its immediate surroundings that is
as faithful as possible. Data acquisition goes beyond raw data; e.g.,
a system that acquires visual data may emulate the architecture of
the human (or other biological) visual system. It is not restricted to
using biologically inspired sensory modalities; it may employ arti-
ficial sensing devices as well. In any case, it may derive intrinsic
feature maps, including depth, lightness, and motion, or features
such as sonar Doppler shift (as in bats), or possibly polarization or
earth’s magnetic field information for navigation purposes.
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Most images are acquired using conventional visible light sen-
sors such as TV cameras. However, in many application domains,
other types of image-forming sensors are widely used. For example,
in medical applications, X-ray, ultrasound, magnetic resonance, and
positron emission sensing are commonly used; some of these sens-
ing techniques can produce three-dimensional (3D), rather than
two-dimensional (2D), image data. Commonly used sensors in re-
mote sensing detect radiation in many different spectral bands,
including thermal infrared; sonar and radar sensors, which yield
information about range as well as reflectivity, are also widely used.
Range sensors of various types are also used in short-range appli-
cations to obtain depth maps of the visible surfaces in a scene.

Some of the relevant issues in sensing and data acquisition are
related to sampling and resolution. The early scale or Gaussian
pyramids (Burt and Adelson, 1983; Rosenfeld, 1984) reflected the
observation that pattern recognition takes place at different scales.
Their immediate successors, Laplacian pyramids, combined resolu-
tion and contrast (“edge”) for compression purposes. Later research
has focused on joint spatial/spatial-frequency representations, in-
cluding Gabor and wavelet representations (Daugman, 1983). The
sampling strategies used account for the uncertainty principle by a
tradeoff between spatial and spatial frequency resolution. They
replicate the space-variant aspect of the human retina, where the
sampling resolution decreases from the center (fovea) toward the
periphery. Space-variant sampling is useful in providing a high-
resolution area within a wide visual field. The retina-like charge-
coupled device (CCD) sensor for active vision developed by Sandini
and Tistarelli (1994) implements the space-variant sampling char-
acteristics of foveal vision.

Conventional sensors have limited field of view and limited
depth of field. Omnidirectional and omnifocus sensors (Nayar, 1997;
Krishnan and Ahuja, 1996) have also been developed. (The cata-
dioptric sensor described by Nayar has a hemispherical field of
view.) Omnidirectional sensors have significant advantages for 3D
motion estimation (Nelson and Aloimonos, 1988). Sensing systems
that integrate information from many viewpoints are also attracting
considerable interest; two examples are the CMU Dome at Carne-
gie-Mellon University and the Keck Laboratory for the Study of
Visual Movement at the University of Maryland, where a region of
space is viewed by a hemispherical array of inward-pointing cam-
eras.

V. FEATURE EXTRACTION
Once data acquisition has taken place, the extraction of an appro-
priate set of features is one of the most difficult tasks in the design
of pattern recognition systems. The concept of a feature detector can
be traced back to the discovery of “bug detectors” in the frog retina
(Lettvin et al., 1959). As it is obvious that not all sensory informa-
tion is equally probable, Barlow (1961) has advanced the concept of
redundancy reduction as a design principle for sensory processing
and thus for feature extraction as well. Redundancy reduction re-
quires that the lengths of sensory messages be proportional to their
information contents, given by the negative logarithms of their
respective probabilities (Shannon and Weaver, 1949). One frame-
work for redundancy reduction involves factorial codes (Barlow et
al., 1989; Linsker, 1988; Atick and Redlich, 1992), in which the
probability of observing a particular signal is a product of indepen-
dent factors, e.g., the features that code for it (Penev and Atick,
1996). Furthermore, if the strength of the factorial code output is
proportional to its information content, the code can directly repre-
sent not only the sensory signal itself, but also its likelihood. The

detection of “suspicious coincidences,” i.e., events or patterns, be-
comes much more straightforward (Barlow, 1989).

At its lowest level, the raw feature data are derived from noisy
sensory data, the properties of which are complex and difficult to
characterize. In addition, there is considerable interaction among
low-level features that must be identified and exploited. The number
of possible features, however, is so large as to prohibit systematic
exploration of all but a few possible interaction types (e.g., pairwise
interactions). In addition, any sort of performance-oriented evalua-
tion of feature subsets involves building and testing the associated
pattern classifier, resulting in additional overhead cost. As a conse-
quence, a fairly standard approach is to preselect a subset of features
using abstract measures believed to be relevant to characterizing
important properties of good feature sets for input reconstruction,
e.g., infomax, the maximization of information transmission. This
(feature selection) approach has been dubbed the “filter” approach
(Kohavi and Sommerfield, 1995). It is generally much less resource
intensive than building and testing the associated pattern classifiers.
However, it may result in suboptimal performance if the abstract
features do not correlate well with actual classification performance.

Filter approaches vary considerably in how they search for good
feature subsets. Because there are in general 2N subsets ofN
features, problems involving large numbers of candidate features
cannot be handled by any form of systematic search. A standard
technique for avoiding this combinatorial explosion simply ranks the
features according to some criterion and then deletes lower-ranked
features. For difficult pattern classification tasks, simple rank selec-
tion of features generally results in suboptimal classification perfor-
mance because nonlinear interactions among features are ignored
and criteria like orthogonality are not sufficient to guarantee good
classification performance. Thus, it is difficult to develop feature
space measures to guarantee optimality in classification perfor-
mance. In practice, this is best achieved by employing some form of
performance evaluation of the feature subsets in searching for good
subsets. This approach, dubbed the “wrapper” approach, typically
involves building a classifier based on the feature subset being
evaluated and using the performance of this classifier as a compo-
nent of the overall evaluation (Kohavi and Sommerfield, 1995). This
approach should produce better classification performance than filter
approaches, but it adds considerable overhead to an already expen-
sive search process. This, in turn, usually restricts the number of
alternative feature subsets one can afford to evaluate, and may also
produce suboptimal results.

Focusing purely on present classification performance ignores
several important issues, namely: (1) the need to minimize the
number of features used for classification and limit extraction over-
head; (2) the requirement that the features selected can provide a
good reconstruction of the original patterns, e.g., sparse approxima-
tion; (3) the flexibility to accommodate both static and dynamic
pattern landscapes; and (4) the need to guarantee some level of
performance during future trials, e.g., generalization. It is difficult
for a single-strategy approach to simultaneously satisfy multiple and
frequently conflicting goals. These problems, and the need to exploit
nonlinear interactions among features, can be addressed using more
sophisticated search techniques such as genetic algorithms (GAs).
They provide efficient heuristic methods for searching large spaces,
as will be shown in Section IX.

Feature extraction includes both derivation and selection. Deri-
vation involves representation, whereas selection is concerned with
the choice of a meaningful subset of features for the purpose of
successful pattern classification. The initial image representations
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parallel the architecture of the visual cortex and include simple
features (signals) and their multiscale, spectral, and/or fractal at-
tributes. More complex features can be derived later on, including
intrinsic representations such as motion, depth, lightness, and tex-
ture, as well as geometric, algebraic, and statistical invariant fea-
tures. Conformal mappings, Lie transformation groups, and projec-
tive transformations, some of the means to achieve such invariance,
are described by Wechsler (1990).

Feature derivation methods belong to structural, spectral or sta-
tistical, and nonparametric or connectionist methods. Mathematical
morphology (Serra, 1988), characteristic of structural methods, is
used for the representation of binary and gray scale images and is
particularly suitable to capture the intrinsic geometry of a particular
shape. Early uses of morphology include chromosome analysis.
More recent applications include the extraction of features for face
verification (Tefas et al., 1998) and human posture recognition (Li et
al., 1998).

One of the fundamental concepts bearing on optimal signal
recovery comes from information theory (Gabor, 1946). This now
famous concept, known as theuncertainty principle, revolves
around the simultaneous resolution of information in (2D) spatial
and spectral terms. It is closely related to the choice of optimal
lattices of receptive fields (kernel bases) for representing (decom-
posing) some underlying signal. As recounted by Daugman (1990),
Gabor pointed out that there exists a “quantum principle” for infor-
mation, which he illustrated through the construction of a spectro-
gram-like information diagram. The information diagram, a plane
whose axes correspond to time (or space) and frequency, must
necessarily be grainy, or quantized, in the sense that it is not possible
for any signal or filter (and hence any carrier or detector of infor-
mation) to occupy less than a certain minimal area in this plane. This
minimal or quantal area reflects the inevitable tradeoff between time
(space) resolutionDt(Ds) and frequency resolutionDv and equals
the lower bound on their product. Gabor further noted that Gaussian-
modulated complex exponentials offer the optimal way to encode
signals (of arbitrary spectral content) or to represent them, if one
wishes the code (basis functions) primitives to have both a well-
defined epoch of occurrence in time (space) and a well-defined
spectral identity. The code primitives are also referred to as kernels
or receptive fields in analogy to biological vision. The conclusion to
be drawn from the above discussion is better understood and visu-
alized if one associates time (space) occurrence with localization,
whereas frequency change is associated with the speed at which a
signal changes. One cannot achieve at the same time both optimal
signal localization and optimal tracking of details related to the
changes taking place in spatiotemporal patterns.

The wavelet basis functions (Mallat, 1989), self-similar and
spatially localized, are spatial frequency/orientation tuned kernels.
They provide one possible tessellation of the conjoint spatial/spec-
tral signal domain. The corresponding wavelet hierarchy (pyramid)
is obtained as the result of orientation-tuned decompositions at a
dyadic (powers of two) sequence of scales. The 2D wavelet repre-
sentationW of the functionf( x, y) is then

W~ax, ay, sx, sy!

5 EE f~x, y!~axay!
21/2C* @~x 2 sx!~ax!

21, ~~y 2 sy!~ay!
21#

whereC( x, y) is the “mother” wavelet,ax anday are scale param-
eters, andsx andsy are shift parameters. The self-similar Gabor basis

functionsg are a special case of nonorthogonal wavelets, correspond
to sinusoids modulated by a Gaussian, can be easily tuned to any
bandwidth (scale) and orientation, and are defined as

g~x, y! 5 expH2
1

2
@~x/sx!

2 1 ~y/sy!
2#Jexp$j2p@fxx 1 fyy#%

wherefx 5 f0 cosu, fy 5 f0 sin u, f0 is spatial frequency,u is the
angle of spatial orientation, and the variancessx 5 c/fx, sy 5 c/fy
usec as a scale factor. The frequency (octave)B and orientationV
(radian) half-peak bandwidths of the “daisy petal” Gabor filters are

B 5 log@~pfls 1 a!/~pfls 2 a!#

V 5 2 tan21@a/~pfs!#

wherel is the spatial aspect ratio,l 5 sx/sy, s 5 sy, f is the
radial center frequency, anda 5 [(ln 2)/2]1/2 (Bovik et al., 1990).
The self-similar Gabor wavelets are redundant due to their being
nonorthogonal, leading to an overcomplete dictionary of basis func-
tions. They are expected to provide better performance than a
dictionary consisting of orthogonal bases (Daugman, 1990).

One popular technique characteristic of statistical methods and
capable of deriving low-dimensional representations is principal
component analysis (PCA). It has been applied, among other things,
to face representation and recognition (Pentland and Choudhury,
2000). PCA is an optimal signal representation and reconstruction
method that offers reduction of a large set of correlated (Gaussian)
variables to a smaller number of uncorrelated components. Follow-
ing its application, one derives an orthogonal projection basis that
directly leads to dimensionality reduction and possibly to feature
selection. Kirby and Sirovich (1990) showed that any particular face
can be economically represented in the eigenface coordinate space
and that any face can be approximately reconstructed by using a
small set of eigenfaces and the corresponding projections (coeffi-
cients). Applying the PCA technique to face recognition, Turk and
Pentland (1991) developed a well-known eigenfaces method, where
the eigenfaces correspond to the eigenvectors associated with the
dominant eigenvalues of the face covariance matrix.

As feature derivation encompasses both image representation
and reconstruction, corresponding statistical methods have to ad-
dress information content, complexity, and optimal codes. As an
example, assume that one considers an ensemble of faces and that S
stands for signal-to-noise ratio (SNR), the quality of reconstruction
corresponding to the numberN of components used in the expansion
of a particular face.H, broadly labeled as the entropy of the
reconstructed image, can be computed as the average (overN
components) of the component (projected) squared lengths. Using a
probabilistic PCA interpretation, the probabilityP of a particular
face image isP ; exp{(2 1

2
) H}; 2log P, which approximates the

information content of the sensory signal (Barlow, 1989), is propor-
tional to the length of the optimal code. One can now easily see that
if the entropy H for some reconstructed image goes down, its
likelihood goes up. One can drawS-H diagrams and observe how
much of the SNR can be obtained relatively “cheaply”; afterward,
even if one increases the SNR, i.e., gets a better approximation, the
reconstruction obtained is very improbable, not at all likely (Penev,
1998).

The eigenfaces define a feature space, or “face space,” that
drastically reduces the dimensionality of the original space. Face
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identification and verification are then carried out in the reduced
space. One should remember, however, that PCA is an optimal
(linear) signal representation method only in the MSE sense and that
the PCA-inspired features do not necessarily provide good discrim-
ination. Nonlinear dimensionality reduction can be achieved using
the self-supervised MLP architecture, where the output exemplars
are forced to be identical to the input ones during training, using
backpropagation learning. Self-supervised MLPs are also known as
autoencoding methods, bottleneck MLP, nonlinear PCA networks
(Kramer, 1991), or replicator networks (Hecht-Nielsen, 1995). Bot-
tleneck MLP with a single hidden layer effectively performs linear
PCA, even with nonlinear hidden units (Bourland and Kamp, 1988).
Nonlinear PCA has been recently addressed as a kernel eigenvalue
problem by Scholkopf et al. (1998).

Linear discriminant analysis (LDA), related to the Fisher linear
discriminant (FLD), is yet another statistical method commonly used
for pattern recognition in general, and recently also for face recog-
nition (Swets and Weng, 1996; Etemad and Chellappa, 1997). LDA
derives a projection basis that separates the different classes as far as
possible and compacts the individual classes as tightly as possible.
Unlike PCA, LDA differentiates between the within- and between-
class scatters when deriving class-specific feature spaces. A repre-
sentative LDA/FLD-based method is the Fisherfaces method of
Belhumeur et al. (1997). This method specifies the face space by
composing the PCA and the FLD projections,Q 5 RS, whereR is
the PCA projection matrix andS is the FLD projection matrix
derived by maximizing the ratio of the between- and within-class
scatters in the transformed space. The Fisherface space, defined as
Z 5 QtX and known as the most discriminating features (MDF)
space, is superior for face recognition to the Eigenface encoding
scheme, known as the most expressive features (MEF) space, only
when the training images are representative of the range of face
image variations; otherwise, the performance difference between
MEF and MDF is not significant (Swets and Weng, 1996). The FLD
procedure, when implemented in a high-dimensional PCA space,
often leads to overfitting (Liu and Wechsler, 2000). Overfitting is
more likely to occur in a small training sample size scenario, which
is typical in face recognition (Phillips, 1999). One possible remedy
for this drawback is to artificially generate additional data and thus
to increase the sample size (Etemad and Chellappa, 1997).

Independent component analysis (ICA) has emerged recently as
a powerful statistical solution to the problem of blind source sepa-
ration (Bell and Sejnowski, 1995; Hyvarinen and Oja, 1997; Hy-
varinen, 1999). It seeks a linear transformation to express a set of
random variables as linear combinations of statistically independent
source variables, as has been the case for factorial codes. The search
criterion involves the minimization of the mutual information ex-
pressed as a function of high-order cumulants. PCA considers sec-
ond-order moments only and it uncorrelates the data. ICA provides
a more powerful data representation, as it accounts for higher-order
statistics and distinguishes the independent source components from
their linear mixtures (the observables). ICA is not restricted to
second-order statistics, as was PCA; it reduces statistical dependen-
cies and produces a sparse code useful for subsequent pattern
discrimination and associative recall (Olshausen and Field, 1996).
ICA seeks nonaccidental, sparse feature codes, analogous to the goal
of sensory systems, “to detect redundant features and form a repre-
sentation in which these redundancies are reduced and the indepen-
dent features and objects are represented explicitly” (Foldiak, 1990,
p. 165). The ICA of a random vectorX factorizes the covariance
matrix, Cov(X), into the form Cov(X) 5 FDFt, whereD is diagonal

real positive andF transforms the original random vectorX into a
new vectorZ, whereX 5 FZ. The components of the new random
vectorZ are independent or “as independent as possible” (Comon,
1994). To derive the ICA transformationF, Comon developed an
algorithm that consists of three operations: whitening, rotation, and
normalization. ICA has been used, in the context of biometrics, for
face recognition (Bartlett and Sejnowski, 1997; Liu and Wechsler,
1999) and classification of facial actions (Donato et al., 1999).

VI. PATTERN CLASSIFIERS
Pattern classification takes over once the features have been ex-
tracted. The design of the pattern classifier includes the choice of a
particular model and possibly the estimation of its probability den-
sity function. It also includes the choice of a distance or similarity
metric to measure or possibly rank how close an unknown pattern is
in relation to known class prototypes. Practical differences between
classifiers and internal differences in how classifiers form decision
regions can lead to a taxonomy consisting of probabilistic, hyper-
plane, kernel, and exemplar classifiers (Lippmann, 1989), or in
analogy to feature extraction methods, to a taxonomy consisting of
structural or inductive artificial intelligence methods, statistical pat-
tern recognition, and connectionist methods.

Probabilistic classifiers assume a priori probability density func-
tions (pdfs) such as Gaussians or Gaussian mixture distributions for
the input features. Hyperplane classifiers derive complex decision
regions using nodes that form decision boundaries in the space
spanned by the inputs. MLPs, DTs, and support vector machines
(SVMs) belong to this category. Kernel methods sample and ap-
proximate the input patterns using receptive fields similar to those
encountered in the visual cortex and yield projection bases. Potential
functions and the cerebellar model articulation controller, and more
recently RBFs, sparse approximation, and (matching) projection
pursuit methods are characteristic of this class of classifiers. Finally,
exemplar classifiers, using unsupervised learning (such as cluster-
ing) and a predefined norm, classify unknown patterns based on the
identities of their proximal and labeled neighbors. Characteristic of
exemplar classifiers are methods such ask-nearest neighbor classi-
fiers, memory-based reasoning, adaptive resonance theory (ART),
self-organizing feature maps (SOFMs), vector quantization (VQ),
and learned VQ (LVQ), which corresponds to hybrid unsupervised
VQ followed by a supervised training session using labeled samples.

Examples of distance functions used include the standard Eu-
clidean and cosine distances. Another function, the Hausdorff dis-
tance, is tolerant to perturbations. It measures proximity rather than
exact superposition and it allows for flexible matching to account for
small, nonrigid local distortions (Huttenlocher et al., 1993; Takacs
and Wechsler, 1998). Another distance function, used in the context
of pdf estimation, is the cross (relative)-entropy, or the Kullback-
Leibler (KL) divergence between two pdfs. The KL divergence, also
related to the mutual information between two sources, is known to
be invariant to amplitude scaling and monotonic nonlinear transfor-
mations. Similarity models attempt to model psychological space
and include the feature contrast model (Tversky, 1977). Instead of
considering prototypes as points in a metric space, Tversky charac-
terized them as sets of features, where similarity is measured by both
the common and distinctive features of two patterns. Similarity
models have been used for querying and retrieving from large image
databases (Santini and Jain, 1996).

Mixture models, the method of choice for probabilistic classifi-
ers, usually estimate the unknown pdf using EM algorithms. Non-
parametric estimation, mostly based on variations of the histogram
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approximation of an unknown pdf, includes Parzen windows, con-
ceptually similar to kernel functions such as RBFs to be discussed
later. By replacing the sigmoid activation function with an expo-
nential function, probabilistic neural networks (PNNs) can compute
nonlinear decision boundaries that approach the Bayes optimum
(Specht, 1990). PNNs are similar in concept to both the Parzen
window approach and memory-based reasoning. They can be im-
plemented using parallel analog networks and can be incrementally
built up, which is not the case for backpropagation, where learning
is restarted almost from scratch when new training data become
available.

One basic aim of any pattern recognition system is to construct
(discrimination) rules for classifying objects, given atraining setof
objects whose class labels are known. In the formalism used in DTs,
patterns are described by a fixed collection of attributes, each with
its own set of discrete values. DTs are valuable tools for the
description, classification, and generalization of data (Quinlan,
1993; Murthy, 1998). Several advantages of DT-based classification
are pointed out by Murthy: (1) DT methods are exploratory as
opposed to inferential; they are also nonparametric. As only a few
assumptions are made about the model and the data distribution,
DTs can model a wide range of data distributions. (2) A hierarchical
decomposition implies better use of available features and compu-
tational efficiency in classification. (3) DTs perform classification by
a sequence of simple, easy-to-understand tests whose semantics are
intuitively clear to domain experts. The construction of DTs uses an
information-theoretical approach based on entropy (Quinlan, 1993).
The C4.5 algorithm suggested by Quinlan builds the DT using a
top-down, divide-and-conquer approach: select an attribute, divide
the training set into subsets characterized by the possible values of
the attribute, and follow the same partitioning procedure recursively
with each subset until no subset contains objects from more than one
class. The single-class subsets then correspond to the leaves of the
DT. Attribute selection and node partitioning are driven by an
entropy-basedgain ratio criterion.

Discriminant analysis, the main staple of statistical pattern clas-
sification (Fukunaga, 1972, 1990), is concerned with building two-
class classifiers, assuming the data are drawn from multivariate
normal probability distributions. The parameters of the densities are
estimated using the maximum likelihood (ML) procedure. The re-
sulting densities are used to construct the decision boundaries. For
two known multivariate normal distributions, the optimal decision
rule is a polynomial of degree two, i.e., a paraboloid. In practical
problems, there are often not enough data to provide accurate
estimates. One has to impose additional constraints, e.g., that the
covariance matrices corresponding to the two classes are identical,
which leads to a linear rather than quadratic decision rule.
Cherkassky and Mulier (1998) show that in practice, when dealing
with limited datasets, the linear decision rule often performs better
than the quadratic decision rule, even when it is known that the two
covariance matrices are not equal.

RBFs allow clustering of similar images before classifying them
and thus provide the potential for developing hierarchical classifiers.
The construction of an RBF network involves three different layers.
The input layer consists of source nodes (sensory units). The second
layer is a hidden layer whose goal is to cluster the data and reduce
its dimensionality. The output layer supplies the responses of the
network to the activation patterns applied to the input layer. The
transformation from the input space to the hidden-unit space is
nonlinear, whereas the transformation from the hidden-unit space to
the output space is linear. An RBF classifier can be viewed in two

ways (Ng and Lippmann, 1991). One can interpret an RBF classifier
as a set of kernel functions that expand input vectors into a high-
dimensional space. This approach attempts to take advantage of the
mathematical fact that a classification problem cast into a high-
dimensional space is more likely to be linearly separable than one in
a low-dimensional space (note the similarity to SVMs). One can also
interpret the RBF classifier as a function interpolation method that
tries to construct hypersurfaces, one for each class, by taking a linear
combination of basis functions (see also Section IX on natural
bases). These hypersurfaces can be viewed as discriminant func-
tions, where the surface has a high value for the class it represents
and a low value for all others. An unknown input vector is classified
as belonging to the class associated with the hypersurface with the
largest output at that point. In this case, the basis functions do not
serve as a basis for a high-dimensional space, but as components in
a finite expansion of the desired hypersurface where the component
coefficients (the weights) have to be trained.

Clustering algorithms, yet another classification method, model
data distributions and assign basis function centers. They are char-
acteristic of unsupervised connectionist learning methods such as
k-means, SOFMs, or LVQ (Kohonen, 1988). Implicit decision
boundaries are defined among pattern classes by a Voronoi partition,
e.g., Dirichlet tessellation. The well-known nearest neighbor classi-
fier corresponds to the case where the boundaries are induced by the
Voronoi partition. Thek-nearest neighbor classifier, for largek, is
similar to the Bayes classifier.K-means has been shown to be a
limiting case of EM optimization for a Gaussian mixture model
(Bishop, 1995).

Motivated by success in speech recognition, there has been a
growing interest in the use of hidden Markov models (HMMs) to
model dependencies between events characteristic of human activity
with the explicit goal of understanding purposeful human motion
(Wren et al., 2000). HMMs encode simple events and recognize
them by estimating the likelihood that the model actually produced
the observation sequence. Parameterized and coupled HMMs (Ol-
iver et al., in press) can recognize more complex events such as two
mobile and interacting human subjects. HMMs require extensive
and complicated training to estimate complex interactions involving
several subjects. Another recent approach to the interpretation of
human activity is to use Bayesian (or belief) networks (Pearl, 1988).
Modeling and conditional probabilities are still needed, as is the case
with HMMs, but significant simplifications can be achieved by
enforcing local and contextual spatiotemporal constraints. A prob-
abilistic framework for modeling event dependencies is provided by
the Bayesian networks. Belief networks are directed acyclic graphs,
usually handcrafted. The conditional probabilities associated with
event dependencies connecting the nodes are learned. Recent appli-
cations of belief networks include perceptual grouping of features
for human face detection (Yow and Cipolla, 1996) and human
activity recognition (Intille and Bobick, 1999).

VII. PERFORMANCE EVALUATION
Performance evaluation studies are not common because they re-
quire significant effort and cooperation among different research
groups. In particular, they require the development of standard
databases and common evaluation procedures to perform meaning-
ful benchmark studies. This includes collection of large and repre-
sentative databases and the design of evaluation procedures for
comparing competing algorithms. The benefits of such evaluation
procedures include (1) placing pattern recognition on solid experi-
mental and scientific grounds; (2) assisting in the development of
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engineering solutions to practical problems; and (3) allowing accu-
rate assessment of the state of the art. Despite these benefits, the
research community for the most part has not taken the necessary
steps. There are a few exceptions; standard databases are available
from the National Institute of Standards and Technology (NIST) in
the areas of handwritten character recognition, and more recently,
the FERET facial database. The European community (EC) under
the ESPRIT program has made available the multimodal (audio and)
video M2VTS (Pigeon and Vandendorpe, 1997) face database.

StatLog (Michie et al., 1994) and FERET (Phillips et al., 1998)
are noteworthy examples of large benchmark studies, and work-
shops on evaluation techniques are starting to take place (Bowyer
and Phillips, 1998). The StatLog project, sponsored by the ESPRIT
(EC) initiative in the early 1990s, compared and evaluated a range
of (machine learning) classification techniques and gave an assess-
ment of their merits, disadvantages, and range of applications using
comparative trials on large-scale commercial and industrial prob-
lems. The FERET evaluation procedure is an independently admin-
istered test of face recognition algorithms, where the data have been
divided into development and sequestered portions. The test was
designed to (1) allow a direct comparison between different algo-
rithms; (2) identify the most promising approaches; (3) assess the
state of the art in face recognition; (4) identify future directions of
research; and (5) advance the state of the art in face recognition.

An interesting study by Moon and Phillips (1998) considered the
comparative performance of distance functions associated with
PCA-based face recognition algorithms. Their findings indicate that
the best classification was achieved using Mahalanobis or combined
angle and Mahalanobis. Combined L1 and Mahalanobis received the
lowest score. The other distances used included L1, L2, the angle
between the feature vectors, and combined L2 and Mahalanobis.
More recently, Donato et al. (1999) reported on a study whose goal
was to compare techniques for automatically recognizing facial
actions in sequences of images. These techniques include analysis of
facial motion through estimation of optical flow; holistic spatial
analysis, such as PCA, ICA, local feature analysis (LFA), and LDA;
and methods based on the outputs of local filters, such as Gabor
wavelet representations. The best performance was obtained using
the Gabor wavelet and ICA representation for classifying 12 facial
actions of the upper and lower face. Donato et al. (p. 974) conclude
by saying “the results provide converging evidence for the impor-
tance of using local filters, high spatial frequencies, and statistical
independence for classifying facial actions.”

Specific measures used for performance evaluation include dis-
tance and similarity functions (see Section VI), ranking, receiver
operating characteristic (ROC) curves, confusion matrices, andd9
statistics (Macmillan and Creelman, 1991). The entries in confusion
matrices consist of true and false positives and false and true
negatives. Sensitivity (ratio of true positives to the acceptance class),
specificity (ratio of true negatives to the rejection class), and accu-
racy (ratio of true positives and negatives to the total of both classes)
are standard measures. ROC curves, plotting the false-alarm (FA)
rate on the horizontal axis against the hit (true positive) rate (H)
plotted vertically, are useful. They display for every value of the FA
rate, ranging from 0 to 1, what the H rate would be for a particular
sensitivity (F) level. WhenF 5 nil, the ROC is the major diagonal
(chance line) and corresponds to the case when the H and FA rates
are equal. It is obvious, but not desirable, that one can increase the
hit rate at will by allowing the FA rate to increase. Thed9 statistical
measure, usually used on human benchmark studies related to pat-
tern recognition, records the discrepancy between the H and the FA

rates. As an example, when subjects cannot discriminate, H5 FA
andd9 5 0. Moderate pattern recognition performance impliesd9 5
1; perfect accuracy impliesd9 5 `.

Relevant to any pattern recognition system is its ability to accept,
reject, or remain undecided under the open world assumption, ac-
cording to the thresholding (choice) methods employed. Adaptive
thresholding, ranking, and relative confidence are several choices for
making a classification decision. Another choice is to use the tools
of statistical decision theory. In biometrics studies, Daugman (1993)
has shown how the problem of recognizing the signature of a given
iris as belonging to a particular individual, either after exhaustive
search through a large database or just by comparison with a single
authentication template, can be formulated within the framework of
statistical decision theory. This framework also resolves the critical
problem of assigning a confidence level to any such recognition
decision.

Data presentation strategy during training and learning is very
important. Data are usually split into training, tuning, and test sets.
Tuning data are important for learning the best classifier for given
training data with an eye toward improved generalization. Test data
are used later to evaluate to what degree this has been achieved.
Resampling techniques allow one to artificially increase the effec-
tive size of the training set and to achieve better generalization (see
Section X on more recent resampling techniques characteristic of
active learning, such as perturbation methods, which are perfor-
mance driven). Leave-one-out, (k-fold) crossvalidation, and boot-
strapping are examples of standard resampling techniques (Weiss
and Kulikowski, 1991).

VIII. PREDICTIVE LEARNING
One of the goals of pattern recognition is to learn classifier models
whose expected performance on unseen data falls within acceptable
bounds. This requirement comes from the need to predict the degree
of generalization and robustness of the classifier. Generalization
ability is usually based on the MSE (empirical risk) observed during
training, and from making an educated guess as to the expected
deviation from the empirical risk during future testing. As an ex-
ample, Barron (1991) relates generalization ability to predictive
learning by an expression consisting of two terms. The first com-
ponent, the approximation error, refers to the distance between the
target function and the closest classifier model for a given architec-
ture. The second component, the estimation error, refers to the
distance between the chosen model function and the estimated
model function. It is the role of predictive learning to choose the
proper structure and architecture for the classifier model, as a result
of the tradeoff between overfitting, usually associated with complex-
ity, and empirical risk (misclassification errors) on training data. For
example, when the classifier is modeled using a structure consisting
of polynomials, one trades between overfitting and misclassification
errors by properly setting the degree of the fitting polynomials.

The goal of predictive learning is to find within such an ordered
structure, based on complexity measures, the classifier model most
likely to reduce the expected (predicted) risk of misclassification
errors on novel data not encountered during training. This task
amounts to either (1) keeping the error bounds (confidence interval)
fixed and minimizing the training error (empirical risk) or (2)
keeping the value of the empirical risk fixed and minimizing the
confidence interval (Vapnik, 1995). Neural networks implement the
first approach, whereas SVMs, characteristic of statistical learning
theory (SLT), implement the second approach. Fundamental to SLT
is the notion of consistency, where both the empirical risk, encoun-
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tered during training, and the expected risk, for data yet unseen,
converge to the minimal possible value. Probably approximately
correct (PAC) learning (Valiant, 1984) is just as a particular case of
the consistency concept, commonly used in statistics, in which some
constraints on computational complexity were incorporated (Vap-
nik, 1995). If these constraints are removed from the PAC definition,
one is left with nonparametric inference in the sense of statistics
(Valiant, 1991) and PAC constitutes a particular case of SLT,
namely, the theory of bounds (Vapnik, 1995). In particular, givena
and b, PAC will, with probability at least (12 a), produce an
approximation pattern classification systemf such thatf is a b-
approximation of the target classifier, i.e., the erroruf 2 f9u , b.
The bound on the errorb is distribution free because it must hold for
any pdf of the training data.

Predictive learning requires an explicit framework to carry out its
basic task, that of functional approximation. As most functional
approximation problems are ill posed, additional constraints, some
of them based on a priori knowledge, are needed to regularize the
problem and to estimate continuous mappings from a limited num-
ber of observations. Specifically, as predictive learning is involved
in inductive inference, one needs to consider a regularization frame-
work based on inductive principles (bias), leading to better gener-
alizations. One obvious choice comes from statistics: the Bayesian
approach, wherep(uuv) 5 p(vuu) p(u)/p(v), in whichv andu stand
for observed and original data, respectively. The goal is to seek
(estimate) the original data in terms of the observed data. The MAP
and ML estimates seek maxp(u/v) and maxp(v/u), respectively,
and for uniformp(u), discardingp(v), they are similar. The induc-
tive principle underlying the Bayesian approach is that of minimum
classification and risk error. The penalty (constraint) corresponding
to this inductive principle consists of the a priori probability and
involves information outside the training data, an obvious drawback.
The Bayesian approach also suffers from its inability to fuse sup-
porting or conflicting evidence, and to cope with missing or incom-
plete information.

Choosing the right model for a classifier requires an inductive
principle, or bias. There are only a handful of known inductive
(inference) principles, including Bayesian inference, regulariza-
tion, empirical and/or structural risk minimization, and MDL
(Cherkassky and Mulier, 1998; Vapnik, 1998). Bayesian inference
uses additional a priori (probability) information about approximat-
ing functions in order to obtain a classifier model from the data
available. This adds subjectivity to the design of a classifier, because
the final model chosen depends largely on a good choice of priors.
One way to estimate the unknown pdfs needed to specify the
classifier, in the Bayesian framework, is to use marginalization, i.e.,
to average over all possible models by integrating out redundant
variables, a daunting and challenging computational task
(Cherkassky and Mulier, 1998). This can possibly be addressed
using Monte Carlo methods (Bishop, 1995) when Gaussian assump-
tions do not hold. The other way to implement the Bayesian ap-
proach is to search for the MAP probability estimate. This is
equivalent to the penalization formulation, characteristic of regular-
ization methods. Choosing the value of the regularization parameter
is equivalent to finding a good prior.

The main competition to the Bayesian framework comes from
SLT. It takes the form of structural risk minimization (SRM), which
is based on explicit minimization of the prediction risk. Under SRM,
the approximating functions, ordered according to their complexity,
form a nesting structure. For approximating functions linear in their
parameters, their complexity is given by the number of free param-

eters. For nonlinear functions, their complexity is defined as the VC
dimension. The referred-to structure under SRM parallels the priors
structure under the Bayesian approach. SRM implements complex-
ity control for model selection using analytic upper-bound estimates
for the expected risk rather than marginalization. Most important,
SRM can be applied when the true model does not belong to the set
of approximating functions. The Bayesian model fails in such cases
(Cherkassky and Mulier, 1998).

Complexity, the main component behind predictive learning
methods, is usually associated with dimensionality. Friedman (1994)
questions the wisdom of this assumption and points to the fact that
univariate (sigmoid) functions can be more difficult to approximate
than some original (high-dimensional) functions. In fact, one would
be tempted to move to a higher-dimensional space using complex
but smart nonlinear combinations of the original coordinates (fea-
tures) in order to enhance separability. This is also part of the
rationale behind group data handling methods (Ivakhnenko, 1971)
and SVMs. Kolmogorov’s theorem, introduced in Section III, an-
swered Hilbert’s 13th problem by disproving the conjecture that
there are continuous functions of three variables not representable as
superpositions of continuous functions of two variables. As Fried-
man correctly points out, what Hilbert actually conjectured, that bad
(high-dimensional) functions cannot be represented in a simple way
by good (low-dimensional) functions, is actually true, as the univar-
iate functions involved in Kolmogorov’s decomposition may be
very wiggly and quite complex. Lorentz (1986) has also remarked
that Kolmogorov’s theorem shows only that the number of variables
n is not a satisfactory characteristic of ‘badness’. The basic reason
for the curse of dimensionality is that functions of high dimension
can be much more complex than those of low dimension. The curse
of dimensionality can be overcome for simple (intrinsically low-
dimensional) functions, i.e., functions that depend (locally or glo-
bally) only on small numbers of variables (possibly after clever
preprocessing). The high-dimensional but unknown function then
belongs to a restricted class (of nonuniform distributions of training
and testing data) for which tailor-made methods exist.

IX. NATURAL BASES
A fairly standard approach to feature selection is to use abstract
measures deemed to be relevant, such as redundancy minimization,
ranging from decorrelation and minimization of the root mean
square (rms) reconstruction error using PCA, to using independent
features as in ICA, maximization of information transmission (in-
fomax), and entropy. The nonaccidental properties of the world
surrounding us, such as its spatiotemporal coherence, also have
much to do with the design of imaging systems. Those viewpoints,
formulated by Barlow (1989), also stated that adaptation and deco-
rrelation are basic functionalities for the visual cortex. They have led
to a growing interest in (a) statistical characterization of natural
images (Ruderman, 1994) and (b) how the statistical properties of
natural images affect the optimization of the visual system.

The possibility that the bases—kernels or receptive fields—on
which raw data are projected in order to derive features could be
fixed once and for all would be a major step forward, as it would
eliminate the need to recompute the bases. It would also provide
some consistency to the process of feature extraction and selection.
As an example, encoding natural scenes has been shown to take
advantage of intrinsic image statistics and to seek the derivation of
a natural (universal) basis (Hancock et al., 1992; Olshausen and
Field, 1996). The derived basis functions have been found to closely
approximate the receptive fields of simple cells in the mammalian
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primary visual cortex. Barlow (1989) has argued that such receptive
fields might arise from unsupervised learning, subject to redundancy
reduction or minimum entropy encoding. The receptive fields found
closely resemble various derivative-of-Gaussian (DOG) functions,
which are spatially localized, oriented, and bandpass-like filters.
Olshausen and Field (1996) derived such receptive fields based on a
criterion of sparseness. Bell and Sejnowski (1995) used an indepen-
dence criterion to derive qualitatively similar results.

Sparse codes fit well with psychological and physiological evi-
dence for parts-based representation in the brain and with compu-
tational theories of object recognition (Ullman, 1996). Lee and
Seung (1999) have recently described a nonnegative matrix factor-
ization (NMF) algorithm able to learn the parts of human faces.
They have further argued that vector quantization can discover a
basis consisting of prototypes, each of which is a whole face.
Although the basis images for PCA are eigenfaces, some of which
resemble distorted versions of the whole face, the NMF basis is
radically different: its images are localized features that correspond
better with intuitive notions of the parts of faces. Penev and Atick
(1996) have advanced the concept of local feature analysis (LFA) as
a substitute for global (holistic) PCA for face recognition. In terms
of local processing for feature extraction, LFA is conceptually
similar to the use of Gabor jets by Malsburg’s group (Okada et al.,
1998) or to the attempts to define eigenimages corresponding to
specific facial landmarks such as the eyes, nose, and mouth. As the
wavelet functions discussed earlier are optimally localized in both
the frequency domain and the time/space domain, their use can
result in a very sparse representation for a given input. Based on this
observation, continuous wavelet functions were used as basis func-
tions for a pattern recognizer taking the form of a feedforward or
wavelet network (Zhang and Benveniste, 1992), possibly trained
using backpropagation learning.

The search for natural bases can draw from several different but
related disciplines, all of them attempting to achieve sparse func-
tional approximation. The objective for a natural basis is that the
basis should be complete and low-dimensional, and that it should
allow for the efficient derivation of suitable image representations
corresponding to the structure of sensory signals. Once the natural
basis has been derived, no additional training is necessary and both
the training images and the novel images in future tasks are repre-
sented in terms of projections along the already available natural
basis. A natural basis, however, also has its drawbacks; it may be too
general to properly encode for a specific task. If the patterns under
consideration are human faces rather than natural images, the class
of patterns to be represented is quite specific, possibly indexed by
gender, ethnicity, and age. One has to learn the face space rather
than a “universal” and all-encompassing natural basis. This obser-
vation also fits well with the knowledge that the “bias/variance
dilemma may be circumvented if we are willing to purposely intro-
duce bias, which then makes it possible to eliminate the variance or
reduce it significantly” (Haykin, 1999, p. 29). Learning low-dimen-
sional representations of visual patterns with extensive use of prior
knowledge has also been discussed by Edelman (1999, p. 38), who
claims that “Learning from examples in a high-dimensional space is
computationally problematic. The problem, known as the ‘curse of
dimensionality’, lies in the exponential dependence of the required
number of examples on the number of dimensions of the represen-
tation space. Dimensionality reduction thus becomes of primary
importance. The challenge, then, is to reduce dimensionality while
preserving the ability of the representational system to deal with
novel objects without having to come up with novel features.”

On its way to deriving such a natural basis, visual system design
does indeed take advantage of the structure of the surrounding
environment. It is driven in particular by what Edelman (1987) calls
neural Darwinism, i.e., evolution using natural selection among
alternative designs. Evolution takes place by maintaining one or
more populations of individuals, each of them a candidate solution
competing for limited resources and rewarded according to the
number of offspring in future generations. Competition is imple-
mented via selection mechanisms that choose from the dynamically
changing population resulting from the birth and death of individ-
uals. The selection mechanisms evaluate the fitness values of indi-
viduals based on some predefined fitness function, whereas the
population evolves based on interbreeding using genetic operators.
When the fitness functions lack an analytical form suitable for
gradient descent or the computation involved is prohibitively expen-
sive, as is the case when the solution space is too large to search
exhaustively, one alternative is to use (directed) stochastic search
methods for nonlinear optimization and variable selection. The
unique exploration (variations farther away from an existing popu-
lation) and exploitation (minor variations on fit parents) ability of
evolutionary computation guided by fitness values has made it
possible to explore very complex search spaces.

As an example of such evolutionary forces at work, Reinagel and
Zador (1999) report evidence that the early stages of visual process-
ing may indeed exploit the characteristic structure of natural visual
stimuli. They show that sampling of the environment is an active
process and that it affects the statistics of the stimuli encountered by
the fovea and by the parafovea up to eccentricities of 4 degrees.
Subjects were more likely to look at image regions that had high
spatial contrast. Within these regions, the intensities of nearby pixels
were less correlated with each other than in images selected at
random. Contrast would thus be high, and correlation would be low,
whenever a sample was centered on a border between different
objects. As a result, the visual system increases the entropy of its
effective visual input and develops corresponding edge detectors.

One computational approach for deriving a natural basis is to use
evolution, taking the form of natural selection and implemented
using GAs (Mitchell, 1997a). To show how it works, we now
consider the problem of learning the face space from a large and
diverse population. The dimensions of the face space, to be evolved
using GAs, are such that their “fitness” is driven by factors such as
their classification/discrimination (cognitive) and representational
(perceptual) ability, cost (number of dimensions), the (categorical)
density of the resulting face space, and some measure of the tradeoff
between faithful face reconstruction (representation) and the ex-
pected classification accuracy (expected risk) of the face classifier.
The quality of the face space can also be driven by the diversity
encountered while learning the face space. Characteristic of both
coevolution and active learning methods, challenging training sam-
ples can be boosted and thus given extra weight when assessing the
fitness of some possible face space.

The derivation of an optimal projection basis for face encoding
has been formally addressed using evolutionary pursuit (EP; Liu and
Wechsler, 1998). In analogy to (exploratory) pursuit methods from
statistics, EP seeks to learn an optimal face space for the dual
purpose of (1) data compression and pattern reconstruction and (2)
pattern classification. The challenges that EP has successfully met
on limited population types are characteristic of sparse functional
approximation and SLT. Specifically, EP increases the generaliza-
tion ability of the face recognizer as a result of handling the tradeoff
between minimizing the empirical risk encountered during training
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(performance accuracy) and narrowing the expected risk (confidence
interval) in order to reduce the expected risk for unseen face images.
The expected risk, corresponding to a penalty factor in regulariza-
tion methods, is a measure of the generalization ability of the face
classifier and corresponds to the degree of class (face) separation,
e.g., the density of the face space. EP starts by projecting the original
images into a lower-dimensional and whitened PCA space. Directed
but random rotations of the basis vectors in this space are then
searched for by GAs where evolution is driven by a fitness function
defined in terms of performance accuracy (empirical risk) and class
separation (confidence interval).

Learning the face space requires EP to search through a large
number of possible subsets of rotated axes in a properly whitened
PCA space. The rotation angles (represented by strings of bits) and
the axis indicators (indicating whether or not the axes are chosen)
constitute the form of the search space whose size (2 to the power of
the length of the whole string) is too large to be searched exhaus-
tively. The number and choice of (nonorthogonal) axes in the
subsets and the angles of rotation are evolved using GAs. GAs work
by maintaining a constant-sized population of candidate solutions
known as individuals (chromosomes). The power of GAs lies in
their ability to exploit, in a highly efficient manner, information
about a large number of individuals. The search underlying GAs is
such that breadth and depth—exploration and exploitation—are
balanced according to the observed performance of the individuals
evolved so far. By allocating more reproductive occurrences to
above-average individuals, the overall effect is to increase the pop-
ulation’s average fitness.

While learning the face space, evolution is driven by a fitness
function formulated as follows:z(F) 5 za(F) 1 lzg(F), whereF
encompasses the parameters (such as the number of axes and the
angles of rotation defining each chromosome solution) subject to
learning. The first termza(F) records performance accuracy, i.e., the
empirical risk; the second termzg(F) is the generalization index, a
measure of class separation or face space density;l is a positive
constant that indicates the importance of the second term relative to
the first one. Accuracy indicates the extent to which learning has
been successful so far, whereas generalization gives an indication of
the expected fitness on future trials. It is interesting to note that, in
analogy to SLT (Vapnik, 1995), the generalization index is concep-
tually similar to the capacity of the classifier and is used here to
prevent overfitting. By combining those two terms with a proper
weight factorl, GAs can evolve balanced results with good recog-
nition performance and generalization ability. The fitness function is
similar to the cost functional used by regularization theory (Poggio
and Girosi, 1990) and to the cost function used by sparse coding
(Olshausen and Field, 1996). The cost functional of the former
method exploits a regularization parameter to control the compro-
mise between the solution’s closeness to the data and the degree of
regularization (quality) of the solution. The cost function of the latter
method uses a positive constant to achieve a balance between an
information preservation term and a term assessing the sparseness of
the derived code.

X. MIXTURES OF EXPERTS
By combining different modalities, one can enhance the perfor-
mance of an identification or classification system. Modalities here
are meant to include different sensors and/or classifier types. The
corresponding approaches are usually referred to as data fusion and
mixture of experts, respectively. As an example, by combining face,
voice, and lip movement recognition, Frischholz and Dieckmann

(2000) have shown how to build a highly accurate multimodal
biometric identification system (BioID). In a pattern recognition
context, we consider in this section the mixture of experts approach.
One simple method characteristic of this approach is cross-valida-
tion, which employs a winner-take-all (WTA) combination strategy.
It can be argued that WTA “wastes” those experts (models) that lose
the competition. Instead of choosing a single “best” model for a
given pattern recognition problem, a combination of several predic-
tive models may produce an enhanced pattern classifier.

Model combination approaches are an attempt to capture the
information made available by each of the experts. Typical model
combination procedures consist of a two-stage process. In the first
stage, the training data are used to separately estimate a number of
different models. The parameters of these models are then held
fixed. In the second stage, these models are (linearly or nonlinearly)
combined, mixed, or gated to produce the final predictive model
(Cherkassky and Mulier, 1998). Intuition suggests that the combi-
nation of different tests must improve performance. Daugman
(2000) shows, however, that a strong biometric is better used alone
than in combination with a weaker one. According to Daugman (p.
4), the key to “the apparent paradox is that when two tests are
combined, one of the resulting new error rates—FA or false rejec-
tion (FR), depending on the combination rule used—becomesbetter
than that of the stronger of the two tests,while the other error rate
becomesworse than even that of the weaker of the tests.If the two
biometric tests differ significantly in their power, and each operates
at its own crossover point whereP(FA) 5 P(FR), then combining
them actually results in a significantlyworse performance than
relying solely on the one, stronger, biometric.” Specific mixtures of
experts architectures used for model combination usually produce a
model combination by minimizing the empirical risk at each stage
(Perone and Cooper, 1993) or, as is the case with stacking predictors
(Wolpert, 1992), employ a resampling technique similar to cross-
validation. In the first approach, the training data are first used to
estimate the candidate models, and then the combined model is
created by taking the weighted average. The resampling for stacking
predictors is done so that the data samples used to estimate the
individual approximating functions are not used to estimate the
mixture coefficients.

Consider now the problem of learning a classification mapping
whose form is different for different regions of the input space.
Although a single homogeneous network could be applied to this
problem, one expects that the task would be made easier if different
expert networks are assigned to each of the different regions, while
a “gating” network, which also sees the input data, decides which of
the experts should determine the classification output (Bishop,
1995). Such networks, based on the “divide and conquer” modular-
ity principle (Jacobs et al., 1991), train the expert networks and the
gating networks together. The goal of the training procedure is to
have the gating network learn an appropriate decomposition of the
input space into different regions, and assign to individual expert
networks the responsibility for making classification decisions for
input vectors falling within their regions of purview. Jordan and
Jacobs (1994) extend this approach by considering a hierarchical
system in which each expert network can itself consist of a mixture-
of-experts network, complete with its own gating network.

A similar concept using corrective training, and driven by an
active learning scheme, was suggested by Krogh and Vedelsby
(1995). The active learning scheme takes advantage of the obvious
observation that a combination of the outputs of several networks (or
other predictors) is useful only if they disagree on some inputs. The
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disagreement, called the ensemble ambiguity, can then reduce the
generalization error of the network ensemble. Most recently, Hinton
(1999) has introduced a similar model, that of a product of experts,
in order to combine multiple probabilistic models for the same data.
According to Hinton, this is a very efficient way of modeling
high-dimensional data that simultaneously satisfies many different
low-dimensional constraints. Data vectors that satisfy one constraint
but violate other constraints will be ruled out by their low proba-
bilities under the other expert models. The overall result, that neural
population codes are learned, represents yet another realization of
the search for sparse and local encodings, as discussed elsewhere in
this paper. Gating networks as described above can be shown to
have conceptual similarities to mixture estimation and the EM
algorithm (Jordan and Jacobs, 1994).

The SVM, a classification method based on structural risk min-
imization, is yet another manifestation of the mixture of experts
approach. The input to the SVM training algorithm is a training set
(xj, yj) and some kernel, possibly RBFs, acting as local experts and
properly weighted (Vapnik, 1998; Scholkopf et al., 1999). The
training data consists of feature vectorsxj and class membershipsyj,
with the class label being either21 or 11. SVMs seek separating
hyperplanesD(x), defined asD(x) 5 (w z x) 1 w0, by mapping the
input datax into a higher-dimensional spacez using a nonlinear
function g. For an SVM, the optimal hyperplane has maximal
margin; the data points at the (maximum) margin are called the
support vectors because they alone define the optimal hyperplane.
The reason for mapping the input into a higher-dimensional space is
that this mapping leads to better class separability. The complexity
of the SVM decision boundary is independent of the feature (z)
space dimensionality, which can be very large (or even infinite).

SVM optimization takes advantage of the fact that the evaluation
of the inner products between the feature vectors in a high-dimen-
sional feature space is done indirectly via the evaluation of the
kernelH between support vectors and vectors in the input space, (z z
z*) 5 H(x, x*), where the vectorsz andz* are the vectorsx andx*
mapped into the feature space. In the dual form, the SVM decision
function has the formD(x) 5 ¥i51

M biyiH(xi, x*). The numberM
of RBFs, the kernel centers, which correspond to the support vec-
tors, and the coefficientsbi are all automatically determined by
solving a quadratic optimization problem. The output of the SVM
training algorithm is a set of support vectorssi and weightsai. The
support vectors are the feature vectors that characterize the boundary
between the two classes. The weights are the relative contributions
of the support vectors to the decision surface. The SVM decision
surfaced using RBFs has the following form:d(z) 5 ¥i aiyiK
(si, z), whereK is the RBF kernel. The weightsai are the gating or
mixture parameters that determine the relative influence of each
support vector. SVMs have been applied to face detection (Osuna et
al., 1997), eye detection (Huang et al., 1998), and face recognition
(Phillips, 1999).

One can expand on the concept of a mixture of experts if, in
addition to different classifier designs, one also considers different
strategies or expertise for generating the training data. Learning
classifiers from small training sets is difficult in that the parameters
of the data distribution cannot be estimated properly. Due to the
small number of training data, some of them (outliers) can greatly
distort the distribution. Classifiers based on small training sets are
thus usually biased or unstable (Skurichina and Duin, 1998). Boot-
strap (Breiman, 1996), based on random sampling with replacement,
allows one to get more accurate statistical estimates. By taking a
bootstrap replicate, one is likely to avoid the outliers in the original

training set. Bootstrap estimators are not always superior to leave-
one-out (crossvalidation) on small samples, despite the fact that
while leave-one-out is nearly unbiased, its variance can be high for
small samples (Weiss and Kulikowski, 1991). Bagging, based on
bootstrapping and aggregation, works by averaging the parameters
of the classifiers built from several bootstrap replicates. Bagging is
useful for unstable (biased and large-variance) classifiers, but it can
degrade the performance of stable classifiers.

The basic paradigm for improving the accuracy of unstable
methods is that of perturbing and combining. As an example, Freund
and Shapire (1996) proposed anarcing algorithm thatadaptively
resamples andcombines so that the weights during resampling are
increased for those cases most often misclassified. Arcing has
proved more successful than bagging in test set error reduction. Both
bootstrap aggregating (bagging) and arcing (boosting) manipulate
the training data in order to generate different classifiers. Combining
multiple versions through either bagging or arcing then reduces the
variance significantly (Breiman, 1998). An empirical comparison of
voting classification algorithms has been made recently by Bauer
and Kohavi (1999).

XI. CONCLUSIONS
The ultimate objective of pattern recognition is to develop an inte-
grated framework where feature extraction, model (classifier) selec-
tion, and predictive learning are iteratively performed with the goal
of optimal (classifier) approximation. One challenge to such an
effort is to derive a functional and task-oriented projection basis that
does not require retraining. This basis would correspond to a com-
pact dictionary or code book useful for efficient representation and
classification. Efforts in this direction are now coming from several
disciplines and are illustrated by matching pursuit methods for
adaptive signal processing (Mallat and Zhang, 1993), kernel meth-
ods for neural learning (Poggio and Girosi, 1998), pursuit methods
in statistics (Friedman and Stuetzle, 1981), sparse and generative
models in the neurosciences (Olshausen and Field, 1996), and ex-
ploratory pursuit (Liu and Wechsler, 1998). Sparse approximation
using kernel methods has recently been shown to be equivalent to
SVM (Girosi, 1998) and basis pursuit (Chen et al., 1995).

Another interesting direction for further research is related to the
representations stored in memory and used for pattern recognition. It
is well known that caricatures of human faces are recognized better
than real images. The caricaturing process is based on the selective
deformation of the features of a face pattern. The caricaturing
process works on images by exaggerating the most distinctive fea-
tures and leaving unchanged the features that are most common.
According to psychological studies, human memory stores a cari-
cature representation (of a face) rather than the veridical image
representation (Rhodes et al., 1987). Experimental work suggests
that the time required for the recognition of caricatured images is
less than the time required for veridical images. Properties related to
memorability/distinctiveness seem to affect performance during hu-
man benchmark studies of face recognition but in a task-dependent
fashion (O’Toole et al., 1993).

The memorability component of face typicality has a direct
relation with the H rate and an inverse relation with the FA rate
(Vokey and Read, 1995) for both face recognition memory tasks and
picture recognition tasks involving faces. The task of “picture rec-
ognition,” or verification, differs from face recognition in that the
observer is not concerned with face identity, regardless of the image
changes taking place between study and test, but is rather concerned
with image identity. It appears that the primary increase in the H rate
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is due to increases in encoding (gallery) distinctiveness. Increases in
distinctiveness at the retrieval (probe) stage contribute to substantial
reductions in the FA rate. It also has become apparent that for facial
image recognition (verification), the primary locus of the caricature
effect is at the retrieval stage; for face recognition (identity), its
primary locus is at the encoding stage. This suggests several direc-
tions for fruitful research in pattern recognition. First, what should
one caricature? How can one automate the annotation process re-
quired to provide landmarks for the distortion process involved in
caricaturing? Second, and quite intriguing, is the possibility that we
have to distort (caricature) both the gallery (memory) and the probe
(test) representations in order to be more accurate in both identity
and verification tasks.
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