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Abstract 

As for the previous video coding standards, the H.264/AVC (Advanced Video Coding) 

standard adopts a predictive coding paradigm combining temporal prediction with a spatial 

transform, quantization and entropy coding to achieve good rate-distortion (RD) performance. 

The complexity associated to this process lies mostly at the encoder side, keeping the decoder 

as simple as possible. On the other hand, the alternative Distributed Video Coding (DVC) 

approach proposes to exploit the video redundancy mostly at the decoder side, keeping the 

encoder as simple as possible. One of the most characteristic DVC tools is the statistical 

reconstruction of the Discrete Cosine Transform (DCT) coefficients, which plays a similar role as 

the inverse scalar quantization in predictive codecs. The main objective of this Thesis is to study 

the use of statistical reconstruction as a substitute to inverse quantization in the context of the 

H.264/AVC standard, thus creating a video coding architecture with a mix of predictive and 

distributed coding tools.    

After reviewing the relevant literature on the H.264/AVC standard with emphasis on the 

quantization process, and on DVC solutions with emphasis on the statistical reconstruction, a 

statistical reconstruction tool has been developed to replace the usual inverse scalar 

quantization adopted in the H.264/AVC standard. This solution adopts a Laplacian correlation 

model for the DCT residuals and estimates the model parameter to best fit the DCT residuals. 

The statistical reconstruction tool is integrated on both the encoder and decoder sides and uses 

the Laplacian model to improve the process of reconstructing the quantized DCT coefficients.  

Experimental results obtained using the Bjontegaard (BD) metric show BD-Rate savings up 

to 4,71% and a BD-PSNR increase up to 0,33 dB, when comparing the proposed solution with 

the reference software H.264/AVC codec. When comparing the proposed solution with the 

H.264/AVC+ARO (Adaptive Rounding Offsets) video codec using a offset control based 

quantization, BD-Rate savings and BD-PSNR gains are observed for the lower bitrates, while at 

higher bitrates the proposed solution has a slight performance disadvantage.  

 

 

 

Keywords: H.264/AVC; Predictive Video Coding; Distributed Video Coding; Scalar 

Dequantization; Statistical Reconstruction. 





v 
 

Sumário 

Tal como nas normas de codificação de vídeo anteriores, a norma H.264/AVC (Advanced 

Video Coding) adopta um paradigma preditivo de codificação de vídeo combinando predição 

temporal com transformada espacial, quantização e codificação entrópica para atingir um bom 

desempenho débito-distorção. A complexidade associada a este processo situa-se 

maioritariamente do lado do codificador, mantendo-se o descodificador o mais simples 

possível. Por outro lado, a abordagem alternativa designada como Distributed Video Coding 

(DVC), propõe-se explorar a redundância do vídeo essencialmente do lado do descodificador, 

mantendo o codificador tão simples quanto possível. Uma das ferramentas características do 

DVC é a reconstrução estatística dos coeficientes DCT que tem um papel semelhante à 

quantização inversa nos codecs preditivos. O principal objectivo desta Tese é estudar o uso da 

reconstrução estatística como substituto da quantização inversa no contexto da norma 

H.264/AVC, criando assim uma arquitectura de codificação de vídeo com uma mistura de 

ferramentas dos tipos preditivos e distribuídos.  

Após a revisão da literatura relevante sobre a norma H.264/AVC com ênfase no processo 

de quantização, e sobre as soluções DVC com ênfase na reconstrução estatística, foi 

desenvolvida uma ferramenta de reconstrução estatística para substituir a habitual quantização 

inversa adoptada na norma H.264/AVC. Esta solução adopta um modelo de correlação 

Laplaciano para o resíduo dos coeficientes DCT e estima o parâmetro do modelo que melhor 

se adequa a esse resíduo. Esta ferramenta de reconstrução estatística é integrada tanto do 

lado do codificador como do lado do descodificador e usa o modelo Laplaciano para melhorar o 

processo de reconstrução dos coeficientes DCT quantizados.  

Os resultados experimentais obtidos usando a métrica de Bjontegaard (BD) evidenciaram 

uma poupança em BD-Rate até 4,71% e um aumento em BD-PSNR até 0,33 dB, quando a 

solução proposta foi comparada com a norma H.264/AVC. Ao comparar a solução proposta 

com a norma H.264/AVC com Adaptive Rounding Offsets (ARO) activos, foram observadas 

poupanças em BD-Rate e ganhos em BD-PSNR para os débitos binários mais baixos, 

enquanto que para os débitos binários mais elevados a solução proposta tem uma ligeira 

desvantagem.  

 

 

Palavras-chave: H.264/AVC; Codificação Distribuída de Vídeo; Quantização Inversa; 

Reconstrução Estatística.   





vii 
 

 

Table of Contents 

Chapter 1 - Context and Objectives ......................................................................................... 1 

1.1. Context and Motivation ................................................................................................ 1 

1.2. Objectives ...................................................................................................................... 2 

1.3. Report Organization ...................................................................................................... 3 

Chapter 2 - Reviewing Background Technology .................................................................... 5 

2.1. Reviewing Predictive Video Coding ............................................................................... 5 

2.1.1. Basic Concepts ....................................................................................................... 5 

2.1.2. The State-of-the-Art H.264/AVC Standard ............................................................ 7 

2.1.2.1. Network Abstraction Layer ........................................................................... 8 

2.1.2.2. Video Coding Architecture ............................................................................ 9 

2.1.2.3. Main Novel Coding Tools ............................................................................. 10 

2.1.2.4. Performance Assessment ............................................................................ 13 

2.2. Reviewing Distributed Video Coding ........................................................................... 14 

2.2.1. Basic Concepts and Early Wyner-Ziv Video Coding Solutions ............................. 14 

2.2.2. The DISCOVER Wyner-Ziv Video Codec ............................................................... 16 

2.2.2.1. Architecture and Walkthrough .................................................................... 16 

2.2.2.2. Performance Assessment ............................................................................ 17 

2.3. Reviewing Relevant Background on Quantization ...................................................... 19 

2.3.1. Basic Issues on Scalar Quantization .................................................................... 19 

2.3.2. Transform and Quantization in H.264/AVC......................................................... 21 

2.3.2.1. H.264/AVC Integer Transform Design ......................................................... 22 

2.3.2.2. H.264/AVC Quantization Process ................................................................ 23 

2.3.3. Adaptive Quantization Algorithms ...................................................................... 25 

2.3.3.1. Adaptive Quantization using an Equal Expected-Value Rule ...................... 25 

2.3.3.2. Adaptive Quantization based on Rounding Offsets .................................... 27 

2.4. Reviewing Relevant Background on Correlation Noise Modeling and Optimal 

Reconstruction ........................................................................................................................ 31 



viii 
 

2.4.1. Correlation Noise Modeling for Efficient Transform Domain Wyner-Ziv Video 

Coding 31 

2.4.2. Optimal Reconstruction in WZ Video Coding with Multiple Side Information ... 35 

Chapter 3 - Predictive Video Coding with Statistical Reconstruction: Video Codec 

Architecture ............................................................................................................................... 39 

Chapter 4 - Predictive Video Coding with Statistical Reconstruction: Novel Coding 

Tools ........................................................................................................................................... 43 

4.1. Optimal Transform, Scaling and Quantization ............................................................ 43 

4.2. Residual Statistical Modeling ...................................................................................... 44 

4.2.1. DCT Coefficients Statistical Analysis .................................................................... 44 

4.2.2. Statistical Model Parameter Computation.......................................................... 48 

4.3. Statistical Reconstruction ............................................................................................ 49 

4.3.1. DCT Coefficients Reconstruction Bin Bounds Computation ............................... 49 

4.3.2. DCT Coefficients Reconstruction ......................................................................... 51 

Chapter 5 - Predictive Video Coding with Statistical Reconstruction: Performance 

Assessment ............................................................................................................................... 53 

5.1. Test Conditions ............................................................................................................ 53 

5.1.1. Video Sequences ................................................................................................. 53 

5.1.2. Coding Conditions ............................................................................................... 55 

5.1.3. Performance Evaluation Metrics ......................................................................... 56 

5.2. RD Performance Evaluation ........................................................................................ 57 

Chapter 6 - Concluding and Future Work ............................................................................. 67 

6.1. Summary ........................................................................................................................ 67 

6.2. Achievements ................................................................................................................ 68 

6.3. Future Work ................................................................................................................... 68 

References ................................................................................................................................ 71 

Annex A - Studying the Performance of the ARO Algorithm .............................................. 73 

 



ix 
 

Index of Figures 

 

Figure 1 - Scope of video coding standardization [1]. ................................................................... 7 

Figure 2 - Structure of H.264/AVC standard [1]. ........................................................................... 8 

Figure 3 - Basic H.264/AVC encoder architecture [1]. .................................................................. 9 

Figure 4 - Multi-frame motion compensation example for a P-slice [6]. .................................... 11 

Figure 5 - Example of deblocking filter performance: without (left) and with (right) deblocking 

filter [7]. ....................................................................................................................................... 12 

Figure 6 - Graphical representation of the H.264/AVC profiles [8]............................................. 13 

Figure 7 – RD performance and bitrate savings plot for entertainment-quality applications [7]

 ..................................................................................................................................................... 13 

Figure 8 - DISCOVER Wyner–Ziv video codec architecture [9]. ................................................... 16 

Figure 9 - RD performance comparison for GOP size 2 [10]. ...................................................... 18 

Figure 10 - RD performance comparison for GOP sizes 2, 4 and 8 [10]. ..................................... 19 

Figure 11 – Example of a quantizer structure [12]. ..................................................................... 21 

Figure 12 - Performance comparison between encoders with and without adaptive rounding 

method for the sequence Mobile CIF (left) and Soccer 4CIF (right) [12]. ................................... 27 

Figure 13 - Block diagram for the ARO algorithm [14]. ............................................................... 29 

Figure 14 - Relative control errors for the “erin” (left) and “royal” (right) sequences: (a)(b) I in 

‘III’; (c)(d) P in ‘IPP’; (e)(f) B in ‘IBP’ [14]. ..................................................................................... 30 

Figure 15 - Decoder Structure with Multiple Side Information [17]. .......................................... 37 

Figure 16 - RD performance with optimal MMSE reconstruction [17]. ...................................... 38 

Figure 17 - High-level encoder architecture of the proposed video coding solution. ................ 41 

Figure 18 – High-level decoder architecture of the proposed video coding solution. ............... 42 

Figure 19 - Residual histogram and Laplacian fitting for the I frames AC1 band of the sequence 

City, 1280x720, 60 Hz, QP = 10. .................................................................................................. 45 

Figure 20 - Residual histogram and Laplacian fitting for the P frames AC5 band of the sequence 

City, 1280x720, 60 Hz, QP = 11. .................................................................................................. 45 

Figure 21 - Residual histogram and Laplacian fitting for the B frames AC9 band of the sequence 

City, 1280x720, 60 Hz, QP = 12. .................................................................................................. 46 

Figure 22 - Residual histogram and Laplacian fitting for the I frames AC1 band of the sequence 

Night, 1280x720, 60 Hz, QP = 10. ................................................................................................ 46 

Figure 23 - Residual histogram and Laplacian fitting for the P frames AC5 band of the sequence 

Night, 1280x720, 60 Hz, QP = 11. ................................................................................................ 47 

Figure 24 - Residual histogram and Laplacian fitting for the B frames AC9 band of the sequence 

Night, 1280x720, 60 Hz, QP = 12. ................................................................................................ 47 



x 
 

Figure 25 – First frame of the selected video sequences: top) Night (left) and City (right); 

bottom) Big Ships (left) and Shuttle Start (right) ........................................................................ 54 

Figure 26 – RD performance comparison for the Night sequence: lower rates ......................... 57 

Figure 27 – RD performance comparison for the Night sequence: higher rates ........................ 58 

Figure 28 - RD performance comparison for the City sequence: lower rates ............................ 58 

Figure 29 - RD performance comparison for the City sequence: higher rates ........................... 59 

Figure 30 - RD performance comparison for the Shuttle Start sequence: lower rates .............. 59 

Figure 31 - RD performance comparison for the Shuttle Start sequence: higher rates ............. 60 

Figure 32 - RD performance comparison for the Big Ships sequence: lower rates .................... 60 

Figure 33 - RD performance comparison for the Big Ships sequence: higher rates ................... 61 

Figure 34 – RD performance comparison for the Coastguard CIF sequence .............................. 74 

Figure 35 – RD performance comparison for the Foreman CIF sequence .................................. 74 

Figure 36 – RD performance comparison for the Mobile CIF sequence ..................................... 75 

Figure 37 – RD performance comparison for the Soccer CIF sequence ...................................... 75 

Figure 38 – RD performance comparison for the Night 720p sequence .................................... 76 

Figure 39 – RD performance comparison for the Big Ships 720p sequence ............................... 76 

 



xi 
 

Index of Tables 

Table 1 - 𝛥 and PSNR comparison for HD contents [14]. ............................................................ 30 

Table 2 - DCT Band-Level and Coefficient-Level RD performance for Flower Garden, Foreman, 

Coastguard and Hall Monitor QCIF Sequences [16]. ................................................................... 35 

Table 3 – Test video sequences characteristics .......................................................................... 55 

Table 4 – Quantization parameters used to define each RD point for the various video 

sequences (RD points 1-4) ........................................................................................................... 55 

Table 5 - Quantization parameters used to define each RD point for the various video 

sequences (RD points 5-9) ........................................................................................................... 56 

Table 6 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC: 

higher rates ................................................................................................................................. 63 

Table 7 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC: 

lower rates .................................................................................................................................. 63 

Table 8 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC + 

ARO: higher rates ........................................................................................................................ 64 

Table 9 - Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC + 

ARO: lower rates ......................................................................................................................... 64 

 

  





xiii 
 

List of Acronyms 

 

ARO  Adaptive Rounding Offset 

AVC  Advanced Video Coding 

BD  Bjontegaard 

CABAC  Context-Adaptive Binary Arithmetic Coding 

CAVLC  Context-Adaptive Variable Length Coding 

CIF  Common Intermediate Format 

CNM  Correlation Noise Model 

DCT  Discrete Cosine Transform 

DVC  Distributed Video Coding 

FI  Frame Interpolation 

FMO  Flexible Macroblock Ordering 

FQ  Forward Quantizer 

GOP  Group of Pictures 

HEVC  High Efficiency Video Coding 

HD  High Definition 

HVS  Human Visual System 

IDCT  Inverse Discrete Cosine Transform 

IDR  Instantaneous Decoding Refresh 

IQ  Inverse Quantization 

ITU-T  International Telecommunications Union – Telecommunication Standardization 

Sector 

JVT Joint Video Team 



xiv 
 

LDPC Low Density Parity Check  

MCTI  Motion Compensated Temporal Interpolation 

MPEG Moving Picture Experts Group 

MSE Mean Squared Error 

NAL  Network Abstraction Layer 

NURQ  Nearly-Uniform Reconstruction Quantizer 

PAFF Picture-Adaptive Frame/Field 

PCM  Pulse-Code Modulation 

PRISM Power-Efficient Robust High-Compression Syndrome-Based Multimedia 

PSNR Peak-Signal-to-Noise-Ratio 

QCIF Quarter Common Intermediate Format 

RD Rate Distortion 

SI  Side Information 

SD  Standard Definition 

URQ Uniform Reconstruction Quantizer 

VCEG Video Coding Experts Group 

VCL Video Coding Layer 

WZ Wyner-Ziv 

  

 



1 
 

Chapter 1 

 

Context and Objectives 

This chapter intends to present the overall scope and objectives of this Thesis along with its 

motivation and context. Finally, the Thesis structure is presented.  

1.1. Context and Motivation 

Nowadays, digital video has a regular and well established presence in our lives. Digital 

television, personal computers and handheld devices, such as smart phones, are now fully 

integrated in our society, and are used extensively to access, record and play digital videos. 

The growth in digital visual content usage has been accompanied with the development of 

powerful compression tools that enable the reduction of the bitrate necessary to represent these 

contents by exploiting data correlation and the limitations of the human visual system (HVS) to 

remove redundant and irrelevant data, respectively. These coding tools have been included in 

several video coding standards defined by the International Telecommunications Union – 

Telecommunication Standardization Sector (ITU-T) and the Moving Picture Experts Group 

(MPEG) over the last two decades. Currently, the H.264/AVC standard [1], developed by the 

Joint Video Team (JVT) formed by the ITU-T Video Coding Experts Group (VCEG) and ISO/IEC 

MPEG standardization groups, is the most deployed video coding solution in the market but a 

new video coding standard has already been defined, the so-called High Efficiency Video 

Coding (HEVC) standard [2]. The HEVC standard offers again 50% bitrate reductions for the 

same perceptual quality and should start conquering the markets soon. 

In the available video coding standards, all adopting a predictive coding paradigm combining 

temporal prediction with a spatial transform and quantization, substantial RD gains have been 

achieved by increasing the encoder complexity while maintaining the decoder complexity the 

lowest possible. This coding paradigm is well adapted to some very important video coding 

applications like television broadcasting and video streaming which follow a one-to-many 

topological model with a single complex encoder providing coded content to multiple less 

complex decoders. In this coding paradigm, the encoder complexity is typically five to ten times 

larger than the decoder complexity [3]. The encoder complexity is mainly associated with the 

motion estimation process, which is responsible for the creation of efficient predictions and thus 

for the high RD performance achieved.  
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However, emerging applications like wireless video surveillance, multimedia sensor networks 

and mobile camera phones, amongst others, are challenging the usual predictive coding 

paradigm, notably in terms of complexity allocation. For example, in wireless video surveillance 

systems, low complexity encoders are desired, since there is typically a high number of 

encoders which should be simple and only one or a few decoders which can be more complex 

than the encoders. Distributed video coding (DVC) is a new video coding paradigm, emerged 

around 2002, that fully or partly exploits the video redundancy at the decoder and not anymore 

at the encoder as in predictive video coding; with this complexity balance, DVC codecs are well 

suited for some emerging application scenarios as those mentioned above. According to the 

Slepian-Wolf theorem [4], it is possible to achieve the same bitrate as required for the typical 

joint encoding and decoding (with a vanishing error probability) as used in predictive coding by 

independently encoding but jointly decoding two statistically dependent signals. The Wyner-Ziv 

theorem extends the Slepian-Wolf theorem to the lossy case (in practice, more relevant), 

becoming the key theoretical basis for Wyner-Ziv (WZ) video coding where a source is lossy 

coded based on the availability of some correlated source at the decoder from which is derived 

the so-called side information (SI) [4]. The side information is an estimation of the original frame 

(source) to code made at the decoder based on already decoded information. Since the 

estimation process naturally includes some errors (this means the side information is different 

from the original frame), the encoder has the task to ‘correct’ the estimation errors in a similar 

way that errors in an error-prone channel are corrected, this means using a channel code, thus 

obtaining a decoded frame that has better quality than the estimated side information frame. 

While many well know tools used in the predictive video coding paradigm have been 

integrated in distributed video coding solutions, it became clear at some stage that also some 

tools typically used in distributed video coding may be used in predictive video codecs. These 

tools may be integrated with the expectation of improving the predictive video coding RD 

performance, eventually also slightly increasing the encoder and decoder complexity. Exploiting 

the synergy between the two video coding paradigms, predictive and distributed is the main 

goal of this Thesis.    

1.2. Objectives 

In the context defined above, the main objective of this Thesis is to enhance the overall RD 

performance of the state-of-the art H.264/AVC video codec by integrating a technique typically 

used by distributed video decoders, the statistical reconstruction which has a similar purpose to 

the inverse quantization used in predictive codecs such as H.264/AVC. To reach this target, the 

following tasks had to be performed: 

 Review the relevant literature on both predictive and distributed video coding, notably 

contributions related to inverse quantization in predictive video coding and statistical 

reconstruction in distributed video coding.  

 Design a predictive video coding architecture where a statistical reconstruction method 

improves the inverse quantization (IQ) process as adopted in distributed video decoders. 

 Define a correlation model for the H.264/AVC residual DCT coefficients. In the predictive 

video coding context, the decoded frame is obtained by adding the Intra/Inter predicted 

frame (which is obtained with the coding modes/motion vectors sent by the encoder) to the 

residual frame (which is obtained by entropy decoding followed by IQ and IDCT of the 
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residual). Since in distributed video coding the side information is an estimation of the 

original frame to be coded, it corresponds to the Intra/Inter predicted frame in predictive 

video coding. Thus, the correlation between the frame to be coded and the side information 

must be statistically modeled to adopt a DVC based statistical reconstruction method to 

replace the H.264/AVC decoder inverse quantization. Although, this process may increase 

the H.264/AVC encoder and decoder complexity, it may also bring advantages, notably RD 

performance benefits. 

 Estimate the parameters for the defined correlation noise model with fine granularity to have 

a dynamically enough adaptation to the evolving data statistics. 

 Design and implement an appropriate decoder statistical reconstruction method able to 

improve the RD performance of the H.264/AVC video codec. 

 Evaluate the RD performance improvements obtained with the proposed video coding 

method against the relevant benchmarks. 

 

1.3. Report Organization 

This report is organized in six chapters, including this first chapter that is used to introduce 

the work to be developed and precisely define its objectives.  

Chapter 2 contains a review of the state-of-the art on the relevant aspects of video coding 

technologies, notably predictive and distributed video coding. With this review, the reader is 

introduced to some basic principles and tools necessary for a better understanding of the work 

to be developed. Especial focus will be given to the quantization in predictive codecs and 

statistical reconstruction in distributed codecs. 

In Chapter 3, the proposed video codec architecture is presented together with a brief 

walkthrough of the main innovations proposed in this Thesis, namely the new modules inserted 

in the H.264/AVC video codec.  

 In Chapter 4, the video coding tools proposed in this Thesis are presented in detail in order 

to provide deep insight on the effective work done.   

In Chapter 5, the evaluation of the proposed coding solution in terms of RD performance is 

presented and the obtained results are analyzed. 

Finally, in Chapter 6, the main conclusions about the work and possible future developments 

in this area are presented. 
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Chapter 2  

 

Reviewing Background Technology 

This chapter has the main objective to review the background technologies relevant for this 

Thesis. In this context, the first section is dedicated to a predictive video coding overview, 

notably the basic concepts and its most popular representative, this means the H.264/AVC 

standard; this standard will be first briefly described, notably its architecture and main tools and, 

finally, its RD performance will be presented. The second section will be dedicated to briefly 

review distributed video coding providing some background on its basics and a concise 

description of the DISCOVER video codec, the most important benchmark for this video coding 

paradigm. In the third section, some review on quantization and inverse quantization will be 

provided and, finally, in the fourth section a brief review on correlation noise modeling and 

optimal reconstruction will be made. These topics together build the basis for the video codec to 

be designed, implemented and evaluated in this Thesis. 

2.1. Reviewing Predictive Video Coding 

This section intends to provide an overview on predictive video coding and its main tools and 

characteristics since this is the coding paradigm adopted by all video coding standards 

developed in the past 20 years. A brief description of the state-of-the-art H.264/AVC video 

codec will be provided, notably its architecture, main tools and performance. 

2.1.1. Basic Concepts 

Nowadays, there is an exponential growth in the number of services using digital video, and 

an increasing popularity of high definition (HD) contents. Video coding for telecommunication 

applications has evolved through the development of the ITU-T H.261, H.262 (MPEG-2 Video), 

H.263 (and later enhancements, known as H.263+ and H.263++) and MPEG-4 video coding 

standards. Throughout this evolution, continued efforts have been made to maximize the 

compression efficiency while dealing with a large diversity of networks and their characteristics, 

while always also keeping in mind the loss/error robustness, delay, random access and 

complexity requirements. The practical source coding/compression problem may be described 

as follows: given a maximum allowed delay and a maximum allowed complexity, an optimal 
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tradeoff has to be achieved between the bitrate and the distortion/quality for the range of 

network environments and conditions envisioned by the relevant applications [5].  

Video coding typically uses a representation system with three components: Y which is 

called luminance (also luma) and represents the brightness, and 𝐶𝑏 and 𝐶𝑟 which are the two 

chrominance components and represent the extent to which the color deviates from the 

luminance towards blue and red, respectively [5]. As it is a known fact that the human visual 

system is more sensitive to variations in the luminance component, the video codecs often take 

advantage of this fact by using what is called a colour subsampled format where the 

chrominance spatial resolution is lower than the luminance spatial resolution; for example, in a 

4.2:0 subsampling, the chrominances have half the resolution in both directions, vertical and 

horizontal, which means that the chrominance component arrays have only one fourth of the 

samples of the corresponding luminance array. 

Pulse-code modulation (PCM) is the simplest form of digital source coding where each 

sample is independently represented with the same number of bits, typically 8 bits per sample 

for image and video data. As the simplest digital representation, it is also the least efficient in 

terms of bitrate and so compression becomes necessary to reduce the involved bitrates.  

The basic idea in predictive video coding is to exploit the redundancy and irrelevancy 

present in the PCM video data to reduce the coding rate while reaching a certain target quality. 

While exploiting the irrelevancy implies eliminating from the signal representation information 

that cannot be recovered making the codec a lossy codec (this means the decoded and original 

videos are mathematically different), exploiting the redundancies implies eliminating 

repeated/redundant information, in time, space and statistics and, thus, does not bring any 

degradation to the decoded signal regarding the original PCM signal representation. The basic 

tools used in predictive video coding solutions such as the previously mentioned standards are: 

 Temporal Prediction: Process where a set of prediction values is created for each video 

frame that is used to predict the values of the original samples so that only the differences 

from the prediction values need to be coded; this tool exploits the temporal redundancy in 

the video as it is possible to create a low prediction error or residue to code each image by 

exploiting its similarities with previously coded images. In order to improve the temporal 

prediction, motion estimation and compensation tools are commonly used. These tools 

have the target of improving temporal predictions for each image area, by detecting, 

estimating and compensating the motion in the various video regions. The objective of 

motion estimation is to relate the position of a given sample, area or object in an image with 

its position in a previously coded image in the past or in the future. The difference between 

the positions in the current and previous/future frame(s) constitutes the motion vector which 

has to be coded and sent to the decoder.  

 Spatial Transformation: Using a spatial transformation can avoid to repeatedly represent 

similar sample values as it is possible to capture the essence of the signal by using 

frequency analysis. The spatial transform´s objective is to obtain an alternative 

representation of the signal while offering more effective coding. This tool exploits the 

statistical correlation of the input samples, so that the most relevant information associated 

to the set of input samples is typically concentrated into a small set of values, the so-called 

transform coefficients. 
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 Quantization: To exploit the visual irrelevance in the original signal, the transform 

coefficients to transmit for each block are quantized, thus introducing some mathematical 

error. This process is the main responsible for the quality losses in DCT based codecs but 

also bitrate reductions. Each quantization step is selected taking into account the minimum 

perceptual difference for the coefficient in question as this determines the associated (if 

any) negative quality impact. For example, the HVS is less sensitive to high spatial 

frequencies and very low/high luminances. Taking this into account, a coarser coding of 

these coefficients can be made through the use of quantization, thus improving the overall 

compression as no bits are wasted to code non-perceptually perceivable information. 

 Entropy Coding: A process where the relative probabilities of the various possible values 

of each source symbol are exploited through a suitable compressed. This means the 

existent statistical redundancy in the source is used to represent the video data, notably the 

quantized transform coefficients and motion vectors.    

Naturally, video data can be compressed by simply coding each picture independently, 

leading to the so-called Intra coding approach. However, it is possible to achieve much 

improved compression performance by taking advantage of the large temporal redundancy in 

video content, leading to the so-called Inter coding approach. By exploiting the spatial and 

temporal redundancy, only the video data that cannot be appropriately predicted from previously 

coded data is sent. The ability to exploit the temporal redundancy to improve the compression 

efficiency is what distinguishes video compression from pure Intra compression, such as used 

for example in the JPEG standard. Due to its compression performance compared with other 

video coding technologies, predictive video coding has been adopted in all video coding 

standards developed by MPEG and ITU-T since the beginning of the nineties, notably the 

H.261, H.263, MPEG-1, MPEG-2 and MPEG-4 standards.  

2.1.2. The State-of-the-Art H.264/AVC Standard 

The H.264/AVC standard represents currently the state-of-the-art on video coding providing 

about 50% increased compression efficiency regarding the previously available standards. To 

achieve this improved RD performance, H.264/AVC includes some key enhancement tools 

when compared to prior video coding methods that will be briefly presented in the following. As 

shown in Figure 1, the scope of video coding standardization is only the bitstream and the 

decoder as the encoder does not need to be specified to provide interoperability. This limitation 

of the standardization scope enables freedom to optimize the encoder implementations in a 

manner appropriate to each specific application; however, no guarantees on the decoded 

quality are provided [1]. 

 

Figure 1 - Scope of video coding standardization [1]. 

To provide flexibility and customizability, the H.264/AVC design covers a Video Coding Layer 

(VCL), which is designed to efficiently represent the video content, and a Network Abstraction 

Layer (NAL), which formats the VCL representation of the video and provides header 



8 
 

information in an suitable way for transmission by a variety of network technologies and storage 

media as represented in Figure 2. 

 

Figure 2 - Structure of H.264/AVC standard [1]. 

2.1.2.1. Network Abstraction Layer 

The NAL is designed to provide network friendliness, thus enabling a simple and effective 

customization of the VCL data for a broad variety of systems. H.264/AVC is not customized to fit 

the needs of any particular application or network but the design of the NAL anticipates a variety 

of such mappings. The video coded data is organized into NAL units, each corresponding to a 

packet containing an integer number of bytes. The first byte of each NAL unit is a header byte 

indicating the type of data in the NAL unit while the remaining bytes contain payload data. Some 

emulation prevention bytes with a specific value, called a start code prefix, may be inserted in 

the data to prevent a particular pattern of data from accidentally being generated. NAL units are 

classified into VCL and non-VCL NAL units. The VCL NAL units contain the data that represent 

the values of the samples in the video pictures, while the non-VCL NAL units contain any 

associated metadata information such as parameter sets and supplemental enhancement 

information. 

Parameter sets contain important header information that is valid for a large number of VCL 

NAL units. There are two types of parameter sets: the sequence parameter sets and the picture 

parameter sets. The first contains parameters of the coded video sequence, while the second 

contains parameters essential for the decoding of individual pictures. Each VCL NAL unit has 

an identifier referring to the content of the relevant picture parameter set and each picture 

parameter set has an identifier referring to the content of the relevant sequence parameter set. 

This enables referring to a large amount of information using only the identifier. Sequence and 

parameter sets can be sent ahead of the VCL NAL units that they apply to provide robustness 

against data loss. 

NAL units are grouped together to form an access unit. The decoding of each access unit 

results in one decoded picture. A coded video sequence consists on a series of access units 

that are sequential in the NAL unit stream and use only one sequence parameter set. Each 

coded video sequence can be decoded independently of any other coded video sequence, 

given the necessary parameter set information, conveyed “in-band” or “out-of-band”. At the 

beginning of a coded video sequence, there is an instantaneous decoding refresh (IDR) access 

unit. An IDR access unit contains an intra-picture which is a coded picture that can be decoded 

without decoding any previous pictures in the NAL unit stream; the presence of an IDR access 

unit indicates that no subsequent picture in the stream will reference pictures prior to the intra 

picture in order to be decoded. 
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2.1.2.2. Video Coding Architecture  

The VCL design follows the usual block-based predictive video coding approach, where 

each coded picture is represented in block-shaped units of associated luminance and 

chrominance samples called macroblocks with a size of 16×16 luminance samples. The 

luminance and chrominance samples of a macroblock are either spatially or temporally 

predicted, and the resulting prediction residual is encoded using transform coding. Each color 

component of the prediction residual signal is subdivided into smaller 4×4 blocks. Each block is 

transformed using an integer transform, and the transform coefficients are quantized and 

encoded using entropy coding methods. Figure 3 presents the basic H.264/AVC encoder 

architecture which main modules will be described in the following. 

 

Figure 3 - Basic H.264/AVC encoder architecture [1]. 

In terms of data representation and structuring, the H.264/AVC standard has the following 

main features: 

 Y 𝑪𝒃 𝑪𝒓 Color Space and Sampling - Initially, H.264/AVC exploited the HVS characteristics 

by using a 4:2:0 sampling with 8 bits per sample, meaning that the chrominances are coded 

with ¼ of the spatial resolution. As the standard evolved, other subsampling formats have 

been accepted in later profiles.  

 Picture Partitioning into Macroblocks - A picture is partitioned into fixed-sized 

macroblocks, each covering a rectangular picture area of 16 × 16  samples of the luma 

component and 8 × 8  samples of each of the two chroma components for 4:2:0 

subsampling. Macroblocks are the basic frame building blocks for which the standard 

specifies the bitstream syntax and semantics and the decoding process. 

 Slices and Slice Groups - Slices are sets of macroblocks which are processed in raster 

scan order. They are self-contained and their syntax elements can be parsed from the 

bitstream without any previous knowledge. The pixel samples in the picture area 

represented by a slice can be decoded without using any data from other slices. Flexible 

Macroblock Ordering (FMO) modifies the way the pictures are partitioned into slices and 

macroblocks by utilizing the concept of slice groups. Each slice group is a set of 

macroblocks defined by a macroblock to slice group map. This map consists on a slice 

group identification number for each macroblock in the picture, specifying which slice group 
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the associated macroblock belongs to. Regardless of whether FMO is in use or not, each 

slice can be coded using the different coding types: 

 I-slice: all macroblocks of the slice are coded using only intra prediction; 

 P-slice: in addition to the Intra coding types, the P-slice macroblocks may be coded 

using inter prediction with at most one motion-compensated prediction signal per 

partition block; 

 B-slice: in addition to the I and P coding types, B-slice macroblocks may be coded 

using inter prediction with two motion-compensated prediction signals per partition 

block. 

 Adaptive Frame/Field Coding Operation - In interlaced frames with moving objects, 

regions or camera motion, two adjacent rows tend to show a reduced degree of statistical 

dependency when compared to progressive frames. In this case, it may be more efficient to 

compress each field separately. With this purpose in mind, H.264/AVC allows to use the 

following options when coding a frame:  

 Frame mode - the two fields are combined together to code them as one single coded 

frame; 

 Field mode - the two fields are not combined together and thus are coded as separate 

fields; 

 Picture-adaptive frame/field coding (PAFF) mode – an interlaced frame can be 

coded as a frame picture (i.e. the two fields are combined together and compressed as 

a single frame) or as two field pictures (top and bottom fields are coded separately) [1]. 

2.1.2.3. Main Novel Coding Tools 

This section intends to present the new H.264/AVC coding tools that are mostly responsible 

for the compression gains regarding the previous standards.  

 Intra-Frame Prediction - In all slice-coding types, Intra_4 × 4 , Intra_16 × 16 and I_PCM 

are the intra coding modes supported. Intra_4 × 4 is based on predicting each 4 × 4 luma 

block separately and it is typically used to predict regions that have significant detail. 

Intra_16 × 16 performs prediction for whole 16 × 16 luma blocks and it is typically more 

suited for coding very smooth areas. The I_PCM coding type allows the encoder to bypass 

the prediction and transform coding processes and instead directly send the sample values. 

Intra prediction in H.264/AVC is always conducted in the spatial domain and it may induce 

error propagation in environments with transmission errors since the intra prediction may be 

performed using neighboring inter-coded macroblocks [1]. 

 Inter-Frame Prediction - It is well know that the Inter prediction efficiency is critical for the 

overall RD performance; this was confirmed in the design of the H.264/AVC standard which 

significantly improved the temporal prediction process at the cost of additional complexity. 

Contrary to previous standards, the B-slice concept is generalized in H.264/AVC, e.g. other 

images can refer images containing B-slices for prediction with motion compensation.   

 Inter-frame prediction in P-slices: Various predictive or motion compensated coding 

modes are specified in the P-slice coding. Each P macroblock mode corresponds to a 

specific partition of the macroblock into the block shapes used for motion-compensated 

prediction. The prediction signal for each predictive-coded 𝑀 ×𝑁 luma block is obtained 

by displacing a similar area in the corresponding reference picture, which is specified by 

a translational motion vector and a picture index (due to the available multiple 
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references). The motion compensation accuracy is in units of one quarter of pixel (this 

corresponds to the distance between luminance samples). The H.264/AVC syntax 

supports multipicture motion-compensated prediction as shown in Figure 4 [1]; the use 

of multiple references increases the RD performance, notably at the cost of memory 

and computational power. 

 

Figure 4 - Multi-frame motion compensation example for a P-slice [6]. 

 Inter-frame prediction in B-slices: As it was referred, pictures containing B-slices can 

be used as reference for motion-compensated prediction, depending on the memory 

management control operation of the decoded picture buffer. The main difference 

between B and P-slices is that B-slices may include modes for which a prediction signal 

is a weighted average of two distinct motion-compensated predictions while P-slices, 

may only use one prediction reference. In B-slices, four different types of inter-picture 

prediction are supported: list 0, list 1, bi-predictive and direct prediction [1]. 

 Transform, Scaling and Quantization: As before, H.264/AVC transforms the temporal 

prediction residual to exploit the spatial redundancy after the temporal redundancy. 

However, in this standard, the transform is applied to 4 × 4 blocks and a separable integer 

transform with similar properties to a 4 × 4 DCT is used; later an alternative 8 × 8  DCT 

transform was also included. The Integer DCT transform matrix is given as:  

[

1 1
2 1
1 −1
1 −2

     

1 1
−1 −2
−1 1
2 −1

] 

As mentioned above, the Intra_16 × 16 mode and the chroma intra modes are intended for 

smoother areas. For that reason, the DC components undergo a second transform, 

obtaining transform coefficients that cover the whole macroblock, thus allowing to better 

exploit the spatial redundancy. A quantization parameter is used for determining the 

quantization level of the H.264/AVC transform coefficients. This parameter can take 52 

values and these values are arranged so that an increase of 1 in the quantization parameter 

corresponds to an increase of approximately 12% of the quantization step size. This change 

of 12% in the quantization step size translates roughly into a bitrate reduction of 

approximately 12% [1] [5]. 

 Entropy Coding: In H.264/AVC, two entropy coding methods are supported. These are 

called context-adaptive variable length coding (CAVLC) and context-adaptive binary 

arithmetic coding (CABAC). CABAC has higher complexity than CAVLC but has better 

coding efficiency. When using CAVLC, the quantized transform coefficients are coded using 

VLC tables that are switched depending on the values of previous syntax elements. The 

efficiency can be further improved by using CABAC because it uses context-conditional 

probability estimates that are adapted to non-stationary statistical behaviors. Compared to 
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CAVLC, CABAC typically reduces the bitrate 10%-15% for the same quality at the cost of 

some additional complexity. 

 In-Loop Deblocking Filter: One particular characteristic of block-based coding is the 

production of visible block structures, the so-called block effect. To attenuate this effect, 

H.264/AVC defines an adaptive in-loop deblocking filter where the strength of the filtering is 

controlled by several syntax elements [1]. The basic idea is that if a relatively large absolute 

difference between samples near a block edge is measured, it is probably a blocking artifact 

and should be filtered. However, if the magnitude of that difference is so large that it cannot 

be explained by the coarseness of the quantization used in the encoding process, the edge 

more likely expresses the actual characteristics of the source picture and should not be 

filtered. This filter reduces the bitrate by 5%-10% and an improved subjective video quality 

is visible; an example image is presented in Figure 5. 

 

Figure 5 - Example of deblocking filter performance: without (left) and with (right) deblocking filter [7]. 

As the H.264/AVC standard includes many tools and addresses many applications with 

different functional needs, profiles and levels are specified to define conformance points to 

facilitate the interoperability while limiting the complexity (as less tools are included). A profile 

defines a set of tools that can be used to generate a conforming/compliant bitstream, whereas a 

level places constraints on certain key parameters of the bitstream such as the bitrate. There 

are at least seven profiles in H.264/AVC as shown in Figure 6: 

 Baseline profile - Targets applications with low complexity and low delay requirements; it 

does not include several H.264/AVC tools, notably B-slices, CABAC and field coding. 

 Extended profile - Hierarchical to the Baseline profile, it includes all Baseline tools plus 

several error resilience tools, notably data partitioning and SI/SP slices, but also B-slices. 

 Main profile - This profile adds to the Baseline profile the B-slice, CABAC and field coding 

tools making it more efficient (and naturally complex). 

 High Profile - Hierarchical to the Main profile but with the following enhancements: 

adaptive macroblock level switching between 4 × 4  and 8 × 8  transforms, quantization 

matrices defined by the encoder and independent encoder control of the quantization for 

each chrominance.  This is the most efficient non-professional profile largely used in digital 

TV and Blu-ray. 

 High 10 profile - First professional profile, hierarchical to the High profile, notably adding 

the ability to encode videos with 9 and 10 bits per sample. 
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 High 4:2:2 profile - Hierarchical to the High 10 profile, adding the ability to encode the 

4:2:2 subsampling format. 

 High 4:4:4 profile - Hierarchical to the High 4:2:2 profile, adding the abilities to encode 

samples with 11 and 12 bits, in the 4:4:4 subsampling format, the color residual transform 

and lossless predictive coding [5].    

 

Figure 6 - Graphical representation of the H.264/AVC profiles [8]. 

2.1.2.4. Performance Assessment 

To illustrate the H.264/AVC RD performance, some experimental results for entertainment-

quality applications (DVD video systems and HDTV) are presented in the following. Video 

sequences in such applications are usually encoded at resolutions of 720 × 480  pixels and 

higher, at average bitrates of 3 Mbit/s and up. The MPEG-2 Video standard was used for 

comparison purposes [7]. Figure 7 illustrates the RD performance – MPEG-2 Video Main and 

H.264/AVC Main profiles - and bitrate savings curves for a typical video entertainment standard 

definition (SD) sequence. The curves demonstrate that H.264/AVC offers significant rate 

savings that lie between 45% and 65% at lower bitrates, and between 25% and 45%, for the 

higher bitrates [7]. 

   

 
Figure 7 – RD performance and bitrate savings plot for entertainment-quality applications [7] 
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In general, the H.264/AVC brings about 50% compression gains regarding the best previously 

available standards for the various applications and conditions. As encoders are not normative, 

naturally these gains imply the usage of efficient encoder control methods. 

2.2. Reviewing Distributed Video Coding 

This section intends to briefly overview the Distributed Video Coding (DVC) paradigm which 

is also important for this Thesis. In this context, some basic aspects will be presented and early 

Wiener-Ziv video coding architectures will be mentioned. Finally, the DISCOVER DVC codec 

will be introduced as one of the best representatives of the DVC technology. 

2.2.1. Basic Concepts and Early Wyner-Ziv Video Coding Solutions 

To address the needs of some emerging applications, around 2002, some research groups 

revisited the video coding problem at the light of two Information Theory results already from the 

seventies: the Slepian-Wolf and the Wyner-Ziv theorems. These efforts originated the DVC 

paradigm and also Wyner-Ziv (WZ) video coding, as a particular DVC case. The Slepian-Wolf 

theorem addresses the case where two statistically dependent discrete random sequences, 

independently and identically distributed (i.i.d.), X and Y, are independently encoded, and thus 

not jointly encoded as in the largely deployed predictive coding solutions. The Slepian-Wolf 

theorem states that the minimum rate to encode the two sources is the same as the minimum 

rate for joint encoding, with an arbitrarily small error probability. In theory, the rate bounds for a 

vanishing error probability considering two sources are: 

 𝑅𝑥 ≥ 𝐻(𝑋|𝑌) (1) 

 𝑅𝑦 ≥ 𝐻(𝑌|𝑋) (2) 

 (𝑅𝑥 + 𝑅𝑦) ≥ 𝐻(𝑋, 𝑌) (3) 

This means that the minimum coding rate for distributed coding is the same as for joint 

encoding (i.e. the joint entropy), provided that the individual rates for both sources are higher 

than (or equal to) the respective conditional entropies. Later, the Wyner-Ziv theorem states that 

when performing independent encoding with side information, there is no coding efficiency loss 

under certain conditions with respect to the joint encoding case, even if the coding process is 

lossy (and not anymore asymptotically lossless as in the Slepian-Wolf case). 

Based on these two theorems, a new video coding paradigm known as Distributed Video 

Coding has emerged. DVC does not rely on joint encoding, and thus, when applied to video 

coding, it results on the absence of the temporal prediction loop and lower complexity encoders. 

In this context, DVC may provide the following functional benefits: flexible encoder/decoder 

allocation of the global video codec complexity, improved error resilience, codec independent 

scalability and exploitation of multiview correlation without cameras/encoders communicating 

among them [9]. The first practical WZ video coding solutions emerged around 2002 at Stanford 

University and at the University of California, Berkeley. The Stanford WZ architecture is mainly 

characterized by frame-based Slepian-Wolf coding, typically using turbo codes, and a feedback 

channel to perform rate control at the decoder. The Berkeley WZ video coding solution, well 

known as Power-efficient, Robust, high-compression, Syndrome-based Multimedia (PRISM), is 

mainly characterized by block-based decoder motion estimation. For a more detailed 

description of these solutions, please refer to [9]. From a technical point of view, the main 
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functional differences between the two early WZ video codecs can be stated as follows 

(Stanford vs Berkeley) [9]: 

1. Frame-based versus block-based coding: in the latter approach, it is easier to 

accommodate coding adaptability to address the highly non-stationary statistics of video 

signals; 

2. Decoder rate control versus encoder rate control: in the former case, a feedback channel is 

needed, restricting the scope to real-time applications, but making the rate control problem 

much simpler; 

3. Simple encoder versus smarter and more complex encoder: the latter case allows 

incorporating spatially varying coding mode decisions;  

4. More sophisticated channel codes versus simpler channel codes; 

5. No auxiliary data transmitted versus hash codes sent by the encoder to help the decoder in 

the motion estimation process; 

6. Less intrinsically robust to error corruption versus higher resilience to error corruption due to 

the PRISM motion search like approach performed at the decoder, which allows finding 

better side information and thus reducing the residual noise.  

In recent years, with the extensive research on DVC, many developments have been 

introduced in both early WZ codecs, with the consequence of significantly improving its RD 

performance. Since Slepian-Wolf coding is the core of WZ coding, and channel coding plays a 

central role in Slepian-Wolf coding, channel coding developments play an important role not 

only in terms of RD performance but also in terms of codec complexity budget. Another key 

improvement has been the enhancement of the side information (a decoder estimation of the 

original frame to code) quality as this quality plays a central role in the WZ codec´s overall RD 

performance. Without a powerful side information creation mechanism, no competitive RD 

performance can be achieved. Regarding correlation noise modeling, since WZ video coding 

targets the lossy coding of the difference between the original data and its corresponding side 

information, it is essential for an efficient RD performance that the decoder (and sometimes the 

encoder) are aware of the statistical correlation between the original and side information. 

Somehow inspired by the PRISM approach, the addition of a block classification module to the 

Stanford-based WZ video architecture has been proposed, allowing the selection of one of two 

coding modes (Intra or WZ modes), depending on the available temporal correlation. This 

approach results from the observation that the correlation noise statistics describing the 

relationship between the original frame and its corresponding side information available at the 

decoder is not spatially stationary. Last, regarding the side information creation issue, it was 

found that a way to overcome the “blind” frame-based SI creation approach adopted by the 

early Stanford WZ video coding solution was for the encoder to have the capability to send 

some hash signatures to help the decoder to generate better side information, notably for the 

most critical areas/blocks. Since the hash requires fewer bits than the original data, the encoder 

is allowed to keep the hash codewords from the previous frame in a small hash store. 

Significant gains over conventional DCT-based Intra frame coding were reported with 

comparable encoding complexity. 

For several reasons, the Stanford DVC architecture has been adopted more often by the 

research community, notably by the IST Multimedia Signal Processing group; for this reason, 

one of the best representatives of the Stanford DVC approach will be briefly described in the 

following: the DISCOVER project WZ codec. 
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2.2.2. The DISCOVER Wyner-Ziv Video Codec 

This section intends to provide a brief overview of the DISCOVER WZ video codec since it is 

considered one of the most advanced and best performing WZ codecs.  

2.2.2.1. Architecture and Walkthrough 

The DISCOVER WZ architecture, including encoder and decoder, is presented in Figure 8.  

 

Figure 8 - DISCOVER Wyner–Ziv video codec architecture [9]. 

To better understand the DISCOVER WZ codec processing chain, both the encoder and 

decoder walkthroughs are presented in the following [9]. 

At the encoder, the following steps are performed: 

1. Frame Classification: First, a video sequence is divided into WZ frames, this means the 

frames that will be coded using a WZ coding approach, and the so-called key frames that 

will be conventionally coded as Intra frames; these frames are used by the decoder to 

create the side information frame. Key frames are periodically inserted with a certain Group 

of Pictures (GOP) size. An adaptive GOP size selection process may also be used but most 

results available in literature use a GOP size of 2, which means that odd and even frames 

are key frames and WZ frames, respectively. 

2. Discrete Cosine Transform: Over each WZ frame, an integer 4 × 4 block-based DCT is 

applied. The DCT coefficients of the entire WZ frame are then grouped together according 

to the position occupied by each DCT coefficient within the 4 × 4 blocks, forming the so-

called DCT coefficient bands from the DC band to the highest frequency band. 

3. Quantization: Each DCT coefficient band 𝑏𝑘  is uniformly quantized with 2𝑀𝑘  levels and 

after, bit-plane extraction is performed over the resulting quantized symbol stream. For a 

given band, the quantized symbols bits of the same significance are grouped together 

forming the corresponding bit-plane array, which is then independently low-density parity-

check (LDPC) encoded. 

4. LDPC Encoding: The LDPC procedure starts with the most significant bit-plane array, 

which corresponds to the most significant bits of the 𝑏𝑘 band quantized symbols. The parity 

information is stored in the buffer and sent in chunks upon decoder request. 
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5. Encoder Rate Estimation: To limit the decoding complexity and transmission delay, the 

encoder estimates for each bit-plane the initial number of bits to be sent before any request 

is made. If the rate is underestimated, the decoder will complement it by making one or 

more requests via a feedback channel for additional information. 

At the decoder, the following steps are performed: 

1. Side Information Creation: The decoder creates the side information (SI) for each WZ 

frame corresponding to an estimation of the original WZ frame based on the previously 

decoded frames; the better the quality of the estimation, the smaller are the number of 

errors the WZ LDPC decoder has to correct and, thus, the bitrate necessary for successful 

decoding. 

2. DCT Estimation: A block based 4 × 4 DCT is carried out over the side information to obtain 

the SI DCT coefficients, which are the estimates of the corresponding WZ frame DCT 

coefficients under decoding. 

3. Correlation Noise Modeling: The residual statistics between corresponding WZ frame 

DCT coefficients and the side information DCT coefficients are assumed to be modeled by 

a Laplacian distribution. The distribution parameters have to be estimated for the next 

channel decoding step. 

4. LDPC Decoding: Once the DCT-transformed side information and the residual statistics for 

a given DCT coefficients band 𝑏𝑘  are known, the decoded quantized symbol stream 

associated with the DCT band  𝑏𝑘 can be obtained through a LDPC decoding procedure. 

5. Request Stopping Checking: To decide if more bits are necessary to decode a certain bit-

plane, a request stopping criterion is checked, notably by determining if all LDPC parity-

check equations are fulfilled for the decoded codeword. 

6. CRC Checking: Because some residual errors may be left even when all LDPC parity-

check equations are fulfilled, a CRC checksum is transmitted to help the decoder to detect 

and correct the remaining errors in each bit-plane. 

7. Further LDPC Decoding: After successfully LDCPA decoding the most significant bit-plane 

array of the  𝑏𝑘 band, the LDPC decoder proceeds in an analogous way to the remaining 

𝑀𝑘−1  bit planes associated with that band. This procedure is repeated until all the DCT 

coefficients bands for which WZ bits are transmitted are LDPC decoded. 

8. Symbol Assembling: After LDPC (or turbo) decoding the 𝑀𝑘 bit-planes associated with the 

DCT band 𝑏𝑘, the bit-planes are grouped together to form the decoded quantized symbol 

stream associated with the 𝑏𝑘  band. This procedure is performed over all the DCT 

coefficients bands to which WZ bits are transmitted.  

9. Reconstruction: Once all quantized symbol streams are obtained, the matrix with the 

decoded DCT coefficients for each block can be reconstructed using an appropriate inverse 

quantization tool. 

10. IDCT: After, a block-based 4 × 4  IDCT is performed, and thus the reconstructed pixel 

domain WZ frame is obtained. 

11. Frame Remixing: To finally get the decoded video sequence, decoded key frames and WZ 

frames are mixed in the appropriate way. 

2.2.2.2. Performance Assessment 

This section will present some performance results for the DISCOVER WZ video codec, 

notably to assess the performance gap regarding predictive video coding here represented by 
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appropriate standard configurations. Only the luminance component is coded and thus all the 

metrics in this section refer only to the luminance. All the frames were used for each video 

sequence, coded at Quarter Common Intermediate Format (QCIF) spatial resolution, 15Hz and 

GOP sizes of 2, 4 and 8 [9].  

The RD performance regards how the overall rate for the key frames and the WZ frames 

translates into quality. The used quality metric is the PSNR over all the frames of the video 

sequence coded with a certain quantization matrix. The standard coding solutions used for 

comparison purposes are H.263+Intra, H.264/AVC Intra and H.264/AVC Inter No Motion (with 

temporal prediction but no motion estimation/compensation) as they should have all low 

encoder complexity since no motion estimation is performed at the encoder as for the 

DISCOVER WZ codec. The RD performance results are presented in Figure 9 and Figure 10. 

From these results, the following conclusions can be drawn: for the Coast Guard and Hall 

Monitor sequences, there are coding gains for the DISCOVER DVC codec for all RD points and 

all GOP sizes, with reported average gains up to 9 dB when compared with H.263+ Intra. 

Knowing that H.263+ Intra does not exploit the temporal redundancy, these results show that 

the DISCOVER WZ codec can exploit, at least partly, the temporal correlation in the video 

content. For content with high and medium motion, when the key frames are separated by a 

longer gap in time, the side information quality decreases (and thus the overall RD 

performance) since it becomes more difficult to estimate the side information for the frames in 

between. It is visible that complex and erratic motion causes a poorer RD performance, 

especially when the GOP size is larger. For all sequences but Hall Monitor, the DISCOVER WZ 

codec with GOP size 2 wins regarding other GOP sizes, showing the difficulty is getting good 

side information for longer GOP sizes due to a decrease in the performance of the frame 

interpolation (FI) process used for the side information creation. In terms of RD performance, 

the DISCOVER codec has significant advantages when compared with standard solutions such 

as H.264/AVC Intra. For low motion sequences, it is even possible for DISCOVER to have 

better results against the H.264/AVC No Motion codec. For the cases with longer GOP sizes, it 

is more difficult to outperform H.264/AVC Intra due to difficulty in getting good side information, 

notably when the key frames are farther away. 

 

Figure 9 - RD performance comparison for GOP size 2 [10]. 
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Figure 10 - RD performance comparison for GOP sizes 2, 4 and 8 [10]. 

Regarding the complexity assessment, it is important to acknowledge that the encoding 

process includes two components: the WZ frames encoding and the key frames encoding. The 

larger the GOP size, the smaller the number of key frames coded and, thus, the lower will be 

the share of the key frames in the overall complexity. With the complexity results available in [9] 

it is possible to conclude that for the DISCOVER WZ codec the WZ frames encoding complexity 

is small when compared to the key frames encoding. In fact, the DISCOVER WZ codec 

encoding complexity is lower than the H.264/AVC Intra and H.264/AVC No Motion encoding 

complexities and it decreases with the GOP size. If the encoding complexity is a critical 

requirement for some application, the complexity assessment results in [9] together with the RD 

performance previously shown indicate that the DISCOVER WZ video codec with GOP size 2 is 

already a credible solution regarding the conventional coding alternatives [9]. However, the 

situation is different for the decoding complexity that also includes two major components: the 

WZ frames decoding and the key frames decoding. The decoding complexity results available in 

[9] it is possible to conclude that for the DISCOVER WZ codec the key frames decoding 

complexity is negligible regarding the WZ frames decoding complexity. Thus, contrary to the 

encoding complexity, the longer the GOP size, the higher is the overall decoding complexity, 

since the higher is the share of WZ frames. The WZ decoding complexity increases significantly 

when the bitrate increases since the number of bit-planes to LDPC decode is higher. The LDPC 

decoding is the main responsible for the higher decoding complexity as it works iteratively for 

each bitrate request until all bit-planes of all DCT bands are decoded. 

2.3. Reviewing Relevant Background on Quantization 

Considering the relevance of this topic for the Thesis, this section will present some relevant 

background information on quantization, from the basic concepts to the specific aspects of 

H.264/AVC quantization and a couple of adaptive (encoder) quantization solutions. 

2.3.1. Basic Issues on Scalar Quantization 

Quantization can be described as a process where the continuous range of values of a 

sampled input signal is divided into non-overlapping sub-ranges, and to each sub-range a 

discrete output value is assigned. The operation of a quantizer involves the application of a 

classification rule to produce quantization indices and then applying entropy coding to the 
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quantization indices to transmit them through a communication channel to the decoder. Thus, it 

is possible to represent the quantized signal with fewer bits than the original signal introducing, 

however, some quantization error. The quantization process is lossy because the visual 

irrelevance of the signal may be exploited to reduce the bitrate necessary to code the video 

signal at the cost of an additional quantization error which may (or may not) be perceptually 

irrelevant. 

In image and video compression codecs, the quantization process is usually made in two 

parts: a forward quantizer (FQ) in the encoder and an inverse quantizer (IQ) in the decoder. A 

critical parameter is the quantization step size between re-scaled values that defines how 

coarse the signal is represented. A larger step size translates into a higher compression ratio, 

but also a cruder representation of the original signal. On the other hand, with a smaller step 

size, the quantized values are more approximately matched with the original ones but the 

compression ratio is smaller [11]. 

In image and video coding, quantization reduces the precision of the DCT coefficients by 

removing the ones that are insignificant such as near-zero coefficients and quantizing the non-

zero coefficients. The forward quantizer is designed to map insignificant coefficient values to 

zero whilst retaining the significant non-zero coefficients; its typical output is an array of 

quantized coefficients. A scalar quantizer can be decomposed into a function 𝐶(𝑥) called a 

classification rule that selects an integer-valued class identifier called the quantization index; 

this function is performed at the encoder. A second function, 𝑅(𝑘), called a reconstruction rule 

produces a real valued decoded output 𝑄(𝑥)  =  𝑅[𝐶(𝑥)]  called a reconstruction value; this 

function is performed at the decoder side. A well known but rather simple quantizer 

reconstruction rule is the so-called nearly-uniform-reconstruction quantizer (NURQ). The 

reconstruction rule for a NURQ uses two parameters, a step size, s, and a non-zero offset 

parameter, p, and is defined as: 

 𝑅(𝑘) = 𝑠𝑖𝑔𝑛(𝑘) × 𝑠 × (|𝑘| + 𝑝) (4) 

where 𝑠𝑖𝑔𝑛(𝑘) is a function equal to 1 when 𝑘 > 0, equal to 0 𝑖𝑓 𝑘 = 0 and equal to  −1 𝑖𝑓 𝑘 < 0. 

While typically 𝑝 ≥ 0, an important NURQ case is the uniform reconstruction quantizer (URQ), 

which is defined as a NURQ with 𝑝 = 0. This reconstruction rule is important as it was adopted 

by the H.264/AVC video coding standard. Another important case is 𝑝 = 1/2  due to its 

prevalence in previous standards for image and video coding. It is important to notice that 

although the reconstruction function is normative, the classification rule is not, which allows to 

perform optimizations suitable to the data being coded as long as the normative reconstruction 

function is known. 

The classification region corresponding to 𝐶(𝑥) equal to zero is called the dead-zone. One 

effective quantization classification rule for the NURQ is the so-called dead-zone plus uniform 

threshold quantization (DZ+UTQ) solution. This rule works as follows [12]: 

 
𝐶(𝑥) = 𝑠𝑖𝑔𝑛(𝑥) × 𝑚𝑎𝑥 (0, 𝑓𝑙𝑜𝑜𝑟 (

|𝑥|

𝑠
+ 1 − 𝑝 − 𝑧))     (5) 

 

where the additional parameter, z, known as rounding offset, controls the width of the dead-

zone, which is equal to 2𝑠(𝑝 + 𝑧), and the function floor(.) is defined as the largest integer less 

than or equal to its argument. A simple example of a quantization structure is presented in 
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Figure 11, where the crosses on the number line indicate the location of the NURQ 

reconstruction values and the solid vertical lines indicate the threshold values that form the 

decision regions.  

 

Figure 11 – Example of a quantizer structure [12]. 

2.3.2. Transform and Quantization in H.264/AVC 

H.264/AVC is fundamentally a lossy compression format, in which a degree of visual 

distortion is introduced into the video signal as a trade-off with lower rate and thus higher 

compression performance. Compression efficiency is the ultimate reason for introducing a 

transform. As H.264/AVC heavily relies on efficient prediction before the transform, with the use 

of 4 × 4  Intra modes (spatial prediction) and Inter modes (temporal prediction) significantly 

reducing the correlation between neighboring 4 × 4 blocks, a smaller 4 × 4 transform support 

was selected [13]. After prediction, transform and quantization, the video signal is represented 

as a series of quantized transforms coefficients together with some auxiliary prediction 

parameters that are coded into a bitstream, e.g. motion vectors and coding modes. H.264/AVC 

provides several mechanisms for converting symbols and parameters into a compressed 

bitstream, namely fixed length binary codes, variable length Exponential-Golomb codes, CAVLC 

and CABAC. 

In H.264/AVC, the transform and quantization processes are designed to minimize the 

computational complexity and to avoid encoder/decoder mismatch. This is achieved both by 

using a core transform that can be carried out using integer or fixed-point arithmetic and by 

integrating a normalization step with the quantization process to minimize the number of 

multiplications required to process a block of residual data. The scaling and inverse transform 

processes carried out by a decoder are exactly specified in the standard so that every 

H.264/AVC implementation produces identical results [11]. H.264/AVC makes extensive use of 

prediction tools since even the intra coding modes rely on spatial prediction; as a consequence, 

H.264/AVC is very sensitive to prediction drift. As an example, in an I-frame, 4 × 4 blocks can 

be predicted from their neighbors and thus, at each stage, prediction drift can accumulate. For a 

Common Intermediate Format (CIF) image with a size of 88 4 × 4 blocks in a row, prediction 

drift can accumulate 88 times while decoding one I-frame row of blocks. Thus, it becomes clear 

that, as a result of the extensive use of prediction in H.264/AVC, the residual must be drift-free. 

In addition H.264/AVC have minimized the complexity of some of its tools, for example, some 

criteria was developed to restrict the complexity of the inverse transform, such as using only 16 

bit multiplications and 16 bit memory access. As for past standards, an early H.264/AVC design 

feature was the variation of the quantization step size which increases by approximately 12% 

for each increase in the quantization parameter, so that each increment of six in the 
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quantization parameter doubles the quantization step size. To better understand the role of the 

quantization step and the quantization parameter in H.264/AVC, the following equations were 

established. In H.264/AVC, the quantized coefficients may be obtained by a simple division as 

follows or some other similar classification rule: 

 
𝐶𝑄 = 𝑟𝑜𝑢𝑛𝑑 (

𝐶

𝑄𝑠𝑡𝑒𝑝
)       (6) 

where 𝐶𝑄  are the quantized parameters and 𝑄𝑠𝑡𝑒𝑝  is the chosen quantization step size. In 

H.264/AVC, the quantization step is related to the quantization parameters according to the 

following formula: 

 
𝑄𝑠𝑡𝑒𝑝(𝑄𝑃) = 𝑄𝑠𝑡𝑒𝑝(𝑄𝑃%6) ∙ 2

𝑓𝑙𝑜𝑜𝑟(
𝑄𝑃
6
)
 (7) 

   

where 𝑄𝑃 is the quantization parameter and 𝑥%𝑦 defines the remainder of the division of x by y 

[11]. For the range of typical values for QP and 𝑄𝑠𝑡𝑒𝑝, please report to the tables available in 

[11]. 

2.3.2.1. H.264/AVC Integer Transform Design 

The DCT is commonly used in block based transform coding and it maps a length-N vector x 

into another vector X of transform coefficients by a linear transformation 𝑋 = 𝐻𝑥  where the 

element in the 𝑘𝑡ℎ row and the 𝑛𝑡ℎ column of H is defined by: 

 

𝐻𝑘𝑛 = 𝐻(𝑘, 𝑛) = 𝑐𝑘√
2

𝑛
𝑐𝑜𝑠 [(𝑛 +

1

2
)
𝑘𝜋

𝑁
]       

 

(8) 

for the frequency index 𝑘 = 0,1, … , 𝑁 − 1 and the sample index 𝑛 = 0,1, … , 𝑁 − 1 with 𝑐0 = √2 

and 𝑐𝑘 = 1 for 𝑘 > 0. As 𝐻 are irrational numbers, it may not be possible to obtain 𝑢(𝑛) = 𝑥(𝑛) 

for all the n when computing 𝑋 = 𝐻𝑥 and 𝑢 = 𝑟𝑜𝑢𝑛𝑑{𝐻𝑇𝑋}, if the direct and inverse transforms 

are implemented in different machines with different floating point representations and rounding. 

If appropriate scale factors are introduced such that 𝑋 = 𝑟𝑜𝑢𝑛𝑑{𝛾𝐻𝑥} and 𝑢 = 𝑟𝑜𝑢𝑛𝑑{𝛽𝐻𝑇X}, 

then it is possible to make 𝑢(𝑛) = 𝐺𝑥(𝑛) where 𝐺 is an integer for almost all n by choosing 𝛽 

large enough and γ appropriately. Still, it is not possible to guarantee exact results unless the 

full intermediate rounding procedures are standardized. Thus, it is beneficial to replace H by an 

orthogonal matrix with integer entries.  

There are two basic approaches that can be used for that purpose: one is to build H with just 

a few integers with symmetries similar to those of the DCT, which guarantees orthogonality. The 

matrix H is as follows: 

 

𝐻 = [

𝑎 𝑎 𝑎 𝑎
𝑏
𝑎
𝑐

𝑐 −𝑐 −𝑏
−𝑎 −𝑎 𝑎

−𝑏 𝑏 −𝑐

] (9) 

 

The original H.264/AVC design chose 𝑎 = 13, 𝑏 = 17 and 𝑐 = 7 which made H close to a scaled 

DCT and then ensured that all rows had the same norm. Another approach is to round the 

scaled entries of the DCT matrix to the nearest integers as follows: 
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 𝐻 = 𝑟𝑜𝑢𝑛𝑑 {𝛼𝐻𝐷𝐶𝑇} (10) 

where 𝐻𝐷𝐶𝑇 is the DCT matrix and α is an adjustable parameter. The problem with the choice of 

𝑎 = 13 , 𝑏 = 17  and 𝑐 = 7  is that it increases the dynamic range. If max{|𝑥(𝑛)|} = 𝐴  then 

max{|𝑋(𝑘)|} = 52, which means that the transform has a dynamic range gain of 52. So the total 

gain is 522 = 2704 and, as 𝑙𝑜𝑔
2
(2704) = 11.4, twelve more bits are needed to store  𝑋(𝑘) than 

to store 𝑥(𝑛). 

To overcome this limitation, Malvar et al. proposed in [13] to set 𝛼 = 2.5 in (10) which translated 

into the following matrix:  

 

𝐻 = [

1 1 1 1
2
1
1

1 −1 −2
−1 −1 1
−2 2 −1

] (11) 

 

This way as the maximum sum of absolute values in any row equals 6, the maximum dynamic 

range gain increase for the transform is 𝑙𝑜𝑔
2
(62) = 5.17 which means that the storage of 𝑋(𝑘) 

needs only six more bits than 𝑥(𝑛).  

At the decoder, it is possible to use the transpose of H in (9) as long as the reconstructed 

transform coefficients are scaled properly. However, to minimize the combined rounding errors 

from the inverse transform and reconstruction, the dynamic range gain has to be reduced. A 

possible solution is to scale the odd-symmetric basis functions by 
1

2
 in (9). In this way, the sum 

of absolute values for the odd functions is cut in half to 3 and the maximum sum of absolute 

values for any basis function now equals 4, thus reducing the dynamic range gain for the 2-D 

inverse transform from 62 to 42; as 𝑙𝑜𝑔 
2
(42) = 4, the increase in dynamic range is reduced 

from 6 to 4 bits. The inverse transform matrix is then defined by: 

 

𝐻̌𝑖𝑛𝑣 = [

1 1 1 1 2⁄

1
1

1

1 2⁄ −1 −1

−1 2⁄ −1 1

−1 1 −1 2⁄

]     (12) 

 

where 𝐻̌𝑖𝑛𝑣 is a scaled inverse of H [13]. 

2.3.2.2. H.264/AVC Quantization Process  

For a given step size, 𝑄
𝑠
, usually an integer, the encoder can perform quantization by: 

 
𝑋𝑞(𝑖, 𝑗) = 𝑠𝑖𝑔𝑛{𝑋(𝑖, 𝑗)}

|𝑋(𝑖, 𝑗)| + 𝑓(𝑄
𝑠
)

𝑄
𝑠

  (13) 

 

where i and j are the row and column indices and 𝑓(𝑄𝑠) controls the quantization width near the 

origin, well know as the dead-zone as mentioned before. The decoder can perform inverse 

quantization also called reconstruction by scaling the quantized data by 𝑄
𝑠
: 
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 𝑋𝑟(𝑖, 𝑗) = 𝑄
𝑠
𝑋𝑞(𝑖, 𝑗) (14) 

 

This means in practice that H.264/AVC adopts a URQ uniform reconstruction quantizer 

corresponding to a NURQ with p equal to zero. The dead-zone control parameter, f, may be 

different for different encoders as they are not normative but it is typically in the range 0 to 1 2⁄ . 

To avoid divisions, thus reducing the decoder complexity, the formulas above are replaced by: 

 𝑋𝑞(𝑖, 𝑗) = 𝑠𝑖𝑔𝑛{𝑋(𝑖, 𝑗)}[(|𝑋(𝑖, 𝑗)|𝐴(𝑄) + 𝑓2𝐿) ≫ 𝐿] (15) 

 𝑋𝑟(𝑖, 𝑗) = 𝑋𝑞(𝑖, 𝑗) 𝐵(𝑄) (16) 

 𝑥𝑟 = (𝐻𝑇𝑋𝑟 + 2
𝑁−1𝑒) ≫ 𝑁 (17) 

 

where 𝑒 = [1 1 1 1 ]𝑇, the new parameter Q varies from zero to 𝑄
𝑚𝑎𝑥

 , and the association of 

quantization parameters 𝐴(𝑄) and 𝐵(𝑄) is such that zero corresponds to the finest quantization 

and 𝑄
𝑚𝑎𝑥

 to the coarsest quantization. The complexity can be reduced even further by using 

formulas that allow for 16-bit arithmetic precision, with no penalty in PSNR performance. To 

achieve this goal, reduced values of 𝐵(𝑄) and of the parameters L and N are used.  

Another aspect in the original  H.264/AVC quantization design in (16) is that the values of 

𝐵(𝑄) increase in approximately equal steps in an exponential scale, roughly doubling for every 

increase of six in Q. By forcing 𝐵(𝑄) to double for every increase of 6 in Q, the size of the 

quantization and reconstruction tables can be reduced. Thus, the H.264/AVC solution [13] 

adopts the following quantization formula: 

 𝑋𝑄(𝑖, 𝑗) = 𝑠𝑖𝑔𝑛{𝑋(𝑖, 𝑗)}[(|𝑋(𝑖, 𝑗)|𝐴(𝑄𝑀 , 𝑖, 𝑗) + 𝑓2
15+𝑄𝐸 ≫ (15 + 𝑄𝐸)] (18) 

 

where 𝑄𝑀 ≡ 𝑄  mod 6 and 𝑄𝐸 ≡
𝑄

6
. For every increase of one in the exponent 𝑄𝐸 , the 

denominator in (18) doubles, with no changes in the scaling factor multiplying|𝑋(𝑖, 𝑗)|. This 

periodicity enables a large range of quantization parameters without increasing the memory 

requirements. Although it is not completely clear in the reference paper, the fixed rounding 

offset seems to be integrated in the 𝐴(𝑄) parameter. 

The H.264/AVC inverse transform specification covers some additional aspects. Since for 

image regions with mostly flat pixel values there is significant correlation among transform DC 

coefficients of neighboring blocks, DC coefficients are grouped in blocks of size 4 × 4 for the 

luminance channel and blocks of size 2 × 2 chrominance channels and an additional transform 

is employed. This two level transform is usually referred as a hierarchical transform. In the 

original H.264/AVC design, the second level 4 × 4 transform was the same as the first level 

transform. However, in the final standard, a Hadamard transform (specified with 𝑎 = 𝑏 = 𝑐 = 1 

in (9)) is used because there were no reported performance losses in the standard video tests.  

As H.264/AVC encoders are not normative while decoders are, the quantization process is 

not fixed while the inverse quantization process is. This implies the encoder has the freedom to 

optimize the quantization process for specific content based on the knowledge on the 
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standardized inverse quantization process. Relevant adaptive quantization solutions in the 

literature are presented in the next section. 

2.3.3. Adaptive Quantization Algorithms  

In this subsection, two adaptive quantization algorithms available in the literature are 

presented. They propose different approaches to adapt the rounding offset used in the encoding 

quantization process. 

2.3.3.1. Adaptive Quantization using an Equal Expected-Value 

Rule 

This method proposed by Sullivan in 2005 [12] is based on adjusting the rounding offset to 

maintain an equal expected value for the absolute value of the quantized data at the input and 

output of the quantization process. This adaptive quantization using an equal expected-value 

rule is able to provide up to 1 dB of improvement in RD performance for high decoded quality, 

i.e. high PSNR values. 

A. The Quantization Process 

The technique proposed by Sullivan in [12] adopts a DZ+UTQ quantization method and 

optimizes the quantizer performance for the normative H.264/AVC inverse quantization with a 

mean squared error distortion metric. One way to design a DZ+UTQ classification rule is to 

select the rounding offset, z, such that the mean of the absolute value of the input random 

variable |X| is equal to the mean of the absolute value of its reconstructed value: 

 𝐸{|𝑄(𝑋)|} = 𝐸{𝑄(|𝑋|)} = 𝐸{|𝑋|} (19) 

 

If the reconstruction value for every classification region of the quantizer is mean-squared 

optimal for this classification rule, the quantizer will also have this property. The mean estimator 

can be formed using a simple geometrically-decaying weighted sum of the sequence of 

samples, 𝑌𝑖. Such sequence of estimates, 𝑀𝑖 , can be formed by setting 𝑀0 equal to some a 

priori guess for the actual mean, and then forming subsequent estimates as follows: 

 𝑀𝑖+1 = 𝑀𝑖 + 𝑤𝑖 × (𝑌𝑖 −𝑀𝑖) (20) 

 

where 0 ≤ 𝑤𝑖 ≤ 1 is a weighting factor. 

In this particular design problem, z should be in the range of  
1

2
≤ 𝑧 ≤ 1, so a rough estimate 

in that range is used as the initial estimator, denoted as 𝑧0. The value of z is then updated 

adaptively as the quantization process operates on the sequence of random input values. The 

samples falling in the dead-zone can also be separated from the method of selecting the 

optimal value of z, because if it is assumed that the input power density function is symmetric 

about zero, then the value of z does not affect the optimality of the dead-zone reconstruction 

value of zero. This leads to an encoding rule for the operation of the quantization process for a 
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sequence of input random variables 𝑋𝑖 using a sequence of different values of z that are equal 

to random variables 𝑍𝑖  so that 𝑧𝑖 = 𝑍𝑖  is the threshold used in the classification rule for the 

quantization of 𝑋𝑖 . For computing the quantization thresholds at the encoder, the following 

applies: 

 
𝑍𝑖+1 = 𝑍𝑖 + 𝑤𝑖 ×

𝐼(𝑄(𝑋) ≠ 0) × (|𝑄(𝑋)| − |𝑋𝑖|)

𝑠
 (21) 

 

where 𝐼(∙) is the indicator function defined to be 1 when its argument is true and 0 when its 

argument is false. 

For best performance, each distinct source and each distinct type of quantizer should have 

its own adaptive rounding offsets. During the encoding, the rounding offset parameter is 

updated as follows (by using 𝑓 = 1 − 𝑧 in (21)): 

 
𝑓𝑖+1 = 𝑓𝑖 + 𝑤𝑖 × 𝐼(𝑄[𝑋] ≠ 0) ×

|𝑋𝑖| − |𝑄[𝑋𝑖]|

𝑠
 (22) 

 

where 0 ≤ 𝑤𝑖 ≤ 1. A key issue is what should happen when the step size for quantization 

changes, for example due to the rate control operated during the H.264/AVC encoding. Ideally, 

the selected offset value, z, should depend on the step size in use; however, when the value of 

s is relatively stable, the method described for determining z may be sufficient for practical 

purposes. 

B. Performance Assessment 

The adaptive quantization encoding rule presented above was tested with a JM8.6 encoder 

with a rounding offset set as in (22). Figure 12 shows the RD curves for an encoder using the 

adaptive quantization rounding technique presented, and the JM8.6 reference software 

encoder, with 16 frequency components for luminance blocks in Intra 4 × 4 modes and 15 AC 

components for chroma 4 × 4 blocks in Intra mode. The experiments were conducted using 

several CIF and 4CIF format sequences with 300 frames per sequence and a frame rate of 30 

frames per second. For a more accurate description of the test conditions and the encoder 

configurations, please refer to [12]. The results show up to 1 dB performance improvements 

(particularly at high) bitrates when using the discussed adaptive rounding method. 
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Figure 12 - Performance comparison between encoders with and without adaptive rounding method for the 
sequence Mobile CIF (left) and Soccer 4CIF (right) [12]. 

2.3.3.2. Adaptive Quantization based on Rounding Offsets1  

This method, proposed by Xu and others [14], is known as Adaptive Rounding Offsets (ARO) 

and jointly adjusts the QP (a set of predefined values for the quantization step size, q), and the 

rounding offset, s, to reach high bitrate control accuracy. Unlike QP, which has a limited number 

of choices, s is a continuously adjustable variable and thus it may enable the rate control 

algorithm to reach any precision. More importantly, a linear rate model is proposed where 𝑙𝑛(𝑅), 

with R being the bitrate, is related to s in a linear fashion for a given QP. For a detailed review of 

the linear relationship between 𝑙𝑛(𝑅) and s, please refer to [14]. 

A. The Quantization Process   

In recent video coding standards, the rounding offset, s, together with the quantization step 

size, q, are used to quantize the transformed coefficients, W. In H.264/AVC encoding, W is 

typically quantized as: 

 
𝑍 = ⌊

|𝑊|

𝑞
+ 𝑠⌋ ∙ 𝑠𝑔𝑛(𝑊) (23) 

 

where Z is the quantization level of W. The function ⌊∙⌋ rounds a value to the nearest integer that 

is less than or equal to its argument, while 𝑠𝑔𝑛(∙) returns the sign of the input signal. If a 

quantization matrix is used, W is scaled with the corresponding matrix element before 

quantization. At the H.264/AVC decoder, the quantization level Z is (normatively) reconstructed 

to 𝑊′ by inverse quantization: 

 𝑊′ = 𝑞 ∙ 𝑍 (24) 

 

                                                           
 

1  It is important to refer that it was decided to always adopt the terminologies used by the authors of the 

reference papers; this may imply that terms and variables in different sections are not consistent between Sections 

to be consistent with the corresponding papers. 
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where s is not involved. Therefore, the rounding offset has the key advantage of regulating the 

quantization process without the need to transmit additional parameters to the decoder. 

 The selected rate control scheme is the so-called ρ-domain rate control due to its 

superior performance, where ρ represents the percentage of zero transform coefficients in each 

block, although it can be also done at the macroblock level. This algorithm adjusts the QP 

based on the linear rate model: 

 𝑅𝑐 = Ɵ(1 − 𝜌) (25) 

 

where 𝑅𝑐 is the number of coefficient bits, ρ is the percentage of zero DCT coefficients in each 

block and Ɵ is the model parameter. To perform ρ-domain rate control in a H.264/AVC encoder, 

a two pass encoding framework is employed, with the first loop (transform plus quantization) 

collecting global statistics to determine the final QP before the second encoding loop.  

Due to their importance for this Thesis, it is important to highlight some of the quantization 

aspects included in the proposed rate control solution. In [14], an extensive study was made to 

discover the effect of the rounding offset, s, on the bitrate, R. If R is denoted as 𝑅𝑐 + 𝑅ℎ, where 

𝑅𝑐 refers to the transform coefficient bits and 𝑅ℎ refers to the header bits, it can be observed 

that 𝑅ℎ is almost constant over different s and that, with a fixed rounding offset, s, only a limited 

set of 𝑅𝑐 values can be obtained with discrete values of QP. However, with proper manipulation 

of s, any intermediate number of bits can also be achieved since s is a continuous variable. This 

has been the motivation for the inclusion of the rounding offset in the rate control algorithm.  

A linear relationship between 𝑙𝑛 (𝑅𝑐) and s can be established as: 

 ln(𝑅𝑐(𝑄𝑃, 𝑠)) = 𝑘𝑠(𝑄𝑃) × (𝑠 − 𝑠𝑑) + ln(𝑅𝑐(𝑄𝑃, 𝑠𝑑)) (26) 

 

where 𝑘𝑠 is a model parameter, 𝑠𝑑 is the default rounding offset and 𝑅𝑐(𝑄𝑃, 𝑠𝑑) is the resulting 

bitrate when encoding with QP and 𝑠𝑑. The 𝑘𝑠 parameter models how the bitrate changes with s 

when it differs from 𝑠𝑑; it is content specific and its value also depends on the picture type and 

QP. To accommodate its dynamic nature, 𝑘𝑠 is estimated for each frame in the proposed ARO 

algorithm. Only information from previous frames of the same type is used to estimate 𝑘𝑠 for a 

new frame, as it also varies significantly among different picture types. With the estimated 

𝑘𝑠 based on previous frames and the QP derived from a QP-based control, the ARO algorithm 

needs to compute the s value that better allows approaching the target bitrate, 𝑅𝑐
𝑇 . If the 

encoding bitrate is 𝑅𝑐(𝑄𝑃, 𝑠𝑑) with a given QP and an initial 𝑠𝑑, the rounding offset that better 

allows approaching 𝑅𝑐
𝑇 is computed as: 

 
𝑠𝑇 =

1

𝑘𝑠
𝑙𝑛

𝑅𝑐
𝑇

𝑅𝑐(𝑄𝑃; 𝑠𝑑)
+ 𝑠𝑑 (27) 

 

Figure 13 presents the block diagram for the proposed ARO rate control algorithm. The 

algorithm is summarized as follows: 
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1. Initialization and First Frame Coding - Set n to 1 and initialize 𝑘𝑠  and 𝑠𝑑; encode the 

first frame using 𝑠1
𝑇=𝑠𝑑 at 𝑄𝑃1 that is determined by the ρ-domain rate control algorithm. 

2. Next Frame Coding - Set n to n = n+1 and encode the 𝑛𝑡ℎ frame with the following 

steps: 

2.1. The 𝑛𝑡ℎ  frame is pre-processed and a 𝜌 − (𝑄𝑃, 𝑠𝑑)  table is build; 𝑄𝑃𝑛  is also 

initialized. 

2.2. 𝑅̃𝑛(𝑄𝑃𝑛 , 𝑠𝑑) and 𝑠𝑛
𝑇 are computed.  

2.3. The 𝑛𝑡ℎ frame is encoded at 𝑄𝑃𝑛 and 𝑠𝑛
𝑇 to obtain the encoded bit rate 𝑅𝑛(𝑄𝑃𝑛, 𝑠𝑛

𝑇). 

2.4.  𝑅𝑛̂(𝑄𝑃𝑛, 𝑠𝑛
𝑇 ) and is computed and Ɵ(𝑄𝑃𝑛 , 𝑠𝑑)  is updated also the value of 𝑘𝑠  is 

updated using linear regression. 

3. A loop to step 2 is applied until all frames are encoded. 

For a more detailed description of the main steps of the rate control algorithm and how some of 

the variables and parameters are obtained, please refer to [14]. 

 

Figure 13 - Block diagram for the ARO algorithm [14].   

B. Performance Assessment 

To test its performance, the ARO algorithm was implemented in a H.264/AVC encoder. The 

rounding offset was restricted to be within [0.23,0.45] for Intra frames and [0.05,0.32] for Inter 

frames. The maximum number of iterations in step 2.2 above was set to 𝑀 = 3. The algorithm 

was implemented on a frame level to guarantee consistent visual quality throughout all 

macroblocks. The proposed method has been compared against a QP-based ρ-domain method 

where a similar rate control is used with the exception of the adaptive rounding offsets in the 

quantization process. Results for two HD sequences are presented in Figure 14 and in Table 1. 
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Figure 14 - Relative control errors for the “erin” (left) and “royal” (right) sequences: (a)(b) I in ‘III’; (c)(d) P in ‘IPP’; 
(e)(f) B in ‘IBP’ [14]. 

 

Table 1 - 𝜟̅ and PSNR comparison for HD contents [14]. 

 

The results demonstrate that the ARO rate control accuracy is consistently higher than the 

QP-based ρ-domain method for all tested sequences and conditions. By introducing the 

adaptive rounding offset method into the rate control process, the control error for most frames 

is reduced to 0.5% or lower for Intra frames and around 2% for Inter frames. As shown in Table 

1, the average control error Δ̅̅̅ with ARO algorithm is only 0.4% for I frames, 1.3%-2% for P 

frames and 1.5%-2.3% for B frames. The Δ̅̅̅  parameter is used to measure rate control 

performance. It is defined for the 𝑚𝑡ℎ frame as:  

 
𝛥𝑚 =

𝐵𝑚 − 𝐵𝑚
𝑇

𝐵𝑚
𝑇

× 100% (28) 

 

where 𝐵𝑚  and 𝐵𝑚
𝑇  are the actual and target number of bits fo the  𝑚𝑡ℎ  frame. The average 

control error over N frames is: 
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𝛥 = ∑

|𝛥𝑚|

𝑁
      

𝑁

𝑀=1

 (29) 

 

In summary, the ARO algorithm accomplishes 70% or higher rate control accuracy 

improvement over the QP-based scheme with almost no additional complexity. For a more 

detailed description of the tests and results for SD sequences, please refer to [14]. 

2.4. Reviewing Relevant Background on Correlation Noise 

Modeling and Optimal Reconstruction 

This subsection intends to review the most used solutions for two important problems in 

distributed video coding: Correlation Noise Modeling and Optimal Reconstruction with multiple 

side information. These issues are relevant for the development of this Thesis and the solutions 

here reviewed are those used by the well-known DISCOVER WZ video codec [15].  

2.4.1. Correlation Noise Modeling for Efficient Transform Domain 

Wyner-Ziv Video Coding 

In order to make use of the SI obtained in a DVC solution, the decoder needs to have an 

accurate model to characterize the correlation noise between the original WZ frame and the 

corresponding SI frame. The correlation noise 𝑊𝑍 − 𝑆𝐼 can be interpreted as a virtual channel 

with an error pattern characterized by a statistical distribution. This section presents the 

correlation noise modeling solutions proposed by Brites et al. [16] which are largely used in the 

DVC literature. 

In predictive video coding, the Laplacian distribution is used to model the distribution of the 

motion-compensated residual DCT coefficients [16]. In most DVC solutions, the residual 

between the original WZ frame and the corresponding SI frame is also modeled by a Laplacian 

distribution such as (where (𝑥, 𝑦) is the position to be evaluated within the WZ and SI frames): 

 𝑝[𝑊𝑍[(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)] =
𝛼

2
exp[−𝛼|𝑊𝑍(𝑥, 𝑦) − 𝑆𝐼(𝑥, 𝑦)|] (30) 

 

where α is the Laplacian distribution parameter defined by: 

 

𝛼 = √
2

𝜎2
 (31) 

 

In this context, a major goal is to design methods to estimate the Correlation Noise Model 

(CNM) based on the available information. This estimation may be performed i) in the pixel or 

the transform domain depending if the pixels residuals or DCT transform residuals are modeled 

and, ii) online or offline, where online correlation noise modeling corresponds to a process 

where the CNM parameters are estimated at the decoder without using original data while, on 

the contrary, offline correlation noise modeling corresponds to a process where the CNM 
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parameters are obtained at the encoder using the original data and a replica of the side 

information that is created at the decoder.  

The major issue with offline correlation noise estimation is that it is not acceptable from a 

realistic point of view since it requires the encoder to recreate the SI. Since complex motion 

estimation and compensation algorithms are used to generate the SI, this task is impossible to 

perform at the encoder when its complexity is to be kept low. The more realistic approach is to 

estimate the α parameter at the decoder side, where more computational resources are typically 

available according to the DVC paradigm; however, this implies that this estimation has to be 

made without access to the original data. As the most efficient DVC solutions work in the 

transform domain, only this case will be considered in the following. 

A. Offline Transform-Domain CNM 

As mentioned above, Transform-Domain CNM exploits the spatial redundancy within a frame 

by applying a DCT transform over the frame blocks. Thus, the correlation noise distribution 

regards now the residual between corresponding DCT bands of the WZ and the corresponding 

SI frames. Once again, a Laplacian distribution is used to model the statistical distribution of the 

noise distribution. In the same way as for the pixel-domain, there are three granularity modeling 

levels which are stated in the following; for a more accurate description of each of these 

solutions, please refer to [16]: 

1. Correlation Noise Model at DCT Band/Sequence Level: This technique models the 

correlation noise by performing a coarse offline estimation of the Laplacian distribution 

parameter α over the entire sequence, at the DCT band level; this means that α parameter is 

estimated for each DCT band for the full sequence, leading to 16 different parameters if a 

4×4 DCT is used. This is not a very efficient modeling process because it does not exploit 

the variability of the correlation noise along time and space. 

2. Correlation Noise Model at DCT Band/Frame Level: This approach enables the temporal 

adaptation of the Laplacian distribution along the video sequence as different parameters are 

estimated to each frame. To offline estimate α parameter of the DCT band b at the frame 

level, 𝛼𝑏, the variance of the DCT band b coefficients 𝜎𝑏
2 has to be first computed. For a 

detailed description of the process to obtain 𝛼𝑏 and 𝜎𝑏
2, please refer to [16]. Despite this α 

computation process being more efficient than the one previously described, a better RD 

performance can still be obtained by exploiting the varying spatial correlation. 

3. Correlation Noise Modeling at Coefficient /Frame Level: This technique has the finest 

granularity level as the Laplacian distribution is adapted both temporally and spatially. To 

estimate the α parameter at the coefficient/frame level, σ2 has to be replaced by another 

metric because, at this coefficient/frame level, the spatial region of support is only a 

coefficient and so the residual variance is zero. In this context, and since T(u,v) corresponds 

to the residual between corresponding DCT coefficients of the WZ and SI frames, the square 

of the DCT coefficient value T(u,v) is the measure used to replace 𝜎2. 

B. Online Transform-Domain CNM 

The Online Transform-Domain CNM case is the most relevant since transform domain DVC 

solutions are more used as they are more efficient than pixel domain DVC solutions and online 

solutions are more realistic than offline solutions, as already explained above; for this reason, 
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the solution in [16] for this case will be presented in more detail. Following the previous 

structure, two techniques to perform Online Transform-Domain CNM are discussed in the 

following: 

1. Correlation Noise Estimation at DCT Band/Frame Level: This technique performs a 

temporal adaptation of the α parameter along the video sequence. This means that the α is 

estimated for each DCT band and its value is updated for each frame, thus varying along the 

video sequence; for this case, the temporal variation of the correlation noise statistics is 

taken into account. The five steps of this process are presented in the following: 

 Step 1 generates the residual frame R by with the motion compensated versions of the 

frames 𝑋𝐵 and 𝑋𝐹 calculated as: 

 
𝑅(𝑥, 𝑦) =

𝑋𝐹(𝑥 + 𝑑𝑥𝑓 , 𝑦 + 𝑑𝑦𝑓) − 𝑋𝐵(𝑥 + 𝑑𝑥𝑏 , 𝑦 + 𝑑𝑦𝑏)

2
 (32) 

 

where 𝑋𝐵(𝑥 + 𝑑𝑥𝑏 , 𝑦 + 𝑑𝑦𝑏) and 𝑋𝐹(𝑥 + 𝑑𝑥𝑓 , 𝑦 + 𝑑𝑦𝑓) represent the backward and forward 

motion-compensated frames respectively and (x,y) corresponds to the pixel location in 

the R frame. 

 Step 2 computes the variance of the residual frame using: 

 𝜎̂𝑅
2 = 𝐸𝑅[𝑅(𝑥, 𝑦)

2] − (𝐸𝑅[𝑅(𝑥, 𝑦)]
2) (33) 

 

where 𝐸𝑅[∙] is the expectation operation over the residual frame R. 

 Step 3 computes the |𝑇| frame as the absolute value of the corresponding elements in 

the T frame, which is the resulting frame after applying a DCT transform to the R frame 

[13].  

 Step 4 computes the |𝑇| frame DCT band b variance 𝜎𝑏
2 as: 

 𝜎𝑏
2 = 𝐸𝑏[|𝑇|𝑏

2
] − (𝐸𝑏[|𝑇|𝑏])

2 (34) 

 

 In Step 5 the DCT band b 𝛼̂𝑏 parameter is estimated as: 

 

𝛼̂𝑏 = √
2

𝜎̂𝑏
2 (35) 

 

2. Correlation Noise Estimation at Coefficient/Frame Level: In this technique, the Laplacian 

distribution parameter is adapted both temporally and spatially, i.e., for each DCT coefficient 

inside the DCT coefficients frame, T. The DCT coefficients are classified as inlier or outlier 

coefficients. The inlier coefficients are those coefficients whose value is close to the 

corresponding DCT band average value, 𝜇̂𝑏
2

, and the outlier coefficients are those 

coefficients whose value is far away from 𝜇̂𝑏. To determine the degree of proximity between 

a certain coefficient and the corresponding 𝜇̂𝑏
2
, the distance between the coefficient and 𝜇̂𝑏  
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is compared with the DCT band variance; this is a good approach since the variance is a 

measure of how the DCT coefficient values are spread regarding the average value. The first 

four steps of this method are similar to the corresponding ones for CNM at DCT band/frame 

level and thus are not repeated here. In step 5, the |𝑇| frame (𝑢, 𝑣) DCT coefficient distance 

𝐷𝑏  is computed using: 

 𝐷𝑏(𝑢, 𝑣) = |𝑇|𝑏(𝑢, 𝑣) − µ̂𝑏 (36) 

 

where  |𝑇|𝑏(𝑢, 𝑣) represents the DCT coefficient at the (𝑢, 𝑣) position of the |𝑇| frame DCT 

band b. In step 6, the α parameter for the DCT coefficient located at (𝑢, 𝑣)  position is 

estimated using: 

 

𝛼̂𝑏(𝑢, 𝑣) =

{
 

 
𝛼̂𝑏,   [𝐷𝑏(𝑢, 𝑣)]

2 ≤ 𝜎̂𝑏
2

√
2

[𝐷𝑏(𝑢, 𝑣)]
2
,    [𝐷𝑏(𝑢, 𝑣)]

2 > 𝜎̂𝑏
2  (37) 

 

In (37) two situations can occur: 1) the distance [𝐷𝑏(𝑢, 𝑣)]
2 is less than or equal to  𝜎̂𝑏

2
, 

which corresponds to a region well interpolated; 2) the distance  [𝐷𝑏(𝑢, 𝑣)]
2  is greater than 

𝜎̂𝑏
2
, which corresponds to a block where the residual error is high, meaning that the SI 

generation process failed for this block. 

CNM Performance Comparison 

Regarding Offline Transform Domain CNM, four QCIF video sequences were selected to test 

the RD performance at 30 Hz and 15 Hz. The key frames were Intra Coded with H.264/AVC 

and a GOP size of 2 was used. The various RD points are defined by a 4 × 4 WZ quantization 

matrix. The results in [16] show that pursuing a coarser to finer strategy in the α parameter 

computation leads to consistent RD performance improvements. For all the test sequences 

used, the WZ RD performance was always above the H.264/AVC Intra curve, independently of 

the granularity level used to calculate the 𝛼 parameter. 

For Online Transform Domain CNM, the fifth and sixth rows in Table 2 show the bitrate 

saving when the finer granularity level is used instead of a coarser approach. The minus sign in 

the Online ΔRate and the Offline ΔRate rows means that, using the coefficient/frame level, there 

is a rate saving compared with the case where DCT band/frame level is used. The RD points 1-

8 correspond to the eight quantization matrices mentioned above. The results presented in 

Table 2 show that there is a bitrate decrease as the online estimation granularity gets finer. 

Rate savings between 0.47 kbps and 12.69 kbps, for the first and eight points, respectively, are 

achieved. As expected, the online correlation noise estimation algorithms have a small coding 

efficiency loss when compared to the offline models.  
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Table 2 - DCT Band-Level and Coefficient-Level RD performance for Flower Garden, Foreman, Coastguard and Hall 
Monitor QCIF Sequences [16]. 

 

2.4.2. Optimal Reconstruction in WZ Video Coding with Multiple Side 

Information 

This subsection presents an optimal reconstruction approach, largely used in the DVC 

literature and also in the DISCOVER WZ video codec, proposed by Kubasov et al. [17], which 

exploits the actual correlation model between the source and the side information; to minimize 

the mean squared error (MSE) of the reconstructed samples after the Slepian-Wolf decoder 

provides the decoded quantization bin. Given the Laplacian correlation model, a closed form 

expression of the reconstructed value is derived. This process allows gains up to 1 dB in RD 

performance with minimum costs in terms of decoder complexity, when compared with a 

straightforward reconstruction approach as defined below. The Wyner-Ziv coding solution used 

here is identical to the one described in Section 2.2 of this report, but for more detail on that 

subject please refer to [17]. 

A. Optimal Reconstruction Method with a Single SI 

Regarding the Minimum MSE Reconstruction process to be presented here, it is important to 

provide some notation first. Let M denote the number of quantized levels and 𝑧0 < 𝑧1 < ⋯ < 𝑧𝑀 

denote the quantizer levels themselves. Since the quantizer is uniform, 𝑧𝑖+1 − 𝑧𝑖 = 𝛥, ∀𝑖=

0,… ,𝑀 − 1, where Δ is the quantization step size. A straightforward approach to reconstruct the 

source coefficient x using a side information value y may be: 
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𝑥̂ 𝑜𝑝𝑡 = {

𝑧𝑖 ,   𝑦 < 𝑧𝑖
𝑦,   𝑦 𝜖 [𝑧𝑖 ,  𝑧𝑖+1]
𝑧𝑖+1,   𝑦 >  𝑧𝑖+1

 (38) 

 

where 𝑥̂ denotes the reconstructed value and i the quantization index of x. Although there are 

other reconstruction approaches in the literature [17], they are all suboptimal as the one in (38). 

The optimal reconstruction approach is to compute 𝑥̂ as the expectation 𝐸[𝑥|𝑥 𝜀[𝑧𝑖 , 𝑧𝑖+1], 𝑦] of 

the random variable  𝑥̂ given the quantization interval [𝑧𝑖 , 𝑧𝑖+1] and the side information value y: 

 
𝑥̂ 𝑜𝑝𝑡 = 𝐸[𝑥|𝑥 𝜀[𝑧𝑖 , 𝑧𝑖+1], 𝑦] =

∫ 𝑥𝑓𝑥|𝑦(𝑥)𝑑𝑥
𝑧𝑖+1
𝑧𝑖

∫ 𝑓𝑥|𝑦(𝑥)𝑑𝑥
𝑧𝑖+1
𝑧𝑖

 

 

(39) 

where 𝑓𝑥|𝑦(𝑥) is the conditional p.d.f of x given y which corresponds to the correlation noise 

model that characterizes the relationship between x and y This reconstructed value 𝑥̂ 𝑜𝑝𝑡 

corresponds to the minimum mean-squared error estimate of the source x [17]. To avoid 

numerical computation of integrals, the Laplacian model of the residue between the source DCT 

band x and the side information DCT band y is used and the following derived closed form is 

used: 

 

𝑥̂ 𝑜𝑝𝑡 =

{
  
 

  
 𝑧𝑖 +

1

𝛼
+

𝛥

1 − 𝑒𝛼𝛥
,   𝑦 < 𝑧𝑖

𝑦 +
(𝛾 +

1
𝛼
) 𝑒−𝛼𝛾 − (𝛿 +

1
𝛼
)𝑒𝛼𝛿

2 − (𝑒−𝛼𝛾 − 𝑒𝛼𝛿)
,     𝑦 𝜀 [𝑧𝑖 , 𝑧𝑖+1]

𝑧𝑖+1 −
1

𝛼
−

𝛥

1 − 𝑒𝛼𝛥
,         𝑦 ≥ 𝑧𝑖+1

 (40) 

 

where 𝛾 = 𝑦 − 𝑧𝑖 and 𝛿 =  𝑧𝑖+1 − 𝑦. Comparing (38) with (40), it is possible to observe that the 

reconstruction levels are shifted towards the center of the quantization interval. When 𝛼 = 0, 

this means when y conveys no information about x, 𝑥̂ 𝑜𝑝𝑡 = 𝑧𝑖 + 𝑧𝑖+1 2⁄ ; on the other hand, when 

𝛼 → ∞, 𝑥̂ 𝑜𝑝𝑡 approaches 𝑥̂ in (38).   

 

 

B. Optimal Reconstruction Method with Multiple SI 

 Regarding a scenario with Multiple Side Information, a case referring to two side 

information hypothesis obtained with different motion-compensated temporal interpolation 

(MCTI) methods, named the block-based MCTI and the mesh-based MCTI, is presented in [17]. 

Figure 15 presents the structure of the decoder with multiple side information, where 𝑌1 and 𝑌2 

are SI both considered correlated with the source X. 
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Figure 15 - Decoder Structure with Multiple Side Information [17]. 

The reconstruction module requires some adaptation for the multiple side information case. 

Here the optimal minimum MSE is given by (39) using 𝑓𝑋|𝑌1,𝑌2(𝑥) instead of 𝑓𝑋|𝑌(𝑥). It is here 

assumed that 𝑓𝑋|𝑌1,𝑌2 =
1

2
[𝑓𝑥|𝑌1(𝑥) + 𝑓𝑋|𝑌2(𝑥)], meaning that the two SIs have the same weight but 

this could be done differently. The reconstructed value with multiple side information is then: 

 

𝑥̂𝑜𝑝𝑡 , 𝑀𝐻 =
∑ ∑ [

𝛼𝑘
2 ∫

𝑥𝑒−𝛼𝑘|𝑥−𝑦𝑘|
𝑞𝑗+1
𝑞𝑗

]𝑠−1
𝑗=0 𝑑𝑥2

𝑘=1

∑ ∑ [
𝛼𝑘
2 ∫

𝑒−𝛼𝑘|𝑥−𝑦𝑘|
𝑞𝑗+1
𝑞𝑗

]𝑠−1
𝑗=0 𝑑𝑥2

𝑘=1

 (41) 

 

where (41)  represents a simplified expression available in [14]. 

C. Performance Assessment 

The RD performance of the optimal reconstruction method described above was assessed 

with several sequences at QCIF resolution, 15 Hz with a Group of Frames (GOF) size 2. Figure 

16 shows the average PSNR of the luminance component for both the key and WZ frames 

versus the total bitrate. The method is compared with the straightforward reconstruction 

approach presented in (38). 
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Figure 16 - RD performance with optimal MMSE reconstruction [17]. 

The results show that for both the single and multiple side information scenarios the proposed 

method gains up to 1 dB in PSNR when compared with the straightforward reconstruction 

method; moreover, the usage of multiple side information improves the RD performance by up 

to 0.3 dB regarding the single SI case. Using the optimal MMSE reconstruction method, 

increases the decoding time with single side information only by 0.01 seconds per frame, when 

compared with a simple reconstruction method [17]. 
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Chapter 3 

 

Predictive Video Coding with Statistical 

Reconstruction: Video Codec 

Architecture  

This chapter intends to present the architecture of the video coding solution proposed in this 

Thesis, highlighting the novel modules inserted in the standard H.264/AVC codec. While, 

formally speaking, there are only standard H.264/AVC decoders as encoders are not normative, 

there is also a basic H.264/AVC encoder architecture which is typically used. Naturally, especial 

emphasis will be given to the new modules added to the standard H.264/AVC architecture 

which will be presented by detailing their main functionalities. As stated in Chapter 1, the 

objective of the proposed video coding solution is to exploit the correlation noise statistics 

between the source and the prediction taken as the side information to improve the DCT 

coefficients reconstruction values and thus the final RD performance, notably by minimizing the 

error of the reconstructed samples.  

The basic idea of this improved predictive video codec is to take a typical distributed video 

coding tool, in this case the statistical reconstruction at the decoder, and use it to obtain more 

faithfully reconstructed, this means dequantized, DCT coefficients. In this context, first the pixel 

based prediction based on the received prediction modes and motion vectors (which is playing 

the role of the side information in a distributed video codec) has to be brought to the DCT 

domain which is made using a QP=0 quantization step to avoid introducing any quantization 

artifacts since the best ‘side information’ is desired; the quantization process is applied as in the 

H.264/AVC codec, which means that the transform and quantization cannot be separated. After, 

the decoder has to statistically characterize the prediction residual which is received at the 

decoder; this is very different from a distributed codec where no residual is ever received and 

thus it has to be estimated at the decoder. Finally, the final decoded frame is obtained by using 

a MMSE reconstruction function typical to the DVC codecs. It is important to stress that, in a first 

step, only a quantization bin is defined for the decoded residual DCT coefficients and the 

precise reconstructed values depend on the reconstruction strategy. Two quantization 

strategies for H.264/AVC have already been presented, notably the rigid standard H.264/AVC 
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quantization strategy in Sections 2.3.1 and 2.3.2 and the flexible ARO quantization in Section 

2.3.3. Both these strategies guarantee H.264/AVC compliance as the reconstruction function at 

the decoder is the same normative function. This does not happen for the solution proposed in 

this Thesis where a decoder tools is changed and thus H.264/AVC compliance lost.  

The high-level encoder and decoder architectures of the proposed predictive video codec 

with statistical reconstruction are presented in Figure 17 and Figure 18. The architecture is 

based on a standard H.264/AVC codec design with the addition of three novel modules labeled 

as Optimal Transform, Scaling and Quantization, Residual Statistical Modeling and Statistical 

Reconstruction. As this is a predictive codec where the encoder and decoder have to be always 

in perfect prediction synchronism, all modules inserted at the decoder have to be replicated at 

the encoder as all predictive encoders include the corresponding predictive decoder to 

guarantee the mentioned synchronism. 

As the H.264/AVC video codec walkthrough has already been presented in Section 2.1.2, 

here an overview of the flow of the coding process is presented with emphasis on the three 

additional modules that are briefly described in the following: 

 Picture Partitioning into 16×16 macroblocks – Partition of the picture into fixed-sized 

macroblocks. 

 Intra and Inter - Frame Prediction – Creation of the prediction modes in the spatial and 

temporal domains.   

 Transform Scaling and Quantization – Exploitation of the spatial and temporal redundancy 

by transforming and quantizing the prediction residual. 

 Optimal Transform, Scaling and Quantization – This module which is common to both the 

encoder and decoder takes the pixel based prediction created with the available/received 

coding modes and motion vectors and brings it to the DCT domain while quantizing it with a 

QP equal to zero to avoid any associated quantization error, this means obtaining the best 

‘side information’. This DCT domain prediction is necessary to determine the bin where the 

final DCT coefficient should be reconstructed, and it is quantized also to make sure that 

there are no mismatches in scaling factors between the prediction and the residual. 

 Residual Statistical Modeling – The objective of this module is to statistically characterize 

the correlation noise this means the (residual) DCT coefficients; here, the correlation noise 

corresponds to the quantized and DCT transformed residual between the original and the 

predicted frames; as this residual is transmitted to the decoder, it is possible to statistically 

analyze and characterize it in a very precise way. The residual statistical modeling process 

considers two  steps: 

1. DCT Coefficients Statistical Analysis This first section aims simply at confirming that 

a Laplacian distribution may in fact accurately characterize the prediction residual.  With 

this purpose histograms representing the prediction residual were plotted alongside the 

best Laplacian curve, i.e. the one minimizing the MMSE.  

2. Statistical Model Parameter Computation – Following the usual approach in the 

literature, the residual is after fitted to a Laplacian distribution which is used to model 

the distribution of the residual DCT coefficients; The objective is to obtain the so-called 

alpha Laplacian parameter, α, i.e. for each DCT band coefficient, the correlation noise 

is modeled in a process similar to the process described in Section 2.4.1 for distributed 

video coding. The obtained alpha parameters are used in the Statistical Reconstruction 
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module both at the decoder and encoder to obtain the reconstructed residuals while 

avoiding any mismatch or drift. 

 Statistical Reconstruction – This module has the target to reconstruct the quantized DCT 

coefficients in a different way from the NURQ reconstruction solution with p=0 which is 

typically used in H.264/AVC (see equation (4) in Section 2.3.1). This module employs a 

statistical reconstruction method typically used in DVC codecs to substitute the usual  

inverse quantization in the H.264/AVC decoder with the expectation of improving the RD 

performance; as mentioned before, formally speaking, this change makes the proposed 

decoder non H.264/AVC compliant.  

 In – Loop Deblocking Filter – Used to eliminate visible block structures, the so called 

block-effect. 

 Entropy Coding – CABAC is selected to provide additional efficiency. 

 

Figure 17 - High-level encoder architecture of the proposed video coding solution. 
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Figure 18 – High-level decoder architecture of the proposed video coding solution. 

The proposed video coding solution aims to provide a different reconstruction approach for 

H.264/AVC video decoder as opposed to using the typical inverse quantization defined by the 

H.264/AVC standard. After presenting in this chapter an overview of the architecture designed 

in this Thesis, Chapter 4 will present the various novel modules in depth to provide a better 

understanding of the overall solution. 
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Chapter 4 

 

Predictive Video Coding with Statistical 

Reconstruction: Novel Coding Tools 

This chapter provides a detailed description of the novel tools developed in the context of the 

video coding solution proposed in this Thesis. This Chapter is divided in three sections, each of 

them presenting the operational details associated to the three novel modules: Optimal 

Transform, Scaling and Quantization module (Section 4.1), Residual Statistical Modeling 

module (Section 4.2) and Statistical Reconstruction module (Section 4.3). These modules, 

which are present at both the encoder and decoder sides since a predictive coded is used, are 

described according to their order of appearance in the video codec walkthrough presented in 

Chapter 3. 

4.1. Optimal Transform, Scaling and Quantization  

As explained in Chapter 3, the Optimal Transform, Scaling and Quantization module aims at 

converting the pixel based prediction (created with the encoder available and decoder received 

coding modes and motion vectors) to the DCT domain while quantizing it with QP = 0, i.e. the 

finest quantization possible, thus the attribute ‘optimal’. This DCT domain prediction avoids any 

associated quantization error, thus allowing to obtain the best transform domain ‘side 

information’, while reusing the transform, scaling and quantization operations performed in a 

regular H.264/AVC codec. Since the proposed statistical reconstruction operation is performed 

in the DCT domain (see Section 4.3), the DCT domain prediction quantization also avoids 

mismatches in the scaling factors between the prediction and the residual data, both involved in 

the proposed statistical reconstruction solution.  

In this context, each 4×4 luma block within a prediction macroblock is first transformed using 

a 4×4 integer DCT transform. After, the prediction DCT coefficients, 𝑃 , are scaled and 

quantized according to (42) and (43), generating a 4×4 block of quantized prediction DCT 

coefficients, 𝑃𝑞; this procedure is similar to the one applied to the residual DCT coefficients in 

the regular quantization process used in the H.264/AVC reference software [13] (see Chapter 

2).  
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|𝑃𝑞(𝑢, 𝑣)| = (|𝑃(𝑢, 𝑣)| × 𝐴(𝑄𝑀, 𝑢, 𝑣) + 𝑓 × 2
15+𝑄𝐸)  ≫ (15 + 𝑄𝐸),      𝑄𝑀 = QP mod 6,    𝑄𝐸 = 𝑄𝑃/6 (42) 

sign{𝑃𝑞(𝑢, 𝑣)} = sign{𝑃(𝑢, 𝑣)} 
(43) 

 

In (42), (𝑢,𝑣) stands for the DCT coefficient position within the 4×4 block, 𝐴(𝑄𝑀 , 𝑢, 𝑣) is a 

H.264/AVC tabled value associated to the quantization operation, which depends on the QP 

value and DCT coefficient position, and 𝑓 is the parameter controlling the quantization bin width 

around zero (the so-called dead-zone); typically, 𝑓 is 1/3 for Intra blocks and 1/6 for Inter blocks 

[13]. In (42), ≫ represents a binary shift right, which is equivalent to a division operation in 

integer arithmetic, and mod  stands for the modulus operator, which returns the division 

remainder. In (43), sign{𝑥} stands for the signal operator, which returns 1 (resp. -1) when 𝑥 > 0 

(resp. 𝑥 < 0) and 0 when 𝑥 = 0.  

Since the prediction DCT coefficients are quantized with QP = 0, 𝑄𝑀=0 and 𝑄𝐸  = 0, and thus 

any associated quantization error is avoided, allowing to obtain the best transform domain ‘side 

information’. The quantized prediction DCT coefficient 𝑃𝑞(𝑢, 𝑣)  is also known as level or 

quantization bin. The inverse quantization (or reconstruction) of the prediction DCT coefficients 

is obtained from: 

𝑃𝑟(𝑢, 𝑣) = {[𝑃𝑞(𝑢, 𝑣) × 𝐵(𝑄𝑀 , 𝑢, 𝑣)] ≪ 𝑄𝐸 + 2
3} ≫ 4 (44) 

where 𝐵(𝑄𝑀 , 𝑢, 𝑣) is a H.264/AVC tabled value associated to the inverse quantization operation, 

which depends on the QP value and DCT coefficient position. The inverse quantized prediction 

DCT coefficients 𝑃𝑟  will be later used by the Statistical Reconstruction module to obtain the 

reconstructed DCT coefficients (see Section 4.3). 

4.2. Residual Statistical Modeling  

As mentioned in Chapter 3, the main objective of this module is to statistically characterize 

the correlation noise, i.e. the residual DCT coefficients. In the context of the proposed video 

coding solution, the correlation noise corresponds to the quantized and DCT transformed 

residual/difference, 𝑅𝑞 , between the original and the predicted frames. Since the quantized 

residual is transmitted to the decoder, it is possible to analyze and characterize it both at the 

encoder and decoder (which does not happen in distributed video coding). Thus, this module 

makes use of 𝑅𝑞  to obtain the statistical parameter characterizing the statistical function 

adopted to model the residual for each DCT coefficient.  

4.2.1. DCT Coefficients Statistical Analysis 

The Laplacian distribution (see (45)) is typically used to model the distribution of the residual 

DCT coefficients in predictive video coding [18]. Although more accurate models can be found 

in the literature, such as the generalized Gaussian distribution [19], the Laplacian distribution 

constitutes a good tradeoff between model accuracy and complexity and, therefore, it is often 

chosen: 

𝑝(𝑅) =
𝛼

2
× exp (−α × |𝑅|) (45) 

In (45), 𝑝(. ) stands for the probability density function, 𝑅 for the residual DCT coefficient and 

𝛼  for the Laplacian distribution parameter. This first section aims at confirming the 
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appropriateness of this type of distribution for the residual DCT coefficients and thus does not 

correspond to an operational module in the codec.  

Figure 19 to Figure 24 depict the actual histogram of the residual 𝑅 for the I, P and B frames, 

respectively, for the sequences City and Night (151 frames) at 1280×720 spatial resolution, 60 

Hz, GOP 15 with IBBPBBP prediction structure. The Laplacian distribution resulting from curve 

fitting to the histogram has determined 𝛼 values equal to 3,75 × 10−3, 1,21 × 10−2 and 1,43 ×

10−2 for the I, P and B frames, respectively, for the City sequence, and 5,9 × 10−3, 1,36 × 10−2 

and 3 × 10−2 for the I, P and B frames, respectively, for the Night sequence; in Figure 19 to 

Figure 24, both the histogram and the Laplacian using the mentioned parameters fitting are 

shown. 

 

Figure 19 - Residual histogram and Laplacian fitting for the I frames AC1 band of the sequence City, 1280x720, 60 

Hz, QP = 10. 

 

Figure 20 - Residual histogram and Laplacian fitting for the P frames AC5 band of the sequence City, 1280x720, 60 

Hz, QP = 11. 
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Figure 21 - Residual histogram and Laplacian fitting for the B frames AC9 band of the sequence City, 1280x720, 60 

Hz, QP = 12. 

 

 
Figure 22 - Residual histogram and Laplacian fitting for the I frames AC1 band of the sequence Night, 1280x720, 

60 Hz, QP = 10. 
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Figure 23 - Residual histogram and Laplacian fitting for the P frames AC5 band of the sequence Night, 1280x720, 

60 Hz, QP = 11. 

 

 
Figure 24 - Residual histogram and Laplacian fitting for the B frames AC9 band of the sequence Night, 1280x720, 

60 Hz, QP = 12. 
 

The hypothesis that the Laplacian distribution fits the residual histogram has been validated 

by using the Chi-square goodness-of-fit test [20] which is a popular test to measure how well a 

specific statistical distribution fits a set of observed measures. Chi-square values of 7,1 × 10−3, 

3 × 10−3  and 8,6 × 10−2 were obtained for the I, P and B frames, respectively, of the City 

sequence, corresponding to  Figure 19 to Figure 21. For the Night sequence, Chi-square values 

of 1,6 × 10−2, 1,6 × 10−3 and 8,2 × 10−2 were obtained for the I, P and B frames, respectively, 

corresponding to Figure 22 to Figure 24. For a typical significance level of 5% [20], those values 

imply accepting the hypothesis that the residual DCT coefficients follow a Laplacian distribution; 

the significance level is the probability of rejecting an hypothesis although it is true [20]. The 

same conclusion has been obtained for more video sequences and test conditions evaluated in 

this Thesis. 
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4.2.2. Statistical Model Parameter Computation 

After showing that the Laplacian distribution provides a good fitting for the residual DCT 

coefficients, this section presents the Residual Statistical Modeling module which computes at 

both the encoder and decoder the Laplacian distribution parameter, 𝛼 , that better fits the 

residual, 𝑅. The 𝛼 parameter can be estimated using the maximum likelihood method [20] as in 

(46) where 𝑁 represents the number of coefficients at the given DCT band for the full frame and 

𝑅𝑘 is the kth DCT coefficient value of that band:  

𝛼̂ =
𝑁

∑ |𝑅𝑘|
𝑁
𝑘=1

 (46) 

From (46), different 𝛼 values are obtained for each residual DCT band but the same value 

for the same band in all the blocks of the full frame. However, to allow a better adaptation to the 

changing statistics within a DCT band, this means along space and time, it is proposed in this 

Thesis to estimate the 𝛼 parameter at a (finer) DCT coefficient level, i.e. each residual DCT 

coefficient will have a different 𝛼 value associated to it. In this case, adopting a finer modeling 

does not have any rate implications as no 𝛼 parameter values have to be transmitted. 

The proposed 𝛼 parameter estimation at the DCT coefficient level is performed for each 

coefficient within each 4×4 (luma) block in a macroblock as follows: 

 Residual DCT coefficients inverse quantization – First, the residual DCT coefficients are 

inverse quantized according to (44) where 𝑃𝑟(𝑢, 𝑣) and 𝑃𝑞(𝑢, 𝑣) are replaced by 𝑅𝑟(𝑢, 𝑣) and 

𝑅𝑞(𝑢, 𝑣), respectively; the quantized residual DCT coefficients 𝑅𝑞(𝑢, 𝑣) correspond to the 

coefficients at the input/output of the entropy encoder/decoder.  

 DCT coefficients statistics accumulation – According to (46), to estimate 𝛼  it is first 

necessary to compute ∑ |𝑅𝑘|
𝑁
𝑘=1  for the relevant band. As has been seen in Section 2.4.1, the 

α  estimation at the DCT coefficient level requires the computation of the average and 

variance of the full DCT coefficients band, which is available once the SI is created in the 

DVC scenario. To follow a similar strategy in predictive video coding, it would be needed to 

wait until the whole frame has been coded. Besides being time consuming, because the 

reconstruction operation (of all coefficients of all DCT bands) would have to be performed 

again with the proposed statistical reconstruction function, it would not allow to taking full 

advantage of the proposed reconstruction function, notably when Intra prediction is used. For 

these reasons, the proposed statistical reconstruction function is performed as the coding 

process evolves. In this context, the  𝛼  parameter can only be estimated from 𝑅𝑘  values 

meanwhile available for the current macroblock and all previously coded macroblocks. By 

considering all previously coded macroblocks in the 𝛼  estimation process, it is likely to 

enclose 𝑅𝑘 values whose order of magnitude is quite different from the one in the current 

macroblock (outlier residuals); note that outliers in statistical model parameter(s) estimation 

processes are in general responsible for lowering the statistical model accuracy and, 

therefore, should be avoided. For this reason, the 𝛼 estimation technique proposed here 

considers only data meanwhile available for the current macroblock. Thus, ∑ |𝑅𝑘|
𝑁
𝑘=1  in (46) is 
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replaced by the sum of the absolute values of 𝑅𝑟(𝑢, 𝑣) for each DCT band (𝑢, 𝑣) over the 

𝑁𝑝𝑟𝑒𝑣_𝑏𝑙𝑜𝑐𝑘𝑠 4×4 blocks encoded/decoded so far (within a macroblock) according to: 

𝑉(𝑢, 𝑣) = ∑ |𝑅𝑟,𝑘(𝑢, 𝑣)|.

𝑁𝑝𝑟𝑒𝑣_𝑏𝑙𝑜𝑐𝑘𝑠

𝑘=1

 (47) 

 𝜶 parameter estimation – Finally, the 𝛼 parameter for the (𝑢, 𝑣) DCT coefficient is obtained 

from: 

𝛼̂(𝑢, 𝑣) =
𝑁𝑝𝑟𝑒𝑣_𝑏𝑙𝑜𝑐𝑘𝑠

𝑉(𝑢, 𝑣)
. (48) 

Although sharing some similarity with (46), the α parameter estimation approach proposed in 

(48) allows a finer adaptation to the residual changing statistics within a band as each DCT 

coefficient has one α  parameter associated to it. The proposed statistical reconstruction is 

expected to improve the predictive video coding reconstructed video quality (see in Chapter 1) 

and, therefore, it makes sense to apply it as the coding process evolves to allow creating better 

predictions. Note that when Intra 4×4 prediction is used, prior reconstructed samples in 

adjacent blocks are used to create the prediction for a given 4×4 block. To perform the DCT 

coefficients (statistical) reconstruction as the coding process evolves, it thus necessary to 

update 𝑉(𝑢, 𝑣) as the macroblock coding process takes place.  

The 𝛼̂(𝑢, 𝑣) values obtained will be then used by the Statistical Reconstruction module to 

obtain the reconstructed DCT coefficients, as it will be seen in the next section. 

4.3. Statistical Reconstruction  

The main goal of the proposed Statistical Reconstruction module (which is present at both 

the encoder and decoder sides) is to reconstruct the DCT coefficients based on a statistical 

approach, differently from what is recommended by the H.264/AVC standard.  

In this Thesis, it is proposed to replace the standard H.264/AVC inverse quantization (see 

Section 2.3.1) by the MMSE reconstruction function typically employed in DVC codecs [17] (see 

Section 2.4.2). By adopting a more adaptive approach, it is expected to improve the quality of 

the reconstructed video signal and, consequently, to improve the overall video codec RD 

performance. For that purpose, the Statistical Reconstruction module makes use of the inverse 

quantized prediction DCT coefficients, 𝑃𝑟 , (obtained from (44)) and the inverse quantized 

residual DCT coefficients, 𝑅𝑟 (obtained as described in Section 4.2.2). 

The Statistical Reconstruction module includes two main steps, the DCT coefficients 

reconstruction bin bounds computation, and the DCT coefficients reconstruction, which will be 

described in detail in the following sections.  

4.3.1. DCT Coefficients Reconstruction Bin Bounds Computation 

The main objective of this step consists in determining the (lower and upper) bounds of the 

bin where each DCT coefficient should be reconstructed, hereafter called DCT coefficients 

reconstruction bin, needed for the statistical reconstruction function, as it will be seen in Section 

4.3.2. It is important to remind that the statistical reconstruction function regards the DCT 

coefficients while the performed quantization regards the residual DCT coefficients. The DCT 

coefficient reconstruction bounds are obtained from the residual DCT coefficients reconstruction 
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bin bounds and the (reconstructed) prediction DCT coefficients since this data is available at 

both the encoder and decoder sides, thus allowing to guarantee the (needed) prediction 

synchronism. For this purpose, the following steps are performed to determine the DCT 

coefficients reconstruction bin bounds: 

 Residual DCT coefficients reconstruction bin width computation – First, the width of the 

residual DCT coefficients reconstruction bin, i.e. the quantization step size Δ(𝑢, 𝑣) , is 

computed. Although the quantization step size can be computed from the quantization 

parameter sent in the bitstream, the resulting value will not be scaled to the order of 

magnitude of the DCT coefficients for which the reconstruction bin bounds have to be 

computed. Thus, it is proposed here to compute Δ(𝑢, 𝑣)  as the difference between the 

reconstructed (inverse quantized) values of any two adjacent residual DCT coefficients bins 

for a given band; note that the inverse quantization operation is performed as in (44). 

 Residual DCT coefficients reconstruction bin bounds computation – Once Δ is known, 

the lower (𝐿𝑅) and upper (𝑈𝑅) bounds of the bin in which the residual DCT coefficient is 

reconstructed, hereafter called Residual DCT coefficients reconstruction bin, can be 

obtained. Note that the standard H.264/AVC solution reconstructs the residual DCT 

coefficients at a distance 𝑓 × ∆ of the bin lower bound (see Section 2.3.1). Thus, 𝐿𝑅 and 𝑈𝑅 

can be obtained from (49), (50) and (51), where sign{bin} corresponds to the signal operator 

defined in Section 4.1. As mentioned in Section 2.3.1, the dead-zone width of a NURQ is 

equal to 2∆(1 − 𝑓). Thus, when the residual DCT coefficient reconstruction bin is 0, the lower 

and upper bounds, 𝐿𝑅 and 𝑈𝑅, of that bin will both correspond to half of the dead-zone width, 

i.e.  2∆ × (1 − 𝑓)/2  (50); naturally, 𝐿𝑅  and 𝑈𝑅  will differ in their sign. In (49)-(51), the 

parameter 𝑓 appears multiplied by 215+𝑄𝐸 which corresponds to the scaling factor used in the 

regular H.264/AVC quantization process (see (42)). In case the residual DCT coefficient 

reconstruction bin is higher or lower than 0, the computation of 𝐿𝑅 and 𝑈𝑅 depends on Δ and 

the reconstructed value location within the bin; the reconstructed value is located at a 

distance 𝑓 × ∆ of the bin lower bound whenever sign(bin) = 1 and at a distance 𝑓 × ∆ of the 

bin upper bound whenever sign(bin) = -1, as illustrated in Figure 11 (see Chapter 2). Thus, 

considering that the residual DCT coefficient reconstruction bin is higher than 0, the bin 

lower bound is obtained by subtracting the distance 𝑓 × ∆ to the reconstructed value 𝑅𝑟(𝑢, 𝑣) 

(51); 𝑈𝑅 is then obtained as 𝐿𝑅 + ∆ , since the bin width is Δ. A similar reasoning is applied 

when the residual DCT coefficient reconstruction bin is lower than 0: 

{𝑈𝑅
(𝑢, 𝑣) = 𝑅𝑟(𝑢, 𝑣) + 

𝑓 × 215+𝑄𝐸

215+𝑄𝐸
 × ∆

𝐿𝑅(𝑢, 𝑣) = 𝑈𝑅(𝑢, 𝑣) − ∆

   , 𝑠𝑖𝑔𝑛(𝑏𝑖𝑛) = −1 (49) 

{
𝑈𝑅(𝑢, 𝑣) = 2 × ∆ × (1 − 𝑓 × 215+𝑄𝐸)/2

𝐿𝑅(𝑢, 𝑣) = −𝑈𝑅(𝑢, 𝑣)
   , 𝑠𝑖𝑔𝑛(𝑏𝑖𝑛) = 0 (50) 

{𝐿𝑅
(𝑢, 𝑣) = 𝑅𝑟(𝑢, 𝑣) − 

𝑓 × 215+𝑄𝐸

215+𝑄𝐸
 × ∆

𝑈𝑅(𝑢, 𝑣) = 𝐿𝑅(𝑢, 𝑣) + ∆ 

   , 𝑠𝑖𝑔𝑛(𝑏𝑖𝑛) = 1 (51) 

 

 DCT coefficients reconstruction bin bounds computation – Finally, the lower (𝐿) and 

upper (𝑈) bounds of the bin where the DCT coefficient will be reconstructed are obtained 

from (52). Basically, by shifting the residual DCT coefficients reconstructed bin bounds 
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(previously computed) according to the reconstructed prediction value 𝑃𝑟(𝑢, 𝑣) , the bin 

bounds where the (input video) DCT coefficient should be reconstructed can be found: 

{
𝐿(𝑢, 𝑣) = 𝐿𝑅(𝑢, 𝑣) + 𝑃𝑟(𝑢, 𝑣)

𝑈(𝑢, 𝑣) = 𝑈𝑅(𝑢, 𝑣) + 𝑃𝑟(𝑢, 𝑣)
 (52) 

 

4.3.2. DCT Coefficients Reconstruction 

Finally, knowing the DCT coefficient bin bounds, the DCT coefficients are reconstructed 

using a statistical approach. The reconstruction function limits the error between the original 

frame and the reconstructed (decoded) frame to the quantizer coarseness since the 

reconstructed value has to be always within the DCT coefficients reconstruction bin bounds.  

As mentioned in Chapter 2, the statistical reconstruction function, which is used in the 

context of the proposed video coding solution, is optimal in the sense that it minimizes the mean 

square error of the reconstructed value for each DCT coefficient and should enhance the 

standard H.264/AVC inverse quantization approach, which does not consider the motion 

compensated (or Intra) prediction (only the residual information). For this purpose, the Statistical 

Reconstruction module makes use of 𝑃𝑟(𝑢, 𝑣) obtained from (44), 𝛼̂(𝑢, 𝑣) obtained from (47), 

and Δ(𝑢, 𝑣), 𝐿(𝑢, 𝑣) and 𝑈(𝑢, 𝑣) obtained as described in Section 4.3.1. Following the statistical 

reconstruction solution presented in Section 2.4.2 typically used in DVC [17], the reconstructed 

DCT coefficients, 𝑋𝑟(𝑢, 𝑣), are obtained from: 

𝑋𝑟(𝑢, 𝑣) =
∫ 𝑥𝑝(𝑥|𝑃𝑟(𝑢, 𝑣))𝑑𝑥
𝑈(𝑢,𝑣)

𝐿(𝑢,𝑣)

∫ 𝑝(𝑥|𝑃𝑟(𝑢, 𝑣))𝑑𝑥
𝑈(𝑢,𝑣)

𝐿(𝑢,𝑣)

 (53) 

where 𝑝(𝑥|𝑃𝑟)  is the conditional probability density function modeling the correlation noise 

between the original DCT coefficients 𝑋(𝑢, 𝑣)  and the ‘side information’ 𝑃𝑟(𝑢, 𝑣) . This 

reconstructed value corresponds to the minimum mean-squared error estimate of the original 

DCT coefficients 𝑋(𝑢, 𝑣) [17]. As for DVC, 𝑝(𝑥|𝑃𝑟) is a Laplacian distribution (see Section 4.2.1) 

and, thus, the following closed form can be derived from (53): 

𝑋𝑟(𝑢, 𝑣) =

{
 
 
 

 
 
 𝐿(𝑢, 𝑣) +

1

𝛼(𝑢, 𝑣)
+

𝛥(𝑢, 𝑣)

1 − 𝑒𝛼(𝑢,𝑣)×𝛥(𝑢,𝑣)
                          ,     𝑃𝑟(𝑢, 𝑣) < 𝐿(𝑢, 𝑣)

𝑃𝑟(𝑢, 𝑣) +
(𝛾 +

1
𝛼(𝑢, 𝑣)

) 𝑒−𝛼(𝑢,𝑣)×𝛾 − (𝛿 +
1

𝛼(𝑢, 𝑣)
)𝑒𝛼(𝑢,𝑣)×𝛿

2 − (𝑒−𝛼(𝑢,𝑣)×𝛾 − 𝑒𝛼(𝑢,𝑣)×𝛿)
  ,     𝑃𝑟(𝑢, 𝑣) ∈ [𝐿(𝑢, 𝑣), 𝑈(𝑢, 𝑣)]

𝑈(𝑢, 𝑣) −
1

𝛼(𝑢, 𝑣)
−

𝛥(𝑢, 𝑣)

1 − 𝑒𝛼(𝑢,𝑣)×𝛥(𝑢,𝑣)
                              ,     𝑃𝑟(𝑢, 𝑣) ≥ 𝑈(𝑢, 𝑣)

 (54) 

which is used to avoid numerical computation of the integrals. In (13), 𝛿 = 𝑈(𝑢, 𝑣) − 𝑃𝑟(𝑢, 𝑣) and 

𝛾 = 𝑃𝑟(𝑢, 𝑣) − 𝐿(𝑢, 𝑣) , as described in Section 2.4.2. As it can be observed from (54), the 

(statistically) reconstructed DCT coefficient value 𝑋𝑟(𝑢, 𝑣)  depends on the prediction 𝑃𝑟(𝑢, 𝑣) 

location. Since the reconstructed value obtained from (54) corresponds to the minimum mean-

squared error estimate of the original DCT coefficients 𝑋(𝑢, 𝑣), the statistical reconstruction 

approach allows improving the reconstructed video quality and the overall video codec RD 

performance, as it will be seen in the next chapter
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Chapter 5 

 

Predictive Video Coding with Statistical 

Reconstruction: Performance 

Assessment  

The main target of this chapter is to present the performance evaluation of the video coding 

solution proposed in this Thesis, notably a H.264/AVC decoder with statistical reconstruction. 

To obtain a solid assessment, relevant and meaningful test conditions have to be defined, which 

are presented in Section 5.1. After, Section 5.2 will present the obtained results using relevant 

performance metrics in order meaningful conclusions may be derived.  

5.1. Test Conditions 

To evaluate the performance of the proposed video codec, notably in terms of RD 

performance, precise and representative test conditions must first be defined. In Section 5.1.1, 

the video sequences used to test the proposed video coding solution are presented alongside 

with their main characteristics. Next, Section 5.1.2 presents the coding conditions used to 

configure and control the H.264/AVC reference software while Section 5.1.3 finally presents the 

performance metrics.  

5.1.1. Video Sequences 

To evaluate the proposed solution, four video sequences have been selected, with different 

characteristics in terms of motion and texture, in order meaningful and representative results 

are obtained. The selected video sequences are Night, City, Big Ships and Shuttle Start. To 

have an idea on the content of each sequence, Figure 25 shows the first frame of each of the 

selected video sequences. 
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Figure 25 – First frame of the selected video sequences: top) Night (left) and City (right); bottom) Big Ships (left) 
and Shuttle Start (right) 

All the sequences selected have rather distinct characteristics and can be classified in two 

categories, namely low and medium motion activity, as explained in the following: 

 Low motion activity: The Shuttle Start and Big Ships sequences can be classified as low 

motion sequences due to the static camera and low object motion. Shuttle Start depicts the 

launch of a space shuttle at distance, thus giving the impression of a lower speed for the 

main object, the shuttle itself. The Big Ships sequence shows a big sailboat travelling on a 

river at average speed with a fast camera transition to another boat and the passengers 

aboard appearing at some stage.  

 Medium-High motion activity: The City and Night sequences can be classified as 

medium motion sequences. The City sequence shows a downwards overview of a large 

city with skyscrapers; the sequence was clearly taken from a helicopter or plane in motion. 

The Night sequence depicts a busy street at night where cars are crossing the image field 

and people are crossing the road, walking and running.    

In Table 3, the characteristics of each video sequence are presented, notably the spatial 

and temporal resolutions as well as the total number of frames coded for each sequence. For 

the case, HD sequences have been selected as this type of content was one of the main 

targets of the H.264/AVC standard. 
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Table 3 – Test video sequences characteristics 

Motion Activity 
Video 

Sequence 

Spatial 

Resolution 

Temporal 

Resolution [Hz] 

Number of 

Frames 

Low 

Shuttle Start 1280 × 720 60 600 

Big Ships 1280 × 720 60 600 

Medium 
City 1280 × 720 60 600 

Night 1280 × 720 60 460 

 

5.1.2. Coding Conditions 

In this section, all the coding parameters and configurations used to evaluate the video 

codec proposed in this Thesis are presented. The total number of frames coded was 151, 

following the instructions in the VCEG document defining appropriate test conditions [21]. 

Although this document mentions that 150 frames should be coded for these specific 

sequences, the number used in this Thesis is 151 in order to enable a closed GOP with an Intra 

period of 15 frames. This solution allows to adjust the number of coded frames to the adopted 

GOP size. Moreover, the Shuttle Start sequence starts to be coded on frame number 150. Once 

again these choices were done following the instructions presented on the VCEG document 

previously mentioned. 

The coding conditions used for the selected video sequences are presented in the following:  

 GOP Size – The GOP used has M = 3 and N = 15, where M represents the distance 

between two anchor frames (I or P), thus two B frames in this case, and N represents the 

distance between two I frames. So the frames were organized in an IBBP prediction 

structure with the insertion of an I frame every fifteen frames.  

 Quantization Parameters – Nine RD points were defined using the quantization 

parameter (𝑄𝑖 ) as presented in Table 4 and 5. To increase the RD performance, a 

cascading solution has been adopted for the quantization parameters, notably with the 

quantization parameter increasing one unit from the I to the P frames and another unit from 

the P to the B frames. Lower quantization parameters (and thus higher qualities) are thus 

used for the frames with longer prediction chains.  

Table 4 – Quantization parameters used to define each RD point for the various video sequences (RD points 1-4) 

Video 

Sequence 

𝑸𝑷𝟏 𝑸𝑷𝟐 𝑸𝑷𝟑 𝑸𝑷𝟒 

I P B I P B I P B I P B 

Night 10 11 12 12 13 14 14 15 16 18 19 20 

City 10 11 12 12 13 14 14 15 16 18 19 20 

Big Ships 10 11 12 12 13 14 14 15 16 18 19 20 

Shuttle 

Start 
10 11 12 12 13 14 14 15 16 18 19 20 
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Table 5 - Quantization parameters used to define each RD point for the various video sequences (RD points 5-9) 

Video 

Sequence 

𝑸𝑷𝟔 𝑸𝑷𝟔 𝑸𝑷𝟕 𝑸𝑷𝟖 𝑸𝑷𝟗 

I P B I P B I P B I P B I P B 

Night 24 25 26 30 31 32 36 37 38 42 43 44 48 49 50 

City  24 25 26 30 31 32 36 37 38 42 43 44 48 49 50 

Big Ships 24 25 26 30 31 32 36 37 38 42 43 44 48 49 50 

Shuttle 

Start 

24 25 26 30 31 32 36 37 38 42 43 44 48 49 50 

 

 

 Transform Size – In the tests performed, only the 4 × 4 transform size has been used.  

 Number of Reference Frames - The number of reference frames used for prediction has 

been 4. 

 Encoder Profile – For all the tests, the High Profile has been used.  

 Other – RD-Optimized mode decision and CABAC enabled. 

5.1.3. Performance Evaluation Metrics 

The quality metric used for the performance evaluation of the proposed solution in this 

Thesis is the PSNR. This metric is the most common used for video quality evaluation despite 

having some well known shortcomings in terms of expressing the perceptual (subjective) 

quality. The PSNR metric is a full reference metric as it measures the quality of the decoded 

frame with respect to the corresponding original frame as follows: 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔 10 (
𝐿𝑚𝑎𝑥

2

𝑀𝑆𝐸
) (55) 

where 𝐿𝑚𝑎𝑥  is the maximum luminance sample value (255 in this case as 8-bit samples are 

used), and MSE is the mean square error calculated between the decoded and corresponding 

original frames as: 

𝑀𝑆𝐸 =
1

𝑚 × 𝑛
∑∑[𝑂(𝑖, 𝑗) − 𝐷(𝑖, 𝑗)]2

𝑛−1

𝑗=0

𝑚−1

𝑖=0

 (56) 

 

where 𝑂(𝑖, 𝑗)  and 𝐷(𝑖, 𝑗)  are the luminance values of the original and decoded frames, 

respectively, at position (𝑖, 𝑗) and 𝑚 × 𝑛 represents the spatial resolution of the video sequence. 

Naturally, the average rate is computed by simply adding all bits used, dividing by the number of 

coded frames and multiplying by the frame rate.  

Another metric largely used to evaluate the performance of one coding solution regarding 

another is the Bjontegaard metric [22]. The Bjontegaard metric allows to compute the PNSR 

average gain in dB or the average bitrate saving in percentage between two RD curves, 

typically using four RD points. While BD-rate expresses the average bitrate reduction of the 

assessed codec regarding the reference codec for a constant quality, BD-PSNR expresses the 

average PSNR increase of the assessed codec regarding the reference codec for a constant 

rate. This metric represents the average difference between the integrals of the two RD curves 
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(fitted with a parametric model using 4 data points) under comparison divided by the integration 

interval.  

5.2. RD Performance Evaluation 

The main objective for this section is to evaluate the overall RD performance of the proposed 

codec. Figure 26 to Figure 33 illustrate the RD performance of the proposed video coding 

solution when compared with the benchmark H.264/AVC video codec, corresponding to the 

H.264/AVC reference software version 18.2, and with the H.264/AVC codec with ARO as 

presented in Chapter 2; for better reading, the charts are divided for the lower and higher 

bitrates.  

 

Figure 26 – RD performance comparison for the Night sequence: lower rates 
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Figure 27 – RD performance comparison for the Night sequence: higher rates 

 

 

Figure 28 - RD performance comparison for the City sequence: lower rates 
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Figure 29 - RD performance comparison for the City sequence: higher rates 

 

 

Figure 30 - RD performance comparison for the Shuttle Start sequence: lower rates 
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Figure 31 - RD performance comparison for the Shuttle Start sequence: higher rates 

 

 

Figure 32 - RD performance comparison for the Big Ships sequence: lower rates 
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Figure 33 - RD performance comparison for the Big Ships sequence: higher rates 

 

For a better understanding of the obtained results and a more precise comparison of the 

various coding solutions, also the Bjontegaard metric results are presented in Tables 6 to 9.  

The results presented in Figure 26 to Figure 33 and Table 6 to Table 9 lead to the following 

conclusions: 

 H.264/AVC+Stat. Rec. versus H.264/AVC – In Table 6, the results regarding the 

Bjontegaard metric for the higher rates considered in the tests performed are presented, 

making clear that the proposed solution outperforms the H.264/AVC codec for all of the 

video sequences tested. The proposed solution presents BD-Rate savings up to 4,71% 

and BD-PSNR gains up to 0,33 dB.  

Table 7  presents the results for the lower bitrates tested; although the gains are not as 

significant as for the higher rates, the proposed solution still manages to outperform the 

H.264/AVC codec for all of the video sequences tested, with BD-Rate savings up to 1,74% 

and BD-PSNR gains up to 0,09 dB. When analyzing the charts in Figure 26 to Figure 33, it 

is possible to observe PSNR gains up to 0.5 dB when looking for example at the Night or 

City video sequences, if points with the same bitrate are taken into account. Higher PSNR 

gains are observed for the more detailed sequences, such as Night and City, and higher 

bitrates (i.e. lower quantization step sizes), where it is more difficult for the rigid H.264/AVC 

reconstruction function, which reconstructs the residual DCT coefficients always at a fixed 

distance of the quantization bin lower bound, to minimize the (reconstruction) distortion; in 

fact, for lower quantization step sizes, the reconstruction towards the center of the 

quantization bin is more beneficial for distortion minimization purposes [12]. By adjusting 

the reconstructed DCT coefficient value inside the quantization bin, the statistical 

reconstruction function is able to reduce the distortion, i.e. to increase the reconstructed 
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PSNR, for a similar bitrate. The lowest PSNR gain (about 0.2 dB) graphically observed is 

for the Shuttle Start sequence where a big portion of the frame area is still or smooth, 

which is typically associated to low residue values. Since low residue values are typically 

quantized to zero and both the statistical reconstruction and the H.264/AVC reconstruction 

functions output the prediction DCT coefficient for zero quantized residues, a lower PSNR 

gain is expected (when compared to the more detailed areas).  

 H.264/AVC+Stat. Rec. versus H.264/AVC+ARO – When analyzing the results presented 

in Table 8, it is visible that the H.264/AVC+ARO solution has a better performance than the 

proposed codec both in terms of BD-Rate and consequently BD-PSNR. A particular case in 

this analysis is the Shuttle Start sequence where the proposed solution is able to 

outperform the H.264/AVC codec with ARO enabled, with BD-Rate savings of 0.91% and a 

marginal BD-PSNR increase of 0.03. As mentioned above, this sequence is characterized 

by a large portion of still or smooth areas within the video frames, which constrains the 

update of the rounding offset parameter to only small variations around an initial value 

(which corresponds to the value used in the H.264/AVC codec with ARO disabled). Thus, 

the ARO technique only allows to slightly improving the RD performance of the H.264/AVC 

codec while the proposed Statistical Reconstruction function, taking advantage of the non-

still and detailed frame areas, is able to further improve the overall codec RD performance. 

In Table 9, the results for the lower rates tested are presented. It is possible to observe that 

for these lower rates the proposed video coding solution with statistical reconstruction 

manages to outperform the H.264/AVC+ARO codec for the Shuttle Start and Night video 

sequences. For the Shuttle Start sequence at lower rates, the proposed solution presents 

BD-Rate savings of 3,65% while having a BD-PSNR increase of 0.19 dB when compared 

with the H.264/AVC+ARO. From a graphical point of view, when comparing points with the 

same rate, the proposed video coding solution with statistical reconstruction performs in 

general better or similarly for all the test sequences at lower bitrates. However, at higher 

bitrates, the proposed video coding solution performs slightly worse than the H.264/AVC 

codec with ARO enabled when PSNR values are taken into account. This behavior may be 

explained by the fact that the ARO technique makes use of the original information (at the 

encoder) to dynamically update the rounding offset parameter during the encoding 

process, which does not happen in the statistical reconstruction solution.  
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Table 6 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC: higher rates 

Sequences 

H.264/AVC (Reference 
codec) 

H.264/AVC + Stat. Rec. 
(Proposed codec) 

Bjontegaard 
Metric 

Rate[kbps] PSNR[dB] Rate[kbps] PSNR[dB] 
BD-

PSNR 
[dB] 

BD-
Rate 
[%] 

Night 

116141,65 49,30 116128,30 49,83 

0,33 -4,71 
95843,61 42,78 95899,10 48,23 

76996,82 46,15 77156,54 46,52 

42,993,94 42,75 43116,40 42,93 

City 

119723,08 48,73 119951,80 49,29 

0,27 -4,19 
97912,42 47,14 98143,93 47,61 

77718,95 45,49 78034,36 45,84 

41023,032 41,98 41098,02 42,08 

Shuttle 
Start 

56093,32 49,89 56156,79 50,12 

0,12 -3,89 
40422,61 48,45 40400,48 48,62 

27255,46 47,0 27095,45 47,08 

10841,20 44,55 10537,78 44,62 

Big Ships 

104309,03 48,72 104249,35 49,01 

0,13 -3,09 
81639,89 47,09 81434,83 47,33 

60170,03 45,35 59935,60 45,48 

26150,79 41,97 25642,36 42,01 

Average Gains 0,21 -3,95 

 

Table 7 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC: lower rates 

Sequences 

H.264/AVC (Reference 
codec) 

H.264/AVC + Stat. Rec. 
(Proposed codec) 

Bjontegaard 
Metric 

Rate[kbps] PSNR[dB] Rate[kbps] PSNR[dB] 
BD-

PSNR 
[dB] 

BD-
Rate 
[%] 

Night 

5760,59 35,30 5744,19 35,35 

0,04 -0,89 
2590,86 31,95 2580,94 31,98 

1215,10 28,42 1215,56 28,45 

558,88 24,82 563,77 24,89 

City 

4019,71 34,48 3995,91 34,50 

0,01 -0,32 
1851,61 31,09 1849,66 31,09 

914,58 27,37 919,05 27,40 

371,66 24,30 374,33 24,31 

Shuttle 
Start 

1497,99 38,90 1481,28 38,93 

0,09 -1,74 
685,82 35,62 684,59 35,66 

326,54 31,97 326,59 32,06 

159,33 27,88 160,76 28,15 

Big Ships 

2863,85 35,37 2843,29 35,39 

0,00 0,14 
1181,04 32,45 1179,51 32,47 

553,42 29,57 560,85 29,59 

247,77 26,33 255,36 26,39 

Average Gains 0,03 -0,70 

 



64 
 

Table 8 – Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC + ARO: higher rates  

Sequences 

H.264/AVC + ARO 
(Reference codec) 

H.264/AVC + Stat. Rec. 
(Proposed codec) 

Bjontegaard 
Metric 

Rate[kbps] PSNR[dB] Rate[kbps] PSNR[dB] 
BD- 

PSNR 
[dB] 

BD- 
Rate 
[%] 

Night 

128316,86 51,19 116128,30 49,83 

-0,22 2,87 
107867,63 49,56 95899,10 48,23 

89016,30 47,88 77156,74 46,52 

52078,95 44,01 43116,40 42,93 

City 

132961,34 50,73 119951,80 49,29 

-0,18 2,28 
111222,47 49,0 98143,93 47,61 

91006,38 47,23 78034,36 45,84 

50643,96 43,10 41098,02 42,08 

Shuttle 
Start 

66305,62 51,15 56156,79 50,12 

0,03 -0,91 
48737,80 49,47 40400,48 48,62 

33204,92 47,77 27095,45 47,08 

11944,58 48,83 10537,78 44,62 

Big Ships 

117802,21 50,493 104249,35 49,01 

-0,14 2,87 
94230,06 48,67 81434,83 47,33 

72074,17 46,74 59935,60 45,48 

29297,0 42,46 25642,36 42,014 

Average Gains -0,13 1.78 

 

Table 9 - Bjontegaard metric results for H.264/AVC + Statistical Reconstruction vs H.264/AVC + ARO: lower rates 

Sequences 

H.264/AVC + ARO 
(Reference codec) 

H.264/AVC + Stat. Rec. 
(Proposed codec) 

Bjontegaard 
Metric 

Rate[kbps] PSNR[dB] Rate[kbps] PSNR[dB] 
BD- 

PSNR 
[dB] 

BD- 
Rate 
[%] 

Night 

6101,99 35,59 5744,19 35,35 

0,02 -0,56 
2647,93 32,08 2580,94 31,98 

1196,05 28,33 1215,56 28,45 

527,88 24,58 563,77 24,89 

City 

4071,69 34,59 3995,91 34,50 

-0,05 1,10 
1821,56 31,03 1849,66 31,09 

845,09 27,11 919,05 27,40 

328,11 24,02 374,33 24,31 

Shuttle 
Start 

1516,99 38,98 1481,28 38,93 

0,19 -3,65 
675,44 35,45 684,59 35,66 

311,45 31,58 326,59 32,06 

146,72 27,22 160,76 28,15 

Big Ships 

2897,69 35,43 2843,29 35,39 

-0,03 1,11 
1141,96 32,32 1179,51 32,47 

517,03 29,30 560,85 29,59 

208,46 26,02 255,36 26,39 

Average Gains 0,13 -0,5 
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This chapter aimed at evaluating the RD performance of the proposed statistical 

reconstruction solution. After defining the test conditions, the RD performance results as well as 

the Bjontegaard results were presented for the tested video sequences. The statistical 

reconstruction solution was compared with a standard H.264/AVC video codec with ARO 

enabled and disabled in order to fully understand its performance. 
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Chapter 6 

 

Concluding and Future Work 

 

In this chapter, the work presented in this Thesis is summarized and the main achievements 

identified. Moreover, some possible future work regarding the topics addressed is presented.  

6.1. Summary  

The first chapter of this Thesis introduces its context, highlighting the possibility of integrating 

coding tools used mainly in DVC paradigms in predictive video codecs such as the H.264/AVC 

standard. Moreover, this chapter clearly defines the objectives of this Thesis.  

Chapter 2 focuses mainly in reviewing the relevant background technology for this Thesis, 

notably predictive video coding (with emphasis on the H.264/AVC video codec), distributed 

video coding, relevant aspects regarding quantization (notably the H.264/AVC quantization 

process and adaptive quantization algorithms) and, lastly, DVC correlation noise modeling and 

optimal reconstruction tools. This state-of-the-art review motivates the main target of this 

Thesis: to design a predictive H.264/AVC based video coding architecture where the usual 

inverse scalar quantization is replaced by a statistical reconstruction approach.  

Following the background review, the architecture of the proposed video codec is presented 

in Chapter 3 alongside a brief description of the new modules introduced in the standard 

H.264/AVC codec architecture.  

After introducing the designed codec architecture, Chapter 4 thoroughly presents the novel 

tools, emphasizing the importance and distinct functions of each of the modules, namely the 

Ideal Transform Scaling and Quantization, Residual Statistical Modeling and Statistical 

Reconstruction modules.  

Finally, Chapter 5 assesses the proposed video coding solution. First, the test conditions are 

defined and after the RD performance is presented, notably using Bjontegaard metrics. The 

proposed codec is compared with the standard H.264/AVC codec with ARO disabled and 

enabled to understand the effective gains introduced by the video coding solution proposed in 

this Thesis.  
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6.2. Achievements  

The main objective of the solution proposed in this Thesis is to improve the overall RD 

performance of the H.264/AVC video codec by adopting an alternative tool for the usual inverse 

scalar quantization.  

To improve the codec performance, this Thesis proposes to adopt a DVC based statistical 

reconstruction method based on a correlation model for the H.264/AVC residual DCT 

coefficients. The Laplacian distribution has been adopted as the statistical model for the 

residual DCT coefficients, thus requiring estimating the Laplacian distribution parameter, α, for 

each residual DCT coefficient within a 4 × 4 luma block in a macroblock, using a maximum 

likelihood method.   

By integrating the proposed technique, an improved codec was obtained and after assessed 

in comparison with the standard H.264/AVC video codec. Using the Bjontegaard metric to 

evaluate the RD performance of the proposed codec, it may be concluded that it outperforms 

the standard H.264/AVC codec for all of the video sequences tested, with BD-Rate savings up 

to 4,71% and a corresponding BD-PSNR increase up to 0.33 dB. When comparing the 

proposed codec with the H.264/AVC+ARO solution, the codec with statistical reconstruction has 

better performance for the lower rates evaluated, where BD-Rate savings up to 3,65% and a 

correspondent BD-PSNR increase of 0,19 dB were obtained. For the higher bitrates, the 

H.264/AVC+ARO solution has a better performance (except for the Shuttle Start sequence). 

Following the obtained results, it may be concluded that the objectives defined for this Thesis in 

Chapter 1 have been accomplished with success. As a consequence, a paper has been 

submitted to the IEEE Visual Communications and Image Processing (IEEE VCIP) Conference, 

to be held in Valletta, Malta, next December 2014.  

6.3. Future Work   

This section discusses some of the work that may be developed following the techniques 

proposed in this Thesis. The focus should be again obtaining a better RD performance, notably 

regarding the state-of-the-art video codecs. To address this challenge, the following research 

ideas can be explored: 

 ARO integration – As concluded in Section 5.2, the H.264/AVC+ARO solution has some 

RD advantage over the proposed solution, mainly due to the fact that the ARO technique 

makes use of the original information (at the encoder), to dynamically update the rounding 

offset parameter during the encoding process. In this context, a possible integration of the 

proposed statistical reconstruction technique with the ARO algorithm may be beneficial as 

it has already been demonstrated that, for video sequences with still or smooth areas, the 

statistical reconstruction technique can outperform the ARO algorithm due to the offset 

parameter being constrained to only small variations around an initial value. So, the 

synergy between the two techniques may bring further RD gains by adopting a technique 

more adaptable to the video sequence characteristics.  

 Laplacian parameter refinement – As discussed in Section 4.2.2, the Laplacian 

parameter α that characterizes the correlation noise model has a crucial role in the RD 

performance of the codec with statistical reconstruction. Thus, a possible future 
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development is to obtain even better α parameters to better fit the statisics of the source 

data, e.g. adopting a cumulative statistic not only at macroblock level such as performed in 

this Thesis. 

 HEVC extension – Since the HEVC (High Efficiency Video Coding) standard has emerged 

recently to represent the state-of-the-art on video coding, the same idea proposed in this 

Thesis for the H.264/AVC standard may also be applied for the HEVC standard, namely to 

exploit the prediction using a statistical reconstruction to replace the inverse quantization. 

In conclusion, the objectives proposed for this Thesis have been accomplished as it has been 

shown that replacing the usual inverse scalar quantization, as adopted in the H.264/AVC, with 

statistical reconstruction, thus combining the predictive and distributed video coding paradigms, 

can in fact lead to an improved RD performance.  
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Annex A 

 

Studying the Performance of the 

ARO Algorithm  

In this appendix, some preliminary results regarding the performance of the ARO algorithm 

proposed in [12] and previously described in Section 2.3.3 are presented. First, the conditions in 

which the tests were performed are presented to allow the correct interpretation of the results 

and to enable performing a fair comparison with other results under the same conditions. 

The experiments were conducted using various CIF and HD (720p) resolution sequences, 

with 150 frames for each sequence and a frame rate of 60 frames per second for all sequences. 

The tests were performed using the JM18.2 and JM9.6 H.264/AVC reference software encoder 

that represents the H.264/AVC codec at different stages of evolution, under the following 

conditions: 

 IBBP with 150 frames encoded for each sequence; 

 High Profile with Level IDC = 40; 

 Motion Search Range  = 64 for all sequences; 

 Fixed QP, QP(I)=10, 14, 18, 22; QP(P)=QP(I)+1; QP(B)=QP(I)+2; 

 Number of Reference Frames = 4; 

 RD-Optimized mode decision enabled; 

 CABAC; 

The RD performance curves for each test sequence are presented in Figures 34 to 39. The 

charts include the RD performance with the ARO algorithm on and off for two versions of the 

H.264/AVC reference software (for the CIF sequences only). The results with ARO on and off 

allows to fully understand the impact of the ARO algorithm. From the results, it is clear that the 

RD performance with the ARO algorithm always outperforms the RD performance when ARO is 

turned off. This RD performance improvement is consistent for the sequences with different 

resolutions. The RD curves presented show that the gains are larger for the higher rates and 
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they may go up to 1-2 dB. The results obtained are consistent with those presented in Section 

2.3.3 and extracted from [12]. 

 

Figure 34 – RD performance comparison for the Coastguard CIF sequence 

 

 

Figure 35 – RD performance comparison for the Foreman CIF sequence 
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Figure 36 – RD performance comparison for the Mobile CIF sequence 

 

 

Figure 37 – RD performance comparison for the Soccer CIF sequence 
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Figure 38 – RD performance comparison for the Night 720p sequence 

 

 

Figure 39 – RD performance comparison for the Big Ships 720p sequence 


