
Detecting Electromagnetic Injection Attack on FPGAs

Using In Situ Timing Sensors

Surabhi Satyajit Gujar

Thesis submitted to the Faculty of the

Virginia Polytechnic Institute and State University

in partial fulfillment of the requirements for the degree of

Master of Science

in

Computer Engineering

Leyla Nazhandali, Chair

Patrick R. Schaumont

A. Lynn Abbott

July 30, 2018

Blacksburg, Virginia

Keywords: Electromagnetic Fault Injection, Timing Sensor, Hardware Security, FPGA

Copyright 2018, Surabhi Satyajit Gujar

Detecting Electromagnetic Injection Attack on FPGAs

Using In Situ Timing Sensors

Surabhi Satyajit Gujar

Abstract

Nowadays, security is one of the foremost concerns as the confidence in a system is mostly

dependent on its ability to protect itself against any attack. The area of Electromagnetic

Fault Injection (EMFI) wherein attackers can use electromagnetic (EM) pulses to induce

faults has started garnering increasing attention. It became crucial to understand EM attacks

and find the best countermeasures. In this race to find countermeasures, different researchers

proposed their ideas regarding the generation of EM attacks and their detection. However,

it is difficult to see a universal agreement on the nature of these attacks.

In this work, we take a closer look at the analysis of the primary EMFI fault models suggested

earlier. Initial studies had shown that EM glitches caused timing violations, but recently it

was proposed that EM attacks can create bit sets and bit resets. We performed a detailed

experimental evaluation of the existing detection schemes on two different FPGA platforms.

We present their comparative design analysis concerning their accuracy, precision, and cost.

We propose an in situ timing sensor to overcome the disadvantages of the previously pro-

posed detection approaches. This sensor can successfully detect most of the electromagnetic

injected faults with high precision. We observed that the EM attack behaves like a localized

timing attack in FPGAs which can be identified using the in situ timing sensors.

Detecting Electromagnetic Injection Attack on FPGAs

Using In Situ Timing Sensors

Surabhi Satyajit Gujar

General Audience Abstract

When computers are built only for a specific application, they are called embedded systems.

Over the past decade, there has been an incredible increase in the number of embedded

systems around us. Right from washing machines to electronic locks, we can see embedded

systems in almost every aspect of our lives. There is an increasing integration of embedded

systems in applications such as cars and buildings with the advent of smart technologies.

Due to our heavy reliance on such devices, it is vital to protect them against intentional

attacks. Apart from the software attacks, it is possible for an attacker to disrupt or control

the functioning of a system by physically attacking its hardware using various techniques. We

look at one such technique that uses electromagnetic pulses to create faults in a system. We

experimentally evaluate two of the previously suggested methods to detect electromagnetic

injection attacks. We present a new sensor for this detection which we believe is more

effective than the previously discussed detection schemes.

Dedication

To My Family

iv

Acknowledgments

I would like to thank my committee members Dr. Leyla Nazhandali, Dr. Patrick Schaumont,

and Dr. Lynn Abbott, for their strong support throughout my time at Virginia Tech. I am

very grateful to Dr. Nazandali for her constant advice, mentoring and direction which

helped me achieve my research goals. I would also like to give my special thanks to my

colleagues in the Secure Embedded Systems lab namely Abhishek Bendre, Bilgiday Yuce,

Chinmay Deshpande, and Yuan Yao for their prompt help in fixing issues with the setup and

answering my questions which helped me to carry forward my research. I would also like to

thank Archanaa Krishnan and Daniel Dinu for their supportive and cheerful companionship.

I would like to thank the Virginia Tech libraries, Virginia Tech ECE department and the

Virginia Tech Graduate School for their contribution in making the masters’ thesis a smooth

and fulfilling journey for me. I am much thankful to my friends at Virginia Tech for their

constant push which motivated to do my best work. Last but not the least, I would like

to thank my mom, my dad and my younger brother for their continued confidence in me

and my efforts. I have gathered valuable knowledge and essential skills in perseverance and

patience during this thesis for which I am eternally obliged to everyone involved.

v

Contents

1 Introduction and Background 1

1.1 Motivation . 1

1.2 Contributions . 7

1.3 Thesis Organization . 8

2 Related Work 9

2.1 EMFI Fault Models . 9

2.2 EMFI Detectors . 11

2.2.1 Delay-based Glitch Detector . 11

2.2.2 Fully-Digital EM Pulse Detector . 12

2.2.3 PLL-based Detector . 12

2.2.4 Hogge Phase Detector . 13

vi

2.2.5 Dual complementary flip-flop Detector 14

3 Experimental Setup and Methodology 15

3.1 The EMFI Setup . 15

3.1.1 Hardware Setup . 16

3.1.2 Software Setup . 18

3.2 Attack Characterization . 22

3.2.1 Attack Analysis . 22

3.2.2 Detection Metrics . 22

3.3 Target Device Setup . 24

3.3.1 DE1-SoC Implementation . 25

3.3.2 DE0-Nano Implementation . 36

4 Experimental Evaluation of Existing Detection Mechanisms 40

4.1 Standalone Timing Sensor . 40

4.2 Standalone Timing Sensor Advantages and

Disadvantages . 46

4.3 In-situ EM Sensor . 49

4.4 In situ EM Sensor Advantages and Disadvantages 54

vii

5 In Situ Timing Sensor 57

5.1 Design . 57

5.2 Experimental Results . 60

5.3 Comparison . 62

5.3.1 Detection . 63

5.3.2 Area and Power . 65

5.3.3 Performance . 67

6 Conclusion 69

APPENDICES 70

A Softwares Code DE1-SoC 70

B Softwares Code DE0-Nano 81

C Inspector Software Code 84

Bibliography 96

viii

List of Figures

3.1 1. EMFI Transient Probe 2. VC Glitcher and 3. XYZ Motorized table . . . 16

3.2 Inspector Software Location Parameters . 19

3.3 Glitch Parameters Illustration . 20

3.4 Inspector Software Perturbation Parameters 21

3.5 Confusion Matrix . 23

3.6 Block Diagram of EMFI Setup . 26

3.7 DE1SoC and DE0Nano FPGAs . 27

3.8 LogicLock Region Properties Window . 28

3.9 Timing Sensor schematic with Lcells . 30

3.10 DE1-SoC Timing Sensor macro . 31

3.11 DE1-SoC Timing Sensor Chip Planner . 31

3.12 DE1-SoC EM Sensor Chip Planner . 32

ix

3.13 AES logic signals on Oscilloscope . 34

3.14 Seeing Alarms and Faults on MobaXterm . 35

3.15 Perturbation Log . 35

3.16 Verdiction . 36

3.17 Communication Interface with DE0-Nano . 37

3.18 DE0-nano Timing Sensor Chip Planner . 37

3.19 DE0-nano EM Sensor Chip Planner . 38

3.20 DE0-Nano System Console Results . 38

4.1 Timing sensor structure [6] . 41

4.2 One Timing Sensor at A. Top Left B. Top Right and C. Bottom Right . . . 42

4.3 Timing Sensor Carpet . 43

4.4 DE1-SoC Standalone Timing Sensor Intensity Sweep 43

4.5 DE0-Nano Standalone Timing Sensor Intensity Sweep 44

4.6 DE1-SoC Timing Sensor Faults vs Alarms Map 45

4.7 DE0-Nano Timing Sensor Faults vs Alarms Map 45

4.8 DE1-SoC Standalone Timing Sensor Delay Sweep 46

4.9 EM Sensor Diagram [7] . 50

x

4.10 DE1-SoC In Situ EM Sensor Intensity Sweep 50

4.11 DE0-Nano In Situ EM Sensor Intensity Sweep 51

4.12 DE1-SoC EM Sensor Fault Alarm Map . 51

4.13 DE0-Nano EM Sensor Fault Alarm Map . 52

4.14 Chip planner with read flops logic locked separately 52

4.15 Bit Flip Observation for a True Positive case 53

4.16 Observing the Main and Complementary Bit Flips 53

4.17 Shadow Flop Bit Flips vs Main Flop Bit Flips 54

5.1 In Situ Timing Sensor Diagram . 58

5.2 Delayed Shadow Signal to detect clock glitches 58

5.3 Comparison of in situ EM sensors with in situ timing sensors with varying

Lcells . 59

5.4 Comparing Detection Techniques with varying LCells 60

5.5 DE1-SoC In Situ Timing Sensor Intensity Sweep 61

5.6 DE0-Nano In Situ Timing Sensor Intensity Sweep 61

5.7 In situ Timing Sensor Faults vs Alarms Map 62

5.8 Qualitative Comparison . 63

xi

5.9 Precision Results . 63

5.10 Accuracy Results . 64

5.11 Detection Rate Results . 64

5.12 Specificity Results . 64

5.13 Graphical Comparison of Detection metrics 65

5.14 Overall Comparison of Detection Metrics . 66

5.15 Area Comparison . 66

5.16 Power Comparison . 67

xii

Chapter 1

Introduction and Background

1.1 Motivation

The importance of protecting embedded systems from an attack cannot be stressed enough.

With the availability of a vast amount of user data, the privacy and security of this data

have become a cause of worry. This concern is valid at all levels and organizations ranging

from top companies to individual users using embedded systems in so many areas of their

daily life. Efforts to make fool-proof embedded devices is a constant contest of finding new

ways to attack devices and subsequently its countermeasures. Some attacks in the field

of hardware security, like timing attacks and optical attacks, are now quite mature with

extensive research and have well-established countermeasures against them.

However, there remains a large area of attacks, namely electromagnetic attacks, whose com-

1

Surabhi Satyajit Gujar Chapter 1. Introduction 2

plete understanding is still an ongoing effort. This understanding is especially crucial for

building the best countermeasures for them, in turn, making hardware more and more se-

cure. This work is an effort in this direction to make FPGAs more robust against EMFI

attacks. Fault attacks were first introduced in 1997 by Boneh et al. [2] when he discovered

that there were errors in computations inside a chip due to radioactive emissions. We discuss

fault attacks in detail in the next section.

1. Hardware Fault Attacks

We can broadly divide fault attacks into physical attacks and non-physical attacks.

While non-physical attacks do not have any physical access to the hardware, physical

attacks can fault by tampering with the hardware or by just observing it. We can

further classify the physical attacks into active attacks and passive attacks. Passive

attacks, also known as side-channel attacks, take advantage of information leakage from

a measurable source such as the power consumption, execution time, electromagnetic

radiations, sound and light emissions. These attacks do not cause any disturbance in

the target device and instead process the leak in information to extract the secret keys.

On the other hand, active attacks modify the circuit behavior to create faults in the

circuit’s computations. These attacks physically inject faults into a target device by

altering it’s operating conditions. We also call these attacks as Fault Injection (FI)

attacks. We can define fault injection as the process of stressing a target in such a way

that it no longer functions according to its specifications. FI attacks are extremely

dangerous as the attacker can modify the correct functioning of the embedded systems

Surabhi Satyajit Gujar Chapter 1. Introduction 3

creating faults which can be a threat for critical applications.

Based on the attack techniques, we can classify these attacks into the following types.

• Clock glitching: In this attack, the attacker alters the external clock signal such

that the supplied signal has one or more very short pulses in between the normal

clock signal. The clock glitch period is much shorter than the standard clock

period. If this glitched clock period drops below the critical path clock period,

incorrect values can latch in the memory leading to a wrong state of the circuit.

This type of attack affects the global clock network and are therefore said to be

global. A clock glitch fault injection is one of the simplest and cheapest ways of

injecting faults in a circuit.

• Voltage glitching: These attacks involve increasing the voltage of the target

embedded device above its threshold value for a fixed or instantaneous period.

Power supply spikes can cause the processor to skip instructions or misread values.

Similar to clock glitching attacks, voltage attacks are also global.

• Voltage underfeeding: Underpowering the power supply is another low-cost

fault injection method which will lead to faulty circuit behavior. It mainly will

artificially increase the critical path length beyond the standard clock period

resulting in fault outputs. However, there is no precise timing control in this

type of attack as opposed to the clock glitching attacks. A recent variant of this

technique knows as body biasing involves using a needle in contact with the IC

silicon to create forward or reverse static biases to modulate the threshold voltages

Surabhi Satyajit Gujar Chapter 1. Introduction 4

of CMOS transistors.

• Temperature attacks: Electronic devices have a range of acceptable tempera-

tures where they function correctly. If the temperature goes above or below this

range, the natural functioning is disturbed that can lead to faulty circuit opera-

tions. An attacker can perform these attacks by heating or by cooling a target

device to specific temperatures resulting in either bit sets or bit resets.

• Optical attacks: Electric circuits are sensitive to light because of the photo-

electric effect. If we expose a circuit to intense white light for a brief period, the

photons in light can cause the flow of electric current to flow can thereby switch

off the transistors in the circuit. If the circuit is unshielded to the laser source,

the ionization can also cause faults. Laser attacks can be used to achieve precise

control on location wherein a single bit of memory can be set or reset. These types

of fault attacks usually require the chip to be decapsulated to allow light or laser

to reach the surface. The decapsulation is expensive and if not done correctly can

damage the chip.

• Hardware Trojans: In this type of attack, an attacker has direct access to the

circuit design. He can modify the design to install a fault circuitry which can

bypass the security features of the critical functions of the design. This type of

threat is especially coming into the limelight in recent research reports. Hardware

Trojans are sometimes added by people when they produce an IP after which they

sell it to the industries.

Surabhi Satyajit Gujar Chapter 1. Introduction 5

• Electromagnetic pulses: Previous works suggest that EMFI faults occur due

to the violation of targets timing constraints. They do not need any decapsula-

tion since the electromagnetic field can penetrate the IC packaging. The other

advantage with EMFI attacks is that they are localized, so a global detector is

not enough to detect these attacks. These attacks are highly configurable too as

the fault injection timing, intensity and location can be adjusted using various

EM injection parameters. These attacks are the primary focus of this study, and

we discuss them in much detail in the section below.

2. EMFI attacks Electromagnetic faults attacks are one area of these attacks where the

coupling of electromagnetic waves with the victim chip can change its correct behavior

by creating ground bounces or voltage drops. There has been exciting research done

mainly in the recent times to try and explain the nature of these faults and ways to

counteract it. Electromagnetic injection disturbs the target device through its magnetic

flux which can lead to computational faults. The electromagnetic probe is used to

create the short high-intensity voltage pulses. This pulse generates a current I in the

probe coil. This current produces a magnetic field B around the coil and the magnetic

flux (φ) is basically the part of the magnetic field that passes through the coil surface.

If we consider the angle between the coil surface and magnetic lines of field B to be θ,

the magnetic flux is given by the Equation (1.1).

φ = BA cos θ (1.1)

Surabhi Satyajit Gujar Chapter 1. Introduction 6

where B is the magnetic field, A is the surface area that the φ is passing through and θ

is the angle between the normal of the surface A and the magnetic field lines of B. The

basic law of electromagnetism called the Faraday’s law of induction states that when-

ever a magnetic field interacts with an electric circuit, it generates an electromotive

force (ε) given by Equation (1.2).

ε = −N dφ

dt
(1.2)

where N is the total number of loops of the coil and φ is the magnetic flux through a

single loop. On combining Equations (1.1) and (1.2), we get the following Equation

(1.3) for a single loop of coil.

ε = −N d(BA cos θ)

dt
(1.3)

A sudden change in the coil current affects the magnetic field which causes the induced

EMF to create spikes or drops in the voltage values inside the circuit. We can also

observe that the induced emf is affected by the following factors:

• the angle θ between coil and target device: The higher value of magnetic flux will

be obtained at an angle of 90 so that the cos θ = 1.

• the distance between the coil and the target device: The smaller the distance

between the coil and the target, the higher the magnetic flux through the target.

Surabhi Satyajit Gujar Chapter 1. Introduction 7

• the current through the coil and the voltage that generates it: a high voltage

pulse produces more current resulting in higher magnetic flux.

• the size and material of the coil: The magnetic flux will be higher if the area of

the coil is large and the material is of higher magnetic permeability [15].

1.2 Contributions

The following contributions were made during the course of this research

• Carried out a detailed evaluation of the standalone timing sensors and the in situ EM

sensors detection schemes.

• Proposed a new detection scheme to detect EMFI attacks in FPGA based embedded

systems - In situ Timing Sensor.

• Performed a comparative analysis of the advantages and disadvantages of the above

detection schemes.

• Discussed the nature of EM attacks and its corresponding fault attack model.

• Co-authored the accepted the paper ’Inducing local timing fault through EM injection’

at DAC, 2018

Surabhi Satyajit Gujar Chapter 1. Introduction 8

1.3 Thesis Organization

This chapter gives background about fault attacks, introduces the topic and puts forward

the relevant research questions. The rest of the thesis is organized as follows:

Chapter 2 discusses similar research efforts on this topic.

Chapter 3 outlines the hardware and software experimental setups which were required for

this work. These setups were especially useful in taking calibrated observations which were

fundamental to this research.

Chapter 4 presents an evaluation of the conventional detection approaches namely standalone

timing sensors and in situ dual complementary flip-flop EM sensors. These methods are

discussed and analyzed for their efficiency as a countermeasure against EMFI attacks on

FPGAs.

Chapter 5 proposes an in situ timing sensor-based detection method as an EM Injection

countermeasure.

Chapter 6 presents our understandings about the nature of EM attacks and summarizes the

thesis.

Chapter 2

Related Work

Previous efforts in this area have shown that electromagnetic injections can induce timing

constraint violations in the integrated circuits and these effects are local and around the

injection probe. In an effort to understand EM attacks, they have proposed some EM attack

fault models.

2.1 EMFI Fault Models

The task of defining a precise fault model for the faults induced by electromagnetic pulses

forms a sizable amount of past research in this area. These models help the researchers

understand the nature and type of attacks that can be performed by an attacker using EMFI

techniques. This understanding subsequently helps in creating better countermeasures for

such attacks. Until now, the researchers have put forward different fault models based on

9

Surabhi Satyajit Gujar Chapter 2. Related Work 10

several ideas in their previous works. The principal ideas for EMFI fault models that come

up frequently in the literature can be categorized as follows.

• Timing Fault Model: In the work by Zussa et al. [19], they have discussed attacks

that involved timing constraint violations. Following this work, he also presented a

study on EMFI countermeasure based on the timing fault model in [18]. The research

by Dehbaoui et al. on the EMFI fault model on a 32-bit microcontroller [11], they

reaffirm that EMFI faults are generated due to setup time constraint violations making

them timing faults. Also, the recent work on EM injection by Marjan G. et al. [9] also

stems from the idea of inducing timing faults in an ASIC system.

• Bit Set/Reset Fault Model: Ordas el al., in his 2014 work on the evidence of a

larger EM-induced fault model [13], proposed that in addition to timing faults, EMFI

can also produce bit-set and bit-reset faults. They stopped the target’s clock and

performed EMFI injection to generate such errors. This work also suggested the idea

of EM injection fault model can have both timing and bit-set/bit-reset fault models

together.

• Sampling Fault Model: In contradiction to the previous two models, Ordas et al.

in his 2015 paper [12] proposed that EM pulse injections correspond to a different fault

attack model which is neither a bit-set/bit-reset fault model nor a timing fault model.

They called their model the sampling fault model. They mention that the sampling

faults result from the incorrect sampling of the D flip-flops.

Surabhi Satyajit Gujar Chapter 2. Related Work 11

All the above fault models agree on the locality of EMFI attacks, but their ideas do

not converge concerning the exact type of these attacks. Through our experiments, we

try to gain a better perspective on the kind of faults in an EMFI fault model. In the

next section, we will discuss the detectors that were proposed previously to counter

the EMFI attacks.

2.2 EMFI Detectors

2.2.1 Delay-based Glitch Detector

In 2014, Zussa et al. [18] published a study regarding their investigation on the efficiency of

a traditional glitch detector for detecting electromagnetic fault injection. They implemented

their delay-based countermeasure as a hard macro to find out its spatial limitation and found

out that a single delay-based glitch detector is indeed not sufficient to detect all EM glitches.

There is some area which is not triggering any alarms even after placing five detectors. They

have no claims regarding the number of detectors or their optimal placement that would

lead to a complete EMFI detection. Also, the delay in these sensors needs to be tuned since

they are prone to process variations.

Surabhi Satyajit Gujar Chapter 2. Related Work 12

2.2.2 Fully-Digital EM Pulse Detector

To avoid the difficulties with the tuning of delay according to the IC timings in the delay

based glitch detector, El-Baze et al. [5] introduced an EM detector which is entirely digital.

This detector takes a cue from the sampling fault model and therefore mainly features DFFs

which are most sensitive to variation due to EM. This detector comprises of a total of 5 DFFs,

six inverters, two XOR gates and one AND2 gate. In their experiment, they have mapped

37 hard macros of these EMP detectors geometrically on an FPGA. Their test experiments

show a high number of false positives and even an increase in the instrumented design by

13%. They have mentioned their detection rate to be around 85%, but there is no mention

regarding the precision or true negative rate. The optimal placement of the detectors is also

an open question.

2.2.3 PLL-based Detector

In 2016, Miura et al. [10] proposed a PLL-based sensor circuit to detect EMFI. This sensor

comprises of a single PLL and one Ring Oscillator. They take advantage of the fact that it

takes several cycles for the PLL to lock the clock state. When EMI affects the internal clock

which unlocks the PLL creating disturbances, it can be detected. They have compared their

sensor to the delay-based glitch detector where they put forward the point that their sensor

is much more immune to process variations. They have assumed that all chips will have a

PLL circuit which is not the case especially in low-power FPGAs. Also, if the resources are

Surabhi Satyajit Gujar Chapter 2. Related Work 13

low, it is not possible to implement this countermeasure on an ASIC. Their design requires

the routing of the RO to be long enough to envelop the target logic for good detection. They

have a detection rate of 100% but they have no mention regarding the precision of detecting

these faults. The high-frequency RO circuit and the high false alarm rate can lead to a very

high power consumption.

2.2.4 Hogge Phase Detector

Breier et al. [3] proposed a digital sensor circuit to detect the EMFI-induced phase shift

using a watchdog Ring Oscillator in 2017. The sensor consists of 3 functional modules

namely a Ring Oscillator to sense the transient frequency variations induced by EMFI, a

DFF modulator with the prolonged routing to derive a synchronized oscillation signal Data

from CK and a phase detector to check for any change in phase shift between Data and CK.

The prolonged routing introduces a delay factor on the signal line of data such that any

disturbance on Data or CK will cause a phase shift change which will be detected. They

have compared their countermeasure against the PLL-based EMFI detector. In order to

latch the alarm, their sensor used 3 flip-flops and two LUTs. The sensitivity factor will also

not be immune to process variations due to existence of delay element. Their detection rate

is 93.15% but their precision or false positive rate is only 9.45%.

Surabhi Satyajit Gujar Chapter 2. Related Work 14

2.2.5 Dual complementary flip-flop Detector

This paper [7] proposes a low-cost, fully digital and cycle-accurate mechanism. The proposed

sensor circuit consists of an existing main flip-flop and an additional shadow flip-flop that

capture complementary values at every clock cycle. If there is an EMFI attack, either

of the flip-flops gets affected based on the induced current polarity. This effect can be

detected by applying an XNOR operation between the two flip-flops. They have implemented

this detection scheme by an example of AES on a Cyclone IV FPGA. The detector can

be integrated with the target circuit and take up one extra flip-flop and 1 combinational

primitive for every existing flip-flop. This introduces some hardware overhead in the design

but the false positive rate is extremely low which in turn reduces its power consumption.

Chapter 3

Experimental Setup and Methodology

This chapter provides an overview of the experimental setup that induces EM faults, and

about the methodology that is used as the Device Under Test (DUT) for the experiments in

this thesis.

3.1 The EMFI Setup

The EMFI setup is comprised of an EMFI transient Probe, a glitch controller (called VC

Glitcher), an XYZ Motorized table, an oscilloscope and a computer running the Inspector

software. This setup is then used to induce EM injections on a target embedded processor.

We can divide the experimental setup into two parts namely the hardware configuration and

the software configuration as discussed below.

15

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 16

1

3
2

Figure 3.1: 1. EMFI Transient Probe 2. VC Glitcher and 3. XYZ Motorized table

3.1.1 Hardware Setup

We use the Fault Injection and Side Channel Analysis platform provided by Riscure Cor-

poration to build our EMFI hardware setup. This consists of the Riscure EMFI transient

probe, Riscure VC Glitcher, and the Riscure XYZ motorized table as shown in the Figure

3.1. This platform along with the Riscure Inspector software controls the entire process

and coordinates communication between all the devices. This section describes the different

components of the EMFI setup.

• EMFI Transient Probe: The EMFI probe generates high power, fast and predictable

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 17

electromagnetic pulses which are used for EM fault injection in embedded processors.

The resulting current induced in the probe coil has two characteristics:

1. the pulse amplitude measured in volts.

2. the pulse duration measured in nanoseconds.

Riscure provides different probe tips which are of different polarities and diameters to

generate EM fields over the surface of the chip. The diameter of the EM metal coil is

1.5 mm for two probes and 4mm for the other two probe tips. The EM pulse generated

by the 4 mm coil probe tip is much stronger than the 1.5 mm coil probe tip. Each

diameter tip comes in both positive and negative polarity. The start time, duration

and magnitude of this pulse depend on the attack command it receives from the VC

Glitcher. We have used the 4 mm probe tip with positive polarity in our experiments.

• VC Glitcher: The VC Glitcher [14] is a Riscure proprietary device for fault injection

using voltage and clock glitches. It is used to send two signals, namely, Digital Glitch

and Pulse Amplitude to the EMFI probe. Using the Digital Glitch signal, VC Glitcher

conveys the instant and the duration of the EM pulse to the EMFI probe. The amount

of current that should flow in the EM coil inside the probe is determined by the Pulse

Amplitude signal that is sent by VC Glitcher. This can be used to control the intensity

of the EM pulse. The VC Glitcher is connected to the computer, the EMFI probe, and

the target device. It receives the attack parameters from the Inspector software, waits

for the trigger signal from the target device and then sends the attack signals to the

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 18

EMFI probe.

• XYZ motorized table: The target embedded processor (DUT) is fixed onto a XY-

axis motorized table. The EMFI probe is attached to the table such that it sits precisely

above the DUT with its EM coil very near to the DUT surface. The probe can be

moved and calibrated in all the three dimensions because of this motorized table. The

motorized table is then used to position the probe at a fixed point or automatically

scan the chip using the Inspector software. Here, scanning the chip refers to injecting

EM pulses within an area along a grid specified in the inspector software.

3.1.2 Software Setup

The Inspector software from Riscure is used for automation of the fault injection tests,

observation of the results for easy analysis and refinement of the test cases. This software

runs on the PC that controls the XYZ motorized table. We can use it to specify and configure

the attack parameters, transmit them to the VC Glitcher and communicate with the target

embedded processor. We discuss these three roles of the Inspector below.

1. Configuring the Attack Parameters

The software configures the attack parameters that can be divided into the below two

groups.

(a) Location parameters: Inspector can control the position of the EMFI probe

on the XYZ table using the window shown in the Figure 3.2. We can either set

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 19

Figure 3.2: Inspector Software Location Parameters

the point of the Fault injection to be a fixed point or scan the whole or part of

the chip using three reference coordinates.

(b) Perturbation parameters: These can be defined as physical quantities that

influences the behavior of the EM injection which can be varied to perform a

successful glitch. They are illustrated in the Figure 3.3. These are set using the

Inspector window shown in the Figure 3.4 and include the following:

• Glitch offset: We can define glitch offset as the time between the reception

of the trigger and the insertion of the glitch. Glitch offset can be specified as

any value greater than 4 ns. Increasing the glitch offset can be used to insert

glitches at different phases of the clock.

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 20

Figure 3.3: Glitch Parameters Illustration

• Glitch source power: This is also referred to as glitch intensity and specifies

the relative strength of the EM pulse. This parameter is determined as a

percentage of the highest EMFI voltage which is 450 V, eg: a glitch source

power of 50% is 225V.

• Glitch length: This parameter defines the duration of the glitch. It can be

set as a multiple of 2 ns. This duration translates to the amount of time for

which the current is passed through the EM coil. We use the glitch length of

50 ns as recommended by Riscure in all our experiments.

• Glitch repetition: This is used to specify the number of pulses the EMFI

probe should generate for each attack.

The perturbation parameters like glitch repetition, glitch source power, glitch

offset and glitch length can be ”fixed”, ”random” or in a ”range”.

2. Transmitting the glitch parameters to the VC Glitcher In addition to config-

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 21

Figure 3.4: Inspector Software Perturbation Parameters

uring the parameters, the Inspector software send those parameters to the VC Glitcher

to arm it. We can then select a custom program to load to the VC Glitcher. This

custom program can be any Java module that is derived from a basic glitcher program.

3. Communicating with the target The Inspector interfaces with the DUT using serial

interface. The default read/write protocol is the ReadAll protocol which reads all the

data the device sends to Inspector. Instead of using predefined read/write protocols, a

user can write his custom protocol. This custom protocol is should appropriately read

the bytes sent by the DUT. It should be defined in a custom Java module program.

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 22

3.2 Attack Characterization

In this section, we characterize an attack depending on the relation between the faults and

alarms and categorize them in various groups and well-known detection metrics.

3.2.1 Attack Analysis

What is an attack? Attacks may or may not produce faults. Consider an EM injection

with a very low intensity that has no chance of causing a fault. Is this still considered an

attack? Should the detector report such cases? We believe the answer to these questions is

’no’.

An attack becomes a threat when it affects the circuit to create faults. We call such attacks

as viable attacks. Viable attacks are a subset of all attacks. We consider an attack ’viable’

if it has its attack parameters configured such that it will induce a fault. Our goal is to

detect only such attacks. If every attack including the benign one is detected, it will result

in massive performance reduction. This response can be detrimental to many critical and

real-time applications.

3.2.2 Detection Metrics

We use well-known data analysis techniques [8] to evaluate our detection schemes. For this

purpose, we categorize each attack in one of the four groups as shown in Table 3.1. A

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 23

Figure 3.5: Confusion Matrix

detection is ’true’ if the alarm matches the existence of the fault. Otherwise, it is a ’false’

detection. On the other hand, the existence of the alarm means the detection is ’positive’.

Otherwise, it is ’negative’. The acronyms TP, FP, TN and FN in the Figure 3.1 represent

the total number of True Positives, False Positives, True Negatives and False Negatives

respectively.

In addition to the above four metrics, we have also used the following classification metrics

for a better comparison of countermeasures against the attacks.

• Detection Rate: The percentage of faults that were detected is the detection rate.

This number should be high for any efficient countermeasure. The detection rate should

ideally be 100%.

Detection Rate =
TP

TP + FN
∗ 100

• Precision: In addition to having a high detection rate, it is essential that the detection

be precise. A detection technique is not precise if raises an alarm in the absence of the

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 24

fault. The precision is defined below and should ideally be 100%.

Precision =
TP

TP + FP
∗ 100

• Specificity: The specificity (also known as the true negative rate) is a metric that

informs about the percentage of negatives that were rightly identified as being no faults.

A high value of true negatives will increase this metric. The specificity should ideally

be 100%.

Specificity =
TN

TN + FP
∗ 100

• Accuracy: The Accuracy is the percentage of the true results out of the total number

of observed cases. So, a high accuracy implies high precision as well as high trueness.

This number should ideally be 100%.

Accuracy =
TP + TN

TP + TN + FP + FN
∗ 100

3.3 Target Device Setup

The overall setup and procedure of Electromagnetic injection followed in our experiments

is illustrated in the block diagram shown in the Figure 3.6. We used two different types of

FPGA boards shown in the Figure 3.7 to carry out our experiments. In our experiments,

we implemented two existing EMFI detectors namely standalone Timing Sensors and in

situ EM Sensors and analyzed them. For the purpose of our experiments, we attack the

cryptographic algorithm called AES [4] which is a widely accepted symmetric-key encryption

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 25

algorithm. Here, we discuss the setup and methodology used to perform experiments on the

two development boards.

3.3.1 DE1-SoC Implementation

The DE1-SoC development kit by Terasic has the Altera Cyclone V SoC which has an

FPGA with a dual-core ARM Cortex A9. Serial communication is used as an interface

between DE1-SoC and the PC. The board also provides support to connect the Cyclone V

to Ethernet. We discuss the hardware and software implementations on this FPGA in the

following sections.

1. Hardware for Standalone Timing Sensor

The hardware logic used on the FPGA on DE1-SoC for this detector comprises of three

different parts described below.

• AES logic: We used the AES co-processor used in the FAME ASIC [17] as the

starting point of the hardware logic that was implemented on the FPGA. The

logic design software by Altera namely Quartus 17.1 was used as the design tool.

The communication between the Inspector and the FPGA used the on chip UART

module. Therefore, it was essential to keep the UART logic as well as a few other

module like the reset controller module and Parallel Input Output (PIO) modules

separate from the AES logic. This is because we intend to inject EM faults only

on the AES module. Also, to see the effect of proximity of timing sensors to the

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 26

Inspector PC + Control PCInspector PC + Control PC

DUT

VC

Glitcher

EMFI

Probe

2. Inspector PC sends

configuration parameters to

arm the VC Glitcher.

3. Control PC sends input data to

hardware AES along with start signal

4. DUT sends trigger

after receiving the

start signal

5. VC Glitcher sends

pulse characteristics

to EM probe

6. The output data sent back to

control PC (UART/JTAG)

Y
-A

xi
s

X-Axis

Y
-A

xi
s

X-Axis

1. The XYZ table moves

the EMFI probe to the

target location to set the

attack coordinates

XYZ Motorized table

Figure 3.6: Block Diagram of EMFI Setup

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 27

DE1-SoC

DE0-Nano

Figure 3.7: DE1SoC and DE0Nano FPGAs

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 28

AES logic, it was essential to make it a single macro-like entity. In Quartus, we

can achieve this functionality by using a technique called logic locking. To design

with this technique, we have to create a contiguous rectangular logic-locked region

and assign logic to it such that the logic is placed within the locked boundaries.

One can modify a logic-locked region’s size, width, height, state and origin using

either the LogicLock Region Properties window as shown in Figure 3.8 or directly

modify them using the chip planner.

Figure 3.8: LogicLock Region Properties Window

• Timing Sensor logic: We used a timing sensor design [6] similar to the Figure

4.1 and implemented it on the FPGA on the De1-SoC development board. This

timing sensor compares the difference between a signal and the delayed version

of the signal to determine whether there was an attack. In a successful clock

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 29

glitch attack, there will be setup time violations which can cause the flip-flop

with the delayed signal to latch a wrong value hence giving an alarm. This delay

is usually generated using an internal delay chain implemented using NOT gates.

The number of NOT gates in these chains decide the sensitivity of the sensor.

However, on implementing this detection sensor on the FPGA using Quartus, it

was observed that the design software would optimize away the NOT gates during

synthesis assuming them to be redundant. Therefore, we chose to use Lcells in

order to implement the delay.

The Lcell [1] is a low-level primitive buffer which can be used to allocate one

logic cell in the design. Also, when one instantiates an Lcell buffer, Quartus II soft-

ware does not remove it during the synthesis and preserves its alignment. Altera

mentions that we can use Lcell primitives to create an intentional delay. However,

the delay of these elements varies with temperature, power supply voltage, and

the device fabrication process. We achieved the required delay in the timing sen-

sors by using Lcell chains. The Figure 3.9 shows how Lcells were integrated into

the RTL netlist of our design. It was necessary to find the ideal number of Lcells

which gives the right sensitivity for the FPGA to create an alarm for any clock

glitch. The DE1-SoC runs on 50 MHz and so we experimented by varying the

Lcells from 40 to 100 and observe their delay on an oscilloscope. At 80 Lcells the

delay was high enough to always give an alarm even without a clock glitch. The

sweet spot just right to see an alarm even on any clock glitch was 70 Lcells. So,

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 30

we have used 70 Lcells in all our experiments as the optimum number to create

the ideal delay.

Figure 3.9: Timing Sensor schematic with Lcells

• Wrapper logic: Our design instantiates four timing sensors inside a timing

macro (shown in the Figure 3.10) and the AES logic together into a single wrapper.

Input data is written into the wrapper, then the wrapper asserts a start trigger.

After the AES operation is complete, the output data as well as the value of the

alarm can be read back from the wrapper. These read/write operations on the

addresses were performed using Avalon Memory-Mapped interfaces. This wrapper

also contained the latching logic to latch the alarm value at every clock cycle and

reset it with a software reset. The final implementation of the design on the chip

planner is shown in Figure 3.11.

2. Hardware for in situ EM Sensor

The baseline design used for our experiments is taken from the FAMEv2 fortified AES

co-processor [16] and it was modified to cater to our requirements. The hardware logic

for in-situ EM sensor used on the FPGA on DE1-SoC for this detector comprises of

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 31

Figure 3.10: DE1-SoC Timing Sensor macro

Figure 3.11: DE1-SoC Timing Sensor Chip Planner

three different parts described below.

• Hardware

AES and EM sensor logic: The alarms from all the in situ EM sensors are

ORed together to give a one-bit alarm output. The main flip-flops along with

their complementary partners are placed in a ’flop’ module which is logic-locked

separately. We do this logic locking of the two flops in a macro as [7] has mentioned

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 32

that the MFF and SFF should be placed extremely close to each other for the

sensor to detect bit-set/bit-reset faults. Figure 3.12 shows the DE1-SoC chip

planner having the AES implementation with the logic locking of the in situ EM

flops. We created a separate module ’flop’ with just the Main Flip-Flop (MFF)

and Shadow Flip-Flop (SFF) inside it. These flip-flops can be logic-locked together

to fulfill the proximity requirement of the dual-complementary Flip-Flops. These

physical constraints are necessary as the sensor assumes that both the flip-flops

should be affected in the same manner by the EM fault injection.

Figure 3.12: DE1-SoC EM Sensor Chip Planner

Wrapper logic: The wrapper logic only instantiates the AES logic inside it and

handles the read and write of its inputs and outputs respectively. The latching of

the alarm is taken care inside the design. We do not need to latch it separately in

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 33

the wrapper. The output alarm signal is exported to the one of the GPIO pins of

the FPGA. The read and write are done using memory mapped addressing similar

to the experiments done with AES and timing sensors. There is a start trigger

which starts the AES operation, and this signal is exported out on a GPIO pin.

This pin is used as the trigger to signal the EMFI setup to inject an EM injection

on the surface. The outputs are read out from memory mapped addresses after

reading the done signal signifying the completion of the AES.

3. Software:

This section describes the software that runs on the dual core ARM on the DE1-SoC.

This software is used to interface the hardware co-processors on the FPGA which have

the standalone timing sensors and the in situ EM sensors. The synchronization between

the ARM on the DE1-SoC and the Inspector is done using a system call which is a

request to the operating system to perform some activity. The system call method does

a read() of a specified number of bytes from a file descriptor into a buffer. We use this

system call to read a ’1’ that is sent from the Inspector using serial communication.

After the software receives this set command, it loads the input data into the AES and

triggers to start the AES operation. The program then waits for a done signal which

indicates AES has completed. The signals used in these steps can be observed on the

oscilloscope as shown in Figure 3.13. The green signal is the trigger, the blue represents

the done, the purple one shows the clock and the yellow signal is the electromagnetic

coil current.

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 34

Figure 3.13: AES logic signals on Oscilloscope

Following this, the software reads the output data and alarm values and compares

them to the expected result to determine whether there was a fault. The software c

program used is attached in the Appendix A for reference. After every injection, we

also send both the alarm and fault states back to the Inspector as seen in the Figure

3.14.

To send command and receive information, we build a custom user Java module that

Inspector uses as a target for communication and synchronization. These values can be

logged and further analyzed in the Inspector tool using perturbation logs as shown in

the Figure 3.15. Using the Java module, it is also possible to give different verdiction

or color to the displayed outputs depending on certain conditions. For example, the

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 35

Figure 3.14: Seeing Alarms and Faults on MobaXterm

following verdiction scheme shown in the Figure 3.16 was used to display the results

and count the number of scenarios for each of the four cases using counters. The code

for the user-defined Java module can be found in the Appendix C.

Figure 3.15: Perturbation Log

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 36

Figure 3.16: Verdiction

3.3.2 DE0-Nano Implementation

The DE0-Nano development kit by Terasic has the Altera Cyclone IV FPGA. The DE0-

Nano has no interface for a direct communication link with the PC as the Inspector software

can only access COM ports attached to the PC. The Figure 3.17 Shows a block diagram

of this communication interface which comprises of a memory-mapped bus master (JTAG

to MM Master), a memory-mapped slave (hardware AES) and an Altera Avalon bus. The

communication between the computer and the DE0-Nano is performed using TCL scripts

through the system-console application. For DE0-Nano, the majority of the hardware im-

plementation is similar to DE1-SoC while the communication and software are significantly

different. We discuss this in the following sections.

1. Hardware for Standalone Timing Sensor To reinforce the observations we ob-

tained with the EMFI experiments on DE1-SoC FPGA, we used a different FPGA

platform namely the DE0-Nano development board. Since the delay generated us-

ing the Lcells is process dependent, it would change on using a different FPGA. The

AES, timer sensor and wrapper logic are the same as the one used for DE1-SoC. The

placement done on Chip Planner is different and is shown in Figure 3.18.

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 37

Altera Cyclone IV FPGA

Computer

TCL
System
Console

JTAG to MM master

Avalon-MM

AES

Serial

Control
Logic

Detectors

Trigger

Figure 3.17: Communication Interface with DE0-Nano

Figure 3.18: DE0-nano Timing Sensor Chip Planner

2. Hardware for In situ EM Sensor The same hardware implementation as the one

used for DE1-SoC is used for DE0-Nano as well with the only difference being that the

Quartus version used is 16.0 instead of 17.1 for compatibility. The chip planner after

implementing the AES with in situ EM Sensor can be seen in the Figure 3.19.

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 38

Figure 3.19: DE0-nano EM Sensor Chip Planner

Figure 3.20: DE0-Nano System Console Results

3. Software Since there is no UART module present in this FPGA, communication with

Riscure’s Inspector software was not possible using the mechanism which is used in

DE1SoC. Instead, the TCL script along with the system-console application is used as

the software program. The software has access to the JTAG to MM Master through

Surabhi Satyajit Gujar Chapter 3. Experimental Setup and Methodology 39

USB. This block is connected to the Avalon-MM bus on which the AES coprocessor is

attached. Through this interface, we can access the internal registers of the coprocessor.

This method is used to write the input data, provide a start trigger and read the output

data as well as the value of the alarm. The results for the detection metrics can be

seen using the system console application shown in the figure 3.20. The TCL script

that was used is attached in the Appendix B for reference.

Chapter 4

Experimental Evaluation of Existing

Detection Mechanisms

Our study on electromagnetic injections confirmed that EMFI is local and can create ground

bounces or voltage drops on a logical wire which falls in its EM attack range. We will now

briefly discuss the two main existing detection mechanisms for EMFI attacks and perform

their comparative analysis in the following sections.

4.1 Standalone Timing Sensor

We use the timing sensor proposed by C. Deshpande, B. Yuce et al. in [6] which is illustrated

in the Figure 4.1. This sensor monitors the propagation delay in the critical path of the

circuit and raises the alarm if there are violations of the setup time constraints. All the flip

40

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 41

flops that are shown for this sensor share the same clock. We study the effectiveness of the

standalone timing sensor while varying the sensors’ location as well as the attack location,

intensity and offset.

Figure 4.1: Timing sensor structure [6]

• Effect of sensors’ Location: To evaluate the effect of sensors’ location, we carry

out two experiments. In the first one, we implement one standalone timing sensor and

simply change its location while in the second experiment we use a carpet of sensors.

In these experiments, we are only observing the sensors and there is no actual circuit

(such as AES) on the board. This means there are no faults to be detected. The sensors

are simply trying to detect the attacks. The Figure 4.2 shows the number of alarms

at a point in the DE1-SoC chip. The top row shows the different chip planners with

their timing sensors locations and the bottom row shows the number of alarm raised

when scanning the chip in a 10x10 grid. The darker the shade of a block, the higher

the number of alarms at that point and vice-versa. We observed that the location of

the sensor has a significant effect on how often and at what locations it can detect the

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 42

attack. We also observe that regardless of its location, none of the sensors can detect

all the attacks. Similar results were observe on the DE0-Nano board.

Figure 4.2: One Timing Sensor at A. Top Left B. Top Right and C. Bottom Right

In the second location-related experiment, a carpet of timing sensors was placed on the

DE1-SoC chip as shown in Figure 4.3. We saw that timing sensor 3 had a vast area of

detection scope. Also, other timing sensors in the left top quadrant (1, 2, 4, 5, 6, 7, 8,

9) were able to detect EMFI and give alarms for a good range of area too. However,

for timing sensors on the right half of the chip, it was tough to find the exact location

where the sensor would raise an alarm. These detection areas were very specific and

small compared to the top left quadrant sensors. Since we do not know the exact

clock distribution in the FPGA, with these experiments, one can estimate that the

clock might originate closer to top left. Similar to the previous experiment, this one

confirms the importance of timing sensor location on its effectiveness. A timing sensor

placed in the wrong location can be simply useless.

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 43

Figure 4.3: Timing Sensor Carpet

Figure 4.4: DE1-SoC Standalone Timing Sensor Intensity Sweep

• Effect of Attack Intensity: To observe the effect of EM attack intensity on the

behavior of the standalone timing sensor, we vary the intensity from 30% to 90% with

steps of 10%. Unlike the previous location study, we have included a hardware AES

circuit on the board for this experiment. The result of this experiment is summarized

in the Figure 4.4. We categorized the total number of EM injections on a chip into the

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 44

detection and the characterization metrics as described in Section 3.2.2. The different

colors are used to differentiate the various metrics from each other. Also, the color

scales are darker for higher values in the cells and lighter in shade for lower values. For

the DE0-Nano board, the intensity sweep is shown in the Figure 4.5. It can be seen

that the results are in line with the observations from DE1-SoC intensity experiments.

The inference from these tables will be explained in the next section.

Figure 4.5: DE0-Nano Standalone Timing Sensor Intensity Sweep

• Effect of Attack Offset: The Figure 4.6 shows the results for the offset sweep. Using

the Oscilloscope, the rising edge of the clock is observed at an offset value of 16 ns

and the clock period is 20 ns. Faults were observed when performing EM injections

just before or during the rising edge of the clock. Different rising edges give different

outputs and on some rising edges, we see no faults. This is because at some specific

locations, the change in the values of some of the flip-flops might not give rise to a

fault. For DE0-Nano FPGA as well, the alarm is also seen before or during rising edge

of the clock shown using the offset sweep in the Figure 4.7. The results from these

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 45

tables are analyzed in detail in the next section.

Figure 4.6: DE1-SoC Timing Sensor Faults vs Alarms Map

Figure 4.7: DE0-Nano Timing Sensor Faults vs Alarms Map

• Effect of Delay: The effect of varying delay values can be observed from the Figure

4.8. These delay values are varied by changing the number of Lcells where a higher

number of Lcells signifies a higher delay. At 80 Lcells, we see alarm even without any

EM injections. So, we perform the delay sweep uptil 78 Lcells. We observe that the

false positives increase and the false negatives decrease as the delay value increases.

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 46

This resulted in the detection rate to rise with higher Lcells but with the increasing

number of false positives, the precision and accuracy were negatively affected.

Figure 4.8: DE1-SoC Standalone Timing Sensor Delay Sweep

4.2 Standalone Timing Sensor Advantages and

Disadvantages

A delay-based timing sensor widely appears in the previous endeavors to build EMFI countermeasures.

These efforts show that the timing sensor is considered as an established candidate for EMFI

countermeasure. We discuss its advantages briefly below:

1. Good detection rate: Timing sensors show an above average detection rate of faults

if they are placed close to the logic that is attacked. We can get a 100% detection

rate at particular points on the chip especially the ones that are closer to the timing

sensor. However, attackers never attack just one point but instead will mostly attack

at various points on the chip.

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 47

2. Less hardware overhead: One timing sensor is made up of only two flip-flops, one

XOR gate, and one delay circuit. This logic is a minimal hardware overhead compared

to other countermeasures. For DE1SoC, the hardware overhead comparison will be

shown in the Chapter 5.

3. Design independent: The timing sensor is an independent module which is not

attached to any design. This module can be just placed as the starting point in any

FPGA/ASIC to protect it against EMFI attacks without worrying about the design.

However, since the EMFI attacks are local, the location of the timer sensor around the

chip matters which can make this property a disadvantage for detecting EMFI.

Despite the advantages, we believe there are certain important shortcomings listed below

that renders standalone timing sensors insufficient for EMFI detection.

1. High False Positives: High delay values give higher detected faults, but they also

have an extremely high number of false positives as seen form the alarm fault map in

the Figure 4.6. If one tries to lower the delay values to decrease the false positives and

the false negatives how an increasing trend as seen in the Table 4.8. The false positives

also increases with an increase in intensity. If we look at the intensity sweep in the

Table 4.4, it can be seen that even though the detection rate is reasonable, the number

of high false positives makes this sensor very imprecise. A lower precision means a very

high energy consumption.

2. Location & Time Dependent: The EM attack in an FPGA is highly localized.

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 48

Every viable EM attack in the chip has a unique relationship pair of glitch offset and

location. Faults are observed when EM attack is performed at the rising edge of the

clock, but not all rising edges lead to a fault. This behavior shows that EM attack is

localized in space and time. Also, some locations on the FPGA where the clock is not

propagating, placing timing sensors will never give rise to an alarm.

3. Clock Tree Knowledge: We have no visibility or knowledge about the clock tree in

an FPGA since it is propriety to the FPGA vendors. So, while creating designs on

an FPGA, one cannot know where does a clock originate and how does it propagate

throughout the chip. This hidden clock tree makes it difficult to optimally place the

timing sensors for best detection in an FPGA. In contrast, when designing an ASIC,

since the clock layout is known, it is easier to decide the placement of the timer sensors.

With the rise in low-power FPGA options on the market, reduced fabrication costs and

increasingly reconfigurable designs, the companies using off-the-shelf FPGAs to build

their products is now common. Therefore, no visibility of the clock tree in FPGA

designs is a significant disadvantage for standalone timing sensors.

4. Delay-Dependent: The timing sensors have a delay circuitry as the basis for detect-

ing alarms whose delay is dependent on the fabrication process. Therefore, it has to be

adjusted for every separate FPGA as the number of delay units required to make this

delay circuit may be different. We saw that the ideal delay we found for DE1-SoC was

70 Lcells whereas for DE0-nano it was 55 lcells. On increasing the delay, the true pos-

itives rise, the true negatives reduce, and the false positives increase to a considerable

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 49

extent.

In conclusion, from the above experiments, we saw that the average accuracy for standalone

timing sensor for a chip scan is around 70%. This detection rate is not the ideal 100%

because of the high number of false negatives which are seen with these timing sensors. If

we increase the number of timing sensors, the detection rate has an increasing trend. Due

to the limitation of limited clock tree visibility in FPGAs, determining the ideal position

and number of timing sensors is difficult. This ideal location can change when the designs’

location in the FPGA changes. The delay acts as a sensitivity control and needs to be set

to an ideal value for detecting faults correctly. Even with an above average detection rate,

we can see high false positives or less precision due to the dependence on delay and location.

All these factors show that even though a standalone timing sensor has been determined to

detect EMFI faults, it is not perfect. There is a need to have a detection mechanism which

is robust regarding its location and has both high precision and accuracy.

4.3 In-situ EM Sensor

The top-level module for AES with EM sensor integrates the complementary flip-flop (SFF)

along with the main flip-flop (MFF) in situ as proposed in [7]. Since there is an extra SFF

for every design flop (MFF), the sensor is inbuilt into the design and is therefore called in

situ. The alarm is an XNOR of the MFF, and the SFF flops inside the design for every in

situ em sensor as shown in Figure 4.9. In this section, we study the efficiency of the In situ

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 50

EM sensor by performing experiments on the DE1-SoC and DE0-Nano boards.

Figure 4.9: EM Sensor Diagram [7]

• Effect of Attack Intensity: These observations are taken in a similar manner to the

timing sensor observations. The intensity observations can be seen from the Figure

4.10. To verify the results, these experiments were repeated with the DE0-Nano board,

and the intensity observations can be seen from the Figure 4.11. The inferences and

conclusions from these results will be elaborated in the next section

Figure 4.10: DE1-SoC In Situ EM Sensor Intensity Sweep

• Effect of Attack Offset: The fault and alarm map with varying offset can be seen

from the Figure 4.12. The observations regarding the DE0-Nano offset can be seen

form the Figure 4.13. These observations are further analyzed in the next section.

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 51

Figure 4.11: DE0-Nano In Situ EM Sensor Intensity Sweep

Figure 4.12: DE1-SoC EM Sensor Fault Alarm Map

• Effect on Bit flips: To perform the bit flip evaluation, all the flip-flops in each of

the 12 cycles in the AES were read using separate read flops. These flops were logic

locked separately from the actual design such that the EMFI should not affect them a

shown in Figure 4.14.

The initial C program was modified to calculate the total number of main flop bit

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 52

Figure 4.13: DE0-Nano EM Sensor Fault Alarm Map

Figure 4.14: Chip planner with read flops logic locked separately

sets/resets and shadow flop bit sets/resets. The Figures 4.15 and 4.16 show how

the results of this experiment are displayed. Figure 4.17 summarized the results for

different offsets and fixed intensity of 80%. It was seen that EM attacks did not show

only one type of behavior (bit sets/bit resets) instead the flops were affected by both

bit sets/resets in the same cycle. It was also seen that the number of shadow bit flips

were always higher than the number of main bit flips. This observation was possible

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 53

only if somehow shadow flop was affected with a higher probability. This led to the

question of whether the not gate before the complementary flop behaved like a small

delay.

Figure 4.15: Bit Flip Observation for a True Positive case

Figure 4.16: Observing the Main and Complementary Bit Flips

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 54

Figure 4.17: Shadow Flop Bit Flips vs Main Flop Bit Flips

4.4 In situ EM Sensor Advantages and Disadvantages

The in situ EM sensor was developed after the standalone timing sensor in order to detect

EMFI. It addresses the shortcomings of standalone timing sensor (for EMFI detection) like

the question of location, number of sensors required, clock dependence. This makes it a

strong competitor for the role of EMFI detector. It’s advantages can be listed as follows.

1. Delay independent: Since there is no delay in the design of the EM sensor with

dual complementary flip-flops, it is free from the process and temperature variations

that come along with it. Also, this saves us the effort in changing the delay if the

design uses different FPGAs. Moreover, we do not need to spend extra time to find

the optimal delay.

2. Location Independent: Since these sensors are in-situ with the design, their place-

ment around the design is not a relevant constraint. Also, there is no requirement of

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 55

identifying the ideal number of in situ EM sensors as all the flops need to be duplicated

just once for ideal detection.

3. High precision: We obtain higher precision values with these sensors compared to the

timing sensors. This precision is mainly because the false positives are comparatively

lesser in this countermeasure design.

Despite the significant advantages, our experiments exposed some drawbacks which are ex-

plained below.

1. High hardware overhead: It has a comparatively higher hardware overhead. We see

from the design compilations that the in situ EM sensor has a 18% register overhead

compared to a basic no-countermeasure design and 6% register overhead in comparison

to the standalone timer sensors design.

In conclusion, though the in situ EM detection technique gives an almost 100% detection rate

for DE0-Nano board, it is not the case for DE1-SoC board especially for higher intensities.

Here, we see increasing false negatives as we increase the glitch source power but it is not as

high as seen for the standalone timing sensor. The in-situ nature of this sensor is proposed

to be the plausible reason for the low false positives. The in situ EM sensor was built on

the assumption of detecting bit sets and bit resets. Even though recently, the authors in

the previous works have mentioned that EM attack faults are similar to the bit set/reset

fault model and sampling fault model, we felt there was more to the story. We probed

further by performing the bit set/reset analysis of the dual complementary flip-flops and our

Surabhi Satyajit Gujar Chapter 4. Experimental Evaluation of Existing Detection Mechanisms 56

observations are not in sync with bit set/reset fault model. We suspect that the in situ EM

sensor is, in fact, very similar to the design of standalone timing sensor. To validate this

argument, we combined the ideas of the above two countermeasures and put forward the in

situ timing sensor design which is discussed in the following chapter.

Chapter 5

In Situ Timing Sensor

In the previous chapters, we studied two of the existing EMFI countermeasures in detail.

We found out that both the standalone timing sensor and the in situ EM sensor have their

respective shortcomings.

5.1 Design

To build a better countermeasure that overcomes these limitations, we propose the idea of

an in situ timing sensor for detection of EMFI attacks. We replaced the complementary

flip-flop and the XNOR gate present in the in situ EM sensor by a corresponding delayed

shadow flip-flop and XOR gate to get an in situ timing sensor as shown in the Figure 5.1.

The delay in the shadow flip-flop helps in catching any glitches in the clock by keeping track

of the delayed signal as shown in the figure 5.2. This delay has to be configured such that

57

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 58

when a glitch occurs, the main and shadow flops have different values. This difference will be

detected by the XOR gate which will lead to an alarm. While performing experiments with

in situ timing sensor, the only difference in hardware logic was the sensor design module.

delay
D Q

D Q

XOR

SFF

MFF

D

Clk

Q

Figure 5.1: In Situ Timing Sensor Diagram

Figure 5.2: Delayed Shadow Signal to detect clock glitches

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 59

The Figure 5.3 summarizes our EMFI detection findings in both the in situ EM sensors and

the in situ timing sensors with varying delay. The delay for a single NOT gate was found to

be 0.4 ns, and the delay for the Lcell is observed to be around 0.4 to 0.5 ns using oscilloscope

measurements. Therefore, similar delay values are expected for these techniques as both the

NOT gate and Lcell behave like buffers with one having its input inverted. These results are

also represented in the Figure 5.4. As can be seen from this graph, the detection statistics

for an in situ timing sensor with one Lcell delay is very close to the those of an in situ

EM sensor. Through these observations, one can argue that the in situ EM sensor, in fact,

behaves like an in situ timing sensor having one Lcell delay.

Figure 5.3: Comparison of in situ EM sensors with in situ timing sensors with varying Lcells

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 60

Figure 5.4: Comparing Detection Techniques with varying LCells

5.2 Experimental Results

• Effect of attack Intensity: The intensity sweep experiments showed promising re-

sults for the in situ timing sensor which can be seen from the Figure 5.5 for the case

of DE1-SoC and the Figure 5.6 for the case of DE0-Nano. We can observe that as the

intensity increases, the false positives increase slightly but they do not scale a lot as

compared to the standalone timing sensor. We also notice that unlike the EM sensor

there are no cases of false negatives for this experiment.

• Effect of attack Offset: The correlation between the alarm maps and the fault maps

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 61

Figure 5.5: DE1-SoC In Situ Timing Sensor Intensity Sweep

Figure 5.6: DE0-Nano In Situ Timing Sensor Intensity Sweep

with on different offsets can be seen from The Figure 5.7. High correlation between

faults and alarms is a desirable metric as it shows both high precision and high accuracy.

We can see that the correlation shown by this sensor is close enough to the expected

correlation.

• Bit-Flip Evaluation: We performed the bit set-reset analysis of the in situ EM

sensors in the previous chapter. We saw that for the situ EM sensor, the number

of total bit sets and resets (we also call this bit flips) for the dual complementary

flip-flops is considerably higher than the main flip-flops. The in situ timing sensors

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 62

Figure 5.7: In situ Timing Sensor Faults vs Alarms Map

showed a similar relationship. The number of bit flips for the shadow flip-flops are

again significantly higher than those for the main flip-fops. This showed that for the in

situ timing sensors, the shadow flip-flop is affected more than the main flip-flop after

EM injection. This behavior is expected if the attack is a timing attack wherein the

clock glitch causes the delayed shadow flip-flop to latch a wrong value more easily than

the main flip-flop causing more bit flips.

5.3 Comparison

In this section, we compare all the three detection techniques that were analyzed through

this work. A comparative idea about the advantages and the disadvantages of all the three

sensors can be seen from the Figure 5.8. In order to compare more quantitatively, we use

various analysis techniques like detection metrics, area and performance.

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 63

Figure 5.8: Qualitative Comparison

5.3.1 Detection

We can compare the results obtained for the three detection schemes using the detection met-

rics discussed in the Chapter 3. The comparative analysis of precision, accuracy, detection

rate and specificity for both the FPGA boards can be seen from the Tables 5.9, 5.10, 5.11

and 5.12 respectively. We can also graphically plot the detection results that were obtained

in the Table 4.4, 4.10 and 5.5. These graphs shown in the Figure 5.13 make comparing the

sensors easier by showing the various trends in the detection metrics. Based on these graphs,

we prepare a comparison table shown in the Figure 5.14 shows a comparative analysis of the

three previously discussed detection techniques.

Sensor

Board DE1 DE0 DE1 DE0 DE1 DE0

Precision 2 - 45 20 - 38 10 - 87 85 - 100 98 - 100 92 - 100

Standalone Timing In Situ EM In Situ Timing

Figure 5.9: Precision Results

The high and low comparison of the metrics in the Figure 5.14 are shown in relation to each

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 64

Sensor

Board DE1 DE0 DE1 DE0 DE1 DE0

Accuracy 58 - 68 25 - 64 90 - 95 96 - 100 98 - 100 98 - 100

In Situ EM In Situ TimingStandalone Timing

Figure 5.10: Accuracy Results

Sensor

Board DE1 DE0 DE1 DE0 DE1 DE0

Detection Rate 33 - 75 91 - 100 99 - 100 95 - 100 100 100

In Situ EM In Situ TimingStandalone Timing

Figure 5.11: Detection Rate Results

Sensor

Board DE1 DE0 DE1 DE0 DE1 DE0

Specificity 52 - 69 5 - 54 86 - 95 95 - 100 98 - 100 96 - 100

Standalone Timing In Situ EM In Situ Timing

Figure 5.12: Specificity Results

other. We saw that a high number of false positives leads to lesser precision whereas a high

number of false negatives results in a lower detection rate. By varying the delay of the in

situ timing sensors, we saw from the delay sweep analysis that it is possible to find the ideal

delay where both the false positives and false negatives are low. We also observe from the

Figure 5.14 that the overall accuracy of the in-situ timing sensor is higher than that of the

standalone timing sensor and the in situ EM sensor.

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 65

(a) Precision (b) Accuracy

(c) Specificity (d) Detection Rate

Figure 5.13: Graphical Comparison of Detection metrics

5.3.2 Area and Power

We used the 16 standalone timing sensors for design area comparison, but the ideal number of

timing sensors that are optimal can vary. The actual area overhead obtained for our designs

in comparison to a baseline design with no detection technique is shown in the Figure 5.15.

We can observe that the area overhead for in situ EM sensor is much higher compared to

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 66

Figure 5.14: Overall Comparison of Detection Metrics

the standalone timing sensor. In the in situ timing sensor, the number of registers required

is exactly same as the in situ EM sensor but the combinational logic overhead is slightly

greater due to the extra number of Lcells required for the optimum delay. In small scale

FPGAs designs, a lot of area is not utilized which can be used for implementing the in situ

timing sensors making the design more secure.

Figure 5.15: Area Comparison

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 67

Figure 5.16: Power Comparison

The power comparison can be seen from the the Figure 5.16. The static and I/O thermal

power dissipation values for all the three detection techniques are almost similar. We see

the difference primarily in the dynamic power dissipation values. The total thermal power

dissipation and the core dynamic thermal power dissipation of the standalone timing sensor

detection technique is slightly lower than the in situ EM sensor detection technique. Whereas

the total and dynamic power dissipation of the in situ timing sensor is higher than both the

existing detection techniques. We believe that the slight area and power overhead of the

in situ timing sensor from the in situ EM sensor is a small price to pay for a substantial

improvement in accuracy.

5.3.3 Performance

We performed experiments to compare the maximum achievable frequency for the proposed

in situ timing sensor and the previous in situ EM sensor. We saw that the in situ timing

sensor can operate at a maximum frequency of 127 MHz without any timing violations and

Surabhi Satyajit Gujar Chapter 5. In Situ Timing Sensor 68

the in situ EM sensor can go up to 164 MHz. This shows that the our sensor performs slightly

lower than the previous in situ EM sensor techniques in relation to the maximum operating

speed. This is due to the extra delays in the in situ timing sensor detection which reduces

the critical path time. The overall performance of an EMFI sensor is also dependent on its

detection rate, precision and accuracy. The in situ timing sensor incorporates the advantages

of both the in situ EM sensor technique and the standalone timing sensor technique. This

is especially true compared to the standalone timing sensor as our sensor overcomes the

limitations of location and number of timing sensors and clock tree knowledge. Accuracy is

a valuable metric in terms of performance and we show that the accuracy for our sensor is

higher than the in situ EM sensor due to the lesser false detections. The minimal number of

false positive and false negatives also helps in reducing the time to completion. In all, our

results show that even though the in situ timing sensor performs better detection than both

the standalone timing sensor and the in situ EM sensor.

Hence, it can be seen from the above comparisons that with some cost on the area, the power

and the operational frequency; the in situ timing sensor performs better EMFI detection than

the other techniques which are discussed.

Chapter 6

Conclusion

Hardware security is a continually evolving field wherein with the growth in technology there

is also a rise in the threats to the hardware. It is critical to catch up with the times and

promptly detect these attacks. It is not enough to merely identify an attack but in fact

it more valuable to detect it with high precision and accuracy. We discussed the growing

area of Electromagnetic (EMFI) attacks in this work. We extensively evaluated two of the

primary existing countermeasures on FPGA platforms which also gave us a better perspective

regarding the nature of electromagnetic attacks. By carefully analyzing the advantages

and disadvantages of these detection methods, we combined the ideas learned from them

and proposed a new EMFI countermeasure. We believe that this countermeasure will not

only help in identifying attacks but also detect viable attacks with better confidence. The

comparison of all the three techniques helped in studying the EMFI countermeasures on the

same reference ground to decide their efficacy without any bias.

69

Appendix A

Softwares Code DE1-SoC

C Program

#include <stdint.h>

#include <string.h>

#include <stdio.h>

#include <stdlib.h>

#include <unistd.h> // close

#include <fcntl.h> // O RDWR, O SYNC

#include <sys/mman.h> // PROT READ, PROT WRITE

#include ”socal/socal.h” // alt write

#include ”socal/hps.h”

#include ”socal/alt gpio.h”

70

Surabhi Satyajit Gujar Appendixes 71

#include ”hps 0.h” // definitions for LED PIO and SWITCH PIO

#define HW REGS BASE (ALT STM OFST)

#define HW REGS SPAN (0x04000000)

#define HW REGS MASK (HW REGS SPAN − 1)

int main(int argc, char ∗∗argv) {

void ∗virtual base;

volatile unsigned long ∗led pio, ∗switch pio, ∗trigger pio , i ;

volatile unsigned ∗em base;

int fd; int k;

if ((fd = open(”/dev/mem”, (O RDWR | O SYNC))) == −1) {

printf (”ERROR: could not open \”/dev/mem\”...\n”);

return(1);

}

virtual base = mmap(NULL,

HW REGS SPAN,

(PROT READ | PROT WRITE),

MAP SHARED,

Surabhi Satyajit Gujar Appendixes 72

fd,

HW REGS BASE);

if (virtual base == MAP FAILED) {

printf (”ERROR: mmap() failed...\n”);

close (fd) ;

return(1);

}

led pio = virtual base +

((unsigned long)(ALT LWFPGASLVS OFST + LED PIO 0 BASE) & (

unsigned long)(HW REGS MASK));

switch pio = virtual base +

((unsigned long)(ALT LWFPGASLVS OFST + SWITCH PIO 1 BASE) & (

unsigned long)(HW REGS MASK));

trigger pio = virtual base +

((unsigned long)(ALT LWFPGASLVS OFST + PIO 0 BASE) & (unsigned

long)(HW REGS MASK));

printf (”hello\n”);

em base = mmap(NULL,

AES EM 0 SPAN,

(PROT READ | PROT WRITE),

Surabhi Satyajit Gujar Appendixes 73

MAP SHARED,

fd,

0xC0000000 + AES EM 0 BASE);

if (em base == MAP FAILED) {

printf (”ERROR: mmap() failed ...\n”);

return 1;

}

int ufd;

ufd = open(”/dev/ttyS0”, O RDWR | O NOCTTY | O SYNC);

if (ufd == −1) {

printf (”Couldn’t open serial port\r\n”);

return EXIT FAILURE;

}

char c = 0;

char finalc [8] = {0};

int tnum = 0;

unsigned int count = 0;

char set = ’1’ ;

int value, countvalue;

Surabhi Satyajit Gujar Appendixes 74

int hw counter = 0, hw counter prev = 0;

int o alarm;

printf (”hello\n”);

int ia ;

int out0, out1, out2, out3;

char fault = 0;

int a = 0;

while (1) {

fcntl (ufd ,F SETFL ,0);

char rbuf[80];

int rdlen;

do {

rdlen = read(ufd, rbuf, sizeof(rbuf) − 1);

if (rdlen > 0){

}

} while (rbuf[0] != set) ;

∗led pio = ∗switch pio;

fault = 0;

if (a == 0){

Surabhi Satyajit Gujar Appendixes 75

em base[1] = 0xCAFEBABE;

em base[2] = 0xDEADBEEF;

em base[3] = 0xCAFEBABE;

em base[4] = 0xDEADBEEF;

em base[5] = 0x00000000;

em base[6] = 0x00000000;

em base[7] = 0x00000000;

em base[8] = 0x00000000;

em base[0] = 1;

em base[0] = 0;

int main[48], sas main[48], w main[48];

int shadow[48], sas shadow[48], w shadow[48];

while (em base[4] != 1);

out0 = em base[0];

out1 = em base[1];

out2 = em base[2];

out3 = em base[3];

Surabhi Satyajit Gujar Appendixes 76

c = em base[5];

//read textout main flops

for (i = 0; i < 48; i++){

main[i] = em base[10+i];

}

//read textout shadow flops

for (i = 0; i < 48; i++){

shadow[i] = em base[58+i];

}

//read sa main flops

for (i = 0; i < 48; i++){

sas main[i] = em base[106+i];

}

//read sa shadow flops

for (i = 0; i < 48; i++){

sas shadow[i] = em base[154+i];

}

//read w main flops

for (i = 0; i < 48; i++){

w main[i] = em base[202+i];

Surabhi Satyajit Gujar Appendixes 77

}

//read w shadow flops

for (i = 0; i < 48; i++){

w shadow[i] = em base[250+i];

}

if (out0 != 0xf9a079eb || out1 != 0xf7f8b11f || out2 != 0x939f0795 || out3 !=

0xcb7d1d65){

printf (”xxxxxxxxxxxxxxxxxxxxxxxxxxxFAULTxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx\n\n”);

printf (”%x %x %x %x\n”, out0, out1, out2, out3);

fault = 1;

∗led pio = 0x3FF;

}

int fault i = 33333;

i = 0;

int flag = 0;

while(i<48){

if ((main[i] == (shadow[i])) && (main[i+1] == (shadow[i+1])) && (main[i+2] ==

(shadow[i+2])) && (main[i+3] == (shadow[i+3]))

&& (sas main[i] == (sas shadow[i])) && (sas main[i+1] == (sas shadow[i+1])) &&

(sas main[i+2] == (sas shadow[i+2])) && (sas main[i+3] == (sas shadow[i+3]))

&& (w main[i] == (w shadow[i])) && (w main[i+1] == (w shadow[i+1])) &&

Surabhi Satyajit Gujar Appendixes 78

(w main[i+2] == (w shadow[i+2])) && (w main[i+3] == (w shadow[i+3]))){

printf (”0 ”);

}

else {

printf (”1 ”);

flag = 1;

fault i = i;

}

i = i + 4;

}

printf (”\n”);

if (flag == 1){

printf (”∗∗∗∗∗∗∗∗∗∗∗main text∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n”, (12 − (fault i/4)),

main[fault i],main[fault i+1],main[fault i+2],main[fault i+3]);

printf (”∗∗∗∗∗∗∗∗∗∗∗shadow text∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n\n”, (12 − (fault i/4)),

(shadow[fault i]),(shadow[fault i+1]),(shadow[fault i+2]),(shadow[fault i+3]));

printf (”∗∗∗∗∗∗∗∗∗∗∗main sas∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n”, (12 − (fault i/4)),

Surabhi Satyajit Gujar Appendixes 79

sas main[fault i],sas main[fault i +1],sas main[fault i +2],sas main[fault i +3]);

printf (”∗∗∗∗∗∗∗∗∗∗∗shadow sas∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n\n”, (12 − (fault i/4)),

(sas shadow[fault i]),(sas shadow[fault i+1]),(sas shadow[fault i +2]),(sas shadow[fault i +3]));

printf (”∗∗∗∗∗∗∗∗∗∗∗main w∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n”, (12 − (fault i/4)),

w main[fault i],w main[fault i+1],w main[fault i+2],w main[fault i+3]);

printf (”∗∗∗∗∗∗∗∗∗∗∗shadow w∗∗∗∗∗∗∗∗∗∗∗∗∗\n”);

printf (”Cycle %d: %x %x %x %x \n\n”, (12 − (fault i/4)),

(w shadow[fault i]),(w shadow[fault i+1]),(w shadow[fault i+2]),(w shadow[fault i+3]));

}

for (ia = 0; ia < 1000000; ia++);

}

printf (”%x %x %x %x\n\n\n”, out0, out1, out2, out3);

count = count + 1;

if (c == 0) {

value = write(ufd, &c, 1);

printf (”%d Q = %d\n\n”, count, c);

} else {

value = write(ufd, &c, 1);

Surabhi Satyajit Gujar Appendixes 80

printf (”%d xxxxx ALARM xxxxxx Q = %d\n\n”, count, c);

}

value = write(ufd, &fault, 1);

}

if (munmap(virtual base, HW REGS SPAN) != 0) {

printf (”ERROR: munmap() failed...\n”);

close (fd) ;

return(1);

}

close (fd) ;

return 0;

}

Appendix B

Softwares Code DE0-Nano

TCL Script

set jtag master [lindex [get service paths master] 0]

open service master $jtag master

puts ”hello”

set i 0

set fn 0

set fp 0

set tp 0

set tn 0

while {$i<500} {

incr i

81

Surabhi Satyajit Gujar Appendixes 82

puts ”before”

master write 32 $jtag master 0x0 0x1

master write 32 $jtag master 0x0 0x0

puts ”after”

set r [master read 32 $jtag master 0x00 5]

scan $r ”%lx %lx %lx %lx %lx” result1 result2 result3 result4 alarm

puts [format ”%d r1 = %lx r2 = %lx r3 = %lx r4 = %lx alarm = %lx” $i $result1

$result2 $result3 $result4 $alarm]

if {$result1 == 0xf9a079eb && $result2 == 0xf7f8b11f && $result3 == 0x939f0795

&& $result4 == 0xcb7d1d65 && $alarm == 0x0} {

incr fn

puts [format ” false negative %d false positive %d true positive %d true negative

%d” $fn $fp $tp $tn]

} elseif {$result1 == 0xf9a079eb && $result2 == 0xf7f8b11f && $result3 ==

0x939f0795 && $result4 == 0xcb7d1d65 && $alarm == 0x1} {

incr fp

Surabhi Satyajit Gujar Appendixes 83

puts [format ” false negative %d false positive %d true positive %d true negative

%d” $fn $fp $tp $tn]

} elseif {$result1 != 0xf9a079eb || $result2 != 0xf7f8b11f || $result3 !=

0x939f0795 || $result4 != 0xcb7d1d65 && $alarm == 0x1} {

incr tp

puts [format ” false negative %d false positive %d true positive %d true negative

%d” $fn $fp $tp $tn]

} else {

incr tn

puts [format ” false negative %d false positive %d true positive %d true negative

%d” $fn $fp $tp $tn]

}

after 600

}

Appendix C

Inspector Software Code

Java Module

public class FPGA CHIP timing extends BasicSequence {

private PIC P RSettings settings = new PIC P RSettings();

private RawIODevice rawIODevice1;

private ResetLineDevice resetLineDevice1;

public static final int READ TIMEOUT MS = 500;

private static final int BOOT TIME MS = 100;

@Override

protected void init () {

// Get all devices from hardware manager

84

Surabhi Satyajit Gujar Appendixes 85

rawIODevice1 = getRawIODevice(settings.getRawIODevice1());

resetLineDevice1 = getResetLineDevice(settings.getResetLineDevice1());

// Set default devices

setDefaultDevice(rawIODevice1);

setDefaultDevice(resetLineDevice1);

// If any error occur the sequence will fail

onError(FAIL);

// Open all devices

open(rawIODevice1);

open(resetLineDevice1);

setProperty(rawIODevice1, ”baudrate”, 115200);

connect(rawIODevice1);

sleep(20);

}

byte [] g counter = hex(”00”);

byte [] y counter = hex(”00”);

byte [] r counter = hex(”00”);

Surabhi Satyajit Gujar Appendixes 86

byte [] w counter = hex(”00”);

@Override

public void run() {

boolean timeout = false;

sleep(100);//Post−arming time delay in ms for the scope to get ready

// Set the default verdict to inconclusive

verdict(INCONCLUSIVE);

// Arm the measurement setup

arm();

sleep(100);//Post−arming time delay in ms for the scope to get ready

onError(IGNORE);

byte [] expected result = hex(”00 00”);

byte [] false positive = hex(”01 00”);

byte [] true negative = hex(”00 01”);

byte [] no fault = hex(”00 00”);

byte [] command set pt = {(byte) 49}; //ascii 1, hex 31

Surabhi Satyajit Gujar Appendixes 87

int Size1 = 10;

write(rawIODevice1, command set pt, NO LOG);

byte [] response = readAll(rawIODevice1, Size1 , READ TIMEOUT MS, 0);

String res1 = new String (response);

System.out.println(res1) ;

BufferedWriter output = null;

try {

File file = new File(”H:/Surabhi/FPGA test.txt”);

output = new BufferedWriter(new FileWriter(file, true));

output.append(res1);

output.close() ;

} catch(IOException e) {

e.printStackTrace();

}

softTrigger () ;

appendLog(hex(” A ”));

appendLog(response); //s g

appendLog(hex(” E ”)) ;

Surabhi Satyajit Gujar Appendixes 88

appendLog(expected result);

appendLog(g counter);

appendLog(y counter);

appendLog(r counter);

appendLog(w counter);

//no fault no alarm

if (Arrays.equals(Arrays.copyOfRange(response, 0, 2), expected result)) {

verdict(NORMAL);

g counter[0]++;

}

//alarm but not fault

else if (Arrays.equals(Arrays.copyOfRange(response, 0, 2), false positive)) {

verdict(INCONCLUSIVE);

y counter[0]++;

}

//fault but no alarm

else if (Arrays.equals(Arrays.copyOfRange(response, 0, 2), true negative)) {

verdict(UNKNOWN);

w counter[0]++;

Surabhi Satyajit Gujar Appendixes 89

}

else if (response.length == 0) {

response = new byte[Size1];

//timeout = true;

verdict(UNKNOWN);

System.out.println(”string is empty”);

}

//both fault and alarm

else {

verdict(SUCCESSFUL);

r counter[0]++;

}

}

//Reset the board (using the soft reset line)

protected void softReset() {

assertReset() ;

sleep(100);

deassertReset() ;

sleep(BOOT TIME MS);

}

Surabhi Satyajit Gujar Appendixes 90

//Powercycle the board (using the Vcc line)

@Override

protected void onError(Throwable t) throws RuntimeException {

if (t instanceof TimeoutException) {

// Ignore

} else {

throw new RuntimeException(t);

}

}

@Override

public void close () {

// Close all devices , note that closing does not mean powering down

close (rawIODevice1);

close (resetLineDevice1);

}

@Override

public PIC P RSettings getSettingsBean() {

return settings ;

}

@Override

Surabhi Satyajit Gujar Appendixes 91

public void setSettingsBean(Object settings) {

this . settings = (PIC P RSettings) settings;

}

public static class PIC P RSettings {

//kept as default

@Reference(RawIODevice.class)

@DisplayName(”Raw I/O Device 1”)

@NotNull

private ServiceReference rawIODevice1;

@Reference(ResetLineDevice.class)

@DisplayName(”Reset Device 1”)

@NotNull

private ServiceReference resetLineDevice1;

public ServiceReference getRawIODevice1() {

return rawIODevice1;

}

Surabhi Satyajit Gujar Appendixes 92

public void setRawIODevice1(ServiceReference rawIODevice1) {

this .rawIODevice1 = rawIODevice1;

}

public ServiceReference getResetLineDevice1() {

return resetLineDevice1;

}

public void setResetLineDevice1(ServiceReference resetLineDevice1) {

this .resetLineDevice1 = resetLineDevice1;

}

// Custom parameter examples

@DisplayName(”Example Parameter1”)

@Unit(”Unit”)

@DecimalMin(”0”)

@DecimalMax(”10000000”)

@DecimalStep(”4”)

@Presentation(slider = false)

@Perturbation // This makes the parameter shows up in Perturbation tab.

Surabhi Satyajit Gujar Appendixes 93

private BigDecimal perturParam = BigDecimal.valueOf(4);

public BigDecimal getPerturParam() {

return perturParam;

}

public void setPerturParam(BigDecimal perturParam) {

BigDecimal old = this.perturParam;

this .perturParam = perturParam;

pcs.firePropertyChange(”perturParam”, old, this.perturParam);

}

@DisplayName(”Example Parameter2”)

@Unit(”Unit”)

@DecimalMin(”4”)

@DecimalMax(”1000000”)

@DecimalStep(”4”)

@Presentation(slider = false)

private BigDecimal targetParam = BigDecimal.valueOf(4);

Surabhi Satyajit Gujar Appendixes 94

public BigDecimal getTargetParam() {

return targetParam;

}

public void setTargetParam(BigDecimal targetParam) {

BigDecimal old = this.targetParam;

this .targetParam = targetParam;

pcs.firePropertyChange(”targetParam”, old, this.targetParam);

}

/∗

∗ Property change support

∗/

private PropertyChangeSupport pcs = new PropertyChangeSupport(this);

public void addPropertyChangeListener(PropertyChangeListener listener) {

this .pcs.addPropertyChangeListener(listener);

}

public void addPropertyChangeListener(String propertyName,

Surabhi Satyajit Gujar Appendixes 95

PropertyChangeListener listener) {

this .pcs.addPropertyChangeListener(propertyName, listener);

}

public void removePropertyChangeListener(PropertyChangeListener listener) {

this .pcs.removePropertyChangeListener(listener);

}

public void removePropertyChangeListener(String propertyName,

PropertyChangeListener listener) {

this .pcs.removePropertyChangeListener(propertyName, listener);

}

}

}

Bibliography

[1] Altera. Designing with low-level primitives. 2018.

[2] D. Boneh, R. A. DeMillo, and R. J. Lipton. On the Importance of Checking Crypto-

graphic Protocols for Faults. In Advances in CryptologyEUROCRYPT97, pages 37–51.

Springer, 1997.

[3] J. Breier, S. Bhasin, and W. He. An electromagnetic fault injection sensor using hogge

phase-detector. In Quality Electronic Design (ISQED), 2017 18th International Sym-

posium on, pages 307–312. IEEE, 2017.

[4] J. Daemen, V. Rijmen, and A. Proposal. Rijndael. In Proceedings from the First

Advanced Encryption Standard Candidate Conference, National Institute of Standards

and Technology (NIST), 1998.

[5] E.-B. David, J.-B. Rigaud, and P. Maurine. A fully-digital em pulse detector. In DATE:

Design, Automation and Test in Europe, number ID164, 2016.

[6] C. Deshpande, B. Yuce, N. F. Ghalaty, D. Ganta, P. Schaumont, and L. Nazhandali. A

96

Surabhi Satyajit Gujar Bibliography 97

configurable and lightweight timing monitor for fault attack detection. In 2016 IEEE

Computer Society Annual Symposium on VLSI (ISVLSI), pages 461–466, July 2016.

[7] C. Deshpande, B. Yuce, P. Schaumont, and L. Nazhandali. Employing dual-

complementary flip-flops to detect emfi attacks. In VLSI (AsianHOST), 2017 Asian

Hardware Oriented Security and Trust Symposium. IEEE, 2017.

[8] T. Fawcett. An introduction to roc analysis. Pattern Recogn. Lett., 27(8):861–874, June

2006.

[9] M. Ghodrati, B. Yuce, S. Gujar, C. Deshpande, L. Nazhandali, and P. Schaumont.

Inducing local timing fault through em injection. In Proceedings of the 55th Annual

Design Automation Conference, DAC ’18, pages 142:1–142:6, New York, NY, USA,

2018. ACM.

[10] N. Miura, Z. Najm, W. He, S. Bhasin, X. T. Ngo, M. Nagata, and J.-L. Danger. Pll to

the rescue: a novel em fault countermeasure. In Design Automation Conference (DAC),

2016 53nd ACM/EDAC/IEEE, pages 1–6. IEEE, 2016.

[11] N. Moro, A. Dehbaoui, K. Heydemann, B. Robisson, and E. Encrenaz. Electromagnetic

fault injection: Towards a fault model on a 32-bit microcontroller. In 2013 Workshop

on Fault Diagnosis and Tolerance in Cryptography, pages 77–88, Aug 2013.

[12] S. Ordas, L. Guillaume-Sage, and P. Maurine. Em injection: Fault model and locality.

In Fault Diagnosis and Tolerance in Cryptography (FDTC), 2015 Workshop on, pages

3–13. IEEE, 2015.

Surabhi Satyajit Gujar Bibliography 98

[13] S. Ordas, L. Guillaume-Sage, K. Tobich, J.-M. Dutertre, and P. Maurine. Evidence of

a larger em-induced fault model. In International Conference on Smart Card Research

and Advanced Applications, pages 245–259. Springer, 2014.

[14] Riscure. Vc glitcher datasheet. 2018.

[15] R. Spyk, R. Velegalati, and J. Woudenberg. Electro magnetic fault injection in practice.

2013.

[16] B. Yuce. Fault attacks on embedded software: New directions in modeling, design, and

mitigation (ph.d). Virginia Tech, 2018.

[17] B. Yuce, N. F. Ghalaty, C. Deshpande, C. Patrick, L. Nazhandali, and P. Schaumont.

Fame: Fault-attack aware microprocessor extensions for hardware fault detection and

software fault response. In Proceedings of the Hardware and Architectural Support for

Security and Privacy 2016, HASP 2016, pages 8:1–8:8, New York, NY, USA, 2016.

ACM.

[18] L. Zussa, A. Dehbaoui, K. Tobich, J.-M. Dutertre, P. Maurine, L. Guillaume-Sage,

J. Clediere, and A. Tria. Efficiency of a glitch detector against electromagnetic fault in-

jection. In Design, Automation and Test in Europe Conference and Exhibition (DATE),

2014, pages 1–6. IEEE, 2014.

[19] L. Zussa, J.-M. Dutertre, J. Cldire, B. Robisson, and A. Tria. Investigation of timing

constraints violation as a fault injection means. 11 2012.

