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Abstract

Generalized linear mixed models (GLMM) are addressed for inference and
prediction in a wide range of different applications providing a powerful scien-
tific tool for the researchers and analysts coming from different fields. At the
same time more sources of data are becoming available introducing a variety of
hypothetical explanatory variables for these models to be considered. Estimation
of posterior model probabilities and selection of an optimal model is thus becom-
ing crucial. We suggest a novel mode jumping MCMC procedure for Bayesian
model averaging and model selection in GLMM.

1 Introduction

In this paper we study variable selection in generalized linear mixed models (GLMM)
addressed in the Bayesian setting. These models allow to carry out detailed modeling
in terms of both linking reasonably chosen responses and explanatory variables via
a proper link function and incorporating the unexplained variability and dependence
structure between the observations via random effects. Being one of the most powerful
modeling tools in modern statistical science GLMM models have proven to be efficient
in numerous applications from banking to astrophysics and genetics [2, 3]. The pos-
terior distribution of the models can be viewed as a relevant measure for the model
evidence, based on the observed data. The number of models to select from is expo-
nential in the number of candidate variables, moreover the search space in this context
is often extremely non-concave. Hence efficient search algorithms have to be adopted
for evaluating the posterior distribution of models within a reasonable amount of time.
In this paper we introduce efficient mode jumping MCMC algorithms for calculating
and maximizing posterior probabilities of the GLMM models.

2 The generalized linear mixed regression model

Generalized linear mixed models consist of a response Yt coming from the exponential
family distribution, a vector of P variables Xti for observations t ∈ {1, ..., T} and latent
indicators γi ∈ {0, 1}, i ∈ {1, ..., P} defining if variable Xti is included into the model
(γi = 1) or not (γi = 0). We are also addressing the unexplained variability of the
responses and the correlation structure between them through random effects δt with
a specified parametric and sparse covariance matrix structure. Conditioning on the
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random effect we model the dependence of the responses on the explanatory variables
via a proper link function g(·):

Yt|µt ∼ f(y|µt), g(µt) = β0 +
∑P

i=1 γiβiXti + δt, δ = (δ1, ..., δT ) ∼ NT (0,Σb) .

Here βi ∈ R, i ∈ {0, ..., P}, are regression coefficients showing in which way variables
influence the linear predictor and Σb = Σb (ψ) ∈ RT × RT is the covariance structure
of the random effect. We then put relevant priors for the parameters of the model in
order to make a fully Bayesian inference:

γi ∼ Binom(1, q), βi|γi ∼ 1(γi = 1)N(µβ, σ
2
β), ψ ∼ φ(ψ),

where q is the prior probability of including a covariate into the model.
Let γ = (γ1, ...γP ), which uniquely defines a specific model. Then there are 2P

different fixed models in the space of models Ωγ. We would like to find a set of the
best models of this sort with respect to a certain model selection criterion - namely
marginal posterior model probabilities (PMP) - p(γ|y), where y is the observed data.
For the class of models addressed marginal likelihoods (MLIK) - p(y|γ) are obtained by
the INLA approach [5]. Then PMP can be found using Bayes formula and estimated
by iterating through the reasonable set of models V in the space of models Ωγ.

p(γ|y) = p(y|γ)p(γ)∑
γ′∈Ωγ

p(y|γ ′)p(γ ′)
≈ 1(γ ∈ V)p(y|γ)p(γ)∑

γ′∈V p(y|γ ′)p(γ ′)
. (1)

In (1) only models with high MLIK give significant contributions and thus iterating
through them when constructing V is vital. The problem seems to be pretty challeng-
ing, because of both the cardinality of the discrete space Ωγ growing exponentially fast
with respect to the number of variables and the fact that Ωγ is multimodal in terms
of MLIK. Furthermore, the modes are often sparsely located [3]. [3] also report and
discuss properties of the obtained in (1) estimator.

3 Mode jumping MCMC

In the MCMC approach as described by [4], Metropolis-Hastings algorithms are ad-
dressed as a class of methods for drawing from a complicated target distribution. [6]
describes high potential flexibility in choices of proposals by means of generating ad-
ditional auxiliary states allowing cases where the proposal densities are not directly
available. The auxiliary states can be chains generated by some local optimizers
chosen randomly from a mixture and allowing for jumps to alternative modes. [6]
shows that the detailed balance equations is satisfied for this general case. Assume
the current state to be γ ∼ π(γ). Generate (χ∗,γ∗) ∼ q(χ∗,γ∗|γ) and consider
χ|γ,χ∗,γ∗ ∼ h(χ|γ,χ∗,γ∗) as some auxiliary variables for some arbitrary chosen
h(·|·). Accept γ ′ = γ∗ with the following acceptance probability

rm(χ,γ;χ
∗,γ∗) = min

{
1,
π(γ∗)h(χ∗|γ∗,χ,γ)q(χ,γ|γ∗)

π(γ)h(χ|γ,χ∗,γ∗)q(χ∗,γ∗|γ)

}
, (2)
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or remain in the previous state otherwise. Then an ergodic Markov chain is generated
and γ ′ ∼ π(γ ′). In a typical setting χ∗ is generated first, followed by γ∗. The extra χ
is needed in order to calculate a legal acceptance probability, relating to a symmetric
reverse move.

For generating the locally optimized proposals we first make a big jump to a new
region of interest with respect to kernel ql(χ

∗
0|γ), followed by some local optimization of

π(γ) with the chosen transition kernels Qo(χ
∗
i |χ∗

i−1), i ∈ {1, ..., k}, which can be either
stochastic or deterministic, and finally make randomization qr(γ

∗|χ∗
k) with a kernel

based on a small neighborhood. For the reverse move we correspondingly first make
a big jump ql(χ0|γ∗), followed by the same type of local optimization Qo(χi|χi−1),
i ∈ {1, ..., k}, and finally the probability of transition from the point at the end of op-
timization to the initial solution γ is calculated with respect to the randomizing kernel
qr(γ|χk). Then acceptance probabilities with respect to (2) are calculated and the move
to a new state is either accepted or rejected. A convenient choice of h(χ|γ,γ∗,χ∗) func-
tion allowing to store very little of the information from the local optimization routine
is to consider it of a form h(χ|γ,γ∗,χ∗) = h(χ|γ,γ∗):

h(χ|γ,γ∗) = ql(χ0|γ∗)

[
k∏

i=1

Qo

(
χi|χi−1

)]
.

Then (2) reduces to

rm(γ,γ
∗) = min

{
1,
π(γ∗)qr(γ|χk)

π(γ)qr(γ∗|χ∗
k)

}
.

We recommend that in not less than 95% of the proposals no mode jumping is per-
formed. This provides the global Markov chain with both good mixing between the
modes and accurate exploration of the regions around them. As described by [3] we ad-
dress accept the first improving neighbor, accept the best neighbor, simulated annealing,
and local MCMC approaches for performing local combinatorial optimization, whilst
transitions in these routines are based on random change or deterministic swaps of a
fixed or randomized number of components of γ, or by uniform addition or deletion of
a positive component in γ. Notice that tuning of the probabilities of addressing local
optimizers with particular proposal kernels in a mixture is often beneficial and we can
carry it out during the burn in of the mode jumping MCMC without violating the de-
sired ergodicity of the chain [3]. Also notice that both local optimizers and the global
MCMC procedures are extensively parallelizible [3]. Finally, all of the unique models
visited during the procedure are then appended to V ⊆ Ωγ and used to estimate (1).
Alternative MCMC estimators for (1) as described in [1, 3, 4] are also available.

4 Results and discussion

We apply and compare the described algorithm further addressed as MJMCMC on
the famous U.S. Crime Data and compare its performance to some popular algorithms
such as BAS and competing MCMC methods (MC3, RS, and thinned RS) with no
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mode jumping [1, 3]. We apply the Bayesian linear regression with a g-prior [1] to the
aforementioned data set with T = 47 observations and P = 15 explanatory variables.
We carry out 100 replications of each algorithm on 10% of cardinality of Ωγ, which in
the best case scenario contains 86% of the total posterior model mass. As can be seen

Parameter Truth MJMCMC BAS MC3 RS RS-thin
BIAS×105 0.00 15.49 9.28 10.94 27.33 27.15 27.3
RMSE×105 0.00 16.83 10.00 11.65 34.39 34.03 28.99
Explored mass 1.00 0.58 0.71 0.67 0.10 0.10 0.13
Unique models 32768 1909 3237 3276 829 1071 1722
Total models 32768 3276 5936 3276 3276 3276 3276

Table 1: BIAS, RMSE of posterior model probabilities, explored masses, total and
efficient numbers of iterations from the 100 replications of the involved algorithms.

from Table 1, our approach by far outperforms simpler MCMC methods in terms of the
total posterior mass captured [1, 3] as well as the RMSE and BIAS [1, 3] of the model
posterior probabilities (1); moreover, unlike the latter, it does not get stuck in the local
modes and estimates a greater number of the unique models within the same amount
of proposals. On the same amount of estimated models MJMCMC outperforms BAS
in terms of all parameters, however for the same amount of proposals BAS is slightly
better. More examples with various GLMM addressed and description of the developed
R package EMJMCMC can be found in [3]. In general, we claim that MJMCMC is
not only a very competitive novel algorithm, but also that it addresses a much wider
class of models (GLMM) than all of the competing approaches. In future it would be
of an interest to extend the procedure to level of the choice of link functions, priors
and response distributions.
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