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Abstract

This paper presents an effective method for continuous

gesture recognition. The method consists of two modules:

segmentation and recognition. In the segmentation mod-

ule, a continuous gesture sequence is segmented into iso-

lated gesture sequences by classifying the frames into ges-

ture frames and transitional frames using two stream con-

volutional neural networks. In the recognition module,

our method exploits the spatiotemporal information embed-

ded in RGB and depth sequences. For the depth modality,

our method converts a sequence into Dynamic Images and

Motion Dynamic Images through rank pooling and input

them to Convolutional Neural Networks respectively. For

the RGB modality, our method adopts Convolutional LSTM

Networks to learn long-term spatiotemporal features from

short-term spatiotemporal features obtained by a 3D con-

volutional neural network. Our method has been evaluated

on ChaLearn LAP Large-scale Continuous Gesture Dataset

and achieved the state-of-the-art performance.

1. Introduction

Gesture recognition from visual information is an ac-

tive research topic and has many potential applications in

human computer interaction [33], human robot interaction,

sign recognition and virtual reality. Due to tiny differences

among similar gestures, complex scene background, differ-

ent observation conditions, and noise in acquisition, effec-

tive gesture recognition remains challenging [30].

The majority of gesture recognition methods focuses on

the isolated gesture recognition. However, cases containing

unknown numbers, unknown orders and unknown bound-

aries of gestures occurs commonly in practice [20]. For

such continuous gesture recognition, both the segmentation

∗Both authors contributed equally to this work

and the recognition problems need be solved either sepa-

rately or simutaneously. The method proposed in this paper

falls into the category of the former.

Many methods have been proposed for temporal seg-

mentation using hand positions and motion [31, 5]. These

methods are highly dependent on hand detection or sensi-

tive to complex background. Instead of using motion in-

formation for temporal segmentation, the appearance-based

approach is proposed in this paper. As shown in Figure

1, a continuous gesture sequence is composed of gesture

frames that cover useful hand movement and transitional

frames between two gestures. Segmentation of gestures can

be achieved by classifing frames into two classes: gesture

frames and trasitional frames. In this paper, this binary

calssification is performned by fusing the independent clas-

sification using ConvNets on the RGB and depth frames.

After classification of the frames, the middle point of any

segment of transitional frames is defined as the boundary

between two gestures. The segmented gestures are then rec-

ognized with the proposed multimodal gesture recognition

networks.

Recognition of the segmented gestures are carried out

on both RGB and depth video sequences. RGB sequences

mainly contain appearance information such as color and

texture and depth sequences mainly carries geometric and

structural information, complementing the appearance in-

formation in the RGB sequences. Extensive works have

been reported on video recognition from RGB modality [8,

44, 24, 37, 7] and for depth modality [45, 46, 49, 48, 47].

This paper aims to leverage the different types of informa-

tion, apearance, geometric, motion and structural as well

from the RGB and depth modality for robust gesture recog-

nition.

Specifically, a multimodal gesture recognition network

is proposed. For the RGB modality, the proposed method

adopts 3D ConvLSTM to learn spatiotemporal features as

describe in [58]. The 3D ConvLSTM adoptes Convolu-
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Figure 1. The sample gesture sequence. A continuous gesture sequence is composed of gesture frames and transitional frames between

two guestures.

Figure 2. Illustration of a RGB sequence (top) and its saliency se-

quence (bottom).

tional LSTM Networks (ConvLSTM) [51] to learn long-

term spatiotemporal features from short-term spatiotempo-

ral features extracted using a 3D convolutional neural net-

work (3DCNN) [19, 39]. The 3D ConvLSTMs performs

gesture recognition from still video frames of a RGB se-

quence and its saliency sequence extracted using the method

decribed in [1]. As shown in Figure 2, the saliency se-

quence helps eliminate interference of background. For

depth modality, inspired by the performance of rank pool-

ing method [15, 2, 14, 16, 13] on depth sequence [48, 47],

this paper employs rank pooling to encode depth sequences

into Depth Dynamic Images (DDIs). However, this process

converts a video sequence into images and at the same time

lose some temporal information. To address this problem,

the Depth Motion Dynamic Image (DMDI) is introduced.

The Depth Motion Dynamic Images apply rank pooling to

the absolute differences (motion energy) between consec-

utive frames of a depth sequence. As shown in Figure 2,

the Depth Motion Dynamic Image preserves both motion

cues and structural information. The DDIs and DMDIs

are fed to ConvNets to recognize gestures. The multi-

ple 3D ConvLSTMs and ConvNets are combined through

late fusion. The proposed method was evaluated on the

ChaLearn LAP Large-scale continuous Gesture Recogni-

tion Challenge datasets (ChaLearn LAP ConGD). The re-

sults are state-of-the-art.

The rest of this paper is organised as follows. Sec-

tion 2 reviews the related work on temporal segmentation

and multimodal gesture recognition based on deep learning.

Section 3 gives the details of the proposed method. Section

4 presents the experiments and the discussions. The paper

is concluded in Section 5.

Figure 3. illustration of a Dynamic Image (left) and Motion Dy-

namic Image (right).

2. Related Work

In this section, the related works on temporal segmenta-

tion and multimodal gesture recognition based deep learn-

ing are briefly reviewed.

2.1. Temporal Segmentation

Various methods have been proposed for temporal seg-

mentation. The exiting methods can be divided into four

categories. The first category employs some models, such

as Dynamic Time Warping (DTW) [41, 40, 10, 4], Hid-

den Markov Model (HMM) [54] and Conditional Random

Fields (CRF) [53, 52], initially developed for speech recog-

nition to decide boundaries of individual gestures. The sec-

ond category localizes the starting and ending of the ges-

tures through classification. Neverova et al. [30] built a bi-

nary classifier to distinguish the frames of the subject be-

ing on rest and performing actions. The third category is

based on the position and motion of human hand. Peng et

al. [31] design a temporal segmentation method based on

the motion analysis of human hands. Chai et al. [5] use

hand positions to realize the temporal segmentation based

on the assumption that the subject puts the hand up when

beginning a gesture and puts the hands down after perform-

ing one gesture. The last category is based on appearance.

Upon the general assumption that the start and end frames

of adjacent gestures are similar, correlation coefficients [27]

and K-nearest neighbour algorithm with histogram of ori-

ented gradient (HOG) [50] were used to identify the start

and end frames of gestures. Jiang et al. [20] and Wang

et al. [49] proposed a method based on quantity of move-
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Figure 4. Overview of the proposed method.

ment (QOM). They first measure the QOM for each frame

in a multi-gesture sequence and then threshold the quantity

of movement to get candidate boundaries. Then, a sliding

window is employed to refine the candidate boundaries to

produce the final segmented gesture sequences in a multi-

gesture sequence. This paper builds a binary classifier based

on ConvNet to localize the transtional frames between ges-

tures for temporal segmentation and its details will be pre-

sented in Section 3.1.

2.2. Gesture Recognition with Deep Learning

RGB and depth modalities have their own specific prop-

erties, and how to combine the strengths of both modalities

with a deep learning approach is interesting. To address

this problem, several methods have been proposed. These

methods can be divided into three categories. The first one

is CNN-based approach. Zhu et al. [57] fused RGB and

depth in a pyramidal 3DCNN for gesture recognition. Duan

et al. [9] proposed a convolutional two-stream consensus

voting network (2SCVN) and a 3D depth-saliency ConvNet

stream (3DDSN) for gesture recognition. Wang et al. [47]

adopted scene flows to extract features which fuses the RGB

and depth at feature level. The new representation based on

CNN and named Scene Flow to Action Map (SFAM) was

developed for gesture recognition.

The second approach is RNN-based. Pigou et al. [32]

considered the depth as the fourth channel and ConvNet

was adopted to frame-based appearance features. Temporal

convolutions and RNN were combined to capture the tem-

poral information. Li et al. [25] adopted 3DCNN to extract

features separately from RGB and depth modalities, and

used the concatenated for SVM classifier. Zhu et al. [58]

presented a gesture recognition method combining 3DCNN

and convolutional LSTM (convLSTM) based on depth and

RGB modalities. Luo et al. [28] proposed to use a RNN-

based encoder-decoder framework to learn a video repre-

sentation for recognition by predicting a sequence of basic

motions described as atomic 3D flows.

The last approach is other-structure-based approach.

Shahroudy et al. [36] extracted hand-crafted features which
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are neither independent nor fully correlated from RGB and

depth, and embedded the features into a space of factor-

ized common and modality-specific components. Then they

stacked layers of non-linear auto encoder-based component

factorization to form a deep shared-specific analysis net-

work.

All of these methods usually adopt the same algorithm

on RGB and depth modalities. The proposed method in-

stead uses different types of networks aiming to learn differ-

ent types of features from different spatio-temporal modal-

ities to improve the recognition accuracy.

3. Proposed Method

As shown in Figure 4, the proposed method consists of

four phases: temporal segmentation, gesture recognition

from depth modality, gesture recognition from RGB modal-

ity and score fusion of the outputs from the depth and RGB

modalities for final gesture recognition. Given a continu-

ous gesture sequence, the continuous gesture sequence is

firstly segmented into isolated gesture sequences. On the

one hand, Depth Dynamic Images and Depth Motion Dy-

namic Images are constructed from depth sequences and fed

to the ConvNets. On the other hand, the RGB and saliency

sequences are input to the 3D ConvLSTMs. The ConvNets

for depth modality and 3D ConvLSTMs for RGB modal-

ity are designed to learn spatiotemporal features combining

the strengths of RGB and depth modalities to improve the

recognition.

3.1. Temporal Segmentation

As shown in Figure 1, a continuous gesture sequence

is composed of gesture frames and transition frames. All

frames in a gesture sequence can be classified into two

classes. The transition frame is the boundary of two consec-

utive gestures. It can be treated as a two-class classification

problem. To solve this classification problem, two stream

ConvNets are adopted to classify each frame in RGB-D se-

quences. As shown in Figure 4, the RGB stream is trained

from RGB modality and the depth stream performs from

depth modality. Each stream is implemented using a Con-

vNet, softmax scores of which are combined by late fu-

sion. Both stream ConvNets are image classification ar-

chitecture, we can build upon the recent advances in large-

scale image recognition method, and pre-train the network

on a large image classification dataset, such as the ImageNet

dataset [34]. The details are presented in setcion 4.2.1.

Given a continuous gesture sequence, this strategy al-

lows us to assign each frame with a label “transitional

frame” or “gesture frame”. As shown in Figure 5, the be-

ginning and the end of each gesture are typically transitional

frames. In this paper, the middle frame of a continuous seg-

ment of transitional frames is defined as the final boundary

Figure 5. An example of the temporal segmentation. The sequence

is segemented into three isolated gesture sequences, the middle

point of continuous transitional frames is defined as the boundary

of two gestures.

between two gestures. The segmented gesture sequences

will be input to the gesture recognition module.

3.2. Gesture Recognition for Depth Modality

Firstly, four sets of dynamic images, Depth Dynamic Im-

ages (DDIs) and Depth Motion Dynamic Images (DMDIs)

are constructed from an image sequence through bidirec-

tional rank pooling. Each set of dynamic images is repre-

sented by two motion images, forward and backward.

3.2.1 Rank Pooling

Given a sequence with k frames, which can represented as

X =< x1, x2, · · · , xt, · · · , xk >. And ϕ(xt) ∈ R
d be a

representation or feature vector extracted from each frame

xt. Let Vt = 1

t

∑t

τ=1
ϕ(xt) be time average of these fea-

tures up to time t. At each time t, a score rt = ωT · Vt is

assigned. In general, later times are associated with larger

scores, so the score satisfies ri > rj ⇔ i > j. The pro-

cess of rank pooling is to find ω∗ that satisfies the following

objective function:

argmin
ω

1

2
‖ω‖

2
+ λ Σ

i>j
εij ,

s.t. ωT · (Vi − Vj) ≥ 1− εij , εij ≥ 0

(1)

The parameters ω∗ represent the information that frame rep-

resentation Vt comes before the frame representation Vt+1,

and can be used as a descriptor of the sequence. εij is the

smallest non-negative number.

3.2.2 Construction of Dynamic Images

In this paper, we apply the rank pooling directly on the pix-

els of video sequence to form dynamic images. Different
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Figure 6. Samples of generated forward and backward DDIs and

DMDIs for gesture Mudra1/Ardhapataka, the left images are dy-

namic images for forward, the right images are dynamic images.

From up to bottom: DDIs and DMDIs.

from the work [2], the rank pooling is applied in a bidirec-

tional way to convert one video sequence into two dynamic

images. DDIs are constructed from depth sequence. Un-

like DDIs, DMDIs are constructed from the absolute differ-

ences between consecutive frames through an entire depth

sequence. Each dynamic image is fed into a ConvNet. The

resulting dynamic images are illustrated in Figure 6. As

shown, DDIs and DMDIs effectively capture the spatiotem-

poral information.

3.3. Gesture Recognition for RGB Modality

The 3D ConvLSTM network is described in detail by

Zhu et al. [58]. As shown in Figure 7, a 3D ConvLSTM net-

work is composed of four components: Input preprocessing,

3D Convolutional Networks, Convolutional LSTM, Spatial

Pyramid Pooling. This method uses uniform sampling with

temporal jitter based on pyramid input to down sample each

gesture sequence into a fixed length. The sampling process

can be described as follow.

Idxi =
S

L
· (i+ jit/2) (2)

Where Idxi is the index of ith sampled frame, and jit is

a random value sampled form the uniform distribution be-

tween −1 and 1. And the sampling result can be represented

as follow.

US = {Idx1, Idx2, · · · , IdxL} (3)

After this sampling process, the video sequence is fed

into 3DCNN [39] to learn short-term spatiotemporal fea-

tures. Two-level ConvLSTM [51] is adopted to learn long-

term spatiotemporal features from short-term spatiotempo-

ral features. The final output of the high level ConvL-

STM layer is considered as the final long-term spatiotem-

poral features for each gesture. The output of ConvLSTM

has same spatial size as the output of 3D convolutional

networks. The full-connected layers need to have fixed-

size/length input by their definition. So the spatial pyramid

pooling (SPP) [17] is added on the top of ConvLSTM and

connected to the full connected layer. Different from [58],

both RGB sequence and its saliency sequence are input to

the 3D ConvLSTM networks. The saliency sequence are

extracted using the algorithm decribed in [1].

3.4. Score Fusion for Classification

Given a pair of RGB and depth video sequences, DDIs

and DMDIs are generated from the depth sequence and fed

into seperately trained ConvNets, and the RGB sequence

and its saliency sequence are fed into the 3D ConvLSTM

networks. Average-score fusion is used to fuse the clas-

sification output of all nextworks. The score vectors out-

putted by ConvNets and 3D ConLSTMs are averaged in an

element-wise way, and the max score in the resultant vec-

tor is assigned as the probability of the test sequence. The

index of this max score corresponds to the predicted class

label.

4. Experiments

In this section, the ChaLearn LAP ConGD Dataset [42]

and evaluation protocols are described. The experimental

results of the proposed methods on the dataset are reported.

The final results was tested by the challenge organisers.

4.1. Datasets

The ChaLearn Gesture Dataset (CGD) was recorded

by Microsoft Kinect sensor [56]. It includes color and

depth video sequences provided by the sensor as it does

not provide the human pose information. The ChaLearn

LAP ConGD Dataset are derived from ChaLearn Gesture

Dataset (CGD). The ChaLearn LAP ConGD Dataset in-

cludes 47,933 RGB-D gesture instances in 22,535 RGB-D

gesture videos. Each RGB-D video may represent one or

more gestures, and there are also 249 gestures labels per-

formed by 21 different individuals. The detailed informa-

tion of the ChaLearn LAP ConGD dataset is shown in Tabel

1.

4.2. Network Training

4.2.1 Network Training for Temporal Segmentation

To training the ConvNets for temporal segmentation, eight

frames around the bounary of two gestures were taken as

training samples of the class “trasitional frames” and the

rest frames were considered as “gesture frames”. The VGG-

16 [38] was adopted. The ConvNets were fine-tuned from

the pre-trained models on ILSVRC-2015 [34]. The network
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Figure 7. The framework of a 3D ConvLSTM. A RGB sequence and saliency sequence are fed into the 3D ConvLSTM.

Sets # of Gestures # of RGB Videos # of Depth Videos # of Subjects

Training 30442 14134 14134 17

Validation 8889 4179 4179 2

Testing 8602 4042 4042 2

All 47933 22535 22535 21

Table 1. Statistics of the ChaLearn LAP ConGD Dataset

weights were learned using mini-batch stochastic gradient

descent with the momentum being set to 0.9 and weight de-

cay being set to 0.0001. All hidden weight layers use the

rectification (RELU) activation function. At each iteration,

a mini-batch of 64 samples was shuffled randomly. All the

images were resized to 224 × 224. The learning rate for

fine-tuning was set to 0.001, and then it was decreased ac-

cording to a fixed schedule. This was kept the same for all

training sets. The training underwent 90K iterations and the

learning rate is dropped to its 0.1 every 40K iterations.

4.2.2 Network Training for Depth Modality

After the construction of DDIs and DMDIs, four ConvNets

were trained on the four channels individually. In this pa-

per, the ResNet-50 [18] was adopted as the ConvNet model.

We fine-tuned the ConvNets separately with pre-training

models on ILSVRC-2015 [34]. The network weights were

learned using mini-batch stochastic gradient descent with

the momentum being set to 0.9 and weight decay being set

to 0.0001. All hidden weight layers used the rectification

(RELU) activation function. At each iteration, a mini-batch

of 16 samples was shuffled randomly. All the images were

resized to 224× 224. The learning rate for fine-tuning was

set to 10−4, and then it was decreased according to a fixed

schedule, which was same for all training sets. The training

underwent 90K iterations and the learning rate is dropped

to its 0.96 every 40K iterations.

4.2.3 Network Training for RGB Modality

The 3D ConvLSTM was implemented based on the ten-

sorflow and Tensorlayer platforms. RGB sequences and

saliency sequences based networks were trained separately.

We fine-tuned the networks on RGB modality based on the

pre-training model on SKIG [26] and then fine-tuned the

networks on saliency sequences based on the pre-training

Methods Mean Jaccard Index JS

MFSK [42] 0.0918

MFSK+DeepID [42] 0.0902

Wang et al. [49] 0.2403

Chai et al. [5] 0.2655

Camgoz et al. [3] 0.2809

Proposed Method 0.5214

Table 2. Comparison of the proposed method and other methods

on the validation set of ConGD

model of the RGB modality. Batch normalization makes

training processes easier and faster. The initial learning rate

was set to 0.1 and dropped to its 1

10
every 15K iterations.

The weight decay was initialized to 0.004 and decreased to

0.00004 after 40K iterations. At most 60K iterations are

needed for training. At each iteration, the batch-size was

13, the temporal length of each clip was 32 frames, and the

crop size for each image was 112.

4.3. Evaluation on ChaLearn LAP ConGD Dataset

For continuous gesture recognition, the Jaccard index

(the higher the better) is adopted to measure the perfor-

mance. The Jaccard index measures the average relative

overlap between true and predicted sequences of frames for

a given gesture. For a sequence s, let Gs,i and Ps,i be binary

indicator vectors for which 1-value correspond to frames in

which the ith gesture label is being performed. The Jaccard

Index for ith class is defined for the sequence s as follow.

Js,i =
Gs,i

⋂
Ps,i

Gs,i

⋃
Ps,i

(4)

where Gs,i is the ground truth of the ith gesture label in

sequence s, and Ps,i is the prediction for the ith label in

sequence s.
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Rank by test set Team Mean Jaccard Index JS (valid set) Mean Jaccard Index JS (test set)

1 ICT NHCI 0.5163 0.6103

2 AMRL 0.5957 0.5950

3 PaFiFA 0.3646 0.3744

4 Deepgesture 0.3190 0.3164

– Proposed Method 0.5214 0.5307

Table 3. Performance comparison with other teams in ChaLearn LAP Large-scale Continuous Gesture Recognition Challenge

When Gs,i and Ps,i are empty, Js,i is defined to be 0.

Then for the sequence s with ls true labels, the Jaccard In-

dex Js is calculated as follow.

Js =
1

ls

L∑

i=1

Js,i (5)

where L is the number of gesture labels. For all testing se-

quences S = s1, · · · , sn with n gestures, the mean Jaccard

Index JS is used as the evaluation criteria and calculated as

follow.

JS =
1

n

n∑

j=1

Jsj (6)

Tabel 2 compares the performance of the proposed

method and that of exiting methods on validation set. It

can be seen that our proposed method achieve the state-of-

the-art results compared with existing methods.

Table 3 compares the performance of the proposed

method and that of ChaLearn LAP Large-scale Continuous

Gesture Recognition Challenge [21]. Our mean Jaccard In-

dex is 0.5307 in test set. It can be seen that our method is

among the top performance.

5. Conclusion

The paper presents an effective method for large-scale

multimodal gesture segmentation and recognition. The

video sequences are first segmented into isolated gesture se-

quences by classifying the frames into gesture frames and

transition frames. For each segemented gesture sequence,

our proposed method explores the effective spatiotempo-

ral information based ConvNets for depth modality and 3D

ConvLSTMs for RGB modality. Experimental results on

ChaLearn LAP ConGD Dataset verified the effectiveness

of our proposed method.
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