

Abstract

In recent years, there has been a growing interest in

detecting anomalous behavioral patterns in video. In this

work, we address this task by proposing a novel activity

change point detection method to identify crowd movement

anomalies for video surveillance. In our proposed novel

framework, a hyperspherical clustering algorithm is

utilized for the automatic identification of interesting

regions, then the density of pedestrian flows between every

pair of interesting regions over consecutive time intervals is

monitored and represented as a sequence of adjacency

matrices where the direction and density of flows are

captured through a directed graph. Finally, we use graph

edit distance as well as a cumulative sum test to detect

change points in the graph sequence. We conduct

experiments on four real-world video datasets: Dublin,

New Orleans, Abbey Road and MCG Datasets. We observe

that our proposed approach achieves a high F-measure, i.e.,

in the range [0.7, 1], for these datasets. The evaluation

reveals that our proposed method can successfully detect

the change points in all datasets at both global and local

levels. Our results also demonstrate the efficiency and

effectiveness of our proposed algorithm for change point

detection and segmentation tasks.

1. Introduction

A major challenge in video surveillance is detecting

unusual patterns of activities, i.e., anomalous event

detection. Anomalous events correspond to time points in a

video that are different from the frequently occurring

patterns at a spatial, temporal or spatio-temporal level.

Applications of this type of data analysis are detecting

irregular crowd/individual movement/activities.

Detecting anomalous crowd activity is a challenging

analysis problem, particularly since crowds are collections

of individuals that are identifiable when the density of

people is high enough to disrupt individual and group

identification [1]. Crowd abnormality detection is further

complicated by frequent occlusions, low quality video, and

ambiguous definitions of anomalous behaviors. Due to the

complex nature of video streams, it is challenging to detect a

particular incident/event that has occurred in a video

sequence, and then distinguish the irregular events from

normal patterns based on predefined rules. Therefore, we

aim to detect irregular incidents in videos from a statistical

perspective, in an unsupervised manner. In particular, we

address the problem of detecting the timestamps when the

crowd flow density changes dramatically between specific

locations in a public environment.

This task is referred to as change point detection of flows.

In our proposed framework, a real-time multi-object

tracking algorithm is used for obtaining trajectories as the

initial step. Next, similar trajectories are grouped together

using a hyperspherical clustering method. The start and end

locations of each cluster are recognized as interesting

regions automatically. Further, we monitor the density of

pedestrian flows between every pair of interesting regions

over consecutive time intervals. The results of monitoring

are then represented as a time sequence of the adjacency

matrices, where the crowd flow is captured using directed

graphs. In other words, every interesting region is

represented as one node, and the flows of pedestrians

between every pair of nodes are used as the edges of a

directed graph. Finally, we use graph mining to detect

change points of the flows. Our proposed framework is

shown in Figure 1.

Traditional change point detection techniques analyze

the video data either in its original pixel-by-pixel format,

Crowd Activity Change Point Detection in Videos via Graph Stream Mining

Meng Yang1,2, Lida Rashidi1,2, Sutharshan Rajasegarar3,4,

Christopher Leckie1,2, Aravinda S. Rao4, Marimuthu Palaniswami4

1School of Computing and Information Systems, The University of Melbourne

2Data61 Victoria Research Laboratory
3School of Information Technology, Deakin University

4Department of Electrical and Electronic Engineering, The University of Melbourne

{myang3,lrashidi}@student.unimelb.edu.au

sutharshan.rajasegarar@deakin.edu.au

{caleckie,aravinda.rao,palani}@unimelb.edu.au

328

mailto:lrashidi%7D@student.unimelb.edu.au
mailto:sutharshan.rajasegarar@deakin.edu.au
mailto:aravinda.rao@unimelb.edu.au
mailto:palani@unimelb.edu.au

Automatic Identification
of Interesting Regions

Figure 1: Overview of our framework.

which yields sparse crowd densities and high computational

cost, or use a simple counting technique, which disregards

the flow and direction of the crowd movement. The

advantage of using a graph representation for a video stream

is that it provides a trade-off between preserving crowd flow

and direction information, in addition to a more

computationally efficient summarization of the data. In

particular, it enables the detection of localized structural

changes in the flow pattern within large crowds.

The main contributions of this paper are as follows:

(1) We propose a novel graph mining framework to

address the video surveillance problem. In particular we

propose a method to detect anomalous directional flows of

objects, such as pedestrians, between different regions of

the monitored area in an unsupervised manner.

(2) A hyperspherical clustering method is used for

automatically defining the interesting regions of the video

scene. Therefore, regions like entrances, exits and

bathrooms are recognized as interesting nodes

automatically, which can be used at the next stage.

(3) We utilize an unsupervised technique for real-time

multi-object tracking of pedestrian movements for

crowd tracking. This removes the requirement for

pre-labelled video sequences in the analysis.

(4) We conduct experiments on four real-world video

datasets: Dublin, New Orleans, Abbey Road and MCG

Cameras. The F1 score varies between [0.7, 1] for these

datasets. The evaluation reveals that our proposed method

can successfully detect the change points in all datasets.

The rest of the paper is organized as follows. In Section 2,

we describe the related work. Next, we present the problem

statement and show our approach in Section 3. Further, the

proposed video stream analytics method, which includes

defining interesting regions automatically and crowd

density monitoring are described in Section 4. In Section 5,

we describe two series of experiments. First, we empirically

demonstrate the effectiveness of our approach in detecting

changes in directed crowd flows, which cannot be detected

by conventional approaches that simply count the total

number of pedestrians. Second, we evaluate the accuracy of

activity change point detection using four benchmark video

datasets. Finally, we conclude in Section 6.

2. Related Work

There are a number of existing approaches that have been

applied for object detection and monitoring in image

sequences and videos. In [2], the authors proposed a

background subtraction method for extracting the pixels of

foreground people at first, followed by mapping the number

of pedestrians to perform counting. The authors in [3] show

that the relationship between the number of people and

extracted foreground pixels is approximately linear.

However, the problem of this algorithm is its performance,

which deteriorates due to occlusion and perspective effects.

It is difficult to follow and link each person from one frame

to the next frame by just using foreground pixels. Therefore,

a deep learning method faster R-NN is used for object

detection [4]. In [5], crowd features are described by a

maximally stable extremal region (MSER). In [6],

Kanade-Lucas-Tomasi (KLT) based corner points are

extracted as features, followed by clustering these features

for human detection. Rittscher et al. [7] proposed a contour

feature based approach, which groups human-sized models

by utilizing Expectation Maximization (EM).

Simply doing object counting and tracking cannot

achieve our anomaly detection requirements. There is some

literature about abnormal crowd behavior detection, like

using social force models [8] and a mixture of dynamic

textures (MDT) for crowd behavior representation [9].

However, they focus on the anomalous individual detection,

whereas we aim at doing abnormal activity monitoring and

segmentation for a whole video.

3. Problem Statement

Given a surveillance video sequence, our aim is to find

any anomalous crowd movement patterns between the

interesting regions within the monitored area over time.

This task requires several challenges to be addressed,

329

Figure 2: An example of crowd activity segmentation in the MCG

stadium.

empty entering empty
a few people
entering

empty
leaving

namely (1) measuring the directional flows of the crowd or

pedestrians between the interesting regions, and (2)

characterizing the normal flows and detecting the

anomalous movement patterns in an unsupervised manner.

In this work, we address these challenges by proposing a

graph based change point detection method to detect

anomalous directional flows of crowd movements in videos.

Our aim is to identify the times (timestamps) when a

significant change in crowd movements has occurred

between the nodes (regions), i.e., we want to find when the

anomalous crowd movements have occurred over the

observed time period. To identify such timestamps, we

propose the following framework as shown in Figure 1.

The proposed framework comprises three main

components: automatically defining the interesting regions,

crowd density monitoring, and graph stream mining. First,

we use a hyperspherical clustering algorithm [14] to group

similar trajectories (of objects), and then extract the average

trajectory for each cluster. The start and end locations of

each average trajectory are recognized as interesting

regions, which are used as nodes in each graph. Next, we

monitor the crowd density between each pair of nodes, and

the number of pedestrians moving from one node to another

are used as the edge weight in each directed graph. The

multi-object tracking algorithm uses ViBe [16] for

foreground subtraction and moving object tracking.

Thereafter, the pedestrians are tracked sequentially using a

Kalman filter [17]. Then a Hungarian assignment algorithm

[18] with occlusion handling is used to improve the

performance of multi-object tracking. The output of this

algorithm is the crowd density measurement between each

pair of regions considered in a scene. This crowd density

information between each pair of regions (nodes) is used to

construct a series of weighted graphs, which are represented

using graph adjacency matrices. Finally, we employ Graph

Edit Distance (GED) [13] with a single-variable Cumulative

Sum (CUSUM) test [10] for segmenting the graph data

streams to detect the anomalous crowd movement instances

over the monitored time period.

Once the movement patterns are represented by the

graphs, we can use the graph mining method to find the

change points of crowd flows in a video, which can be

further used to segment the video at a temporal level. For

example, Figure 2 shows the result of crowd activity

segmentation performed on the graph, which reveals the

sequence of activities over an extended time period. In this

figure, the sequence of different activities observed is empty

 people entering empty  few people go across to the

bathroom empty  people leaving.

We now present each of the modules in our proposed

framework in detail.

4. Video Stream Analytics

In this section, we first propose a hyperspherical

clustering algorithm for automatically identifying

interesting regions in an unsupervised manner. Next, we

present the object detection and multi-object tracking

approaches that are used for determining the crowd density

between a pair of nodes/regions. This has several subtasks,

such as video preprocessing to filter noise in the video,

object detection and multi-object tracking for effective

computation of the crowd movement density.

Algorithm 1: Automatic Identification of Interesting

Regions

 

obtained trajectory { : }, cluster width

empty cluster set
0{ numb

and merging threshold

Create the first cluster w
er of cluste

ith the centroid
rs}

i i

i

C

T t i 1 n

C
N

c

C

t

 


   

       


   
    



Require :

1
1

c

C c
N

 
 

 for 2 to i n do

{be

Compu

added

te the dis

 to }
update the centroid

Create a new cluster with th

tance between and the
nearest cluster with cen

e

troid

same

cen roi

t

i

r i r

i

r

r

f

i

r

d
c t c
m

c

d t
c C m


  
 

        


   
 

if

else

d as it 

C C   fc

+1c cN N  
end

{ : 1 }
empty merged cluster set

{start with all original clusters}
t

 cluster se

o
1 to

compute dist

t

ance

r c

m m

m

c

c

r r j

C c r N
C C
C C

r N
j r N

D between c and c

  
   
 
   

      
      



end

for do

Out

for do

put :

 merged cluster set
average trajectory fo

MergeCluster

r each

merged clu

(,)

{ : 1 }
with { : 1 }

ster

r

m r j

m m

a j

m

D
c c c

C c m l
T t j l

c

   
  



 

 

    
    

Ou

if

end
end

en
u

d
tp t :

330

Figure 3: (a) a 4 × 4 blocks example. The track can be represented

as the vector. (b) Fixed width clustering. (c) Cluster merging.

 (a) (b) (c)

2

11 12

1 3 4

5 6

9

13

10

14 1615

87

4.1. Automatic Identification

A hyperspherical clustering algorithm [14, 15] is used to

group similar trajectories, and produce the average

trajectory for each cluster. Then, the start and end locations

of every average track are used to identify interesting

regions, which are represented as the nodes in each graph.

The trajectories of moving pedestrians are obtained by

using a real-time tracking algorithm, which is also used for

crowd density monitoring in Section 4.2. In this subsection,

we present how we employ a hyperspherical clustering

algorithm to automatically identify the interesting regions in

the scene.

The approach has three main steps: Trajectory

Representation, Fixed Width Clustering and Merging

Clusters. The entire procedure is shown in Algorithm 1 and

Figure 3.

Trajectory Representation The approach that we used

for representing the trajectories is proposed in [15]. Let m

be the width and n be the height of a video frame. The input

frame is divided into
x yb b blocks, where 1 <

xb ≤ m, 1 <

yb ≤ n. Block size selection affects the encoding results. In

this experiment, we choose 16×16 as the block size. Next, a

feature representation with spatio-temporal information is

extracted for each object.

When an object enters a block, this block is assigned the

original value 1. If this object stays in the same block, the

value will be the number of frames that the object stays in

that block. Further, if the object moves to another block, the

value of this new block will start from the value of the

former block plus one. The 4 × 4 block size example is

demonstrated in Figure 3.a, the red track shown there can be

represented as a vector [0 1 2 0 0 0 3 4 0 0 0 5 0 0 0 6]

with index 1 to 16. All the tracks are represented as vectors

of integers.

Fixed Width Clustering The first cluster is centred on the

first trajectory, and has a fixed cluster radius. Next, the

Euclidean distance is calculated between the next trajectory

vector and the centroid of each cluster. If the Euclidean

distance is smaller than the radius (width) of the nearest

cluster, the track vector will be added to that cluster. The

centroid of this cluster will be updated as the mean value of

all vectors in it. On the other hand, if the distance is larger

than the radius/width, the trajectory vector forms a new

cluster with a new centroid. This process is repeated until all

the trajectory vectors have been considered (see Figure 3.b).

Merging Clusters Based on the clusters we obtained in

the previous step, we calculate the Euclidean distance

between the centroids of each pair of clusters. When the

distance is smaller than a threshold  , the two clusters are

merged into a new cluster. We repeat this process until all

clusters have been considered (see Figure 3.c). Finally, the

start and end locations of each cluster are recognized as

interesting regions, which are represented as nodes in each

graph.

4.2. Crowd Density Monitoring

Video Pre-processing and Object Detection First, the

video sequence is converted to a grayscale image sequence,

followed by the application of a 2D Gaussian low-pass filter,

which eliminates the high frequency noise. The parameters

of the Gaussian filter are set as 0.5  and the block size

= 5×5. These parameters are chosen in such a way that the

filter retains the low-frequency and edge information in the

output.

The object detection algorithms currently available in the

literature can be categorized into three types: (1) optical

flow (KLT), (2) differentiating consecutive frames, and (3)

foreground or background subtraction. The third approach

is a widely used technique for detecting moving objects and

pedestrians in practice.

These techniques can be further categorized into

parametric and sample-based methods, which consider the

pixel changes of objects or crowds. However the latter

approach is an improvement over the former one. The

parametric method first builds an estimate of a Probability

Density Function (PDF) for each pixel location, and then

uses this to classify a pixel value as a background or

foreground pixel value depending on how it fits within the

estimated PDF. Considering the complexity of real-world

scenarios, we propose to use a sample-based algorithm,

called ViBe [13], for foreground subtraction. This approach

is based on using a set of sample values to build the pixel

model by aggregating previously observed values for each

pixel location. Next, the model is updated regularly based

on the incoming frames, and then, the moving pedestrians

are recognized by subtracting the pixel model.

Multi-object Tracking Once the objects are detected, the

next task is to track them. We use a Kalman filter [14] for

object tracking in this work. The Kalman filter predicts the

state (location, velocity) of an object from a sequence of

331

images. It finds the minimum mean-square error estimate of

the state
kx sequentially using measurements and a

transition model, where k denotes the time. To detect crowd

movements, we need to perform multi-object tracking in the

video. We use the Hungarian assignment algorithm [18, 19]

in this paper. The Hungarian algorithm improves the

accuracy of the track prediction of an object in the incoming

frames by addressing the issue of multi-object link

assignment.

In this approach, we first need to assign an index to every

vision object that is detected by our tracking algorithm in

the current frame, i.e., the detected positions. The set

{ : ... }iInd ind i 1 I   denotes the indices of objects, where

I is the maximum number of objects in the current frame.

These I vision objects need to be mapped to the
wI world

objects, i.e., the predicted positions, optimally. The

Hungarian assignment algorithm can solve this optimization

problem in polynomial time. This algorithm builds an initial

cost matrix based on the Euclidean distances between the

predicted and detected positions for each frame. This

method results in an optimum object assignment matrix X,

where all elements of each row are zero except for one. The

optimization can be summarized as a minimization of the

objective function shown in equation (1).

1 1

n n

ij ij

i j

c x
 
 (1)

 1 if is assigned to
where,

 0 otherwise

  


i j

ij

e m
x

Occlusion Handling In our implementation, we use a

depth model to handle the occlusion problem to find more

accurate and clear tracks. The proposed idea is introduced

in [20] and is based on determining the depth of the tracked

objects. For example, if an object is moving from far away

towards the camera, the depth will be changing from large to

small. Therefore, when two objects occlude, the depth

model of each object can be used to separate the bounding

box, which can improve the performance of the Hungarian

assignment algorithm.

The first step is to generate the probability density

functions for the depth of the moving objects at each pixel

from a set of training data. We use the first 10 frames of

each moving object as the training data, so the occlusion

handling will start after Frame 10.

The probability density functions are obtained using

equation (2). For each image pixel  , we get an observed

depth histogram ().Z D If pixel  meets an occlusion

with a blob , histogram ()Z D is aggregated on the depth

of the blob, which can be represented as .D We repeat this

process using the training data (first 10 frames) on each

detected moving target.

 () ()Z D D D


 





  (2)

where  is the set of blobs that contain  and ()  is the

Kronecker delta function:

 1 if

(,)
 0 if




  

i j
i j

i j
 (3)

Next, an activity map A is generated using a set of

observed depth histograms ()Z D :

min , ()

()
D D D i

A z D


 
 

  (4)

When an occlusion occurs, the depth model of each

object is used to assign an accurate position to these objects

in the next frame, which can improve the accuracy and

effectiveness of the multi-object tracking algorithm.

4.3. Anomaly Detection

Once the crowd density movements are obtained, the next

step is to represent them in the form of adjacency matrices

that will be used in our change point detection scheme.

In terms of detecting anomalous timestamps, a common

method to solve this problem is by looking at the generated

probability distributions of data between the past and

present. If the two distributions differ significantly from one

time point to another, this point will be recognized as a

change point. In this work, the crowd density of each path

between the pairs of nodes/locations is represented as the

weight of an edge in a directed graph. We use Graph Edit

Distance (GED) with a single variable CUSUM test to

analyze this graph data stream.

Graph edit distance [13] is used to measure the distances

between two graphs G1 and G2, where the main assumption

is that G1 can be transformed into G2 using a finite number

of consecutive graph edit operations. These edit operations

are defined specifically based on the type of graph, i.e.,

weighted, directed, undirected or simple.

The definition of GED
min

(,)1 2d G G between graphs G1

and G2 is shown in equation (5).

min (,)

(,) min ()
1 2

i

1 2 i
G G

e

d G G c e  


  (5)

where (,)1 2G G denotes the set of all complete edit

paths that transform G1 to G2, and c is the cost of an edit.

Since the graphs in our problem consist of weighted

directed edges between every pair of nodes, we can make

the assumption that the graph is complete. Therefore, the

GED between G1 and G2 can be computed as the difference

between the graphs' adjacency matrices. After computing

332

the time series using GED, we can use a CUSUM test to

detect the change points.

Cumulative sum (CUSUM) tests [10] monitor the mean

of a process based on the time series of data that is generated

from that process at any given period, such as minutes,

hours, days or years. In this paper, the consecutive intervals

that we use are based on the video length. We use three

minutes as the interval value, but for smaller datasets, the

interval is considered to be 20 or 30 seconds. A CUSUM

test can be employed for detecting anomalous timestamps or

change points by comparing an accumulative data measure

computed between the past and the present data samples.

5. Results and Discussion

In this paper, we conduct two series of experiments. In

experiment 1, we discuss the intuition behind using a

graph-based representation for detecting change points in

directed crowd flows, which is compared to the standard

approach of simply counting the aggregated number of

pedestrians in the whole scene. In experiment 2, we evaluate

the performance of our change point detection schemes at

both global and local levels in four real video surveillance

datasets.

In this section, we describe our experimental setup and

datasets in Section 5.1. Experiments 1 and 2 are shown in

Sections 5.2 and 5.3, respectively. In Section 5.4, we

discuss the computational complexity and performance of

our approach.

5.1. Experimental Setup and Datasets

Experimental Setup The proposed crowd density

estimation approach is implemented in OpenCV 3.0.0 with

Visual Studio 2013. The automatic identification of

interesting regions is implemented in Java. The graph

mining and final quantitative evaluation are implemented in

Matlab 2013b. The configuration of the machine used for

the evaluation is as follows: Windows 7 (64bit) with a 4 GB

NVIDIA graphics card (NVIDIA NVS 315 HD), a

multi-core Intel® i7 - 4790 3.6GHz CPU and 16GB RAM.

Datasets In order to evaluate our framework, we

conducted experiments on four real-life video datasets: (1)

the Dublin Cam (www.earthcam.com/world/ireland/dublin),

(2) the New Orleans Cam (www.earthcam.com/usa/

louisiana/neworleans/bourbonstreet) and (3) Abbey Road

Crossing Cam (www.abbeyroad.com/Crossing) from

EarthCam, in addition to (4) the Melbourne Cricket Ground

(MCG) (www.mcg.org.au), i.e., a major sports stadium in

the city of Melbourne.

The description of these datasets is summarized in Table

1, which includes the average number of people per 10

minutes, the main characteristics, and camera view. We

assume these cameras are calibrated and the video data can

be used directly. Figure 5 shows the sample frames taken

from these video datasets.

Camera Average

People/10min

 2

Main

Characteris

tics

Camera

View

Time

Length

Dublin 287 53 moving wide 3 hours

New Orleans 330 moving wide 2 hours

Abbey Road 206
moving

/static
wide 2 hours

MCG 234 moving wide 2 hours

* 2 =Standard Deviation

Table 1. Video data used in experiment 2

Parameter Settings In the component for the automatic

identification of interesting regions, , the parameter 

(cluster width) is set to be 36, 40, 20 and 10 for the Dublin,

New Orleans, Abbey Road and MCG datasets, respectively.

The merging threshold / 2.  In terms of the CUSUM

parameter settings, the user defined parameters h and k are

chosen to be 4 and 0.4 respectively for the first three

datasets and 4 and 0.3 for the MCG datasets.

5.2. Demonstration of Flow-based Analysis

In experiment 1, we use the video data between 8am and

3pm on 26th Oct 2017 from the Dublin Cam. This

experiment explains the intuition behind using graph based

analysis instead of the aggregated number of pedestrians to

detect change points.

Figure 4.a shows a time series of the aggregated number

of people in the previously mentioned dataset, where the

aggregate values are computed within every 3-minute

non-overlapping window. We divide the time interval into

two periods: morning and busy time. As shown in Figure 6.a,

we randomly select two time stamps within the busy time,

and differentiate them with green and red markers. We

observe that the aggregated numbers of people in these two

time stamps are similar. However, based on our framework,

we found that the directions of the crowd flow in the frames

corresponding to these two time stamps are substantially

dissimilar (see Figure 4.b). The direction in addition to

crowd density along different paths in a frame can easily be

represented through our directed graph model (see Figure

4.c). We have used GED with CUSUM to determine

whether our graph-based approach can differentiate these

two points. Since GED takes the change in weight and

direction of each edge into account, it can easily detect that

a change has occurred and these two time stamps are

dissimilar.

333

http://www.earthcam.com/world/ireland/dublin
http://www.earthcam.com/usa/%20louisiana/neworleans/bourbonstreet
http://www.earthcam.com/usa/%20louisiana/neworleans/bourbonstreet
http://www.abbeyroad.com/Crossing
http://www.mcg.org.au/

5.3. Activity Change Point Detection

In this section, we conduct experiment 2 on the four

datasets as shown in Table 1 and Figure 5. The interesting

regions have been automatically identified and denoted by

red circles, where there are 6, 5, 5, and 4 interesting regions

in Dublin Cam, New Orleans Cam, Abbey Road Cam and

MCG C6 Cam, respectively. The pedestrian movement

flows are converted to the graph representation (Figure 5).

We then construct our graph time series, where each

graph is computed within a three minute non-overlapping

window. Therefore, these videos can be represented as 60,

40, 40, 40 graph adjacency matrices for Dublin, New

Orleans, Abbey Road and MCG respectively. Further, we

conduct the following experiments on the previously

mentioned datasets:

(1) Detecting change points at the global level: In terms

of global-level change point detection, we aim to find the

change points of the time series, i.e., time stamps where

crowd density and direction underwent a major change in

the entire graph.

(2) Finding change points at the local level: The local

level change detection refers to analyzing the crowd density

in single/multiple path(s) instead of considering an entire

graph. We aim to segment the crowd activity for a given

interesting region (node) using the crowd density on the

paths connected to that node. Consider the Dublin Cam as

an example. There are 6 nodes, so there are 30 paths

including N12, N21, …, N65. We choose node 2 as the key

node that we want to analyze, so we need to analyze every

path that is connected to node2, such as N12 (node 1 to node

2), N21 (node 2 to node 1),…N26 (node 2 to node 6) and so
on. After being analyzed at a local-level, we can segment

the activity status of node 2. In the local-level based

experiment, for Dublin Cam, node 2 is a bar or café, so we

choose node 2 as the focus node. For the other three datasets,

we just randomly choose node 1 as the focus node.

We manually identified the change points in the four real

datasets and used them as the ground truth. We then

evaluate the results by using the F-measure [21, 22]. The

confusion matrix that we used is illustrated in Table 2.

 Detected as

change point

Detected as

non-change point

True change point TP FN

True non-change

point
FP TN

Table 2. Confusion matrix for F-measure

F-measure or
1F score provides a way to measure the

overall effectiveness of a Change Point Detection (CPD)

algorithm, which is based on the combination of precision

and recall. F-measure is computed as the ratio value of the

weighted importance of precision and recall. 1F score

(1+) Recall Prediction

Recall Prediction




 
 

2

2
, where Recall (R) and

Precision (P) are computed using
TP

TP FN
 and

TP

TP FP
,

respectively. In our experiment, we choose equal weights

for precision and recall, so 0.5.  The
1 score F

N3

N4
N5

N6

N1

N2
N3

N4
N5

N6

N1

N2N1

N2

N3

N4

N5

N6

N1 N2 N3 N4 N5 N6

0 0 25 11 8 35

0 0 0 0 0 0

6 0 0 13 32 7

4 0 2 0 0 0

29 0 34 0 0

1 0 7 8 5 0
















 
 
 
 

N1

N2

N3

N4

N5

N6

0 6 12 8 37 5

15 0 19 7 8 0

11 0 0 6 7 8

12 6 8 0 6 0

31 0 6 0 0 0

8 0 6 8 8 0

 







 










t1 t2

0 5 10 15 20 25 30
0

50

100

150

200

250

A
g

g
re

g
at

e
d

N
u
m

b
er

o
f

P
e
o
p
le

morning busy time
t1 t2

N1 N2 N3 N4 N5 N6

Figure 4: (a) Aggregated number of people, (b) graph pattern

and (c) graph representation. (Dublin dataset for two intervals in

busy period with similar aggregate numbers of people).

(a)

(b)

(c)

Figure 5: Graph representation of (a) Dublin Cam. (b) New

Orleans Cam. (c) Abbey Road Cam. (d) MCG Cam.

 (c) (d)

 (b) (a)

334

2 R P

R P

 


.
1F score is in the range [0, 1], where higher

values show better performance.

The evaluation of the global-level and local-level based

CPD result is summarized in Table 3. We use the aggregate

time series (as Experiment 1) based CPD with single

variable CUSUM for evaluation as the baseline. The results

are also summarized in Table 3.

As shown in Table 3, our global and local-level

frameworks for CPD both outperform the aggregate time

series based CPD. It shows the better performance using

graph based analysis compared with the aggregated number

of pedestrians to detect change points.

Video Global-level Local-level Aggregate

(baseline)

Dublin Cam 84.2% 81.5% 61.2%

New Orleans Cam 80.0% 75.0% 57.9%

Abbey Road Cam 80.0% 72.7% 57.4%

MCG Cam 6 92.3% 85.7% 64.3%

Table 3:

1F score of the proposed approach on the four real

datasets.

Another phenomenon in Table 3 is that the global-level

detection has better performance than local-level detection.

Further, we can see our method achieves the best

performance on the MCG video, which is more than 90% at

the global-level and 85% at the local-level, followed by the

Dublin dataset, New Orleans and Abbey Road videos. The

difference in performance is because of the complexity of

the scene in some videos, such as more occlusion and

overlapping. Generally, the results show that they can all

achieve reasonable accuracy at a global-level and

local-level.

5.4. Discussion

In this section, we discuss how our proposed framework

can be used in real-time video streaming change point

detection, in terms of computational complexity and the

minimum number of frames required to detect an event.

Since our proposed framework is a hybrid of crowd

density monitoring and graph mining, its computational

complexity can be reported as 4() n , in which the Kalman

Filter is 2() n and the improved Hungarian algorithm is

4() n , where n denotes the number of detected and

assigned moving people in a frame. Our graph change point

detection algorithm requires constant time a, since the

number of nodes is a constant for the datasets. Therefore,

the total computational complexity time should be

2 4 4() () (),   n n n which is an efficient real-time

algorithm compared with other tracking algorithms.

In terms of the required minimum number of frames to

detect an event, the tracking algorithm merely requires 1-2

frames before the current frame to predict the velocity,

direction and position of every object in the next frame.

Therefore, the tracking can be performed in real-time, e.g.,

for real-time CCTV video streams. As for the change point

detection algorithm, we require the video length at least to

be 2 minutes (2760 frames at 23 fps) for the event detection

to be effective.

Moreover, since our algorithm is capable of processing

video data from video streams without needing supervised

training data, it can be applied in scenarios where the

streaming data is not labeled.

6. Conclusions

In this paper, we proposed a framework based on crowd

density monitoring and graph mining for activity change

point detection. First, a real-time multi-object tracking

algorithm is used to obtain trajectories. Next, similar

trajectories are grouped together using a hyperspherical

clustering method. The start and end locations of each

cluster are used to automatically identify interesting regions

in the scene. Thereafter, we monitor the density of

pedestrian flows between every pair of interesting regions

over consecutive time intervals. The results of monitoring

are then represented as a dynamic directed graph with

adjacency matrices that capture crowd flow and direction.

We then use GED with CUSUM to determine change points

or anomalous incidents. We demonstrate the effectiveness

of our approach in detecting localised changes in flows, in

contrast to simply using aggregate pedestrian counts, as well

as the accuracy of our approach on four real-world video

surveillance datasets. The evaluation reveals that our

proposed method can successfully detect the change points

in all datasets. In addition to the effectiveness of our

algorithm, it is able to produce interpretable results, which

can explain change points at both the global and local

levels. As a future direction for research, our method can be

used in clustering different cameras and detecting views that

are richer in information.

References

[1] B. A. Boghossian and S. A. Velastin. 1999. Motion-based

machine vision techniques for the management of large

crowds. In Proceedings of the 6th IEEE International

Conference on ICECS'99, 2: 961-964. IEEE.

[2] J. Yin, S. Velastin, and A. Davies. 1996. Image processing

techniques for crowd density estimation using a reference

image. Recent Developments in Computer Vision, pp.

489-498.

335

[3] A. C. Davies, J. H. Yin, and S. A. Velastin. 1995. Crowd

monitoring using image processing. Electronics &

Communication Engineering Journal, 7(1): pp. 37-47.

[4] C. Eggert, D. Zecha, S. Brehm, and R. Lienhart. 2017.

Improving Small Object Proposals for Company Logo

Detection. In Proceedings of the ACM on International

Conference on Multimedia Retrieval, pp. 167-174. ACM.

[5] H. Su, H. Yang, and S. Zheng. 2010. The large-scale crowd

density estimation based on effective region feature

extraction method. In Asian Conference on Computer Vision.

Springer.

[6] Y. L. Hou and G. K. Pang. 2011. People counting and human

detection in a challenging situation. In IEEE Transactions on

Systems, Man, and Cybernetics-Part A: Systems and

Humans, 41(1): pp. 24-33.

[7] J. Rittscher, P. H. Tu, and N. Krahnstoever. 2005.

Simultaneous estimation of segmentation and shape. In IEEE

Conference on CVPR, pp. 486-493.

[8] R. Mehran, A. Oyama, and M. Shah. 2009. Abnormal crowd

behavior detection using social force model. In IEEE

Conference on CVPR, pp. 935-942.

[9] V. Mahadevan, W. Li, V. Bhalodia, and N. Vasconcelos.

2010. Anomaly detection in crowded scenes. In IEEE

Conference on CVPR, pp. 1975-1981.

[10] M. Basseville and I. V. Nikiforov. 1993. Detection of abrupt

changes: theory and application. Prentice Hall Englewood

Cliffs, Vol. 104.

[11] F. Gustafsson. 1996. The marginalized likelihood ratio test

for detecting abrupt changes. In IEEE Transactions on

Automatic Control, 41(1): pp. 66-78.

[12] F. Gustafsson and F. Gustafsson. 2000. Adaptive filtering

and change detection. New York: Wiley, Vol. 1.

[13] X. Gao, B. Xiao, D. Tao, and X. Li. 2010. A survey of graph

edit distance. Pattern Analysis and Applications, 13(1): pp.

113-129.

[14] S. Rajasegarar, C. Leckie, and M. Palaniswami. 2014.

Hyperspherical cluster based distributed anomaly detection

in wireless sensor networks. Journal of Parallel and

Distributed Computing 74.1: 1833-1847.

[15] M. Yang, S. Rajasegarar, A. S. Rao, C. Leckie, and M.

Palaniswami. 2016. Anomalous Behavior Detection in

Crowded Scenes Using Clustering and Spatio-Temporal

Features. In 9th IFIP TC 12 International Conference on IIP.

Springer International Publishing, pp. 132-141.

[16] O. Barnich and M. Van Droogenbroeck. 2009. ViBe: a

powerful random technique to estimate the background in

video sequences. In IEEE International Conference on

Acoustics, Speech and Signal Processing. IEEE.

[17] E. V. Cuevas, D. Zaldivar, and R. Rojas. 2005. Kalman Filter

for Vision Tracking.

[18] H. W. Kuhn. 1955. The Hungarian method for the

assignment problem. Naval Research Logistics Quarterly,

2(1-2): pp. 83-97.

[19] F. Lütteke, X. Zhang, and J. Franke. 2012. Implementation

of the hungarian method for object tracking on a camera

monitored transportation system. In 7th German Conference

on Proceedings of ROBOTIK.

[20] D. Greenhill, J. Renno, J. Orwell and G.A. Jones. 2008.

Occlusion analysis: Learning and utilising depth maps in

object tracking. Image and Vision Computing 26.3:

430-441.

[21] S. Aminikhanghahi and D. J. Cook. 2017. A survey of

methods for time series change point detection. Knowledge

and Information Systems, 51(2), 339-367.

[22] E. Zhang and Y. Zhang. 2009. F-measure. In Encyclopedia

of Database Systems. Springer US, pp. 1147-1147.

336

