
 

 

 

Abstract 

 

In recent years, there has been a growing interest in 

detecting anomalous behavioral patterns in video. In this 

work, we address this task by proposing a novel activity 

change point detection method to identify crowd movement 

anomalies for video surveillance. In our proposed novel 

framework, a hyperspherical clustering algorithm is 

utilized for the automatic identification of interesting 

regions, then the density of pedestrian flows between every 

pair of interesting regions over consecutive time intervals is 

monitored and represented as a sequence of adjacency 

matrices where the direction and density of flows are 

captured through a directed graph. Finally, we use graph 

edit distance as well as a cumulative sum test to detect 

change points in the graph sequence. We conduct 

experiments on four real-world video datasets: Dublin, 

New Orleans, Abbey Road and MCG Datasets. We observe 

that our proposed approach achieves a high F-measure, i.e., 

in the range [0.7, 1], for these datasets. The evaluation 

reveals that our proposed method can successfully detect 

the change points in all datasets at both global and local 

levels. Our results also demonstrate the efficiency and 

effectiveness of our proposed algorithm for change point 

detection and segmentation tasks. 

 

1. Introduction 

A major challenge in video surveillance is detecting 

unusual patterns of activities, i.e., anomalous event 

detection. Anomalous events correspond to time points in a 

video that are different from the frequently occurring 

patterns at a spatial, temporal or spatio-temporal level. 

Applications of this type of data analysis are detecting 

irregular crowd/individual movement/activities. 

Detecting anomalous crowd activity is a challenging 

analysis problem, particularly since crowds are collections 

of individuals that are identifiable when the density of 

people is high enough to disrupt individual and group 

identification [1]. Crowd abnormality detection is further 

complicated by frequent occlusions, low quality video, and 

ambiguous definitions of anomalous behaviors. Due to the 

complex nature of video streams, it is challenging to detect a 

particular incident/event that has occurred in a video 

sequence, and then distinguish the irregular events from 

normal patterns based on predefined rules. Therefore, we 

aim to detect irregular incidents in videos from a statistical 

perspective, in an unsupervised manner. In particular, we 

address the problem of detecting the timestamps when the 

crowd flow density changes dramatically between specific 

locations in a public environment.  

This task is referred to as change point detection of flows. 

In our proposed framework, a real-time multi-object 

tracking algorithm is used for obtaining trajectories as the 

initial step. Next, similar trajectories are grouped together 

using a hyperspherical clustering method. The start and end 

locations of each cluster are recognized as interesting 

regions automatically. Further, we monitor the density of 

pedestrian flows between every pair of interesting regions 

over consecutive time intervals. The results of monitoring 

are then represented as a time sequence of the adjacency 

matrices, where the crowd flow is captured using directed 

graphs. In other words, every interesting region is 

represented as one node, and the flows of pedestrians 

between every pair of nodes are used as the edges of a 

directed graph. Finally, we use graph mining to detect 

change points of the flows. Our proposed framework is 

shown in Figure 1. 

Traditional change point detection techniques analyze 

the video data either in its original pixel-by-pixel format, 
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Figure 1: Overview of our framework. 

which yields sparse crowd densities and high computational 

cost, or use a simple counting technique, which disregards 

the flow and direction of the crowd movement. The 

advantage of using a graph representation for a video stream 

is that it provides a trade-off between preserving crowd flow 

and direction information, in addition to a more 

computationally efficient summarization of the data. In 

particular, it enables the detection of localized structural 

changes in the flow pattern within large crowds. 

The main contributions of this paper are as follows: 

(1) We propose a novel graph mining framework to 

address the video surveillance problem. In particular we 

propose a method to detect anomalous directional flows of 

objects, such as pedestrians, between different regions of 

the monitored area in an unsupervised manner. 

(2) A hyperspherical clustering method is used for 

automatically defining the interesting regions of the video 

scene. Therefore, regions like entrances, exits and 

bathrooms are recognized as interesting nodes 

automatically, which can be used at the next stage. 

(3) We utilize an unsupervised technique for real-time 

multi-object tracking of pedestrian movements for 

crowd tracking. This removes the requirement for 

pre-labelled video sequences in the analysis. 

(4) We conduct experiments on four real-world video 

datasets: Dublin, New Orleans, Abbey Road and MCG 

Cameras. The F1 score varies between [0.7, 1] for these 

datasets. The evaluation reveals that our proposed method 

can successfully detect the change points in all datasets. 

The rest of the paper is organized as follows. In Section 2, 

we describe the related work. Next, we present the problem 

statement and show our approach in Section 3. Further, the 

proposed video stream analytics method, which includes 

defining interesting regions automatically and crowd 

density monitoring are described in Section 4. In Section 5, 

we describe two series of experiments. First, we empirically 

demonstrate the effectiveness of our approach in detecting 

changes in directed crowd flows, which cannot be detected 

by conventional approaches that simply count the total 

number of pedestrians. Second, we evaluate the accuracy of 

activity change point detection using four benchmark video 

datasets. Finally, we conclude in Section 6. 

2. Related Work 

There are a number of existing approaches that have been 

applied for object detection and monitoring in image 

sequences and videos. In [2], the authors proposed a 

background subtraction method for extracting the pixels of 

foreground people at first, followed by mapping the number 

of pedestrians to perform counting. The authors in [3] show 

that the relationship between the number of people and 

extracted foreground pixels is approximately linear. 

However, the problem of this algorithm is its performance, 

which deteriorates due to occlusion and perspective effects. 

It is difficult to follow and link each person from one frame 

to the next frame by just using foreground pixels. Therefore, 

a deep learning method faster R-NN is used for object 

detection [4]. In [5], crowd features are described by a 

maximally stable extremal region (MSER). In [6], 

Kanade-Lucas-Tomasi (KLT) based corner points are 

extracted as features, followed by clustering these features 

for human detection. Rittscher et al. [7] proposed a contour 

feature based approach, which groups human-sized models 

by utilizing Expectation Maximization (EM). 

Simply doing object counting and tracking cannot 

achieve our anomaly detection requirements. There is some 

literature about abnormal crowd behavior detection, like 

using social force models [8] and a mixture of dynamic 

textures (MDT) for crowd behavior representation [9]. 

However, they focus on the anomalous individual detection, 

whereas we aim at doing abnormal activity monitoring and 

segmentation for a whole video.  

3. Problem Statement 

Given a surveillance video sequence, our aim is to find 

any anomalous crowd movement patterns between the 

interesting regions within the monitored area over time. 

This task requires several challenges to be addressed, 
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Figure 2: An example of crowd activity segmentation in the MCG 

stadium. 

empty entering empty
a few people
entering

empty
leaving

namely (1) measuring the directional flows of the crowd or 

pedestrians between the interesting regions, and (2) 

characterizing the normal flows and detecting the 

anomalous movement patterns in an unsupervised manner. 

In this work, we address these challenges by proposing a 

graph based change point detection method to detect 

anomalous directional flows of crowd movements in videos. 

Our aim is to identify the times (timestamps) when a 

significant change in crowd movements has occurred 

between the nodes (regions), i.e., we want to find when the 

anomalous crowd movements have occurred over the 

observed time period. To identify such timestamps, we 

propose the following framework as shown in Figure 1.  

The proposed framework comprises three main 

components: automatically defining the interesting regions, 

crowd density monitoring, and graph stream mining. First, 

we use a hyperspherical clustering algorithm [14] to group 

similar trajectories (of objects), and then extract the average 

trajectory for each cluster. The start and end locations of 

each average trajectory are recognized as interesting 

regions, which are used as nodes in each graph. Next, we 

monitor the crowd density between each pair of nodes, and 

the number of pedestrians moving from one node to another 

are used as the edge weight in each directed graph. The 

multi-object tracking algorithm uses ViBe [16] for 

foreground subtraction and moving object tracking. 

Thereafter, the pedestrians are tracked sequentially using a 

Kalman filter [17]. Then a Hungarian assignment algorithm 

[18] with occlusion handling is used to improve the 

performance of multi-object tracking. The output of this 

algorithm is the crowd density measurement between each 

pair of regions considered in a scene. This crowd density 

information between each pair of regions (nodes) is used to 

construct a series of weighted graphs, which are represented 

using graph adjacency matrices. Finally, we employ Graph 

Edit Distance (GED) [13] with a single-variable Cumulative 

Sum (CUSUM) test [10] for segmenting the graph data 

streams to detect the anomalous crowd movement instances 

over the monitored time period.  

Once the movement patterns are represented by the 

graphs, we can use the graph mining method to find the 

change points of crowd flows in a video, which can be 

further used to segment the video at a temporal level. For 

example, Figure 2 shows the result of crowd activity 

segmentation performed on the graph, which reveals the 

sequence of activities over an extended time period. In this 

figure, the sequence of different activities observed is empty 

 people entering empty  few people go across to the 

bathroom empty  people leaving. 

We now present each of the modules in our proposed 

framework in detail. 

4. Video Stream Analytics 

In this section, we first propose a hyperspherical 

clustering algorithm for automatically identifying 

interesting regions in an unsupervised manner. Next, we 

present the object detection and multi-object tracking 

approaches that are used for determining the crowd density 

between a pair of nodes/regions. This has several subtasks, 

such as video preprocessing to filter noise in the video, 

object detection and multi-object tracking for effective 

computation of the crowd movement density. 

Algorithm 1: Automatic Identification of Interesting 

Regions 
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Figure 3: (a) a 4 × 4 blocks example. The track can be represented 

as the vector. (b) Fixed width clustering. (c) Cluster merging. 
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4.1. Automatic Identification  

A hyperspherical clustering algorithm [14, 15] is used to 

group similar trajectories, and produce the average 

trajectory for each cluster. Then, the start and end locations 

of every average track are used to identify interesting 

regions, which are represented as the nodes in each graph. 

The trajectories of moving pedestrians are obtained by 

using a real-time tracking algorithm, which is also used for 

crowd density monitoring in Section 4.2. In this subsection, 

we present how we employ a hyperspherical clustering 

algorithm to automatically identify the interesting regions in 

the scene. 

The approach has three main steps: Trajectory 

Representation, Fixed Width Clustering and Merging 

Clusters. The entire procedure is shown in Algorithm 1 and 

Figure 3. 

Trajectory Representation   The approach that we used 

for representing the trajectories is proposed in [15]. Let m 

be the width and n be the height of a video frame. The input 

frame is divided into
x yb b  blocks, where 1 < 

xb ≤ m, 1 < 

yb  ≤ n. Block size selection affects the encoding results. In 

this experiment, we choose 16×16 as the block size. Next, a 

feature representation with spatio-temporal information is 

extracted for each object. 

When an object enters a block, this block is assigned the 

original value 1. If this object stays in the same block, the 

value will be the number of frames that the object stays in 

that block. Further, if the object moves to another block, the 

value of this new block will start from the value of the 

former block plus one. The 4 × 4 block size example is 

demonstrated in Figure 3.a, the red track shown there can be 

represented as a vector [0 1 2 0 0 0 3 4 0 0 0 5 0 0 0 6]   

with index 1 to 16. All the tracks are represented as vectors 

of integers.  

Fixed Width Clustering   The first cluster is centred on the 

first trajectory, and has a fixed cluster radius. Next, the 

Euclidean distance is calculated between the next trajectory 

vector and the centroid of each cluster. If the Euclidean 

distance is smaller than the radius (width) of the nearest 

cluster, the track vector will be added to that cluster. The 

centroid of this cluster will be updated as the mean value of 

all vectors in it. On the other hand, if the distance is larger 

than the radius/width, the trajectory vector forms a new 

cluster with a new centroid. This process is repeated until all 

the trajectory vectors have been considered (see Figure 3.b).  

Merging Clusters   Based on the clusters we obtained in 

the previous step, we calculate the Euclidean distance 

between the centroids of each pair of clusters. When the 

distance is smaller than a threshold  , the two clusters are 

merged into a new cluster. We repeat this process until all 

clusters have been considered (see Figure 3.c). Finally, the 

start and end locations of each cluster are recognized as 

interesting regions, which are represented as nodes in each 

graph. 

4.2. Crowd Density Monitoring 

Video Pre-processing and Object Detection   First, the 

video sequence is converted to a grayscale image sequence, 

followed by the application of a 2D Gaussian low-pass filter, 

which eliminates the high frequency noise. The parameters 

of the Gaussian filter are set as  0.5   and the block size 

= 5×5.  These parameters are chosen in such a way that the 

filter retains the low-frequency and edge information in the 

output. 

The object detection algorithms currently available in the 

literature can be categorized into three types: (1) optical 

flow (KLT), (2) differentiating consecutive frames, and (3) 

foreground or background subtraction. The third approach 

is a widely used technique for detecting moving objects and 

pedestrians in practice. 

These techniques can be further categorized into 

parametric and sample-based methods, which consider the 

pixel changes of objects or crowds. However the latter 

approach is an improvement over the former one. The 

parametric method first builds an estimate of a Probability 

Density Function (PDF) for each pixel location, and then 

uses this to classify a pixel value as a background or 

foreground pixel value depending on how it fits within the 

estimated PDF. Considering the complexity of real-world 

scenarios, we propose to use a sample-based algorithm, 

called ViBe [13], for foreground subtraction. This approach 

is based on using a set of sample values to build the pixel 

model by aggregating previously observed values for each 

pixel location. Next, the model is updated regularly based 

on the incoming frames, and then, the moving pedestrians 

are recognized by subtracting the pixel model. 

Multi-object Tracking   Once the objects are detected, the 

next task is to track them. We use a Kalman filter [14] for 

object tracking in this work. The Kalman filter predicts the 

state (location, velocity) of an object from a sequence of 
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images. It finds the minimum mean-square error estimate of 

the state 
kx sequentially using measurements and a 

transition model, where k denotes the time. To detect crowd 

movements, we need to perform multi-object tracking in the 

video. We use the Hungarian assignment algorithm [18, 19] 

in this paper. The Hungarian algorithm improves the 

accuracy of the track prediction of an object in the incoming 

frames by addressing the issue of multi-object link 

assignment. 

In this approach, we first need to assign an index to every 

vision object that is detected by our tracking algorithm in 

the current frame, i.e., the detected positions. The set 

{ : ... }iInd ind i 1 I   denotes the indices of objects, where 

I is the maximum number of objects in the current frame. 

These I vision objects need to be mapped to the 
wI world 

objects, i.e., the predicted positions, optimally. The 

Hungarian assignment algorithm can solve this optimization 

problem in polynomial time. This algorithm builds an initial 

cost matrix based on the Euclidean distances between the 

predicted and detected positions for each frame. This 

method results in an optimum object assignment matrix X, 

where all elements of each row are zero except for one. The 

optimization can be summarized as a minimization of the 

objective function shown in equation (1). 

                                    
1 1

n n

ij ij

i j

c x
 
                                       (1) 

 1        if is assigned to
where, 

 0       otherwise

  


i j

ij

e m
x    

 

Occlusion Handling   In our implementation, we use a 

depth model to handle the occlusion problem to find more 

accurate and clear tracks. The proposed idea is introduced 

in [20] and is based on determining the depth of the tracked 

objects. For example, if an object is moving from far away 

towards the camera, the depth will be changing from large to 

small. Therefore, when two objects occlude, the depth 

model of each object can be used to separate the bounding 

box, which can improve the performance of the Hungarian 

assignment algorithm. 

The first step is to generate the probability density 

functions for the depth of the moving objects at each pixel 

from a set of training data. We use the first 10 frames of 

each moving object as the training data, so the occlusion 

handling will start after Frame 10.  

The probability density functions are obtained using 

equation (2). For each image pixel  , we get an observed 

depth histogram ( ).Z D   If pixel  meets an occlusion 

with a blob ,  histogram ( )Z D  is aggregated on the depth 

of the blob, which can be represented as .D  We repeat this 

process using the training data (first 10 frames) on each 

detected moving target. 

                        ( ) ( )Z D D D


 





                       (2) 

where   is the set of blobs that contain   and ( )   is the 

Kronecker delta function: 

                       
 1        if 

( , )
 0        if 




  

i j
i j

i j
                          (3) 

Next, an activity map A is generated using a set of 

observed depth histograms ( )Z D : 

                         
min , ( )

( )
D D D i

A z D


 
 

                               (4) 

When an occlusion occurs, the depth model of each 

object is used to assign an accurate position to these objects 

in the next frame, which can improve the accuracy and 

effectiveness of the multi-object tracking algorithm.   

4.3. Anomaly Detection 

Once the crowd density movements are obtained, the next 

step is to represent them in the form of adjacency matrices 

that will be used in our change point detection scheme.  

In terms of detecting anomalous timestamps, a common 

method to solve this problem is by looking at the generated 

probability distributions of data between the past and 

present. If the two distributions differ significantly from one 

time point to another, this point will be recognized as a 

change point. In this work, the crowd density of each path 

between the pairs of nodes/locations is represented as the 

weight of an edge in a directed graph.  We use Graph Edit 

Distance (GED) with a single variable CUSUM test to 

analyze this graph data stream. 

Graph edit distance [13] is used to measure the distances 

between two graphs G1 and G2, where the main assumption 

is that G1 can be transformed into G2 using a finite number 

of consecutive graph edit operations. These edit operations 

are defined specifically based on the type of graph, i.e., 

weighted, directed, undirected or simple. 

The definition of GED 
min

( , )1 2d G G  between graphs G1 

and G2 is shown in equation (5). 

                    
min ( , )

( , ) min ( )
1 2

i

1 2 i
G G

e

d G G c e  


                   (5) 

where ( , )1 2G G  denotes the set of all complete edit 

paths that transform G1 to G2, and c is the cost of an edit. 

Since the graphs in our problem consist of weighted 

directed edges between every pair of nodes, we can make 

the assumption that the graph is complete. Therefore, the 

GED between G1 and G2 can be computed as the difference 

between the graphs' adjacency matrices. After computing 
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the time series using GED, we can use a CUSUM test to 

detect the change points. 

Cumulative sum (CUSUM) tests [10] monitor the mean 

of a process based on the time series of data that is generated 

from that process at any given period, such as minutes, 

hours, days or years. In this paper, the consecutive intervals 

that we use are based on the video length. We use three 

minutes as the interval value, but for smaller datasets, the 

interval is considered to be 20 or 30 seconds. A CUSUM 

test can be employed for detecting anomalous timestamps or 

change points by comparing an accumulative data measure 

computed between the past and the present data samples. 

5.  Results and Discussion 

In this paper, we conduct two series of experiments. In 

experiment 1, we discuss the intuition behind using a 

graph-based representation for detecting change points in 

directed crowd flows, which is compared to the standard 

approach of simply counting the aggregated number of 

pedestrians in the whole scene. In experiment 2, we evaluate 

the performance of our change point detection schemes at 

both global and local levels in four real video surveillance 

datasets. 

In this section, we describe our experimental setup and 

datasets in Section 5.1. Experiments 1 and 2 are shown in 

Sections 5.2 and 5.3, respectively. In Section 5.4, we 

discuss the computational complexity and performance of 

our approach. 

5.1. Experimental Setup and Datasets  

Experimental Setup  The proposed crowd density 

estimation approach is implemented in OpenCV 3.0.0 with 

Visual Studio 2013. The automatic identification of 

interesting regions is implemented in Java. The graph 

mining and final quantitative evaluation are implemented in 

Matlab 2013b. The configuration of the machine used for 

the evaluation is as follows: Windows 7 (64bit) with a 4 GB 

NVIDIA graphics card (NVIDIA NVS 315 HD), a 

multi-core Intel® i7 - 4790 3.6GHz CPU and 16GB RAM.  

Datasets   In order to evaluate our framework, we 

conducted experiments on four real-life video datasets: (1) 

the Dublin Cam (www.earthcam.com/world/ireland/dublin), 

(2) the New Orleans Cam (www.earthcam.com/usa/ 

louisiana/neworleans/bourbonstreet) and (3) Abbey Road 

Crossing Cam (www.abbeyroad.com/Crossing) from 

EarthCam, in addition to (4) the Melbourne Cricket Ground 

(MCG) (www.mcg.org.au), i.e., a major sports stadium in 

the city of Melbourne.  

The description of these datasets is summarized in Table 

1, which includes the average number of people per 10 

minutes, the main characteristics, and camera view. We 

assume these cameras are calibrated and the video data can 

be used directly. Figure 5 shows the sample frames taken 

from these video datasets.  

 
Camera Average 

People/10min 

 2  

Main 

Characteris

tics 

Camera 

View 

Time 

Length 

Dublin  287 53  moving wide  3 hours 

New Orleans  330  moving wide 2 hours 

Abbey Road  206  
moving 

/static 
wide 2 hours 

MCG 234  moving wide 2 hours 

* 2 =Standard Deviation 

Table 1. Video data used in experiment 2 

Parameter Settings   In the component for the automatic 

identification of interesting regions, , the parameter   

(cluster width) is set to be 36, 40, 20 and 10 for the Dublin, 

New Orleans, Abbey Road and MCG datasets, respectively. 

The merging threshold / 2.   In terms of the CUSUM 

parameter settings, the user defined parameters h and k are 

chosen to be 4 and 0.4 respectively for the first three 

datasets and 4 and 0.3 for the MCG datasets. 

5.2. Demonstration of Flow-based Analysis 

In experiment 1, we use the video data between 8am and 

3pm on 26th Oct 2017 from the Dublin Cam. This 

experiment explains the intuition behind using graph based 

analysis instead of the aggregated number of pedestrians to 

detect change points. 

Figure 4.a shows a time series of the aggregated number 

of people in the previously mentioned dataset, where the 

aggregate values are computed within every 3-minute 

non-overlapping window. We divide the time interval into 

two periods: morning and busy time. As shown in Figure 6.a, 

we randomly select two time stamps within the busy time, 

and differentiate them with green and red markers. We 

observe that the aggregated numbers of people in these two 

time stamps are similar. However, based on our framework, 

we found that the directions of the crowd flow in the frames 

corresponding to these two time stamps are substantially 

dissimilar (see Figure 4.b). The direction in addition to 

crowd density along different paths in a frame can easily be 

represented through our directed graph model (see Figure 

4.c). We have used GED with CUSUM to determine 

whether our graph-based approach can differentiate these 

two points. Since GED takes the change in weight and 

direction of each edge into account, it can easily detect that 

a change has occurred and these two time stamps are 

dissimilar.  
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5.3. Activity Change Point Detection 

In this section, we conduct experiment 2 on the four 

datasets as shown in Table 1 and Figure 5. The interesting 

regions have been automatically identified and denoted by 

red circles, where there are 6, 5, 5, and 4 interesting regions 

in Dublin Cam, New Orleans Cam, Abbey Road Cam and 

MCG C6 Cam, respectively. The pedestrian movement 

flows are converted to the graph representation (Figure 5).  

We then construct our graph time series, where each 

graph is computed within a three minute non-overlapping 

window. Therefore, these videos can be represented as 60, 

40, 40, 40 graph adjacency matrices for Dublin, New 

Orleans, Abbey Road and MCG respectively. Further, we 

conduct the following experiments on the previously 

mentioned datasets:  

(1) Detecting change points at the global level: In terms 

of global-level change point detection, we aim to find the 

change points of the time series, i.e., time stamps where 

crowd density and direction underwent a major change in 

the entire graph. 

(2) Finding change points at the local level: The local 

level change detection refers to analyzing the crowd density 

in single/multiple path(s) instead of considering an entire 

graph. We aim to segment the crowd activity for a given 

interesting region (node) using the crowd density on the 

paths connected to that node. Consider the Dublin Cam as 

an example. There are 6 nodes, so there are 30 paths 

including N12, N21, …, N65. We choose node 2 as the key 

node that we want to analyze, so we need to analyze every 

path that is connected to node2, such as N12 (node 1 to node 

2), N21 (node 2 to node 1),…N26 (node 2 to node 6) and so 
on.  After being analyzed at a local-level, we can segment 

the activity status of node 2. In the local-level based 

experiment, for Dublin Cam, node 2 is a bar or café, so we 

choose node 2 as the focus node. For the other three datasets, 

we just randomly choose node 1 as the focus node. 

 
 

We manually identified the change points in the four real 

datasets and used them as the ground truth. We then 

evaluate the results by using the F-measure [21, 22]. The 

confusion matrix that we used is illustrated in Table 2.  

 
 Detected as 

change point 

Detected as 

non-change point 

True change point TP FN 

True non-change 

point 
FP TN 

 

Table 2. Confusion matrix for F-measure 

F-measure or 
1F  score provides a way to measure the 

overall effectiveness of a Change Point Detection (CPD) 

algorithm, which is based on the combination of precision 

and recall.  F-measure is computed as the ratio value of the 

weighted importance of precision and recall. 1F score 

(1+ ) Recall Prediction

Recall Prediction




 
 

2

2
, where Recall (R) and 

Precision (P) are computed using 
TP

TP FN
 and 

TP

TP FP
, 

respectively. In our experiment, we choose equal weights 

for precision and recall, so 0.5.  The
1 score F  
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Figure 4: (a) Aggregated number of people, (b) graph pattern 

and (c) graph representation. (Dublin dataset for two intervals in 

busy period with similar aggregate numbers of people). 

(a) 

(b) 

(c) 

Figure 5: Graph representation of (a) Dublin Cam. (b) New 

Orleans Cam. (c) Abbey Road Cam. (d) MCG Cam.  

  (c)    (d)  

 (b)    (a)  
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. 
1F  score is in the range [0, 1], where higher 

values show better performance. 

The evaluation of the global-level and local-level based 

CPD result is summarized in Table 3. We use the aggregate 

time series (as Experiment 1) based CPD with single 

variable CUSUM for evaluation as the baseline. The results 

are also summarized in Table 3. 

As shown in Table 3, our global and local-level 

frameworks for CPD both outperform the aggregate time 

series based CPD. It shows the better performance using 

graph based analysis compared with the aggregated number 

of pedestrians to detect change points. 

 

Video Global-level Local-level Aggregate 

(baseline) 

Dublin Cam 84.2% 81.5% 61.2% 

New Orleans Cam 80.0% 75.0% 57.9% 

Abbey Road Cam 80.0% 72.7% 57.4% 

MCG Cam 6 92.3% 85.7% 64.3% 

 
Table 3:  

1F  score of the proposed approach on the four real 

datasets. 

Another phenomenon in Table 3 is that the global-level 

detection has better performance than local-level detection. 

Further, we can see our method achieves the best 

performance on the MCG video, which is more than 90% at 

the global-level and 85% at the local-level, followed by the 

Dublin dataset, New Orleans and Abbey Road videos. The 

difference in performance is because of the complexity of 

the scene in some videos, such as more occlusion and 

overlapping. Generally, the results show that they can all 

achieve reasonable accuracy at a global-level and 

local-level. 

5.4. Discussion 

In this section, we discuss how our proposed framework 

can be used in real-time video streaming change point 

detection, in terms of computational complexity and the 

minimum number of frames required to detect an event. 

Since our proposed framework is a hybrid of crowd 

density monitoring and graph mining, its computational 

complexity can be reported as 4( ) n , in which the Kalman 

Filter is 2( ) n  and the improved Hungarian algorithm is 

4( ) n , where n denotes the number of detected and 

assigned moving people in a frame. Our graph change point 

detection algorithm requires constant time a, since the 

number of nodes is a constant for the datasets. Therefore, 

the total computational complexity time should be 

2 4 4( ) ( ) ( ),   n n n  which is an efficient real-time 

algorithm compared with other tracking algorithms. 

In terms of the required minimum number of frames to 

detect an event, the tracking algorithm merely requires 1-2 

frames before the current frame to predict the velocity, 

direction and position of every object in the next frame. 

Therefore, the tracking can be performed in real-time, e.g., 

for real-time CCTV video streams. As for the change point 

detection algorithm, we require the video length at least to 

be 2 minutes (2760 frames at 23 fps) for the event detection 

to be effective.  

Moreover, since our algorithm is capable of processing 

video data from video streams without needing supervised 

training data, it can be applied in scenarios where the 

streaming data is not labeled. 

6. Conclusions 

In this paper, we proposed a framework based on crowd 

density monitoring and graph mining for activity change 

point detection. First, a real-time multi-object tracking 

algorithm is used to obtain trajectories. Next, similar 

trajectories are grouped together using a hyperspherical 

clustering method. The start and end locations of each 

cluster are used to automatically identify interesting regions 

in the scene. Thereafter, we monitor the density of 

pedestrian flows between every pair of interesting regions 

over consecutive time intervals. The results of monitoring 

are then represented as a dynamic directed graph with 

adjacency matrices that capture crowd flow and direction. 

We then use GED with CUSUM to determine change points 

or anomalous incidents. We demonstrate the effectiveness 

of our approach in detecting localised changes in flows, in 

contrast to simply using aggregate pedestrian counts, as well 

as the accuracy of our approach on four real-world video 

surveillance datasets. The evaluation reveals that our 

proposed method can successfully detect the change points 

in all datasets. In addition to the effectiveness of our 

algorithm, it is able to produce interpretable results, which 

can explain change points at both the global and local 

levels. As a future direction for research, our method can be 

used in clustering different cameras and detecting views that 

are richer in information.   
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