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Abstract

Variational approaches are often used to approximate intractable posteriors or nor-
malization constants in hierarchical latent variable models. While often effective
in practice, it is known that the approximation error can be arbitrarily large. We
propose a new class of bounds on the marginal log-likelihood of directed latent
variable models. Our approach relies on random projections to simplify the poste-
rior. In contrast to standard variational methods, our bounds are guaranteed to be
tight with high probability. We provide a new approach for learning latent variable
models based on optimizing our new bounds on the log-likelihood. We demonstrate
empirical improvements on benchmark datasets in vision and language for sigmoid
belief networks, where a neural network is used to approximate the posterior.

1 Introduction

Hierarchical models with multiple layers of latent variables are emerging as a powerful class of
generative models of data in a range of domains, ranging from images to text [1, [18]. The great
expressive power of these models, however, comes at a significant computational cost. Inference and
learning are typically very difficult, often involving intractable posteriors or normalization constants.

The key challenge in learning latent variable models is to evaluate the marginal log-likelihood
of the data and optimize it over the parameters. The marginal log-likelihood is generally non-
convex and intractable to compute, as it requires marginalizing over the unobserved variables.
Existing approaches rely on Monte Carlo [12] or variational methods [2] to approximate this integral.
Variational approximations are particularly suitable for directed models, because they directly provide
tractable lower bounds on the marginal log-likelihood.

Variational Bayes approaches use variational lower bounds as a tractable proxy for the true marginal
log-likelihood. While optimizing a lower bound is a reasonable strategy, the true marginal log-
likelihood of the data is not necessarily guaranteed to improve. In fact, it is well known that
variational bounds can be arbitrarily loose. Intuitively, difficulties arise when the approximating
family of tractable distributions is too simple and cannot capture the complexity of the (intractable)
posterior, no matter how well the variational parameters are chosen.

In this paper, we propose a new class of marginal log-likelihood approximations for directed latent
variable models with discrete latent units that are guaranteed to be tight, assuming an optimal choice
for the variational parameters. Our approach uses a recently introduced class of random projections
[Z, [15] to improve the approximation achieved by a standard variational approximation such as
mean-field. Intuitively, our approach relies on a sequence of random projections to simplify the
posterior, without losing too much information at each step, until it becomes easy to approximate
with a mean-field distribution.

We provide a novel learning framework for directed, discrete latent variable models based on
optimizing this new lower bound. Our approach jointly optimizes the parameters of the generative
model and the variational parameters of the approximating model using stochastic gradient descent
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(SGD). We demonstrate an application of this approach to sigmoid belief networks, where neural
networks are used to specify both the generative model and the family of approximating distributions.
We use a new stochastic, sampling based approximation of the variational projected bound, and show
empirically that by employing random projections we are able to significantly improve the marginal
log-likelihood estimates.

Overall, our paper makes the following contributions:

1. We extend [[15]], deriving new (tight) stochastic bounds for the marginal log-likelihood of
directed, discrete latent variable models.

2. We develop a “black-box” [23] random-projection based algorithm for learning and inference
that is applicable beyond the exponential family and does not require deriving potentially
complex updates or gradients by hand.

3. We demonstrate the superior performance of our algorithm on sigmoid belief networks
with discrete latent variables in which a highly expressive neural network approximates the
posterior and optimization is done using an SGD variant [16].

2 Background setup

Let pg(X, Z) denote the joint probability distribution of a directed latent variable model parameterized
by 6. Here, X = { X} represents the observed random variables which are explained through a
set of latent variables Z = {Z;}!" ;. In general, X and Z can be discrete or continuous. Our learning
framework assumes discrete latent variables Z whereas X can be discrete or continuous.

Learning latent variable models based on the maximum likelihood principle involves an intractable
marginalization over the latent variables. There are two complementary approaches to learning latent
variable models based on approximate inference which we discuss next.

2.1 Learning based on amortized variational inference

In variational inference, given a data point x, we introduce a distribution ¢,(z) parametrized by
a set of variational parameters ¢. Using Jensen’s inequality, we can lower bound the marginal
log-likelihood of x as an expectation with respect to q.
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The evidence lower bound (ELBO) above is tight when ¢4(z) = pg(z|x). Therefore, variational
inference can be seen as a problem of computing the parameters ¢ from an approximating family of
distributions () such that the ELBO can be evaluated efficiently and the approximate posterior over
the latent variables is close to the true posterior.

In the setting we consider, we only have access to samples x ~ py(x) from the underlying distribution.
Further, we can amortize the cost of inference by learning a single data-dependent variational posterior
¢4(z|x) [9]. This increases the generalization strength of our approximate posterior and speeds up
inference at test time. Hence, learning using amortized variational inference optimizes the average
ELBO (across all x) jointly over the model parameters (6) as well as the variational parameters (¢).

2.2 Learning based on importance sampling

A tighter lower bound of the log-likelihood can be obtained using importance sampling (IS) [4]. From
this perspective, we view g, (z|x) as a proposal distribution and optimize the following lower bound:
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where each of the S samples are drawn from ¢4 (z|x). The IS estimate reduces to the variational
objective for S = 1 in Eq. (I). From Theorem 1 of [4], the IS estimate is also a lower bound to the
true log-likelihood of a model and is asymptotically unbiased under mild conditions. Furthermore,
increasing S will never lead to a weaker lower bound.

3 Learning using random projections

Complex data distributions are well represented by generative models that are flexible and have many
modes. Even though the posterior is generally much more peaked than the prior, learning a model
with multiple modes can help represent arbitrary structure and supports multiple explanations for the
observed data. This largely explains the empirical success of deep models for representational learning,
where the number of modes grows nearly exponentially with the number of hidden layers [, 22]].

Sampling-based estimates for the marginal log-likelihood in Eq. (I) and Eq. (2) have high variance,
because they might “miss” important modes of the distribution. Increasing S helps but one might
need an extremely large number of samples to cover the entire posterior if it is highly multi-modal.

3.1 Exponential sampling

Our key idea is to use random projections [[7, [15, 28], a hash-based inference scheme that can
efficiently sample an exponentially large number of latent variable configurations from the posterior.
Intuitively, instead of sampling a single latent configuration each time, we sample (exponentially
large) buckets of configurations defined implicitly as the solutions to randomly generated constraints.

Formally, let P be the set of all posterior distributions defined over z € {0, 1}"™ conditioned on x. g
A random projection Rffljb : P — P is a family of operators specified by A € {0,1}**™ b € {0,1}
forak € {0,1,...,n}. Each operator maps the posterior distribution py(z|x) to another distribution
Rﬁﬁ » [P (2z|x)] with probability mass proportional to py(z|x) and a support set restricted to {z : Az =
b mod 2}. When A, b are chosen uniformly at random, this defines a family of pairwise independent
hash functions H = {ha(z) : {0,1}" — {0,1}*} where ha ,(z) = Az + b mod 2. See [[7,27]
for details.

The constraints on the space of assignments of z can be viewed as parity (XOR) constraints. The
random projection reduces the dimensionality of the problem in the sense that a subset of k variables
becomes a deterministic function of the remaining n — k.E] By uniformly randomizing over the choice
of the constraints, we can extend similar results from [28]] to get the following expressions for the
first and second order moments of the normalization constant of the projected posterior distribution.

Lemma 3.1. Given A € {0,1}*™ ¥ Bernoulli(}) and b € {0,1}* " Bernoulli() for k €
{0,1,...,n}, we have the following relationships:

Eap
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Hence, a typical random projection of the posterior distribution partitions the support into 2* subsets
or buckets, each containing 2" " states. In contrast, typical Monte Carlo estimators for variational
inference and importance sampling can be thought of as partitioning the state space into 2" subsets,
each containing a single state.

There are two obvious challenges with this random projection approach:

1. What is a good proposal distribution to select the appropriate constraint sets, i.e., buckets?

'For brevity, we use binary random variables, although our analysis extends to discrete random variables.
2This is the typical case: randomly generated constraints can be linearly dependent, leading to larger buckets.



2. Once we select a bucket, how can we perform efficient inference over the (exponentially
large number of) configurations within the bucket?

Surprisingly, using a uniform proposal for 1) and a simple mean-field inference strategy for 2), we will
provide an estimator for the marginal log-likelihood that will guarantee tight bounds for the quality
of our solution. Unlike the estimates produced by variational inference in Eq. (I)) and importance
sampling in Eq. (Z) which are stochastic lower bounds for the true log-likelihood, our estimate will
be a provably tight approximation for the marginal log-likelihood with high probability using a small
number of samples, assuming we can compute an optimal mean-field approximation. Given that
finding an optimal mean-field (fully factored) approximation is a non-convex optimization problem,
our result does not violate known worst-case hardness results for probabilistic inference.

3.2 Tighter guarantees on the marginal log-likelihood

Intuitively, we want to project the posterior distribution in a “predictable” way such that key properties
are preserved. Specifically, in order to apply the results in Lemma[3.1} we will use a uniform proposal
for any given choice of constraints. Secondly, we will reason about the exponential configurations
corresponding to any given choice of constraint set using variational inference with an approximating
family of tractable distributions Q. We follow the proof strategy of [15] and extend their work on
bounding the partition function for inference in undirected graphical models to the learning setting
for directed latent variable models. We assume the following:

Assumption 3.1. The set D of degenerate distributions, i.e., distributions which assign all the
probability mass to a single configuration, is contained in Q: D C Q.

This assumption is true for most commonly used approximating families of distributions such as
mean-field Oy = {q(2) : ¢(z) = ¢1(21) - - - qe(¢) }, structured mean-field [3]), etc. We now define
a projected variational inference problem as follows:

Definition 3.1. Ler A¥ € {0,1}+*" i Bernoulli(3) and b} € {0,1}* i Bernoulli(1) for k €
[0,1,--- ,n]andt € [1,2,--- ,T). Let Q be a family of distributions such that Assumption 3.1| holds.
The optimal solutions for the projected variational inference problems, v¥, are defined as follows:

log 7 (x) = max > 4o (2]%) (log pe(x, z) — log g4 (2[x)) (5)
Z:Afz:bic mod 2

We now derive bounds on the marginal likelihood pg(x) using two estimators that aggregate solutions
to the projected variational inference problems.
3.2.1 Bounds based on mean aggregation

Our first estimator is a weighted average of the projected variational inference problems.

Definition 3.2. For any given k, the mean estimator over T instances of the projected variational
inference problems is defined as follows:

1 T
LT (%) = 7 ) 2" (©6)
t=1

Note that the stochasticity in the mean estimator is due to the choice of our random matrices Af, b
in Definition 5] Consequently, we obtain the following guarantees:

Theorem 3.1. The mean estimator is a lower bound for pg(X) in expectation:

E [E/’j’T(x)} < po(x).

Moreover; there exists a k* and a positive constant « such that for any A > 0, if T > * (log(2n/A))
then with probability at least (1 — 2A),

. po(x)
Lﬁ T(x) > At 1)
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Proof sketch: For the first part of the theorem, note that the solution of a projected variational

problem for any choice of Af and bf with a fixed k in Eq. is a lower bound to the sum
> po(x,2) using Eq. (1). Now, we can use Eq. (3) in Lemmato obtain the upper

z:AFz=bF mod 2

bound in expectation. The second part of the proof extends naturally from Theorem [3.2] which we

state next. Please refer to the supplementary material for a detailed proof.

3.2.2 Bounds based on median aggregation

We can additionally aggregate the solutions to Eq. (3] using the median estimator. This gives us
tighter guarantees, including a lower bound that does not require us to take an expectation.

Definition 3.3. For any given k, the median estimator over T instances of the projected variational
inference problems is defined as follows:

The guarantees we obtain through the median estimator are formalized in the theorem below:

Theorem 3.2. For the median estimator; there exists a k* > 0 and positive constant o such that for
any A >0, if T > L (log(2n/A)) then with probability at least (1 — 2A),

dpo(x) > L5 (x) > 32’22(’31)

Proof sketch: The upper bound follows from the application of Markov’s inequality to the positive

random variable > po(x, z) (first moments are bounded from Lemma 3.1) and +F (x)
z:AFz=bF mod 2

lower bounds this sum. The lower bound of the above theorem extends a result from Theorem 2 of

[15]. Please refer to the supplementary material for a detailed proof.

Hence, the rescaled variational solutions aggregated through a mean or median can provide tight
bounds on the log-likelihood estimate for the observed data with high probability unlike the ELBO
estimates in Eq. (T) and Eq. (@), which could be arbitrarily far from the true log-likelihood.

4 Algorithmic framework

In recent years, there have been several algorithmic advancements in variational inference and
learning using black-box techniques [23]]. These techniques involve a range of ideas such as the use
of mini-batches, amortized inference, Monte Carlo gradient computation, etc., for scaling variational
techniques to large data sets. See Section [6] for a discussion. In this section, we integrate random
projections into a black-box algorithm for belief networks, a class of directed, discrete latent variable
models. These models are especially hard to learn, since the “reparametrization trick” [17] is not
applicable to discrete latent variables leading to gradient updates with high variance.

4.1 Model specification

We will describe our algorithm using the architecture of a sigmoid belief network (SBN), a multi-layer
perceptron which is the basic building block for directed deep generative models with discrete latent
variables [21]. A sigmoid belief network consists of L densely connected layers of binary hidden
units (Z ') with the bottom layer connected to a single layer of binary visible units (X). The nodes
and edges in the network are associated with biases and weights respectively. The state of the units
in the top layer (Z') is a sigmoid function (o(-)) of the corresponding biases. For all other layers,
the conditional distribution of any unit given its parents is represented compactly by a non-linear
activation of the linear combination of the weights of parent units with their binary state and an
additive bias term. The generative process can be summarized as follows:

p(Zf =1) =o(bf); p(Zi=12""") = oW -2 1 0)); p(X; =1]z") = (W' 2" + 1)
In addition to the basic SBN design, we also consider the amortized inference setting. Here, we have

an inference network with the same architecture as the SBN, but the feedforward loop running in the
reverse direction from the input (x) to the output ¢(z”|x).



Algorithm 1 VB-MCS: Learning belief networks with random projections.

VB-MCS (Mini-batches {xh}le, Generative Network (G, 0), Inference Network (I, ¢), Epochs E,
Constraints k, Instances 1)
fore=1:FEdo
forh=1:Hdo
fort=1:Tdo
Sample A € {0, 1}F*n “d Bernoulli(4) and b € {0,1}* ud Bernoulli(3)
C, b < RowReduce(A4, b)
log vF (x") <— ComputeProjectedELBO(x", G, 0, I, ¢, C, )
log L5T (x") + log [Aggregate(yf (x"), - -+ , 75 (x")]
Update 6, ¢ < StochasticGradientDescent(— log L5 (x"))
return 0, ¢

4.2 Algorithm

The basic algorithm for learning belief networks with augmented inference networks is inspired by
the wake-sleep algorithm [[13]]. One key difference from the wake-sleep algorithm is that there is a
single objective being optimized. This is typically the ELBO (see Eq. ([T))) and optimization is done
using stochastic mini-batch descent jointly over the model and inference parameters.

Training consists of two alternating phases for every mini-batch of points. The first step makes a
forward pass through the inference network producing one or more samples from the top layer of the
inference network, and finally, these samples complete a forward pass through the generative network.
The reverse pass computes the gradient of the model and variational parameters with respect to the
ELBO in Eq. and uses these gradient updates to perform a gradient descent step on the ELBO.

We now introduce a black-box technique within this general learning framework, which we refer to
as Variational Bayes on Monte Carlo Steroids (VB-MCS) due to the exponential sampling property.
VB-MCS requires as input a data-dependent parameter &, which is the number of variables to constrain.
At every training epoch, we first sample entries of a full-rank constraint matrix A € {0, 1}**"
and vector b € {0, 1}* and then optimize for the objective corresponding to a projected variational
inference problem defined in Eq. (5). This procedure is repeated for 1" problem instances, and the
individual likelihood estimates are aggregated using the mean or median based estimators defined in
Eq. (6) and Eq. (7). The pseudocode is given in Algorithm [I]

For computing the projected ELBO, the inference network considers the marginal distribution of only
n — k free latent variables. We consider the mean-field family of approximations where the free latent
variables are sampled independently from their corresponding marginal distributions. The remaining
k latent variables are specified by parity constraints. Using Gaussian elimination, the original linear
system Az = b mod 2 is reduced into a row echleon representation of the form Cz = b’ where
C = [Tk |A’] such that A’ € {0, 1}F*("=F) and b’ € {O 1} Finally, we read off the constrained
variables as z; = @2 ki1 Cii%i D b forj =1,2,--- ,k where @ is the XOR operator.

S Experimental evaluation

We evaluated the performance of VB-MCS as a black-box technique for learning discrete, directed latent
variable models for images and documents. Our test-architecture is a simple sigmoid belief network
with a single hidden layer consisting of 200 units and a visible layer. Through our experiments, we
wish to demonstrate that the theoretical advantage offered by random projections easily translates
into practice using an associated algorithm such as VB-MCS. We will compare a baseline sigmoid
belief network (Base-SBN) learned using Variational Bayes and evaluate it against a similar network
with parity constraints imposed on k latent variables (henceforth, referred as k-SBN) and learned
using VB-MCS. We now discuss some parameter settings below, which have been fixed with respect to
the best validation performance of Base-SBN on the Caltech 101 Silhouettes dataset.

Implementation details: The prior probabilities for the latent layer are specified using autoregressive
connections [10]]. The learning rate was fixed based on validation performance to 3 x 10~* for the
generator network and reduced by a factor of 5 for the inference network. Mini-batch size was fixed



Table 1: Test performance evaluation of VB-MCS. Random projections lead to improvements in terms
of estimated negative log-likelihood and log-perplexity.

Dataset Evaluation Metric | Base k=5 k=10 k=20
Vision: Caltech 101 Silhouettes | NLL 251.04 | 245.60 | 248.79 | 256.60
Language: NIPS Proceedings log-perplexity 5009.79 | 4919.35 | 4919.22 | 4920.71
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(a) Dataset Images (b) Denoised Images (c) Samples

Figure 1: Denoised images (center) of the actual ones (left) and sample images (right) generated from
the best k-SBN model trained on the Caltech 101 Silhouettes dataset.

to 20. Regularization was imposed by early stopping of training after 50 epochs. The optimizer used
is Adam [16]. For k-SBN, we show results for three values of k: 5, 10, and 20, and the aggregation is
done using the median estimator with 7" = 3.

5.1 Generative modeling of images in the Caltech 101 Silhouettes dataset

We trained a generative model for silhouette images of 28 x 28 dimensions from the Caltech 101
Silhouettes dataset The dataset consists of 4,100 train images, 2,264 validation images and 2,307
test images. This is a particularly hard dataset due to the asymmetry in silhouettes compared to other
commonly used structured datasets. As we can see in Table[I] the k-SBNs trained using VB-MCS can
outperform the Base-SBN by several nats in terms of the negative log-likelihood estimates on the test
set. The performance for k-SBNs dips as we increase k, which is related to the empirical quality of
the approximation our algorithm makes for different & values.

The qualitative evaluation results of SBNs trained using VB-MCS and additional control variates [19]
on denoising and sampling are shown in Fig.[I] While the qualitative evaluation is subjective, the
denoised images seem to smooth out the edges in the actual images. The samples generated from the
model largely retain essential qualities such as silhouette connectivity and varying edge patterns.

5.2 Generative modeling of documents in the NIPS Proceedings dataset

We performed the second set of experiments on the latest version of the NIPS Proceedings dataseﬂ
which consists of the distribution of words in all papers that appeared in NIPS from 1988-2003. We
performed a 80/10/10 split of the dataset into 1,986 train, 249 validation, and 248 test documents.
The relevant metric here is the average perplexity per word for D documents, given by P =
exp (%1 Zi’il % log p(xi)) where L; is the length of document 7. We feed in raw word counts per

document as input to the inference network and consequently, the visible units in the generative
network correspond to the (unnormalized) probability distribution of words in the document.

Table [T] shows the log-perplexity scores (in nats) on the test set. From the results, we again observe
the superior performance of all k-SBNs over the Base-SBN. The different £-SBNs have comparable
performance, although we do not expect this observation to hold true more generally for other

3 Available at https://people.cs.umass.edu/ marlin/data.shtml
*Available at http://ai.stanford.edu/"gal/
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datasets. For a qualitative evaluation, we sample the relative word frequencies in a document and
then generate the top-50 words appearing in a document. One such sampling is shown in Figure 2]
The bag-of-words appears to be semantically reflective of coappearing words in a NIPS paper.

6 Discussion and related work

performance directional generated
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Figure 2: Bag-of-words for a 50 word document
sampled from the best k-SBN model trained on the
NIPS Proceedings dataset.

There have been several recent advances in ap-
proximate inference and learning techniques
from both a theoretical and empirical perspec-
tive. On the empirical side, the various black-
box techniques [23]] such as mini-batch up-
dates [[14], amortized inference [9] etc. are key
to scaling and generalizing variational inference
to a wide range of settings. Additionally, ad-
vancements in representational learning have
made it possible to specify and learn highly ex-
pressive directed latent variable models based
on neural networks, for e.g., [4} [10l [17, [19]
20, 124]]. Rather than taking a purely variational
or sampling-based approach, these techniques
stand out in combining the computational effi-
ciency of variational techniques with the gener-

alizability of Monte Carlo methods [25] 26].

On the theoretical end, there is a rich body of recent work in hash-based inference applied to
sampling [[11], variational inference [[15]], and hybrid inference techniques at the intersection of
the two paradigms [28]]. The techniques based on random projections have not only lead to better
algorithms but more importantly, they come with strong theoretical guarantees [5} |6} [7].

In this work, we attempt to bridge the gap between theory and practice by employing hash-based
inference techniques to the learning of latent variable models. We introduced a novel bound on the
marginal log-likelihood of directed latent variable models with discrete latent units. Our analysis
extends the theory of random projections for inference previously done in the context of discrete,
fully-observed log-linear undirected models to the general setting of both learning and inference in
directed latent variable models with discrete latent units while the observed data can be discrete or
continuous. Our approach combines a traditional variational approximation with random projections
to get provable accuracy guarantees and can be used to improve the quality of traditional ELBOs
such as the ones obtained using a mean-field approximation.

The power of black-box techniques lies in their wide applicability, and in the second half of the paper,
we close the loop by developing VB-MCS, an algorithm that incorporates the theoretical underpinnings
of random projections into belief networks that have shown tremendous promise for generative
modeling. We demonstrate an application of this idea to sigmoid belief networks, which can also
be interpreted as probabilistic autoencoders. VB-MCS simultaneously learns the parameters of the
(generative) model and the variational parameters (subject to random projections) used to approximate
the intractable posterior. Our approach can still leverage backpropagation to efficiently compute
gradients of the relevant quantities. The resulting algorithm is scalable and the use of random
projections significantly improves the quality of the results on benchmark data sets in both vision and
language domains.

Future work will involve devising random projection schemes for latent variable models with continu-
ous latent units and other variational families beyond mean-field [24]. On the empirical side, it would
be interesting to investigate potential performance gains by employing complementary heuristics
such as variance reduction [19] and data augmentation [§]] in conjunction with random projections.
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