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Abstract

An efficient, fully automatic method for 3D face shape

and pose estimation in unconstrained 2D imagery is pre-

sented. The proposed method jointly estimates a dense set

of 3D landmarks and facial geometry using a single pass of

a modified version of the popular “U-Net” neural network

architecture. Additionally, we propose a method for directly

estimating a set of 3D Morphable Model (3DMM) param-

eters, using the estimated 3D landmarks and geometry as

constraints in a simple linear system. Qualitative model-

ing results are presented, as well as quantitative evaluation

of predicted 3D face landmarks in unconstrained video se-

quences.

1. Introduction

Automatic estimation of 3D face shape and pose “in

the wild” has many practical applications, including perfor-

mance capture, biometrics, and advanced image process-

ing (e.g. change of expression, lighting, or pose). In order

to solve the problem without assuming any prior informa-

tion about the imaging device or head pose, existing ap-

proaches typically involve an optimization approach where

camera, pose, and face shape parameters are iteratively re-

fined from a rough initial estimate. In contrast to existing

approaches, the proposed modeling pipeline directly esti-

mates dense 3D facial geometry from an input image us-

ing an encoder/decoder-style convolutional neural network

(CNN). While dense 3D geometry is itself useful for some

applications, it is often useful to have a parameterized 3D

model describing the full facial geometry, including that

which is not visible in the input image. Given a 3D Mor-

phable Model (3DMM) [1, 3] constructed from a set of

training subjects, a straightforward method for estimating

the coefficients using the estimated 3D geometry is pre-

sented.

The remainder of the paper is laid out as follows. A se-

lection of prior relevant work is presented in Section 2. The

details of the proposed 3D Modeling approach are described

Figure 1: Overview of the proposed 3D facial modeling

pipeline. From left to right: From the input image, a trained

CNN predicts a PNCC (dense facial landmarks) and 3D off-

set image, which fully specify a 3D point cloud. Alterna-

tively, coefficients of a 3DMM may be estimated using the

predicted 3D geometry as constraints.

in Section 3. Using results of the proposed approach, a

method for estimating anatomical facial landmarks is de-

scribed in Section 4, and quantitative results are presented.

Finally, the paper is concluded in Section 5.

1.1. Contributions

The contributions of this work are:

• A direct image-to-3D estimation system based on a

multi-output Convolutional Neural Network.

• An efficient camera model and facial structure estima-

tion algorithm based on the result of the direct image-

to-3D estimation.

• A method for robust 2D and 3D landmark localization

using the estimated model.
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2. Related work

Many approaches to “in the wild” 3D face modeling

leverage a parameterized model of 3D face geometry and

optimize the parameter values based on 2D image-level

constraints. By far the most popular such model is the 3D

Morphable Model (3DMM) of Blanz and Vetter [1]. The

3DMM represents deviations from a canonical “mean face”

geometry and appearance using a linear model based on

principal components analysis (PCA) of 200 3D face scans.

Recently, Booth et al. [3] released a larger scale 3DMM

based on 10,000 face scans with improved ethnic and age

diversity.

The originally proposed approach to 3DMM coefficient

estimation [1] relied on a non-linear optimization based on

minimizing the differences between predicted and observed

image intensities. Because of this, the method required

careful initialization and was computationally expensive to

optimize. More recent optimization approaches [16, 4] rely

on sparse 2D landmarks, which can be computed efficiently

and robustly [5]. Because the detected landmarks are in-

herently 2D, however, these methods must account for oc-

clusion and pose effects by incorporating an iterative opti-

mization that alternates between updating camera, pose and

geometry parameters.

In order to avoid the problem of viewpoint-dependent

2D landmarks, Zhu et al. [15] introduced the projected nor-

malized coordinate code (PNCC), which acts as a fully-3D

set of dense facial landmarks. They leverage the PNCC as

an intermediate output in a cascade of convolutional neu-

ral networks, each of which produce updates to the current

3DMM coefficient estimates given the input image and a

predicted PNCC, which is rendered using the current coef-

ficient estimates at each stage. The proposed method also

leverages the idea of the PNCC image, but directly esti-

mates the PNCC (in conjunction with an image of dense

3D offsets) using a single network given only the original

image as input. 3DMM coefficients are then fit (if desired)

directly to the predicted 3D output.

By making some simplifying assumptions about the re-

flectance properties of the face, it is possible to estimate

fine-scaled 3D facial geometry using shape from shading

(SfS) constraints. Although recent approaches [6, 12, 13]

have shown applicability in “real-world” scenarios, we

avoid making assumptions about lighting, imaging, and re-

flectance conditions with the aim of producing as robust a

system as is possible.

3. 3D Facial Modeling

The proposed facial modeling pipeline is composed of

two stages: Direct 3D shape estimation, and 3DMM co-

efficient estimation. Direct 3D shape estimation is ac-

complished through a convolutional neural network (CNN)

trained to predict two output images: A dense landmark im-

age, and dense set of 3D offsets from a canonical “mean

face” baseline shape. Given these two images, a camera

model is estimated using 2D to 3D correspondences, and a

set of 3DMM coefficients are solved for via a single linear

system of equations.

3.1. The Pix2face Network

The pix2face network accepts a single standard RGB im-

age of a cropped face as input, and produces two 3D images

(a total of six 2D image planes) as output. The first output is

a dense landmark image, termed “projected normalized co-

ordinate code”, or PNCC, by Zhu et al. [15]. The PNCC im-

age represents the corresponding point on the “mean face”

for each pixel of the input image by its 3D coordinate. For

example, the pixel corresponding to the tip of the subject’s

nose should always map to a PNCC value equivalent to the

3D coordinate of the tip of the nose on the “mean face”. The

second output is a second set of 3D offsets from the mean

face, representing the deviation of the subject’s face geome-

try (including expression) from the “mean face” model. By

adding the PNCC values and the offset values correspond-

ing to a given input image, an estimated 3D point cloud is

produced. While it is feasible to train a network to directly

output the 3D coordinates, it is useful to have the PNCC

image and offsets as distinct entities for the purpose of reg-

istration (e.g. for computing a 3DMM as in Section 3.4).

3.1.1 Network architecture

We use a slightly modified “U-Net” [11] architecture for

the pix2face network. The U-Net architecture consists of a

symmetric encoder and decoder pair, with skip connections

between each pair of corresponding layers in the encoder

and decoder. The skip connections allow the decoder net-

work to leverage high-resolution information available in

the early layers of the encoder. Our implementation pro-

duces six planes of output values at identical resolution of

the input image and is trained using an L1 loss function

with respect to the ground truth PNCC and offset images.

In addition, we found that replacing the transposed convolu-

tion layers in the decoder with convolution plus upsampling

helped alleviate small “checker board” artifacts [10] in the

outputs.

3.2. Training

A major challenge in training the proposed network is

acquiring a sufficiently large set of (image, PNCC, offset)

image triplets to serve as ground truth. We leverage the

300W and 300W-LP datasets [15], which contain approx-

imately 126000 facial images and corresponding sets of

3DMM coefficients. The dataset is a mix of real images

drawn from various publically available databases, as well
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as a set of semi-synthetic renderings generated by Zhu et

al. [15] for the purpose of increased training set pose diver-

sity. Using the provided coefficients, we render PNCC and

offset images based on the camera model and face geometry

described by the coefficients.

3.2.1 Implementation Details

The network is then trained for a total of 60 epochs, with

each epoch consisting of 100000 images in total. Network

weights are updated using the Adam optimizer [9] with a

minibatch size of four images. The learning rate parame-

ter of Adam is initialized to 0.001, and decreases in each

epoch according to a fixed schedule to a minimum value of

approximately 2.1 × 10−5. The momentum decay rate pa-

rameters are kept fixed at values of 0.5 and 0.9, respectively.

In practice, we found that a minibatch size of 4 produced

models that generalized better than those that were trained

with larger minibatch sizes. The performance appeared to

be relatively stable with respect to learning rate.

In order to add variation to the training set and improve

generalization, two types of data jittering are performed “on

the fly” at training time: color and crop. Color jittering ran-

domly perturbs the image’s gamma value and color balance

to add appearance variation. Crop jittering randomly re-

sizes and crops the training images in order to add variation

to relative face placement.

3.3. Unconstrained 3D Shape Estimation

For each pixel i of the input image, the trained network

estimates the corresponding 3D location x̄i on the “mean

face” model, and the 3D offset qi, describing the difference

between the subject’s facial geometry and that of the mean

face at image location i. Adding x̄i and qi results in pixel i’s

corresponding 3D point xi. For pixels corresponding to the

background, the network outputs an (invalid) PNCC value

near 0, and those points in the output images are ignored

(shown as gray pixels in Figure 2).

The set {xi|i ∈ Ivalid} of estimated points for all valid

pixels Ivalid comprise a 3D point cloud corresponding to

the input image. Point clouds colored by the input RGB

color values are shown in Figure 2. Note that this is ac-

complished directly by the network, with no explicit under-

lying 3D shape model (e.g. 3DMM). In practice, however,

the network implicitly relies on the 3DMM shape model

due to the fact that our training data is generated using a

3DMM. This requirement could be relaxed if a sufficiently

large dataset of dense 3D ground truth was available to train

the network.

3.4. 3DMM Coefficient Estimation

Although the trained network produces an estimated 3D

point for every visible pixel in the input image, it is often

desirable to have a compact representation of the full 3D

face geometry, including occluded surfaces. For this pur-

pose, a perspective camera model and shape and expression

coefficients of a 3DMM are solved for, using the estimated

3D point locations as constraints.

3.4.1 Camera estimation

No information about the imaging device is assumed to be

known a priori, rather a camera model is computed using the

dense set of 2D to 3D correspondences provided by the net-

work. Initially, each such correspondence (there are |Ivalid|
in total) provides two constraints in a set of linear equations

describing a 3D to 2D affine projection matrix A:

p0xi = ui (1)

p1xi = vi

where p0 and p1 are the first and second rows, respec-

tively, of the affine projection matrix A, and pixel i is lo-

cated at image coordinates (u, v). While the affine projec-

tion model is a simplification of most “in the wild” imaging

conditions, it often suffices when the distance to the sub-

ject is very large relative to the depth variation present on

the face, and has the advantage that it is straightforward to

directly compute. When warranted, we relax the affine as-

sumption and estimate parameters of a standard “pinhole”

projective camera model, using the affine approximation to

inform the initial conditions. The projective camera model

is parameterized by the focal length f , rotation matrix R,

and 3D translation vector T . The camera is assumed to have

zero skew and a principal point at the image center. The pa-

rameters are initialized using a projective approximation to

A (i.e. f is initialized to a fixed, very large value). The pa-

rameters are then optimized using the Levenberg-Marquardt

optimization algorithm to minimize projection errors of the

2D to 3D correspondences. The initial estimates derived

from the affine projection matrix A are typically close to

optimal, ensuring that the optimization remains stable and

converges quickly.

In practice, only a small subset of the |Ivalid| correspon-

dences are needed to reliably estimate camera parameters,

making both the computation of A and optimization of f ,

R, and T significantly faster to compute.

3.4.2 Shape and Expression estimation

The facial geometry is represented using a 3DMM, which

uses principal components analysis (PCA) to represent vari-

ations of facial geometry from the “mean face” model. The

topology of the “mean face” mesh is assumed to be fixed,

and the geometry is represented by the set of 3D mesh ver-

tex positions X . Given a set of shape and expression PCA
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Figure 2: Qualitative results of the proposed 3D modeling pipeline on images from the VGG-Face dataset, which was not

used for training. From left to right: The input image is used to predict the PNCC and Offset images. PNCC and offset

(x, y, z) values are shown encoded as R,G,B. By adding the PNCC and offsets, an aligned 3D point cloud is produced.

Vertices of a 3DMM mesh are localized using the PNCC image (every 10th vertex shown for visualization purposes), and the

corresponding 3D offsets are used to estimate the 3DMM geometry parameters, shown overlaid on top of the original image.
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coefficients (α and β, respectively), the shape and expres-

sion PCA component matrices (A and B, respectively), and

the “mean face” vertex locations X̄ , X is computed as fol-

lows.

X = X̄ + αA+ βB (2)

In order to estimate the PCA coefficient vectors α and β

from the predicted dense PNCC and offset images, a set of

constraints on the mesh vertex positions must be extracted.

Each mesh vertex j is localized to pixel coordinate (uj , vj)
by searching for the nearest PNCC pixel value PNCCu,v to

the corresponding “mean face” vetex location x̄j .

(uj , vj) = argmin
u,v

‖PNCCu,v − x̄j‖
2 (3)

Figure 3: Mesh vertex localization: The PNCC (x, y, z)
pixel value best matching the coordinates of a given “mean

face” mesh vertex are identified.

The corresponding offset pixel value sj = offsetu,v is

then added as a constraint to a linear system used to solve

for α and β consisting of all M such constraints. In general,

M will be significantly less than the total number of vertices

since not all vertices are visible in any given image.











aj0 bj0
aj1 bj1

...
...

ajM bjM











[

α

β

]

=











sj0
sj1
...

sjM











(4)

The per-vertex PCA component sub-matrices aj and bj
are generated by extracting rows 3j, 3j+1, and 3j+2 (cor-

responding to x, y, and z vertex coordinates) from A and B,

respectively. Tikhonov regularization using the PCA coeffi-

cient standard deviation values as weights is used to ensure

the stability of the resulting PCA coefficient estimates.

If N images are available of a single subject, Equation 4

can easily be adapted to solve for a single set of shape co-

efficients and an independent set of per-image expression

coefficients βn as follows in Equation 5. For clarity, the

individual PCA component sub-matrices aj and bj belong-

ing to the nth image are concatenated into per-image block

matrices Ān and B̄n, respectively. Likewise, the 3D vertex

offsets sj extracted from image n are concatenated into S̄n.
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Formulating the multi-image shape and expression esti-

mation problem as a single joint optimization enforces the

restriction that variation in face geometry can arise only

from expression changes. It also allows constraints from

multiple viewpoints to be considered, potentially resolving

ambiguities present when only a single view is available.

4. Landmark Localization

One useful application of the estimated 3D models is

the localization of sparse anatomical landmarks on facial

images. We propose a simple, robust approach in which

each desired landmark is associated with one of the approx-

imately 50,000 mesh vertices of the 3DMM face model.

Each landmark is treated independently, and the optimal

vertex is found as follows. For each frame of a training

set containing ground truth landmark locations, parameters

of a 3DMM are estimated as described in Section 3.4. Each

mesh vertex is then projected into each image using the es-

timated camera parameters, and the vertex that minimizes

the average reprojection error across all frames of the train-

ing set is selected. At test time, the 3DMM parameters are

estimated for an input image, and the predicted 3D mesh

vertex positions are simply projected into the image using

the estimated camera model. Incorporating the 3DMM al-

lows the positions of both visible and occluded landmarks

to be predicted accurately.

4.1. 3D Face Tracking Challenge

As part of the 1st 3D Face Tracking in-the-wild Compe-

tition [14], the proposed method was used to estimate sparse

landmarks on 30 short video clips. This was accomplished

using face detection, 3D model estimation, landmark inter-

polation, and finally smoothing.

For each image, a face bounding box is estimated using a

max-margin object detector [8] as implemented in the pub-

licly available dlib [7] computer vision and machine learn-

ing library. When multiple faces are detected, the bounding

box locations before and after the frame are used to deter-

mine the correct location of the subject. When the detector

fails to locate any faces a bounding box is linearly inter-

polated from the two bounding boxes temporally adjacent

to the frame. The video frames are cropped according to

the face bounding boxes and input to the pix2face network,
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Figure 4: Representative results on individual frames from the ibug challenge test set, which contains large variations in pose,

lighting, and occlusion.

producing PNCC and 3D offset images which are then used

to estimate the face shape and camera parameters. The 3D

position of each landmark vertex is recorded, and the 2D

position is obtained by projection using the estimated cam-

era model. The 2D landmark locations are smoothed using

a moving average over three frames, which shows slight ac-

curacy improvement on training data.

Representative results from the challenge set are shown

in Figure 4, and quantitative results on the test set are pre-

sented in Figure 5. The graph 5a reported the mean point to

point error of 2d landmarks in the image. Error is measured

in pixels then normalized by the interocular distance. The

graph 5b reports the distance, measured in 3D, between es-

timated landmark positions and those provided by the chal-

lenge organizers.

5. Conclusion

As shown in Figures 4 and 5, the proposed 3D face mod-

eling pipeline is capable of operating fully-automatically in

a wide range of challenging “in the wild” conditions. The

proposed network directly estimates registered, dense, 3D

face geometry, unconstrained by any parameterized models.

Future work involves further capitalizing on this capability

by introducing training data which itself is not constrained

by any parameterized 3D model such as registered 3D facial

scans. Additionally, a simple method for estimating 3DMM

coefficients given the unconstrained 3D geometry estimates

is presented. Unlike existing approaches, the shape coeffi-

cients are solved for directly, and do not require iterative re-

finement. Future work involves leveraging a 3DMM trained

with more ethnic and age diversity such as that presented

by Booth et al. [3]. Finally, a simple extension to the shape

estimation pipeline allowing 3D and 2D anatomical facial

landmarks to be estimated is presented. Evaluation of the

proposed landmark prediction pipeline on the 2017 Facial

Landmark Tracking Challenge are presented.
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(a) Mean difference in 2d landmark locations normal-

ized by interocular distance in pixels.
(b) Mean difference in 3d landmark locations.

Figure 5: Face tracking results using the proposed method, as evaluated by the “3D Face Tracking in-the-wild Competi-

tion” [14] organizers.
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