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PAPER

An Effective Feature Selection Scheme for Android ICC-Based
Malware Detection Using the Gap of the Appearance Ratio

Kyohei OSUGE†a), Hiroya KATO†b), Shuichiro HARUTA†c), Student Members, and Iwao SASASE†d), Fellow

SUMMARY Android malwares are rapidly becoming a potential threat
to users. Among several Android malware detection schemes, the scheme
using Inter-Component Communication (ICC) is gathering attention. That
scheme extracts numerous ICC-related features to detect malwares by ma-
chine learning. In order to mitigate the degradation of detection perfor-
mance caused by redundant features, Correlation-based Feature Selection
(CFS) is applied to feature before machine learning. CFS selects useful fea-
tures for detection in accordance with the theory that a good feature subset
has little correlation with mutual features. However, CFS may remove use-
ful ICC-related features because of strong correlation between them. In this
paper, we propose an effective feature selection scheme for Android ICC-
based malware detection using the gap of the appearance ratio. We argue
that the features frequently appearing in either benign apps or malwares are
useful for malware detection, even if they are strongly correlated with each
other. To select useful features based on our argument, we introduce the
proportion of the appearance ratio of a feature between benign apps and
malwares. Since the proportion can represent whether a feature frequently
appears in either benign apps or malwares, this metric is useful for feature
selection based on our argument. Unfortunately, the proportion is ineffec-
tive when a feature appears only once in all apps. Thus, we also introduce
the difference of the appearance ratio of a feature between benign apps and
malwares. Since the difference simply represents the gap of the appearance
ratio, we can select useful features by using this metric when such a sit-
uation occurs. By computer simulation with real dataset, we demonstrate
our scheme improves detection accuracy by selecting the useful features
discarded in the previous scheme.
key words: android, malware detection, ICC, feature selection

1. Introduction

Smartphones have been widely used in people’s daily life,
such as online banking, automated home control, and en-
tertainment. Due to the mobility and ever expanding capa-
bilities, the use of smartphones has experienced an expo-
nential growth rate in recent years. In the first quarter of
2017, Android accounted for 85.0% of the market share of
smartphones [1]. Android is an open source, and there exist
many third-party Android markets (e.g. Baidu, Opera Mo-
bile Store, or Anzhi). Because of these situations, it has
been increasingly targeted by attacker, and 97% of mobile
malwares is developed for Android [2]. A recent security
report shows that on average, 38,000 new mobile malware
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samples were captured per day during the third quarter of
2016 [3]. Hence, the detection of Android malwares is im-
perative.

In order to deal with this issue, several Android mal-
ware detection schemes have been proposed [4]–[6]. They
are classified into required resources based approaches [4],
[5] and Inter-Component Communication (ICC) based ap-
proach [6]. Enck et al. [4] propose an approach based on
permissions required by Android apps. They leverage the
fact that malwares tend to register specific combinations
of permissions. However, that scheme is not applicable to
repackaged apps. Since the required permissions of repack-
aged apps are similar to the original ones, repackaged apps
can evade that scheme. In order to detect such malwares,
Deshotels et al. [5] propose DroidLegacy which focuses on
API calls. They leverage the fact that malwares abuse sensi-
tive API call to conduct malicious operations. That scheme
captures the communications between apps and Android
system based on API calls of apps. However, since that
scheme is designed to detect malwares exploiting sensi-
tive API calls, malwares can bypass that scheme by con-
spiring with another app to conduct malicious operations
without using API calls. In order to address such a sit-
uation, Xu et al. [6] leverage the fact that there exists the
difference in ICC patterns between benign apps and mal-
wares. While ICC is mainly utilized for internal commu-
nications within the same apps, malwares tend to commu-
nicate with other apps via ICC to conduct malicious opera-
tions. Thus, that scheme can detect malwares which invali-
date required resources-based schemes by focusing on ICC.
Although various Android malware detection scheme have
been proposed, we pay attention to [6], because the mal-
wares abusing ICC to conspire with another app is rapidly
increasing.

In [6], numerous ICC-related features are extracted
from apps to detect malwares by machine learning. In order
to mitigate the degradation of detection performance caused
by irrelevant and redundant features, that scheme applies
a well-known feature selection method, Correlation-based
Feature Selection (CFS) [7] to feature before machine learn-
ing. CFS is based on the theory that a good feature subset
constitutes features highly correlated with the class (benign
or malicious) in machine learning, yet has little correlation
with mutual features in a feature subset. However, CFS may
remove useful features for detection in accordance with the
theory. This is because there exist the features strongly cor-
related with each other in the useful ICC-related features.
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Thus, there is the possibility that the detection performance
is degraded due to excessive removal of features.

In this paper, we propose an effective feature selection
scheme for Android ICC-based malware detection using the
gap of the appearance ratio. We argue that the features fre-
quently appearing in either benign apps or malwares are use-
ful for malware detection, even if they are strongly corre-
lated with each other. In order to distinguish useful features
from unuseful ones on the basis of our argument, we in-
troduce the proportion of the appearance ratio of a feature
between benign apps and malwares. Since the proportion
can represent whether a feature frequently appears in either
benign apps or malwares, this metric is useful for feature
selection based on our argument. Unfortunately, the propor-
tion is ineffective when a feature appears only once in all
apps. Thus, we also introduce the difference of the appear-
ance ratio of a feature between benign apps and malwares.
Since the difference simply represents the gap of the appear-
ance ratio, we can select useful features by using this metric
when such a situation occurs. Since these two metrics are
the useful ones reflecting our argument, we can select the
useful features discarded by the previous scheme. The con-
tributions of this paper are as follows:

1. We propose the feature selection technique which is
suitable for Android ICC-related features. Our scheme
can select useful features on the basis of our argument
that the features frequently appearing in either benign
apps or malwares are useful for malware detection.

2. Our evaluation results show that our scheme achieves
higher detection accuracy than the previous scheme.
Furthermore, after investigating the selected features,
we discover the useful ones removed by the previous
scheme.

The rest of this paper is constructed as follows: we
introduce related works in Sect. 2. We explain the back-
ground techniques, the previous scheme and its shortcom-
ing in Sect. 3. The proposed scheme is described in Sect. 4.
Simulation results are shown in Sect. 5. We conclude this
paper and mention future works in Sect. 6.

2. Related Work

There are many Android malware detection schemes, which
are roughly divided into “Required resources based scheme”
and “ICC based scheme”. The representative schemes are
explained in the following Sections.

2.1 Required Resources Based Detection

Enck et al. [4] propose the scheme which detects malwares
by focusing on the permissions required by the Android
apps. That scheme pays attention to the fact that malwares
tend to register specific combinations of permissions. Mal-
wares can be detected by matching required permissions
against pre-defined security rules. However, that scheme
is not applicable to repackaged apps. Since a repackaged

app is created by injecting malicious components into an
original benign app, the required permissions are similar
to the original ones. Hence, repackaged apps can evade
that scheme. In order to detect repackaged apps, Deshotels
et al. [5] propose the scheme relying on API calls to detect
malwares. That scheme focuses on that malwares abuse sen-
sitive API call to conduct malicious operations. Repackaged
malwares are classified in accordance with matching An-
droid API calls against the signatures that identify malwares
produced by repackaging. That scheme captures the com-
munications between apps and Android system based on
API calls of apps. However, since that scheme is designed
to detect malwares exploiting sensitive API calls, malwares
can bypass that scheme by conspiring with another app to
conduct malicious operations without using API calls. This
is why it is necessary to design the schemes which rely on
other features.

2.2 ICC Based Detection

Xu et al. [6] propose the scheme which builds malware de-
tection models based on ICC-related features. That scheme
is the only scheme that defines the ICC-related features and
detects malwares on the basis of them. The main idea of
that scheme is that there exists the difference in ICC pat-
terns between benign apps and malwares. While ICC is
mainly utilized for internal communications within the same
apps, malwares tend to communicate with other apps via
ICC to conduct malicious operations. That scheme extracts
the ICC-related features that is likely to be abused, and
machine learning is performed to distinguish benign apps
from malwares. Because Android applications communi-
cate with each other through the ICC mechanism provided
by Android, that scheme can detect the malwares which in-
validate most existing required resources based detection
schemes by leveraging the ICC mechanism instead of re-
quired resources. Although various Android malware de-
tection schemes have been proposed, we pay attention to [6],
because the malwares abusing ICC is rapidly increasing. We
elaborate that scheme in the next Section.

3. Background Techniques and Previous Scheme

3.1 Background Techniques

In the previous scheme, EPICC [8] is employed for extract-
ing ICC-related features. Table 1 shows the ICC categories
and the patterns used in the previous scheme. Component is
a function defined by the developer and is divided into four
types, Activity, Service, Broadcast Receiver, and Content
Provider. Activity provides all visible actions. Service can
perform long-running operations in the background. Broad-
cast Receiver receives information from multiple apps. Con-
tent Provider manages access to a database. Intent is a mech-
anism that allows apps to interact within the same app or
communicate with other apps by sending it to a certain app’s
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Component or Android system. The difference between Ex-
plicit and Implicit Intent is whether the destination app of
the intent is specific or not. Intent Filter is used to match
with Implicit Intent in Android system.

3.2 Overview of the Previous Scheme

The main idea of the previous scheme is that there exists the
difference in ICC patterns between benign apps and mal-
wares. In general, benign apps mainly use ICC for inter-
nal communications within the same app. On the other
hand, malwares tend to interact with other apps via the ICC
mechanism in order to conduct malicious operations. That
scheme extracts numerous ICC-related features from apps
to detect malwares by machine learning. The extracted fea-
tures are divided into three types. The first one is the num-
ber of each pattern appearing in an app. The second one
is the number of each function appearing in an app. The
third one is the number of each destination app of Exter-
nal Explicit Intent appearing in an app. Basically, an ICC
pattern indicates a function defined by the developer or An-
droid system. Exceptionally, one means a package name of
a destination app of External Explicit Intent when Explicit
Intent is sent to another app.

In order to mitigate the degradation of detection per-
formance caused by irrelevant and redundant features, that
scheme applies a well-known feature selection method,
CFS [7] to feature before machine learning. CFS is based on
the theory that a good feature subset contains features highly
correlated with the class (benign or malicious) in machine
learning, yet has little correlation with mutual features in a
feature subset. CFS expresses correlations as a numerical
value and selects a good feature subset in accordance with
the theory. Finally, that scheme makes the feature vectors
based on the selected features for machine learning. The
feature vectors are fed into classifier such as SVM [9] and it
detects malwares.

3.3 Shortcoming of the Previous Scheme

In CFS’s theory, the features strongly correlated with
each other are removed. Thus, there is the possibil-
ity that CFS removes not only redundant features but
also ones which are useful for distinguishing malwares

Table 1 ICC categories obtained in the previous scheme

ICC categories ICC patterns

Component
Activity, Service, Broadcast Receiver(static),
Broadcast Receiver(dynamic), Content Provider

Explicit Intent All Explicit Intent, External Explicit Intent

Implicit Intent
All Implicit Intent, Internal Implicit Intent,
External Implicit Intent(userdefined action),
External Implicit Intent(system action)

Intent Filter

All Intent Filter, Intent Filter(for activity),
Intent Filter(for service),
Intent Filter(for receier static),
Intent Filter(for receiver dynamic)

from benign apps. This is because there exist the fea-
tures strongly correlated with each other in the useful
ICC-related features. For instance, the number of Exter-
nal Explicit Intent and the number of the destination app
named com.android.browser(external explicit intent) (here-
inafter, this is called “browser Intent”) are both useful for
detection. This is because the malwares that are not permit-
ted to browse web tend to send browser Intent to external
apps in order to manipulate a browser app. By doing this, the
malwares can supplant the Android’s standard web browser
and obtain personal information. In this case, the number
of External Explicit Intent is necessarily a non-zero value if
browser Intent appears in the app. Therefore, the number
of External Explicit Intent is strongly correlated in terms of
the presence of browser Intent in an app. Accordingly, al-
though the number of browser Intent is useful feature, CFS
removes it because of strong correlation between above fea-
tures, and the detection performance is degraded.

4. Proposed Scheme

4.1 Idea

We argue that since the useful features should be used for
malware detection even if they are strongly correlated with
each other, CFS is not appropriate for Android ICC-related
features. Thus, in this paper, we propose an effective feature
selection scheme for Android ICC-based malware detection
using the gap of the appearance ratio. Our scheme focuses
on the fact that the features frequently appearing in either
benign apps or malwares are useful for malware detection,
even if they are strongly correlated with each other. Fig-
ure 1 shows useful features and unuseful ones for detection
in our scheme. As shown in Fig. 1, we intuitively under-
stand that feature 2 is a useful feature because it frequently
appears only in malicious apps. Thus, this feature should be
utilized for malware detection. On the other hand, feature 1
is a redundant feature because there is no difference of the
appearance ratio between benign apps and malwares. There
are a very large number of features such as feature 1 ap-

Fig. 1 Useful features and unuseful ones in our scheme
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pearing only in a few apps because Android provides a wide
variety of functions. Since such features do not introduce
useful evidence in the malware detection, they should not
be used for training of machine learning. Thus, we exclude
them to improve detection accuracy.

In order to distinguish useful features from unuseful
ones according to our argument that useful features fre-
quently appear in either benign apps or malwares, we need
the metric that can be used to compare the appearance ra-
tio of a feature in benign apps with that in malwares. To
select useful features based on our argument, we introduce
the proportion of the appearance ratio of a feature between
benign apps and malwares. Since the proportion can rep-
resent whether a feature frequently appears in either benign
apps or malwares, this metric is useful for feature selection
based on our argument. In order not to divide a numerical
value by 0, the proportion is defined as the minimum value
of the appearance ratio of a feature in benign apps and that
in malwares by the maximum value of them. Therefore, the
proportion indicates a value from 0 to 1. Because of this def-
inition, it is assumed that the smaller the proportion is, the
larger the gap of the appearance ratio of a feature between
benign apps and malwares is. Thus, a feature showing a
small proportion is useful for detecting malwares. However,
the proportion does not function as the proper metric when
the value of it is 0. For instance, we consider the case where
the feature fA appears only once in all apps. In this case, fA

seems to be unuseful since it is probably a function defined
by the developer. However, fA is regarded as a useful feature
by the proportion in spite of unusefulness of it. In order to
address such a situation, we also introduce the difference of
the appearance ratio of a feature between benign apps and
malwares. We define the difference as the absolute value of
subtraction of the appearance ratio in benign apps and that
in malwares. Since the difference simply represents the gap
of the appearance ratio, we can select useful features by us-
ing this when the proportion equals 0. These new metrics
can be the useful ones reflecting our argument.

The proportion of the appearance ratio of a feature be-
tween benign apps and malwares and the difference of that is
necessary to be markedly represented in order to select use-
ful features reliably. Therefore, decision content is utilized
to realize that. Let P( f ) denote a probability that a feature f
does not appear in the training dataset, then decision content
E( f ) is given as follows:

E( f ) = −log2P( f ). (1)

As shown in Fig. 2, the value of E( f ) increases acceler-
atively as the value of P( f ) decreases. We calculate the
benign app’s decision content E( f )benign and the malicious
app’s decision content E( f )malicious, respectively and com-
pare E( f )benign with E( f )malicious to select useful features.
The algorithm of comparison is explained in the next Sec-
tion. Finally, we utilize only the features selected by our
scheme for training of machine learning.

Fig. 2 Probability P( f ) versus decision content E( f )

Fig. 3 Flowchart of our scheme

4.2 Algorithm

Figure 3 shows the flowchart of our scheme. First, we cal-
culate E( f )benign and E( f )malicious of a feature f . Here, we
define the value set of benign training dataset and that of ma-
licious one in f as Bf and Mf , respectively. Note that P( f ) in
Eq. (1) indicates a probability that f does not appear in the
training dataset in our scheme. Let B0

f ⊆ Bf and M0
f ⊆ Mf
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denote the zero-value set in Bf and that in Mf , respectively.
E( f )benign and E( f )malicious are calculated as follows:

E( f )benign = −log2

n(B0
f )

n(Bf )
, (2)

E( f )malicious = −log2

n(M0
f )

n(Mf )
, (3)

where n(set) means the number of elements in set.
As mentioned in Sect. 4.1, our scheme introduces not

only the proportion of the appearance ratio of a feature be-
tween benign apps and malwares but also the difference of
that. The proportion E( f )proportion is determined as follows:

E( f )proportion =
min(E( f )benign, E( f )malicious)

max(E( f )benign, E( f )malicious)
. (4)

A feature f showing small E( f )proportion is a useful feature
for detecting malwares. In our scheme, a feature f that indi-
cates a smaller E( f )proportion than the threshold Tproportion is
leveraged for machine learning.

E( f )di f f erence is defined as follows:

E( f )di f f erence = |E( f )benign − E( f )malicious|. (5)

A feature f indicating large E( f )di f f erence is a useful feature
for distinguishing benign apps from malwares. Therefore,
we utilize a feature f that shows a larger E( f )di f f erence than
the threshold Tdi f f erence for detection when E( f )proportion

equals 0. In our scheme, Tproportion and Tdi f f erence are de-
termined by some experiments in Sect. 5.2.

We perform above procedure for all features. Utilizing
both E( f )proportion and E( f )di f f erence, we realize feature se-
lection technique which is suitable for detecting malwares
using ICC.

5. Evaluation

In order to show the effectiveness of our scheme, we evalu-
ate Accuracy, True Positive Rate (TPR), and False Positive
Rate (FPR) calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
, (6)

TPR =
TP

TP + FN
, (7)

FPR =
FP

FP + TN
, (8)

where TP, TN, FP, and FN denote the number of True Pos-
itive (malwares are regarded as malwares), True Negative
(benign apps are regarded as benign ones), False Positive
(benign apps are regarded as malwares), and False Negative
(malwares are regarded as benign apps), respectively.

5.1 Simulation Parameters

Table 2 shows our simulation parameters. As the benign

Table 2 Simulation parameter

Name Data

Benign apps Androzoo [10]
Malicious apps Drebin [11]

The number of benign apps 3,152
The number of malicous apps 1,448

Classifier SVM [9]
Validation ten-fold cross validation [12]

Simulation tool Python

android apps dataset, we use Androzoo dataset [10]. An-
drozoo collects more than five million apps from several
sources, including the official Google play app market. Each
of them has been analysed by VirulTotal [13], which is an
antivirus service with over 60 antivirus scanners. We ex-
tract the 3,152 apps for which no antivirus scanners raise
any alarm from Androzoo. As the malwares dataset, we use
Drebin dataset [11]. This malware set is one of the largest
datasets of Android malwares being publicly available to-
day. We randomly pick the 1,448 malwares from Drebin
dataset.

We compare the detection performance of our scheme
with that of the previous scheme [6]. The previous scheme
leverages a widely used two-class classification method,
Support Vector Machine (SVM) [9]. SVM is suitable for
processing multidimensional data like the feature vectors
and capable of producing a model efficiently. In order to
conduct fair comparison between our scheme and the pre-
vious scheme, our scheme also utilizes SVM. We conduct
a series of experiments using ten-fold cross validation [12]
to measure the performance of our scheme and the previous
scheme. This can confirm the validity of the analysis.

5.2 Decision of the Threshold

In order to decide thresholds, we record the detection ac-
curacy while changing Tproportion and Tdi f f erence in an appli-
cable range at an interval. The best thresholds depend on
the number of the datasets since our scheme has to calculate
the appearance ratio of a feature. Therefore, we heuristically
determine applicable ranges of thresholds by conducting ini-
tial experiments in which thresholds are roughly changed.
In the initial experiments with the dataset, we find out that
the best Tproportion and Tdi f f erence are roughly in the range
of 0.20 to 0.50 and 0.0010 to 0.0020 respectively. In or-
der to fully include the ranges, we determine the applicable
range of Tproportion and Tdi f f erence as 0.01 to 0.70 and 0.0001
to 0.0050 respectively. As mentioned above, since the best
thresholds depend on the dataset, detection accuracy is not
necessarily improved as we make intervals small. Thus, we
decide the interval of Tproportion and Tdi f f erence as 0.01 and
0.0001 for the inspection of thresholds not to take too long.
According to the range and the interval, we perform ma-
chine learning 70 × 50 times. Figure 4 shows the inspec-
tion result of Tproportion and Tdi f f erence. As we can see from
this figure, a high accuracy is obtained over a wide range.
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Fig. 4 Inspection result of Tproportion and Tdi f f erence

Table 3 Detection performance

Scheme TPR (%) FPR (%) Accuracy (%)

Our scheme 86.9 1.2 95.1
ICCDetector 81.9 4.0 91.6

Finally, we determine Tproportion and Tdi f f erence as 0.39 and
0.0012 that show the best accuracy in the experiment.

5.3 Detection Performance

Table 3 shows detection performance of our scheme and the
previous scheme [6]. As we can see from this table, the ac-
curacy of the previous scheme is up to 91.6%, while our
scheme achieves the accuracy of 95.1%, roughly 4% higher
than the previous scheme, with a higher TPR and a lower
FPR. This is because our scheme can select the useful fea-
tures discarded by the previous scheme. For instance, an-
droid.provider.Telephony.SIM FULL(for receiver static)
(hereinafter, this is called “telephony Intent Filter”) is uti-
lized for machine learning only in our scheme. Malwares
tend to register Intent Filter(for receiver static) to monitor
system events such as SMS-related information and down-
loading states. In particular, some malwares manipulate
telephony Intent Filter in order to observe SMS messages.
This is why there is a danger that such malwares steal SMS
messages and upload them to remote server. Hence, tele-
phony Intent Filter should be used as a feature for malware
detection. However, the previous scheme discards telephony
Intent Filter due to strong correlation between it and the
number of Intent Filter(for receiver static). On the other
hand, our scheme can select it as a useful feature by con-
sidering the gap of the appearance ratio of a feature between
benign apps and malwares. As a result, our scheme can im-
prove the detection accuracy.

5.4 False Negative and False Positive Analysis

Our scheme misses 189 malwares, and ICCDetector regards
262 malwares as benign apps. This is because there exist the

Fig. 5 Example of an Android malware barely using ICC

Android malwares barely using ICC mechanism. Figure 5
shows an example of an EPICC output from such malwares.
Both schemes can extract few ICC-related features from
these malwares. In general, malwares tend to register more
ICC than benign apps in order to conduct malicious oper-
ations via the ICC mechanism. However, since these mal-
wares utilize few ICC-related features, the schemes based on
ICC judge such malwares as benign apps. Instead of ICC,
these malwares simply abuse required resources such as per-
missions and sensitive API calls. Thus, a hybrid scheme can
address this shortcoming.

Our scheme labels 37 benign apps as malwares (i.e.,
false positives). In order to analyze these benign apps,
we resent them to VirusTotal. This is because the detec-
tion results of VirusTotal can be changed since it is updated
and corrected over time. After resending the 37 false pos-
itives, we discover that 9 apps, which had been extracted
from Androzoo in February 2018, received alarms from at
least one antivirus scanners in January 2019. Thus, our
scheme correctly labeled these 9 apps as malwares. In fact,
these malwares can be easily detected according to their
ICC-related features. For instance, there exist apps regis-
tering android.intent.action.BOOT COMPLETED(for re-
ceiver static) (hereinafter, this is called “boot Intent Filter”).
Malwares tend to register boot Intent Filter in order to ef-
fectively launch their malicious operations when the An-
droid system completes its booting process in which much
information is exchanged. Besides those 9 apps, we con-
sider the other 28 false positives. After manually analysing
them, we find out that they tend to register Intent Filters
(for receiver static). For example, there exist apps register-
ing android. provider.Telephony.SMS RECEIVED
(for receiver static) (hereinafter, this is called SMS Intent
Filter). SMS Intent Filter can be used to immediately con-
duct user authentication with SMS messages. However, reg-
istering it allows the app to monitor not only required SMS
messages but also irrelevant ones. Malwares tend to regis-
ter SMS Intent Filter in order to manipulate SMS messages.
Thus, these apps are potentially malicious since they can
conduct malicious operations. As a result, our scheme can
discover the 28 potentially malicious apps missed in Virus-
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Fig. 6 Top 10 features selected in both schemes and only in each one

Total by leveraging ICC-related features.

5.5 Selected Features Analysis

38,296 ICC-related features are extracted from 3,152 benign
apps and 1,448 malwares, and the dimension of feature vec-
tors equals (4600, 38296). From 38,296 features, 2,609 fea-
tures are selected by the proposed scheme, and the reduced
dimension of feature vectors equals (4600, 2609). From
38,296 features, 1,995 features are selected by the previ-
ous scheme, and the reduced dimension of feature vectors
equals (4600, 1995). 2,435 features are selected only in the
proposed scheme, and 1,821 features are only in the previ-
ous one. Only 174 features are selected by both scheme in
common. This is because how to select useful features in our
scheme is basically different from that in the previous one.
The previous scheme is based on the theory that a good fea-
ture subset contains features highly correlated with the class
(benign or malicious) in machine learning, yet has little cor-
relation with mutual features in a feature subset. On the
other hand, our scheme selects features frequently appear-
ing in either benign apps or malwares as useful ones for mal-
ware detection, even if they are strongly correlated with each

other. Furthermore, we investigate the top 10 important fea-
tures for detection in both schemes and only in each scheme
to analyze the representative ones. In order to find out
the top 10 important features, we utilize RandomForest [14]
which can express importances of features as numerical val-
ues. We make use of RandomForest to the features selected
in both schemes, only in the proposed scheme and only in
the previous one. Figure 6 shows the top 10 important fea-
tures for detection in both schemes and only in each one.
As we can see from the figure, the features selected in both
scheme are the most important to detect malwares. For in-
stance, android.intent.action.SIG STR(for receiver static)
(hereinafter, this is called signal Intent) is useful to distin-
guish malwares from benign apps. This is because mal-
wares tend to register signal Intent to receive broadcast in-
formation related to changes of signal strength and intercept
system events. These features result in that both schemes
achieve the accuracy of more than 90%. In the following,
we consider the difference of the selected features and their
characteristics.

After manually analyzing the top 10 features selected
only in the previous scheme, each of them is a feature ap-
pearing only once in all apps. These features are related to
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the class and irrelevant to the other features. In other words,
such a feature is correlated with the class, yet has no corre-
lation with mutual features. This is why CFS selected these
features. However, they are not useful to detect malwares
because each of them is the function defined by the devel-
oper and does not introduce useful evidence in the malware
detection. On the other hand, our scheme discards these
features by utilizing the difference of the appearance ratio
of a feature between benign apps and malwares. From the
above, we assume that our scheme can effectively discard
unuseful features selected in the previous one. Moreover,
as we can see from Fig. 6, the maximum importance of the
top 10 features selected only in CFS is less than 20% than
the minimum importance only in our scheme. This means
that the features selected only in CFS are much less useful
to detect malwares than our scheme. Hence, although there
exist 1,821 features selected only in CFS, our scheme does
not discard any useful features selected by CFS.

The top 10 features selected only in our scheme are
roughly categorized into two types. In Fig. 6, Broad-
cast Receiver(static), Service, All Intent Filter, and In-
tent Filter(for service) are classified into type A, and the
others are into type B. As an example of type A, the to-
tal number of Broadcast Receiver(static) (hereinafter, this
is simply called “Receiver”) is useful to distinguish be-
nign apps from malwares. This is because malwares tend
to register more Receivers than benign apps do. A lot
of Receivers enable malwares to monitor system events
such as network connectivity changes and battery changes.
Nevertheless, CFS removes Receiver due to strong cor-
relation with many functions related to Receiver. The
reason is that the presence of the total number of Re-
ceiver in a feature subset raises correlation with mutual
features in the feature subset. Furthermore, as an exam-
ple of type B, com.android.settings.APPLICATION DE-
VELOPMENT SETTINGS(external system action) (here-
inafter, this is called setting Intent) is useful to detect mal-
wares. This is because malwares tend to register setting
Intent in order to change the setting and conduct mali-
cious operations. However, CFS discards setting Intent be-
cause of strong correlation with the total number of Exter-
nal Implicit Intent(system action). There also exists the gap
of the appearance ratio between benign apps and malwares
in the others of type A and the others of type B. The above
results demonstrate that our scheme can select 2,435 useful
features such as type A and type B discarded in the previous
one.

5.6 Scope of Our Scheme

Our scheme can be applied to feature vectors which have
not only features frequently appearing in either benign apps
or malwares but also ones equally appearing in both classes
of apps. This is because our scheme can not only reduce
redundant features but also save useful features by decid-
ing appropriate thresholds. For instance, features appearing
only once in all apps are certainly removed by determin-

ing proper Tdi f f erence, and features frequently appearing in
either benign apps or malwares are selected by deciding ap-
propriate Tproportion and Tdi f f erence. As an example, we ap-
ply our scheme to features related to API calls. We extract
API calls from the dataset by using androguard [15], which
can extract a package name, permissions, API calls and so
on from Android apk files. From 4593 apps except for 7
apps which cause errors in the running process of andro-
guard, 12,494 API calls are extracted. After applying our
scheme to features related to API calls, 3,538 features are
selected. Moreover, our scheme reduces 16 false positives
and 4 false negatives compared to the case where no feature
selection schemes are utilized. This is because our scheme
removes features appearing only once in all apps and selects
useful features frequently appearing in either benign apps or
malwares. The result demonstrates that our scheme can be
applied to feature vectors such as mentioned above. Note
that this paper focuses on ICC that is recently gathering at-
tention in the field of Android malware detection. Thus, we
apply our scheme to ICC-related features to deal with the
shortcoming of the previous one.

5.7 Runtime to Select Useful Features

We ran our experiments on a machine with 10 × 3.3GHz
Intel Core i9 7900X and 64GB of RAM, and measured the
runtime of both schemes. In each of ten rounds in our ex-
periments, SVM is trained with 4,140 apps (i.e., 90% of the
dataset), and tested with the rest 460 apps. Therefore, in or-
der to calculate the runtime to select useful features per an
app, we strike the average of the runtime in each round di-
vided by 4,140. Consequently, the runtime per an app in the
proposed scheme is 1.26 × 10−3 seconds, and that in CFS is
11.7 seconds. According to the results, the feature selection
process of the proposed scheme is about 9,000 times faster
than CFS. This is because CFS has to calculate not only the
correlation between features and the class but also mutual
features. On the other hand, in the proposed scheme, only
decision contents are computed by simple probability calcu-
lations to obtain the difference and the proportion. In other
words, the proposed scheme has only to calculate the corre-
lation between features and the class. From the above, the
proposed scheme can select useful features faster than CFS.

6. Conclusion

We have proposed an effective feature selection scheme
for Android ICC-based malware detection using the gap of
the appearance ratio. We focus on the fact that the fea-
tures which frequently appearing in either benign apps and
malwares are useful for malware detection, even if they
are strongly correlated with each other. By comparing the
appearance ratio of a feature in benign apps with that in
malwares, we can utilize the useful features discarded by
the previous scheme. By the computer simulation using
real dataset, we show our scheme achieves the accuracy of
95.1%, roughly 4% higher than the previous scheme. As
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future works, we will reconsider the decision of the thresh-
olds. In the current state, although it is necessary to decide
E( f )proportion and E( f )di f f erence by performing some experi-
ments, we consider that the automatic determination method
of the thresholds is needed to reduce calculation cost. Fur-
thermore, we plan more detailed evaluation about the valid-
ity for using decision content.
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