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Identity-based Remote Data Integrity Checking with
Perfect Data Privacy Preserving for Cloud Storage
Yong Yu, Man Ho Au∗, Giuseppe Ateniese, Xinyi Huang, Yuanshun Dai, Willy Susilo and Geyong Min

Abstract— Remote data integrity checking (RDIC) enables a
data storage server, such as a cloud server, to prove to a
verifier that it is actually storing a data owner’s data honestly.
To date, a number of RDIC protocols have been proposed in
the literature, but almost all the constructions suffer from the
issue of a complex key management, that is, they rely on the
expensive public key infrastructure (PKI), which might hinder
the deployment of RDIC in practice. In this paper, we propose
a new construction of identity-based (ID-based) RDIC protocol
by making use of key-homomorphic cryptographic primitive
to reduce the system complexity and the cost for establishing
and managing the public key authentication framework in PKI
based RDIC schemes. We formalize ID-based RDIC and its
security model including security against a malicious cloud server
and zero knowledge privacy against a third party verifier. We
then provide a concrete construction of ID-based RDIC scheme
which leaks no information of the stored files to the verifier
during the RDIC process. The new construction is proven secure
against the malicious server in the generic group model and
achieves zero knowledge privacy against a verifier. Extensive
security analysis and implementation results demonstrate that
the proposed new protocol is provably secure and practical in
the real-world applications.

Keywords: Cloud storage, data integrity, privacy preserving,
identity-based cryptography.

I. INTRODUCTION

Cloud computing [1], which has received considerable at-
tention from research communities in academia as well as
industry, is a distributed computation model over a large pool
of shared-virtualized computing resources, such as storage,
processing power, applications and services. Cloud users are
provisioned and de-provisioned recourses as they want in
cloud computing environment. This kind of new computing
represents a vision of providing computing services as public
utilities like water and electricity. Cloud computing brings
a number of advantages for cloud users. As examples, this
include the following issues: (1) Users can avoid capital
expenditure on hardware, software and services because they
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pay only for what they use; (2) Users can enjoy low man-
agement overhead and immediate access to a wide range of
applications; and (3) Users can access their data wherever they
are, rather than having to stay close to their computers.

However, there is a vast variety of barriers before cloud
computing can be widely deployed. A recent survey by Oracle
referred the data source from international data corporation
enterprise panel, showing that security represents 87% of
users’ cloud fears1. One of the major security concerns of
cloud users is the integrity of their outsourced files since
they no longer physically possess their data and thus lose
the control over their data. Moreover, the cloud server is not
fully trusted and it is not mandatory for the cloud server to
report data loss incidents. Indeed, to ascertain cloud computing
reliability, the cloud security alliance (CSA) published an
analysis of cloud vulnerability incidents. The investigation [2]
revealed that the incident of data Loss & Leakage accounted
for 25% of all incidents, ranked second only to ”Insecure
Interfaces & APIs”. Take Amazon’s cloud crash disaster as
an example2. In 2011, Amazon’s huge EC2 cloud services
crash permanently destroyed some data of cloud users. The
data loss was apparently small relative to the total data stored,
but anyone who runs a website can immediately understand
how terrifying a prospect any data loss is. Sometimes it is
insufficient to detect data corruption when accessing the data
because it might be too late to recover the corrupted data. As
a result, it is necessary for cloud users to frequently check if
their outsourced data are stored properly.

The size of the cloud data is huge, downloading the entire
file to check the integrity might be prohibitive in terms of
bandwidth cost, and hence, very impractical. Moreover, tradi-
tional cryptographic primitives for data integrity checking such
as hash functions, authorisation code (MAC) cannot apply
here directly due to being short of a copy of the original file
in verification. In conclusion, remote data integrity checking
for secure cloud storage is a highly desirable as well as a
challenging research topic.

Blum proposed an auditing issue for the first time that en-
ables data owners to verify the integrity of remote data without
explicit knowledge of the entire data [3]. Recently, remote
data integrity checking becomes more and more significant
due to the development of distributed storage systems and
online storage systems. Provable data possession (PDP) [4],
[5] at untrusted stores, introduced by Ateniese et al., is a novel
technique for “blockless validating” data integrity over remote

1IDC Enterprise Panel, 2010
2http://www.businessinsider.com/amazon-lost-data-2011-4
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servers. In PDP, the data owner generates some metadata for a
file, and then sends his data file together with the metadata to
a remote server and deletes the file from its local storage.
To generate a proof that the server stores the original file
correctly, the server computes a response to a challenge from
the verifier. The verifier can verify if the file keeps unchanged
via checking the correctness of the response. PDP is a practical
approach to checking the integrity of cloud data since it adopts
a spot-checking technique. Specifically, a file is divided into
blocks and a verifier only challenges a small set of randomly
chosen clocks for integrity checking. According to the example
given by Ateniese et al. [4], for a file with 10, 000 blocks,
if the server has deleted 1% of the blocks, then a verifier
can detect server’s misbehavior with probability greater than
99% by asking proof of possession for only 460 randomly
selected blocks. Ateniese et al. proposed two concrete PDP
constructions by making use of RSA-based homomorphic
linear authenticators. Due to its necessity and practicability,
remote data integrity checking has attracted extensive research
interest [7]–[10], [12]–[15], [17]–[20], [24], [25] in recent
years. Shacham and Waters [7] proposed the notion of compact
proofs of retrievability by making use of publicly verifiable
homomorphic authenticators from BLS signature [36]. This
scheme also relies on homomorphic properties to aggregate
a proof into a small authenticator value and as a result, the
public retrievability can be achieved.

Ateniese et al. [21] considered dynamic PDP scheme for
the first time based on hash functions and symmetric key
encryptions, which means the data owner can dynamically
update their file after they store their data on the cloud server.
The dynamics operation involves data insertion, modification,
deletion and appending. This scheme [21] is efficient but has
only limited number of queries and block insertion cannot
explicitly be supported. Erway et al. [23] extended the PDP
model to dynamic PDP model by utilizing rank-based au-
thenticated skip lists. Wang et al. [15] improved the previous
PDP models by manipulating the Merkle Hash Tree (MHT)
for block tag authentication. A recent work due to Liu et al.
[24] showed that MHT itself is not enough to verify the block
indices, which may lead to replace attack. They gave top-
down levelled multi-replica MHT based data auditing scheme
for dynamic big data storage on the cloud.

In data integrity checking with public verifiability, an ex-
ternal auditor (or anyone) is able to verify the integrity of
the cloud data. In this scenario, data privacy against the third
party verifier is highly essential since the cloud users may
store confidential or sensitive files say business contracts or
medical records to the cloud. However, this issue has not been
fully investigated. The “privacy” definition in the previous
privacy-preserving public auditing scheme [13] requires that
the verifier cannot recover the whole blocks from the responses
generated by the cloud server. However, this definition is
not strong enough, for example, it is vulnerable to dictio-
nary attack. Wang et al. [25] proposed the notion of “zero-
knowledge public auditing” to resist off-line guessing attack.
However, a formal security model is not provided in this work.
Yu et al. [26] recently enhanced the privacy of remote data
integrity checking protocols for secure cloud storage, but their

model works only in public key infrastructure (PKI) based
scenario instead of the identity-based framework. Encrypting
the file before outsourcing can partially address the data
privacy issue but leads to losing the flexibility of the protocols,
since privacy preserving RDIC protocols can be used as a
building block for other primitives. For example, Ateniese et
al. [27] proposed a framework for building leakage-resilient
identification protocols in the bounded retrieval model from
publicly verifiable proofs of storage that are computationally
zero-knowledge, but in the identification schemes, even the
encrypted files must stay private.

Currently, a majority of the existing RDIC constructions
rely on PKI where a digital certificate is used to guarantee
the genuine of a user’s public key. These constructions incur
complex key management procedures since certificate gen-
eration, certificate storage, certificate update and certificate
revocation are time-consuming and expensive. There is a
variety of standards, say the Internet X.509 PKI certificate
policy and certification practices framework (RFC 2527), that
cover aspects of PKI. However, it lacks predominant governing
body to enforce these standards. Despite a certificate authority
(CA) is often regarded as trusted, drawbacks in the security
procedures of various CAs have jeopardized trust in the entire
PKI on which the Internet depends on. For instance, after
discovering more than 500 fake certificates, web browser
vendors were forced to blacklist all certificates issued by
DigiNotar, a Dutch CA, in 2011. An alternative approach
to using a certificate to authenticate public key is identity-
based cryptography [28], in which the public key of a user
is simply his identity, say, his name, email or IP address. A
trusted key distribution center (KGC) generates a secret key for
each user corresponding to his identity. When all users have
their secret keys issued by the same KGC, individual public
keys become obsolete, thus removing the need for explicit
certification and all associated costs. These features make
the identity-based paradigm particularly appealing for use in
conjunction with organization-oriented PDP. For example, a
university purchases the cloud storage service for the staff
and students, who have a valid E-mail address issued by the IT
department of the university. All the members of the university
can have a secret key provided by the KGC, say the IT
department. The members of the university can store their data
together with the meta-data of the file to the cloud. To ensure
the data are stored properly, an auditor, a staff of IT department
can check the integrity for any member with his E-mail
address only, which can relieve the complex key management
caused by PKI. The first ID-based PDP was proposed in
[29] which converted the ID-based aggregate signature due to
Gentry [30] to an ID-based PDP protocol. Wang [31] proposed
another identity-based provable data possession in multi-cloud
storage. However, their security model called unforgeability
for identity-based PDP is not strong enough for capturing
the property of soundness in the sense that, the challenged
data blocks are not allowed for TagGen queries in this model,
which indicates that the adversary cannot access the tags of
those blocks. This is clearly not consistent with the real cloud
storage where the cloud server is, in fact, storing the tags of
all data blocks. Moreover, the concrete identity-based PDP
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protocol in [31] fails to achieve soundness, a basic security
requirement of PDP schemes. The reason is that, the hashed
value of each block is used for generating a tag of the block,
as a consequence, a malicious cloud server can keep only the
hash value of the blocks for generating a valid response to a
challenge.

Our Contributions. The contributions of this paper are
summarized as follows.

• In an ID-based signature scheme, anyone with access
to the signer’s identity can verify a signature of the
signer. Similarly, in ID-based RDIC protocols, anyone
knowing a cloud user’s identity, say a third party auditor
(TPA), is able to check the data integrity on behalf of the
cloud user. Thus, public verifiability is more desirable
than private verification in ID-based RDIC, especially
for the resource constrained cloud users. In this case, the
property of zero-knowledge privacy is highly essential for
data confidentiality in ID-based RDIC protocols. Our first
contribution is to formalize the security model of zero-
knowledge privacy against the TPA in ID-based RDIC
protocols for the first time.

• We fill the gap that there is no a secure and novel ID-
based RDIC scheme to date. Specifically, we propose
a concrete ID-based RDIC protocol, which is a novel
construction that is different from the previous ones,
by making use of the idea of a new primitive called
asymmetric group key agreement [32], [33]. To be more
specific, our challenge-response protocol is a two party
key agreement between the TPA and the cloud server, the
challenged blocks must be used when generating a shared
key by the cloud server, which a response to a challenge
from the TPA.

• We provide detailed security proofs of the new protocol,
including the soundness and zero-knowledge privacy of
the stored data. Our security proofs are carried out in the
generic group model [34]. This is the first correct security
proof of ID-based RDIC protocol. Thus, the new security
proof method itself may be of independent interest.

• We show the practicality of the proposal by developing
a prototype implementation of the protocol.

Organization: The rest of the paper are organized as
follows. In Section II, we review some preliminaries used in
ID-based RDIC construction. In Section III, we formalize the
system model and security model of ID-based RDIC protocols.
We describe our concrete construction of ID-based RDIC
protocol in section IV. We formally prove the correctness,
soundness and zero knowledge privacy of our ID-based RDIC
protocol in section V. We report the performance and imple-
mentation results in section VI. Section VII concludes our
paper.

II. PRELIMINARIES

In this section, we review some preliminary knowledge used
in this paper, including bilinear pairings and zero-knowledge
proof.

A. Bilinear Pairing

A bilinear pairing [28] maps a pair of group elements to
another group element. Specifically, let G1, G2 be two cyclic
groups of order p. g1 and g2 denote generators of G1 and G2

respectively. A function e : G1×G1 → G2 is called a bilinear
pairing if it has the following properties:

Bilinearity. For all u, v ∈ G1 and x, y ∈ Zp, e(ux, vy) =
e(u, v)xy holds.

Non-Degeneracy. e(g, g) 6= 1G2 where 1G2 is the identity
element of G2.

Efficient Computation. e(u, v) can be computed efficiently
(in polynomial time) for all u, v ∈ G1.

B. Equality of Discrete Logarithm

Let G be a finite cyclic group such that |G| = q for some
prime q, and g1, g2 be generators of G. The following protocol
[37] enables a prover P to prove to a verifier V that two
elements Y1, Y2 have equal discrete logarithm to base g1 and
g2 respectively.

Commitment. P randomly chooses ρ ∈ Zq , computes T1 =
gρ1 , T2 = gρ2 and sends T1, T2 to V.

Challenge. V randomly chooses a challenge c ∈ {0, 1}λ
and sends c back to P.

Response. P computes z = ρ− cx (mod q) and returns z
to V.

Verify. V accepts the proof if and only if T1 = gz1Y
c
1 ∧T2 =

gz2Y
c
2 holds.

This protocol can be converted into a more efficient non-
interactive version, which is denoted as POK{(x) : Y1 =
gx1 ∧ Y2 = gx2}, by replacing the challenge with the hash of
the commitment, that is, c = H(T1||T2), where H is a secure
hash function.

C. ID-based Signature

An identity-based signature (IDS) scheme [38], [39] consists
of four polynomial-time, probabilistic algorithms described
below.

Setup(k). This algorithm takes as input the security param-
eter k and outputs the master secret key msk and the master
public key mpk.

Extract(msk, ID). This algorithm takes as input a user’s
identity ID, the master secret key msk and generates a secret
key usk for the user.

Sign(ID, usk, m). This algorithm takes as input a user’s
identity ID, a message m and the user’s secret key usk and
generates a signature σ of the message m.

Verify(ID, m, σ, mpk). This algorithm takes as input a
signature σ, a message m, an identity ID and the master public
key mpk, and outputs if the signature is valid or not.

III. SYSTEM MODEL AND SECURITY MODEL

In this section, we describe the system model and security
model of identity-based RDIC protocols.
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A. ID-based RDIC System
Usually, data owners themselves can check the integrity

of their cloud data by running a two-party RDIC protocol.
However, the auditing result from either the data owner or
the cloud server might be regarded as biased in a two-
party scenario. The RDIC protocols with public verifiability
enable anyone to audit the integrity of the outsourced data. To
make the description of the publicly verifiable RDIC protocols
clearly, we assume there exits a third party auditor (TPA) who
has expertise and capabilities to do the verification work. With
this in mind, the ID-based RDIC architecture is illustrated
in Fig 1. Four different entities namely the KGC, the cloud
user, the cloud server and the TPA are involved in the system.
The KGC generates secret keys for all the users according to
their identities. The cloud user has large amount of files to be
stored on cloud without keeping a local copy, and the cloud
server has significant storage space and computation resources
and provides data storage services for cloud users. TPA has
expertise and capabilities that cloud users do not have and
is trusted to check the integrity of the cloud data on behalf
of the cloud user upon request. Each entity has their own
obligations and benefits respectively. The cloud server could
be self-interested, and for his own benefits, such as to maintain
a good reputation, the cloud server might even decide to hide
data corruption incidents to cloud users. However, we assume
that the cloud server has no incentives to reveal the hosted
data to TPA because of regulations and financial incentives.
The TPA’s job is to perform the data integrity checking on
behalf the cloud user, but the TPA is also curious in the sense
that he is willing to learn some information of the users’ data
during the data integrity checking procedure.

Third Party AuditorKGC

Privacy 
against TPA

IdentityPrivate Identity
Key

Shared Data Flow

Data Owners

Security
against

Cloud Server
against 
server

Fig. 1. The system model of identity-based RDIC

B. System Components and its Security
Six algorithms namely Setup, Extract, TagGen, Chal-

lenge, ProofGen and ProofCheck are involved in an
identity-based RDIC system.

• Setup(1k) is a probabilistic algorithm run by the KGC.
It takes a security parameter k as input and outputs the
system parameters param and the master secret key msk.

• Extract(param,msk, ID) is a probabilistic algorithm
run by the KGC. It takes the system parameters param,
the master secret key msk and a user’s identity ID ∈
{0, 1}∗ as input, outputs the secret key skID that corre-
sponds to the identity ID.

• TagGen(param,F, skID) is a probabilistic algorithm
run by the data owner with identity ID. It takes the
system parameters param, the secret key of the user
skID and a file F ∈ {0, 1}∗ to store as input, outputs
the tags σ = (σ1, · · · , σn) of each file block mi, which
will be stored on the cloud together with the file F .

• Challenge(param,Fn, ID) is a randomized algorithm
run by the TPA. It takes the system parameters param,
the data owner’s identity ID, and a unique file name Fn
as input, outputs a challenge chal for the file named Fn
on behalf of the user ID.

• ProofGen(param, ID, chal, F, σ) is a probabilistic al-
gorithm run by the cloud server. It takes the system
parameters param, the challenge chal, the data owner’s
identity ID, the tag σ, the file F and its name Fn as
input, outputs a data possession proof P of the challenged
blocks.

• ProofCheck(param, ID, chal, P, Fn) is a deterministic
algorithm run by the TPA. It takes the system parameters
param, the challenge chal, the data owner’s identity ID,
the file name Fn and an alleged data possession proof
P as input, outputs 1 or 0 to indicate if the file F keeps
intact.

We consider three security properties namely completeness,
security against a malicious server (soundness), and privacy
against the TPA (perfect data privacy) in identity-based re-
mote data integrity checking protocols. Following the security
notions due to Shacham and Waters [7], an identity-based
RDIC scheme is called secure against a server if there exists
no polynomial-time algorithm that can cheat the TPA with
non-negligible probability and there exists a polynomial-time
extractor that can recover the file by running the challenges-
response protocols multiple times. Completeness states that
when interacting with a valid cloud server, the algorithm
of ProofCheck will accept the proof. Soundness says that a
cheating prover who can convince the TPA it is storing the
data file is actually storing that file. We now formalize the
security model of soundness for identity-based remote data
integrity checking below, where an adversary who plays the
role of the untrusted server and a challenger who represents a
data owner are involved.

Security against the Server. This security game captures
that an adversary cannot successfully generate a valid proof
without possessing all the blocks of a user ID corresponding
to a given challenge, unless it guesses all the challenged
blocks. The game consists of the following phases [35].

• Setup: The challenger runs the Setup algorithm to obtain
the system parameters param and the master secret key
msk, and forwards param to the adversary, while keeps
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msk confidential.
• Queries: The adversary makes a number of queries to

the challenger, including extract queries and tag queries
adaptively.

1) Extract Queries: The adversary can query the
private key of any identity IDi. The challenger
computes the private key ski by running the Extract
algorithm and forwards it to the adversary.

2) TagGen Queries: The adversary can request tags
of any file F under the identity IDi. The challenger
runs the Extract algorithm to obtain the private key
ski, and runs the TagGen algorithm to generate tags
of the file F . Finally, the challenger returns the set
of tags to the adversary.

• ProofGen: For a file F of which a TagGen query has
been made, the adversary can undertake executions of
the ProofGen algorithm by specifying an identity ID
of the data owner and the file name Fn. The challenger
plays the role of the TPA and the adversary A behaves
as the prover during the proof generation. Finally, the
adversary can get the output of P from the challenger
when a protocol execution completes.

• Output: Finally, the adversary chooses a file name Fn†

and a user identity ID†. ID† must not have appeared
in key extraction queries and there exists a TagGen
query with input F † and ID†. The adversary outputs the
description of a prover P † which is ε-admissible defined
below.

We say the cheating prover P † is ε-admissible if it convinc-
ingly answers an ε fraction of integrity challenges. That is,
Pr[(V(param, ID†, Fn†) 
 P†) = 1] ≥ ε. The probability
here is over the coins of the verifier and the prover. The
adversary wins the game if it can successfully output a ε-
admissible prover P †.

An ID-RDIC scheme is called ε-sound if there exists an ex-
traction algorithm Extr such that, for every adversaryA, when-
ever A, playing the soundness game, outputs an ε-admissible
cheating prover P † on identity ID† and file name Fn†, Extr
recovers F † from P †, i.e., Extr(param, ID†, Fn†, P †) = F ,
except possibly with negligible probability.

Perfect data privacy against the TPA. By “perfect data
privacy” we mean that TPA achieves no information of the
outsourced data, that is, whatever TPA learns, the TPA could
have learned by himself without any interaction with the cloud
server. We make use of a simulator to formalize this model
as follows.

Definition 1. An identity-based remote data integrity check-
ing protocol achieves perfect data privacy if for every cheating
verifier TPA∗, there exists a polynomial time non-interactive
simulator S for TPA∗ such that for every valid public input
ID, chal, Tag and private input F , the following two random
variables are computationally indistinguishable:

1) viewTPA∗(ServerR,chal,F,ID,Tag,TPA∗), where R de-
notes the random coins the protocol uses.

2) S(chal, ID).
That is to say, the simulator S gets only the information

of the public input and has no interactions with the server,

but still manages to output a response indistinguishable from
whatever TPA∗ learns during the interaction.

IV. OUR CONSTRUCTION

In this section, we provide a concrete construction of
secure identity-based remote data integrity checking protocol
supporting perfect data privacy protection. Our scheme works
as follows. In the key extraction, we employ short signature
algorithm due to Boneh et al. [36] to sign a user’s identity
ID ∈ {0, 1}∗ and obtain the user’s secret key. In TagGen, we
invent a new algorithm to generate tags of file blocks which
can be aggregated into a single element when computing a
response to a challenge. In the challenge phase, the TPA
challenges the cloud by choosing some indexes of the blocks
and random values. In the proof generation, the cloud server
computes a response using the challenged blocks, obtains the
corresponding plaintext and forwards it to the TPA. The details
of the proposed protocol are as follows.

Setup. On input a security parameter sp, the KGC chooses
two cyclic multiplicative groups G1 and G2 with prime order
q, where g is a generator of G1. There exists a bilinear map
e : G1 × G1 → G2. The KGC picks a random α ∈ Z∗q
as the master secret key and sets Ppub = gα. Finally, the
KGC chooses three hash functions H1, H2 : {0, 1}∗ →
G1 and H3 : G2 → {0, 1}l. The system parameter is
(G1, G2, e, g, Ppub, H1, H2, H3, l).

Extract. On input the master secret key α and a user’s
identity ID ∈ {0, 1}∗, this algorithm outputs the private key
of this user as s = H1(ID)α.

TagGen. Given a file M named fname, the data owner firstly
divides it into n blocks m1, · · · ,mn, where mi ∈ Zq and then
picks a random η ∈ Z∗q and computes r = gη . For each block
mi, the data owner computes

σi = smiH2(fname||i)η.

The tag for mi is σi. The data owner stores the file M
together with (r, {σi}, IDS(r||fname)), to the cloud, where
IDS(r||fname) is an identity-based signature [38], [39] from
the data owner on the value r||fname.

Challenge. To check the integrity of M , the verifier picks a
random c-element subset I of the set [1, n] and for each i ∈ I ,
chooses a random element vi ∈ Z∗q . Let Q be the set {(i, vi)}.
To generate a challenge, the verifier picks a random ρ ∈ Z∗q ,
computes Z = e(H1(ID), Ppub) and does the following.

1) Compute c1 = gρ, c2 = Zρ.
2) Generate a proof that :

pf = POK{(ρ) : c1 = gρ ∧ c2 = Zρ}.

The verifier sends the challenge chal = (c1, c2, Q, pf) to the
server.

GenProof. Upon receiving chal = (c1, c2, Q, pf), the
server first computes Z = e(H1(ID), Ppub). Then, it verifies
the proof pf . If it is invalid, the auditing aborts. Otherwise,
the server computes µ =

∑
i∈I vimi, σ =

∏
i∈I σ

vi
i and m′ =

H3(e(σ, c1) · c−µ2 ) and returns (m′, r, IDS(r||fname)) as the
response to the verifier.



6

The Verifier Cloud Server

1. Choose a challenge set Q = {(i, vi)};
2. Compute c1 = gρ, Z = e(H1(ID), Ppub), c2 = Zρ;
3. Generate a knowledge proof pf :
POK{(ρ) : c1 = gρ ∧ c2 = Zρ};
4. Generate a challenge

chal = (c1, c2, Q, pf)
chal−−−−−−−−−−−−−−−−−→ 5. Verify pf ;

6. Compute
µ =

∑
i∈I vimi,

σ =
∏
i∈I σ

vi
i ,

7. Verify IDS(r||fname); m′,r, IDS(r||fname)←−−−−−−−−−−−−−−−−− m′ = H3

(
e(σ, c1) · c−µ2

)
.

8. Verify m′ ?
= H3

(∏
i∈I e(H2(fname||i)vi , rρ)

)
.

Fig. 2. Identity-based remote data integrity checking protocol

CheckProof. Upon receiving m′ from the server, the verifier
checks if IDS(r||fname) is a valid identity-based signature
from the data owner on the message r||fname. If not, the
proof is invalid. Otherwise, the verifier checks if

m′ = H3

(∏
i∈I

e(H2(fname||i)vi , rρ)
)
.

If the equality holds, the verifier accepts the proof; Otherwise,
the proof is invalid.

V. SECURITY ANALYSIS OF THE NEW PROTOCOL

In this section, we show that the proposed scheme achieves
the properties of completeness, soundness and perfect data
privacy preserving. Completeness guarantees the correctness
of the protocol while soundness shows that the protocol is
secure against an untrusted server. Perfect data privacy states
that the protocol leaks no information of the stored files to the
verifier.

A. Completeness

If both the data owner and the cloud server are honest, for
each valid tag σi and a random challenge, the cloud server can
always pass the verification. The completeness of the protocol

can be elaborated as follows.

m′ = H3

(
e(σ, c1) · c−µ2

)
= H3

(
e(σ, c1)

e(H(ID), Ppub)
ρ
∑

i∈I mivi

)
= H3

(
e(
∏
i∈I σ

vi
i , c1)

e(s, g)ρ
∑

i∈I mivi

)
= H3

( ∏
i∈I e(σ

vi
i , c1)∏

i∈I e(s, c1)
mivi

)
= H3

(∏
i∈I

e(
σi
smi

, gρvi)

)
= H3

(∏
i∈I

e(H2(fname||i)η, gρvi)
)

= H3

(∏
i∈I

e(H2(fname||i)vi , gρη)
)

= H3

(∏
i∈I

e(H2(fname||i)vi , rρ)
)
.

B. Soundness

In this part, we show that the probability of any generic
algorithm in breaking the soundness of our protocol is negligi-
ble. A generic algorithm is an algorithm that does not exploit
the algebraic structure of the underlying finite cyclic group.
The generic group model is designed to capture the behavior
of any generic algorithm. We briefly review the idea below.

Let p be a prime and ξi : Zp → {0, 1}dlog2 pe for i ∈
{1, 2} be two independent random encoding functions. The
generic group Gi is represented as Gi = {ξi(x)|x ∈ Zp}.
Since a generic algorithm does not exploit the structure of
the group, we say that given an element ξi(x) ∈ Gi, nothing
about the element except equality can be inferred. Two oracles,
Oi, i ∈ {1, 2} are used to simulate the group action: for any
element ξi(a) and ξi(b), the oracle query Oi on input ξi(a),
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ξi(b) returns an element ξi(a+b) (for multiplication) or ξi(a−
b) (for division). Another oracle, OE , is used to represent the
pairing operation of ê : G1×G1 → G2. Specifically, on input
ξ1(a) and ξ1(b), oracle OE returns ξ2(a ∗ b).

Proof: After discussing the setting, we are going to show
that our construction is secure against any generic algorithm
in the random oracle model. Let A be a generic adversary
making q1, q2, q3 queries to the random oracles H1, H2, H3

respectively, we show how to construct a simulator S which
simulates the view of A in the generic group model and
extracts from A the set of messages.
• Settings. In the generic group model and the random

oracle model, the public parameters can be represented
as:

`, q,OE ,O1,O2,H1,H2,H3, ξ1, ξα,

where the first three oracles represent the pairing oper-
ation and group operations, and the next three oracles
represent the hash operations, and ξ1, ξα are the encod-
ings of element g and Ppub respectively. They are chosen
as random bit-strings by S. S associates the encoding
ξ1 to a constant polynomial 1 and ξα to a multivariate
polynomial α. Looking ahead, we shall see that at any
stage, any group element will be associated with a mul-
tivariate polynomial. Specifically, any element presented
to A will be associated with a multivariate polynomial
in variables (α, {Ii}qIi=1, {fi}

n∗qf
i=1 , {ηi}

qt
i=1, ρ). We will

discuss the rule of polynomial associations shortly.
• Hash Queries. For any query to H1 with input IDk, S

returns a random bit-string ξIk and associates it to a
multivariate polynomial Ik. For any query to H2 with
input fnamej ||i, S returns a random bit-string ξfj,i and
associates it to a multivariate polynomial fj,i. For any
query to H3, S returns a random bit-string (which is not
a group element).

• Group G1 operation (oracle O1). A presents to S two
elements ξF1 , ξF2 and two integers, e1, e2. S looks up its
history to locate the polynomial associated to elements
ξF1

and ξF2
(assume they are F1 and F2 respectively).

If such elements do not exist, it means ξF1
or ξF2

is
not a valid group element and S rejects the operation.
S computes e1F1 + e2F2 and the resulting polynomial
is denoted as F3. S lookup its history to check if there
exists an element ξ in G1 which has been associated with
F3. If yes, it returns ξ. Otherwise, S picks a random bit-
string ξF3

and associates it to polynomial F3. It returns
ξF3 to A. Note that the element ξF3 represents the result
of group operation ξF1 to the power of e1 times ξF2 to
the power of e2.

• Group G2 operation (oracle O2). The handling is the
same as that of O1 queries.

• Pairing operation (oracle OE). A presents to S two
elements ξF1 , ξF2 . S lookup its history to locate the
polynomial associated to elements ξF1 and ξF2 (assume
they are F1 and F2 respectively). If such elements do not
exist, it means ξF1

or ξF2
is not a valid group element

and S rejects the operation. S computes F1 · F2 and
the resulting polynomial is denoted as F3. S looks up

its history to check if there exists an element ξ in G2

which has been associated with F3. If yes, S returns ξ.
Otherwise, S picks a random bit-string ξF3

and associates
it to polynomial F3. It returns ξF3

to A. Note that the
element ξF3 represent the result of the pairing operation
on elements ξF1 and ξF3 .

• Extraction Query. A presents an identity ID to S. S lo-
cates anH1 query with the same input. If not, it implicitly
makes an H1 query. It obtains the element representing
H(ID), say ξIk and its corresponding polynomial Ik.
If there exists an element in G1, say ξ, which has been
associated to the polynomial αIk, S returns ξ. Otherwise,
it picks a random bit-string ξαIk , associates it to the
polynomial αIk and returns it to A.

• TagGen Query. A presents an identity ID and a file
M = (m1, . . . ,mn) to S with name fnamej . S locates
an extract query with ID. If not, it implicitly makes an
extraction query with ID as input. Assume the element
H(ID) is associated with polynomial Ik. It also obtains
the set of elements {H2(fnamej ||i)} (S makes those
H2 queries if they do not exist). Assume the element
H2(fnamej ||i) is associated with the polynomial fj,i
S picks a random bit-string ξηj and associates it with
the polynomial ηj . For i = 1 to n, S computes the
polynomial Fj,i = αIkmi+ fj,iηj . If an element ξj,i has
been associated with polynomial Fj,i, S returns ξj,i as the
tag σj,i for block mi for file fnamej . Otherwise, S picks
a random bit-string ξj,i, associates it with Fj,i, and returns
ξj,i as the tag of the block mi. The bit-string ξηj is also
given to A at this stage. Note that (ξηj , ξj,1, . . . , ξj,n)
represents (r, T ) for file M with name fnamej . An
identity-based signature IDS(r||fname) on r||fnamej
is also given to A.

At some stage A decides to be challenged on a certain
target identity ID and a certain file M = (m1, . . . ,mn) with
name fname under the restriction that A has never made
an extraction query on ID. We can safely assume A has
made a hash query on ID. We assume the element H1(ID)
is associated with the polynomial I . S conducts a TagGen
query with A using ID and M as input. Assume the elements
returned to A are (ξηj , ξj,1, . . . , ξj,n). In the following we will
drop the subscript j for clarity. Now, S plays the role of a
challenger and A plays the role of the cloud server in the
protocol.

• (Challenge). S picks a subset I ⊂ [1, n] and for each
i ∈ I, S picks vi. S further picks a random bit-string ξc1
and associates to it polynomial ρ. It also picks another
random bit-string ξZ and associates to it the polynomial
αI . ξc1 and ξZ represents the group G1 element c1 and
the group G2 element Z respectively. It also chooses a
random bit-string ξc2 and associates it to the polynomial
αIρ. ξc1 , ξc2 are given to A, along with a simulated proof
pf .

• (Polynomial Evaluation). Recall that I is the polynomial
associated with the element H1(ID). Let η be the polyno-
mial associated with the element ξη . Further, let fi be the
polynomial associated with the element H2(fname||i).
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Thus, the tag for mi (the σi’s) will be associated with
polynomials Fi ≡ miαI+fiη. At this stage, S chooses at
random the values for all variables except the following:

α, I, {fi}i∈I , η, ρ.

In other words, all polynomials given to A are multivari-
ate polynomials in c+4 variables. The instantiation does
not affect the view of the previous simulation as long as
it does not create any “incorrect” relationship.

• (GenProof). Finally, A returns a value m′, along with
a group element r and its identity-based signature
IDS(r||fname).

In the random oracle model, the only way for A to suc-
cessfully return m′ = H3(

∏
i∈I e(H2(fname||i)vi , rρ)) is to

make a query to H3 with an element ξ in group G2. Due
to the unforgeability of the identity-based signature, we can
safely assume r (represented by the element ξη used in the
verification is the one given to A during the TagGen query.

For A to win with non-negligible probability, ξ must be
associated with a polynomial F such that

F ≡
∑
i∈I

vifiρη.

It remains to show that in order to produce an element ξ
whose associated polynomial satisfies the above equivalence
relationship, A has to make a set of group operation queries
which allows S to extract the set of constants {mi}. Further-
more, these set of queries are made after the challenge phase.
Firstly, note that for each query, A obtains at most a new
group element and thus the total number of elements obtained
by A is finite. Before the challenge phase, A has no element
whose polynomial is associated with the variable ρ nor Iαρ.

Before the challenge phase, each element in group G1 is
associated with a polynomial of the following form:

A0 +A1α+A2η+A3I +
∑
i∈I

A4,ifi+
∑
i∈I

A5,i(miIα+ fiη)

where A’s are coefficients known to A. Likewise, each group
element in group G2 is associated with a polynomial of the
following form:

k∑
j=1

cjFj ∗ F ′j

where Fj and F ′j are polynomials associated with elements
in group G1 and cj being a constant. It is easy to see that
polynomials obtained by A before the challenge will not
satisfy the required relationship as the variable ρ is missing.

After the challenge phase, A has access to two additional
elements whose polynomials are ρ in group G1 and Iαρ in
group G2 respectively. From this, all group G2 elements ob-
tained by A are associated with a polynomial of the following

form:

A0 +A1ρ+A2α+A3η +A4I +
∑
i∈I

A5,ifi+∑
i∈I

A6,i(miIα+ fiη) +A7Iαρ+

B1ρ
2 +B2ρα+B3ρη +B4ρI+∑

i∈I
B5,ifiρ+

∑
i∈I

B6,i(miIαρ+ fiηρ) +B7Iαρ
2+

C1α
2 + C2αη + C3αI +

∑
i∈I

C4,ifiα+∑
i∈I

C5,i(miIα
2 + fiηα) + C6Iα

2ρ+

D1η
2 +D2Iη +

∑
i∈I

D3,ifiη +
∑
i∈I

D4,i(miIαη + fiη
2)+

D5Iαρη+

E1I
2 +

∑
i∈I

E2,ifiI +
∑
i∈I

E3,i(miI
2α+ fiIη) + E4I

2αρ+∑
i∈I

∑
j∈I

F1,i,jfifj +
∑
i∈I

∑
j∈I

F2,i,j(miIαfj + fifjη)+∑
i∈I

F3,iIαρfi+∑
i∈I

∑
j∈I

G1,i,j(m1Iα+ fiη)(mjIα+ fjη)+∑
i∈I

G2,i(miI
2α2ρ+ fiηIαρ)+

H1I
2α2ρ2

where all coefficients are known to A and S. Equating the
coefficients with F , all coefficients are 0 except B6,i and A7.
Specifically, B6,i = vi for all i ∈ I and A7 =

∑
i∈Imivi.

In other words, S can extract from A the terms A7 which
is
∑
i∈Imivi. With |I| interactions, S can compute all the

values of mi from A. Furthermore, observe that the operations
that leads to this coefficient A7 has to be issued after the
challenge since they are related to the polynomial Iαρ. This
completes the proof.

C. Perfect Data Privacy Preserving

To prove that the scheme preserve data privacy, we show
how to construct a simulator S, having blackbox-access to
verifier V , can simulate the remote data integrity checking
protocol without the knowledge of the data file blocks {mi}
nor their corresponding {σi}3.

We assume IDS(r||fname), r, fname is given to S. In
other words, our protocol does not preserve the privacy of the
file name nor the parameter r. Since r = e(g, g)η , where η is a
random value chosen by the data owner, it is reasonable to say
r does not contain the information of the file blocks. Below
we show how S answers the challenge given by a verifier V .

Upon receiving the challenge chal from V , S parses chal
as (c1, c2, Q, pf). Next, S extracts from V the value ρ. Due

3Since {σi} also contains information about the file block mi.
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to the soundness of pf , S obtains ρ such that c1 = gρ

and c2 = e(H1(ID), Ppub)
ρ. S parses Q as {(i, vi)} and

computes m′ = H3(
∏
i∈I e(H2(fname||i)vi), rρ). S outputs

(m′, r, IDS(r||fanme)) as the response to this challenge.
For each challenge (c1, c2, Q, pf), there is a unique value

m′ that is valid. Thus, the above simulation is perfect.

VI. PERFORMANCE AND IMPLEMENTATION

In this section, we first numerically analyze the cost of the
new protocol, and then report its experimental results.

A. Numerical Analysis

We provide a numerical analysis of costs regarding compu-
tation, communication and storage of the proposed protocol in
this part.

Computation cost. We present the computation cost from
the viewpoint of the KGC, the data owner, the cloud server and
the verifier (TPA). For simplicity, we denote by EG1, EG2 the
exponentiations in G1 and G2, MG1,MG2 the multiplication
in G1 and G2, P the pairing computation and H the map-
to-point hash function respectively. We ignore the ordinary
hash functions in numerical analysis since the cost of these
functions is negligible compared with other operations.

The primary computation of the KGC is generating system
parameters and private key for each user. Thus, the main
computational cost of KGC is 2EG1 + 1H . The dominated
computation of data owner is generating tags for file blocks
as σi = smiH2(fname||i)η , which is the most expensive
operation in the protocol but fortunately it can be done offline.
For a file with n blocks, the cost of the data owner is
(2n+1)EG1+nH . The main cost of the verifier is generating
a challenge and checking the validity of a proof. The verifier
needs to perform 1 pairing operation, and 6 exponentiations in
G1 to generate a challenge when using the proof of equality
of discrete logarithm given in [37]. When checking a proof,
the cost of the verifier is (c+1)EG1+cP +cH+(c−1)EG2.
The main computation cost of generating a proof by the
cloud server is calculating the aggregation of σi, that is σ =∏
i∈I σ

vi
i , and the total cost is 2P+(2c−1)MG1+EG2+MG2.

Communication cost. In the challenge phase, the verifier
sends (c1, c2, Q, pf) to the server, where Q = {(i, vi)}
denotes the challenge set. In practice, we can employ a pseudo-
random function θ and a pseudo-random permutation ψ as the
public parameters. The verifier only needs to include a key
k1 of θ and a key k2 of ψ in the challenge, instead of the
challenge set Q, which can reduce the communication cost
significantly. In this case, the communication cost is of binary
length log2c1 + log2c2 + log2k1 + log2k2 + log2pf . In the
response phase, the server returns (m′, r, IDS(r ‖ fname))
as the response to the verifier. An identity-based signature
usually contains two points (320 bits) of elliptic curves, thus
the communication cost of the response is of binary length
l + log2r + 320.

Storage cost. Regarding the storage cost of the cloud server,
the data owner and the verifier, since identity-based data
auditing schemes are publicly verifiable, both the data and the
tags are stored on the cloud server. An identity-based digital

signature algorithm is used to protect the commitment r from
being tampered by external and internal adversaries. In this
case, what stored on the cloud are as follows.

Data Tags r‖IDS(r,fname)

The data owner needs to store nothing in the context
of public verifiability. With the knowledge of the identity
information of the data owner, a verifier is able to check
the integrity of the data on behalf the data owner. Thus,
what the verifier needs to store is the challenge set Q and
the value ρ randomly selected by himself. The storage cost
of a verifier can be reduced to log2k1 + log2k2 + log2q
bits. The storage cost of the block tags is upper bounded
by dlog2(M)/log2qe160 bits when employing proper elliptic
curves [28]. The cloud server hosts the data, the tags, r and
its signature. As a consequence, the storage cost of the cloud
server is upper bounded by log2M + dlog2(M)/log2qe160 +
log2r + len(IDS(r ‖ fname)).

B. Implementation Results

The implementation was conducted with pbc-0.5.13 [40]
with pbc wrapper-0.8.0 [41] on Intel i7-4700MQ CPU @
2.40GHz. The memory is always sufficient since the scheme
only requires a polynomial space. In our implementation,
we made use of parameter a.param, one of the standard
parameter settings of pbc library. Parameter a.param provides
a symmetric pairing with the fastest speed among all default
parameters. The implementation time overheads of the proto-
col are displayed in the following two parts.

In the first part, we setup a file of a constant size of 1
MB, and observe the impact of the number of challenged
blocks in terms of the time cost. In our setting, the size of
a data block is bounded by the group order p, i.e., 160 bits.
Hence, we have 50, 000 blocks in total. This implies that
the timing results for Setup, Extract and TagGen steps are
constant for this part. See Table I for more details. We can
see that both the Setup algorithm and the Extract algorithm
are extremely fast. The Setup algorithm picks some random
values and compute a modular exponentiation in G1, which
costs 4.8ms, and the Extract algorithm needs to perform one
modular exponentiation in G1 for generating the private key
of a cloud user, which cost 0.1ms. The TagGen algorithm is
expensive and we show that the TagGen timing result consists
of two phases, an off-line phase, where the data owner can pre-
process H2(fname‖i)η without knowing the actual data; and
an on-line phase, where the data owner needs to compute smi

for each data block. (Note that since all those exponentiations
are carried out with a same base, we can use a lookup table
to accelerate those single-base multiple-exponent operations.)
The time cost of off-line computation of generating tags for
1 MB file is 241.9 seconds while the on-online time cost is
20.3 seconds. This is an acceptable result compared with the
previous preprocessing result in [5].

We then increase the number of challenged blocks from
50 to 1000 with an increment of 50 for each test to see the
time cost of Challenge, GenProof and CheckProof steps. As
one shall see from Figure 3, the timing cost of those three
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Setup Extract TagGen: off-line TagGen: on-line Challenge GenProof CheckProof
4.8 ms 0.1 ms 241.9 second 20.3 second 351 ns per challenge 1.3 ms per challenge 6.6 ms per challenge

TABLE I
SUMMERISE OF THE TIME COST FOR A 1 MB FILE

Fig. 3. Increasing number of challenges for fixed size of file

parts increases with the increase of the number of challenges.
This is consistent with the empirical analysis because when
the number of challenged block rises, more random values
{i, vi} need to be selected in the challenge algorithm, and the
cloud server has an increasing computations of σvii while the
TPA has more exponentiations, multiplication operations and
pairing computations in

∏
i∈I

e(H2(fname||i)vi , rρ). But it is

fair to say that the proposed identity-based RDIC protocol is
efficient for both the cloud server and the verifier. For example,
let us investigate a point on the curve. Ateniese et al. [4]
demonstrated that, if the cloud server has polluted 1% of the
blocks, then the verifier can challenge 460 blocks in order to
achieve the probability of server misbehavior detection of at
least 99%. We can see that it costs the verifier only about 3.0
seconds to verify a response and the server 0.7 seconds to
generate a response when challenging 460 blocks.

In the second part, we test the most expensive algorithm
TagGen of the protocol by increasing the file size from 200
KB to 2 MB, that is, from 10, 000 blocks to 100, 000 blocks
accordingly, and record the time for TagGen. As expected,
both on-line and off-line time to generate tags for a given
file increases almost linearly with the increase of the file
size. Figure 4 gives more details. The implementation shows
that generating tags is more expensive than other parts but
fortunately, computing tags for a file is a one time task, as
compared to challenging the outsourced data, which will be
done repeatedly. Since the cloud users can do the off-line work
completely parallelizable in advance, we pay only attention to
the on-line cost. We can see that the efficiency of TagGen of
our protocol is comparable to that of the existing well-known
schemes, say [5]. To generate tags for a 2 MB file, it costs

Fig. 4. Tag generation time for increased size of files

almost 42 seconds. As such, one shall be able to anticipate
the time cost of generating tags for any size of files.

VII. CONCLUSION

In this paper, we investigated a new primitive called
identity-based remote data integrity checking for secure cloud
storage. We formalized the security model of two important
properties of this primitive, namely, soundness and perfect data
privacy. We provided a new construction of of this primitive
and showed that it achieves soundness and perfect data privacy.
Both the numerical analysis and the implementation demon-
strated that the proposed protocol is efficient and practical.
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