Track: Tracerouting in SDN Networks with
Arbitrary Network Functions

Yuxiang Zhang*, Lin Cui*, Fung Po Tsof, Yuan Zhang*
*Department of Computer Science, Jinan University, Guangzhou, China
J‘Department of Computer Science, Loughborough University, LE11 3TU, UK
samuelzyx(0924 @gmail.com; tcuilin@jnu.edu.cn; p.tso@lboro.ac.uk; michellinyuan@gmail.com

Abstract—The centralization of control plane in Software
defined networking (SDN) creates a paramount challenge on
troubleshooting the network as packets are ultimately forwarded
by distributed data planes. Existing path tracing tools largely
utilize packet tags to probe network paths among SDN-enabled
switches. However, network functions (NFs) or middleboxes,
whose presence is ubiquitous in today’s networks, can drop
packets or alter their tags — an action that can collapse the prob-
ing mechanism. In addition, sending probing packets through
network functions could corrupt their internal states, risking of
the correctness of servicing logic (e.g., incorrect load balancing
decisions). In this paper, we present a novel troubleshooting tool,
Track, for SDN-enabled network with arbitrary NFs. Track can
discover the forwarding path including NFs taken by any packets,
without changing the forwarding rules in switches and internal
states of NFs. We have implemented Track on RYU controller.
Our extensive experiment results show that Track can achieve
95.08% and 100% accuracy for discovering forwarding paths
with and without NFs respectively, and can efficiently generate
traces within 3 milliseconds per hop.

Index Terms—Network Diagnostics,
Software-Defined Networking, Traceroute

Network Function,

I. INTRODUCTION

Software Defined Networking (SDN) has seen unprece-
dented adoption in recent years due to its ability in en-
abling control plane programmability for networks. SDN has
opened up a profound opportunity for network operators to
dynamically provision their networks and services in response
to the ebb and flow of user demand as well as the rapid
changing business environment. While the development of
SDN is still at its infancy, coming with its numerous benefits
are as many challenges. Among them, the most prominent one
is troubleshooting as there has been a lack of effective tools
for diagnosing anomaly events when traffic does not behave
as expected [1].

SDN traceroute [1] is the first tool for querying the current
path taken by any types of packet, e.g., Ethernet frames, IP,
TCP/UDP packets and so on, in an SDN-enabled network.
This tool works by installing several highest-priority rules into
SDN switches for forwarding tagged probing packets (using a
VLAN priority tag) to the SDN controller for keeping track of
the ordered list of SDN switches traversed by the path-probing
packets.

However, SDN traceroute cannot work correctly in a net-

work with network functions (or middleboxes)! because some
NFs, such as proxy and load balancer etc., could modify packet
headers and/or payload. Once the tag fields (or header fields
for matching) are modified by the NFs, subsequent switches
would fail to recognize probing packets from normal packets
and no longer forward them to the controller.

In comparison, SFC Path Tracer [3] is able to trace paths
consisting of NFs. However, it also rely on tags probing
packets (by flagging 2-bit Explicit Congestion Notification
(ECN) in IP header) that must not be modified/dropped to
discover NFs along the path. In addition to tagging, SFC
Path Tracer identifies the type of NFs that have forwarded
tagged packets to the controller NFs through looking up their
device IDs from predefined topology. This will greatly limit
its usability when a person has only partial or no access to the
topology information. Worse still, since considerable number
of NFs are stateful, sending probing packets through them may
corrupt their internal states, jeopardising the correct servicing
of ongoing production traffic.

In this paper, we present Track, an efficient and effective
tool for querying paths in an SDN-enabled network with NFs.
Track treats the whole path as several sub-paths joined by
NFs. Track injects a probing packet with user-defined header
fields into network to trace each sub-path. In the meantime,
it runs a correlation procedure to infer behaviors of NFs
and concatenate all sub-paths in correct order according to
correlation results. Thus, Track does not send probing packets
through NFs. Our correlation approach also eliminates the
requirement of look-up of NF’s ID from pre-defined topology
information. Better still, Track does not modify the forwarding
rules of production flows so that it does not affect network
performance.

In short, our main contributions are as follows:

1) We design an effective Track scheme which can discover
the whole path, including NFs of service chains, in an
SDN-enabled environment.

2) We introduce a correlation procedure to infer the type
of NFs in question rather than sending probing packets
through them, preserving their internal states.

3) We implement Track on RYU and our extensive exper-
iments on Mininet show that it can return the correct

Network functions (or middleboxes) are very common in today’s networks
to improve security and performance. Across all network sizes, the number
of middleboxes is on par with the number of routers in a network [2].

Query Requests
[|

Track Framework
i_TEcﬁg_l\/Iodu_le'I
Correlation Mapper

[
[
| Module
[

Flows I , I
w5 0
— 0

T
Flows Samples

Probing Packets Trap Rules

Fig. 1. Overview of the Track. Red arrows depict probing packets; green
arrow depicts client query.

paths 100% and 95.08% of the time when it runs
on an SDN-enabled network without and with NFs
respectively.

The remainder of this paper is organized as follows.
Section II describes detailed design and implementation of
Track, followed by Section III, which extensively evaluates
the performance of Track. Section IV outlines related work on
SDN troubleshooting and policy enforcement in SDN network.
Finally, Section V concludes the paper.

II. SYSTEM DESIGN AND IMPLEMENTATION
A. Design Principles

Track is a diagnosing tool for debugging in SDN envi-
ronment with NFs. In designing Track, we target a solution
adhered to following principles:

« Do not corrupt NF states: NFs are states sensitive. The
outputs of the function processing have strong correla-
tions with these states (such as load balancers, proxies,
and etc.). If probing packets modify these states, it would
not only impact the performance of these NFs but also
the correctness of the output.

+ Do not modify NF service logic: There are many types
of NFs and each has many forms of implementations. It
is difficult, if not impossible, to understand each form
of implementation or establish a standard API for each
commodity implementation.

e Do not modify production rules: Forwarding rules of
production flows are not allowed to be affected during the
probing process. This will make Track readily deployable
in production network environment.

In addition to these design principles, we also make a
practical assumption that the controller has a global view of the
network. More specifically we assume that: 1) the controller
knows the topology of a given network, and 2) the controller
knows which switch has an NF attached to it. For the ease
of description, we call these switches connected to NFs as
NF-switches.

B. System Architecture

Track, as demonstrated in Figure 1, has two main compo-
nents: Correlation Module and Tracing Module. Correlation

TABLE I
A TAXONOMY OF DIFFERENT NETWORK FUNCTIONS

Network functions Actions Info needed | Approach | Type
Monitor No change None - 1
IDS No change None - 1
Firewall Drop? None - 4
1PS Drop? None - 4
NAT Rewrite Headpr Payload 5
header mapping match
Load Rewrite Session Payload
balancer header mapping match 2
& reroute
Proxy Ma}p Sess%on Similarity 3
session mappings detector
WAN Opt. qu SeSS{on Similarity 3
session mappings detector

Module runs the correlation procedure which is detailed in
Section II-C while Tracing Module applies a tracing procedure
which is described in Section II-D and this procedure is similar
to the way of SDN traceroute getting the routes.

The test-bed prototype of Track is implemented as a com-
ponent of RYU controller [4] and it communicates with SDN
switches using OpenFlow 1.3 protocol.

C. Correlation Module

1) NFs Classification: NFs provide security and perfor-
mance guarantees. Typically, when a packet traversing a ser-
vice chain, NFs may drop this packet or dynamically modify
its headers and contents. For example, firewalls may drop
packets according to specific rules while NAT (or proxy) may
change packet header fields (and modify packet’s content).
According to these behaviors, we roughly classify NFs into 4
types, as tabulated in Table I. Particularly, rype I NF is the
simplest case which neither change the packet headers and
nor multiplex/spawn flows. While #ype 4 NF does not modify
packet, it may drop the packet. Both type 2 and rype 3 NF
may modify packets, but fype 2 only modifies packet header
while fype 3 may modify packet content.

In addition to aforementioned classification, some NFs are
stateful. For example, if the number of SYN message sent
from particular host exceeds a threshold in IPS, the flows
from this host may be recognized as intrusion. These states
are crucial for NFs which is the main factor influencing the
NFs’ processing.

2) Correlation Procedure: Rather than modeling NFs or
asking network administrators to specify the dynamic behav-
iors of NFs, we treat NFs as blackboxes and infer their relevant
input-output behaviors [5], as classified in Table I. We name
this phase as correlation procedure.

Note that we do not need access to the internal proprietary
logic of the NFs. We only need to reason about the NFs
behaviors pertinent to packets’ forwarding. That is, we only
need to identify how the incoming and outgoing flows at the
NFs are correlated.

As we summarized in Table I, for type I NFs, we can
directly map the incoming and outgoing flows (which we
marked as None in the information needed column in the

Correlate flows

Collect packets ——)

P2 fod ore
Network
S1 Function S2
. < /
_— - I 5 =
F1: P22 P2 Pl F1': P P2 P
F2': Q2 Q1
A J

Time window T

Fig. 2. Similarity based correlation of incoming and outgoing flows through
an NF.

table). Consider that type 2 NFs merely rewrite packet headers,
we can simply perform an exact payload match between the
incoming and outgoing packets to detect the flow correlations
(which is labeled as payload match in the Table I). The most
challenging case is to infer the behaviors in fype 3 NFs because
they may create new sessions or merge existing sessions. For
these NFs, we cannot directly match the payloads of individual
packets. In stead, we have observed that even though the traffic
is not identical after it traverses the NFs, the payloads will still
have a significant amount of partial overlap. In light of this, we
utilize Rabin-Karp algorithm [6][7] to calculate the similarities
across flows. Given these insights, correlation procedure is
comprised of four steps, as depicted in Figure 6:

i. Collecting packets — When a new flow arrives at an NF-
switch, the switch sends the first P packets of the new
flow to the controller. Similarly, we collect the first P
packets for all the flows going out of the NF within a
time window 7. The controller reconstructs the payload
stream from the P packets collected for each flow.

ii. Flows mapping — For type I, we can directly map the
incoming and outgoing flows which traversed this NF.
Moreover we can do an exact payload match between
the incoming and outgoing packets of rype 2 NFs.

iii. Calculate payload similarity — As discussed earlier,
type 3 NFs may modify or reorder part of the traffic
flows, and we use Rabin-Karp algorithm to compute a
similarity scores which represent the amount of overlap
between every pair of flows [5].

iv. Identify the most similar flows — We identify the flow
going out of the NF that has the highest similarity
with the new incoming flow. We set a threshold for
determining whether this correlation is right. If the
similarity is lower than the threshold [6], we consider
this is a correlation mistake and recognize this is a fype
4 NF which drop this incoming flow. Otherwise, we
correlate these two flows. Note that rype 4 NFs can be

packet

Controller g modification :
————
®© ®
PACKET - PACKET -
IN @ IN ®

in-port: 11 PACKET -OUT jn-port: 21 P{\CKET - ouT

tag: 1 in-port: 11 tag: 2 in-port: 21

tag: 2 tag: 1

Action: Table Action: Table

@ forward @ forward
—

11 12 21 22
Tag: 2 Tag:1

Fig. 3. Example for Track working procedure.

easily mis-identified as type I NFs if specified flows are
not dropped by them. But this has little impact on later
tracing procedure.

3) Implementation of the Correlation Module: The con-
troller installs rules at NF-switches to retrieve the first few
packets for each new flow. We use a custom implementation of
the Rabin-Karp algorithm configured with an expected chunk
size of 16 bits [5]. Note that if a flow is forwarded to multi-
paths, Track just correlates one of these paths to the original
flow.

D. Tracing Module

1) Pre-installed rules: Before sending any probing packets,
Track must install rules that allow it to selectively trap probing
packets. The rules must support two different tasks: i) match-
ing the incoming probing packets so the hop can be logged
at the controller, and ii) forwarding the controller returned
probing packets as normal packets. In this section, we outline
what rules are installed into the switches in order to achieve
the first task. In the next section we will show how to modify
those rules to perform the second task.

Similar to SDN traceroute, Track begins by applying a graph
coloring algorithm to the topology and this coloring algorithm
assigns each switch a color such that no two adjacent switches
(switches directly connected via a link) are assigned the same
color. These colors serve as tags that are an integral part of the
rules required by Track. Track requires all probing packets to
carry a tag so that switches can differentiate probing packets
and normal packets and our implementation uses the VLAN
ID field 2 as the probing tag. Our goal is to have switches
log all packets except packets tagged with the default tag
(production traffic) and those tagged with their own color. To
meet this goal, Track installs rules in each switch to match
the color of all adjacent switches. These rules are assigned
the highest priority and forward the matched packet to the
controller. Normal flows that do not carry this tag can be
forwarded along the service chains. Note that these rules must
be installed before Track first running.

2When VLAN is used in the network (e.g. the VLAN service chaining
architecture), we can use the MPLS label field as the probing tag.

2) Tracing procedure: Once the network is configured
in the manner discussed above, it is ready to accept user
requirements for route tracing. The whole tracing procedure
is explained in Figure 3. Users need to specify packet header
(e.g. source/destination IP address, source/destination port and
so on). Then Track constructs the packet with user specified
packet header fields and tag, and identify the injection point
which is the switch connected to the source specified by user.
Meanwhile, Track identify the end point switch according to
user-specified destination. After performing the trace route,
the program returns an ordered list of switch_dpid and NF
point corresponding to nodes which the packet traversed in
the network.

Track would send the probing packet to injection point
with the input port set to the source host and begin tracing
service chain’s forwarding path. Since each switch is config-
ured to trap all packets matching the neighboring switches
colors, the probing packet would be sent to the controller
as a PACKET_IN (step 1). Track receives the packet at the
controller and logs the switch-dpid which forwarded the packet
to the controller as one hop in the forwarding path.

If current hop is not an NF-switch, Track would modify
the probing packet by rewriting the reserved tag field to the
bits corresponding to the color of the current switch. It then
sends the probing packet back as a PACKET_OUT to the same
switch that had sent the PACKET_IN message (step 2). The
input port in the PACKET_OUT is set to the input port where
the packet was received at the switch. The switch receives the
probing packet from the controller and forward it to neighbor
switch according to the flow-tables (step 3). This ensures that
the actual forwarding rules in the switch are used to route the
packet even though it is a probing packet and not production
traffic.

While current hop is an NF-switch, Track check the flows
correlation mappings in this switch to infer the actions in NF
(step 6). If it is a type I NF, Track would not modify the packet.
If it is a frype 2 or type 3 NF, Track would modify the probing
packet as the NF do (according to the mappings) and preserve
the probe tag. If the correlation procedure infer that this packet
would be dropped at this NF, Track would terminate the tracing
procedure and output the routes it traced. Otherwise, including
former three type NFs, Track would rewrite the tag field and
send it back to the same switch (with modification of headers)
as a PACKET_OUT (step 5).

This process (step 2 to step 4, sometimes step 6) repeats
for each hop in the path. The process terminates when the
probing packet arrives at end point switch then output the route
Track traced. Notice that Track only log down the information
of PACKET_IN messages with probe tag. This allows for
scenarios where regular packet processing at a switch may
itself initiate a PACKET _IN to the controller, such as in
reactive rule installation.

3) Implementation of Tracing Module: Tracing Module
uses the interfaces of RYU to construct probing packets, send
probing packets to switches via an ofp_packet_out message
and receive them from a switch via an ofp_packet_in Open-

Flow message. When receiving a probing packet with tag,
Tracing module record this switch which forwarded the packet
to the controller and modify the probing packet if needed
(according to the mappings Correlation Module provided).
Among three sub-modules in Tracing Module, Trapper is
responsible for installing “trap” rules while Logger is used
for probes construction, sending/receiving probes and log the
routes and Mapper does the packet modification.

1II. EVALUATION
A. Evaluation Setup

We have implemented a prototype of Track on RYU con-
troller. And we have extensively evaluated its performance in
Mininet [8] on a server with a 4-core Intel 17-4790 3.6GHz
CPU and 16 GB memory as well as Ubuntu 14.04 Linux
operating system. The experiment adopted the Internet2 [9]
advanced layer2 service topology, which contains nearly 70
nodes including switches, hosts and NFs. Each link has an
emulated bandwidth of 100 Mbps.

We deployed Bro [10], PRADS [11], Squid [12], and
iptables [13] to act distinct types NFs in the network, i.e.,
IDS, Monitor, Proxy, Firewall, NAT [14]. Each NF is directly
attached to a switch through a network link. Network traffic
among hosts are generated by iperf [15]. Each traffic flow can
be identified by port numbers and IP addresses of the sender
and receiver. Each flow is subjected to at most on service chain
contains one or multiple NFs above. Totally 325 service chains
are installed in the network with different order or number of
these five NFs and every pair of hosts has at least 2 service
chains.

The time window T is set to be 200ms which is a better set-
ting to get a trade-off between running time and accuracy [5].

In addition to Track, we also implement the SDN tracer-
oute [1] in our controller as a comparison. We did not
implement SFC Path Tracer [3] because the paper does not
reveal the implementation details. Since SDN traceroute failed
to work with the presence of some NFs, e.g., Proxy, it may
only returns a partial resulting path in some scenarios.

Two metrics are considered: accuracy, which is obtained
through repeatedly installed random routes and verified that
Track can correctly discovered them, and latency, including
the end-to-end time of conducting traces on various network
paths and time to discover one single hop (e.g., switches or
NFs).

B. Performance of Tracing

We first evaluate the latency performance of both Track and
SDN traceroute. We triggered both Track and SDN Tracer-
oute to trace the forwarding paths in an SDN environment
with/without NFs. Figure 4 summarized the latency of Track
and SDN traceroute tracing paths of varying length. A hop is
defined as an intermediate switch and one hop contains one
NF at most. We measured the latency of a variety of paths
which range from one to ten hops in Figure 4. Experiment
results show that the performance of Track is better than SDN

—SDN Traceroute with NFs
| |=—Track with NFs
——Track/SDN Traceroute without NFs

Switch Hops

Fig. 4. Latency to trace a path with different number of hops in SDN
environment with/without NFs.

1
—With Type 1 =
=—=With Type 2
0.8F With Type 3 -
=—With Type 4
0.6 4
w
o
o
0.4 B
0.2 4
0 1 1 1 1 1
200 400 600 800 1000 1200 1400 1600

Single (NF) switch latency (us)

Fig. 5. The CDF of processing time for each types of NFs.

traceroute’s when tracing service chains. The average per-
hop latency of Track is 2.4583ms while SDN traceroute’s is
2.7582ms. Moreover, Track/SDN traceroute can trace paths in
an SDN environment without NFs with the average 2.2279ms
per hop latency. The experiments results showed that Track
is effective tool for tracing paths under an SDN environment
with/without NFs and it return the whole paths in both scenar-
ios with faster average response time. Each point shows the
average of 30 runs with error bars showing standard deviation.
Next we verify if Track can correctly discover forwarding
rules. As Track gives the correct path 100% of the time in an
SDN environment without the presence of NFs, we focus on
studying the accuracy performance of Track with the presence
of NFs. We ran Track to trace each service chain in the network
and to validate its functionality. We analyzed the accuracy
of Track. In these 325 service chains, Track can correctly
obtain 309 paths. The accuracy rate is 95.08%. Then, we
checked the incorrect outputs of Track and compared them
to the correlation result. We found that mis-correlating input
and output of proxy is the main cause of tracing error. As
we mentioned above, inferring the correlations between input
and output flows of proxy is a great challenge because proxy
creates/multiplexes sessions and changes packet contents.
Then we record the processing time in controller. While
tracing routes, Track needs to log the hop or modify packets.
We define the period of time from receiving a PACKET_IN
to sending a PACKET_OUT as the processing time. If current
hop is not an NF-switch, Track just needs to log this hop
and sends the probing packet back. Otherwise, Track needs to

oA

100

501

Time (ms)
H

-

Type 4

—

Type 1

Type 2 Type 3
NF Type

(a) Running time of correlation procedure for different NFs

100
R*
&

© 95¢
3
(8]
<<

90+

Type1 Type2 Type3d Typed
NF Type

(b) Accurate rate of the correlation procedure of different type of NFs

Fig. 6. Running time and accuracy of correlation procedure operating on each
type NFs

search the correlation between the input and output of the NF
which this switch connects. For type I or type 4 NF, Track
just needs to send the probing packet back or drop it. But for
type 2 or type 3 NF, Track needs to modify packet according
to the outcome of correlation procedure. Figure 5 shows the
CDF of controller running time in one hop. From Figure 5 we
could tell that processing time in controller is lower than 1ms
in most cases.

C. Performance of Correlation

Next, we evaluate the correlation procedure with focuses on
each type NFs and whole service chain. We first conducted
experiments on validating the effectiveness and efficiency of
correlation procedure upon all types of NF. Figure 6 shows
the running times of correlation for each type NFs and their
accurate rate and each point shows the average of 40 flows
with error bars showing standard deviation. Type I and type 4
NFs cost smaller running overhead relatively during the corre-
lation procedure with average 23.823ms and 24.92ms running
time respectively. 56.39ms is the average processing time for
correlating the flows through rype 2 NFs while 103.581ms
is for type 3 NFs. The accuracy of Track performing on all
types NF reaches 100% except type 3 NFs. For type 3 NFs,
which is the most challenging part of the correlation, Track
can still get 95% accuracy. These experiment results confirm
the effectiveness of correlation procedure.

We then investigate the performance of correlation proce-
dure when inferring the behaviours of all NFs in a service
chain. To be more specific, time window is not included in
running time. Because running time is the processing overhead
in controller during the correlation procedure, which can be
performed offline. Table II shows that for a service chain
of 5 NFs, Track can get about 95% accuracy within 104ms

TABLE II
RUNNING TIME AND ACCURATE RATE FOR A SERVICE CHAIN WITH VARIED
NUMBER OF NFs

Number of NFs | Running time(ms) | Accurate rate
1 0.36 96.67%
2 23.13 95%
3 48.52 96.67%
4 71.79 96.67%
5 103.44 95%

processing time and most errors occurred during inferring
correlation between the input and output of proxy.

IV. RELATED WORKS

Troubleshooting is an important issue in computer networks.
The simplest tool that provides visibility into a network is
Traceroute [16]. However, it is extremely limited in trou-
bleshooting SDN-enabled networks because it can only pro-
vide the layer-3 (IP) path information since it relies on time-
to-live (TTL) field in the IP header to trigger ICMP error
messages from intermediate routers. It also assumes routing
and forwarding are destination-based.

SDN traceroute [1] is a Traceroute-like tool for SDN
environment. It injects tagged probe packets in to network
to discover the forwarding behavior for specified flows by
mirroring packets with specific tags to the controller. It will fail
to work once probe packets are dropped or tags are modified.

Hybridtrace [17] can reveal the routing path taken by a
packet that needs to traverse multiple legacy network islands
and SDN network islands to reach its destination. When it
traces routes in legacy island, it uses a traceroute-like method
which triggers the routers that send back an “ICMP Time
Exceeded” error message to the source host. When it tracks
the forwarding paths in SDN-enabled network, it triggers SDN
controller to send probe packets and log down each hop.
Netography [18] is a system that troubleshoots the network
leveraging packet behavior and flow rules to locate and dig
root causes of network issues. Netography sends probes into
networks and these probes would be copied once a time with
the information about the matched flow rules and sent back to
it. By analyzing the list of copies of probes, network operators
can locate root causes.

In contrast to these tools, Track and SFC Path Tracer [3]
are the only tools that are capable of querying network paths
with presence of NFs. However, SFC Path Tracer sends probe
packets directly through NFs and is hence error-prone if probe
packets are dropped or packet tags are modified. In comparison
Track avoids sending probe packets to NFs by inferring them.

Identifying the behaviours of NFs is a great challenge when
tracing the paths in a network with NFs. Some proposals aim
at solving this problem. SIMPLE [5] runs a similarity based
correlation algorithm to identify how the incoming and out-
going flows at the middleboxex are correlated. Flowtags [19]
adds minimal extensions to middleboxes to export the relevant
contextual information, in the form of Tags embedded inside
packet headers. Tracebox [20] sends IP packets containing

TCP segments with different TTL values and analyses the
packet encapsulated in the returned ICMP messages in order
to detect any modification performed by middleboxes. In
comparison, in order not to send probing packets to NFs, we
use a correlation procedure to figure out the identification of
modification of NFs which is similar to SIMPLE.

V. CONCLUSION

In this paper, we present Track, a powerful tool for tracing
the path of any service chains in SDN-enabled networks with
network functions. The key feature of the tool is that it can
infer the behaviors of network functions upon packets without
requiring prior knowledge on the types of network functions
under test. With this feature, Track can correctly trace routes
without polluting the internal states of NFs. We envision Track
as an integral part of any network administrators toolkit for
managing and troubleshooting the network.

REFERENCES

[1] K. Agarwal, E. Rozner, C. Dixon, and J. Carter, “Sdn traceroute: Tracing
sdn forwarding without changing network behavior,” in Proceedings of
the third workshop on Hot topics in software defined networking. ACM,
2014, pp. 145-150.

[2] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy, S. Ratnasamy, and
V. Sekar, “Making middleboxes someone else’s problem: Network
processing as a cloud service,” SIGCOMM Comput. Commun. Rev.,
vol. 42, no. 4, pp. 13-24, Aug. 2012.

[31 R. A. Eichelberger, T. Ferreto, S. Tandel, and P. A. P. R. Duarte,
“SFC Path Tracer: A troubleshooting tool for service function chaining,”
in 2017 IFIP/IEEE International Symposium on Integrated Network
Management (IM2017). 1EEE/IFIP, 2017, pp. 568-571.

[4] “Ryu.” [Online]. Available: https://osrg.github.io/ryu/

[5] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” ACM SIGCOMM
computer communication review, vol. 43, no. 4, pp. 27-38, 2013.

[6] H. Pucha, D. G. Andersen, and M. Kaminsky, “Exploiting similarity
for multi-source downloads using file handprints.” in Symposium on
Networked Systems Design and Implementation, 2007, p. 2007.

[71 T. Cormen, C. Leiserson, R. Rivest, and C. Stein, “The rabin—karp
algorithm,” Introduction to Algorithms, pp. 911-916, 2001.

[8] “Mininet.” [Online]. Available: http://yuba.stanford.edu/foswiki/bin/
view/OpenFlow/Mininet

[9] “Internet2.” [Online]. Available: http://www.internet2.edu/

[10] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
in Conference on Usenix Security Symposium, 1998, pp. 3-3.

[11] “Passive Real-time Asset Detection System.” [Online]. Available:
http://prads.projects.linpro.no

[12] “Squid.” [Online]. Available: http://squid-cache.org.

[13] “Iptables.” [Online]. Available: http://netfilter.org/projects/iptables.

[14] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl, J. Khalid,
S. Das, and A. Akella, “Opennf: Enabling innovation in network function
control,” ACM SIGCOMM Computer Communication Review, vol. 44,
no. 4, pp. 163-174, 2015.

[15] “Iperf.” [Online]. Available: https://iperf.fr/

[16] “Traceroute.” [Online]. Available: http://traceroute.sourceforge.net/

[17] S.-Y. Wang, C.-C. Wu, and C.-L. Chou, “Hybridtrace: A traceroute
tool for hybrid networks composed of sdn and legacy switches,” in
Computers and Communication (ISCC), 2016 IEEE Symposium on.
IEEE, 2016, pp. 403-408.

[18] Y. Zhao, P. Zhang, and Y. Jin, “Netography: Troubleshoot your network
with packet behavior in sdn,” in Network Operations and Management
Symposium (NOMS), 2016 IEEE/IFIP. 1EEE, 2016, pp. 878—882.

[19] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic middlebox
actions using flowtags,” in Usenix Conference on Networked Systems
Design and Implementation, 2014, pp. 533-546.

[20] Detal, Gregory, Hesmans, Benjamin, Olivier, Vanaubel, Yves, Donnet,
and Benoit, “Revealing middlebox interference with tracebox,” 2013.

