
Software Defect Prediction
from Code Quality

Measurements via Machine
Learning

by

Ross Earle MacDonald

Thesis submitted to Saint Mary’s University in partial

fulfilment of the requirements for the Degree of Master

of Science in Computing and Data Analytics

August, 2018, Halifax, Nova Scotia

Copyright Ross MacDonald, 2018

Approved by: Dr. Pawan Lingras
Supervisor

Department of Mathematics
and Computing Science

Approved by: Dr. Stavros Konstantinidis
Supervisory Committee Member

Department of Mathematics
and Computing Science

Approved by: Dr. Yasushi Akiyama
Supervisory Committee Member

Department of Mathematics
and Computing Science

Approved by: Dr. Daniel L. Silver
External Examiner
Acadia University

Abstract

Software Defect Prediction from Code Quality Measurements via
Machine Learning

by Ross Earle MacDonald

Improvement in software development practices to predict and
reduce software defects can lead to major cost savings. The goal of
this thesis is to demonstrate the value of static analysis metrics and

rules in predicting software defects at a much larger scale than
previous efforts. The study analyses data collected from more than
500 software applications, across 3 multi-year software development
programs, and uses over 150 software static analysis measurements.
Static analysis metrics, rule violations and software defect historical
actual values are sourced from multiple disparate databases, joined
and groomed for analysis. Several feature selection techniques are
employed to narrow the feature set focus to the most influential

variables. Furthermore, a number of machine learning techniques
such as neural network and random forest are used to determine

whether seemingly innocuous rule violations can be used as
significant predictors of software defect rates.

August, 2018, Halifax, Nova Scotia

i

Software Defect Prediction
from Code Quality

Measurements via Machine
Learning

by

Ross Earle MacDonald

Thesis submitted to Saint Mary’s University in partial

fulfilment of the requirements for the Degree of Master

of Science in Computing and Data Analytics

August, 2018, Halifax, Nova Scotia

Copyright Ross MacDonald, 2018

Approved by: Dr. Pawan Lingras
Supervisor

Department of Mathematics
and Computing Science

Approved by: Dr. Stavros Konstantinidis
Supervisory Committee Member

Department of Mathematics
and Computing Science

Approved by: Dr. Yasushi Akiyama
Supervisory Committee Member

Department of Mathematics
and Computing Science

Approved by: Dr. Daniel L. Silver
External Examiner
Acadia University

Contents

List of Figures v

List of Tables vi

1 Introduction 1
1.1 Problem Statement . 1
1.2 State of the Art . 2
1.3 Thesis Objectives . 3
1.4 Thesis Overview . 4

2 Literature Review 6
2.1 Software Development . 6
2.2 Software Defects . 10
2.3 Current State of Defect Prediction Methods 11
2.4 Static Analysis . 12
2.5 Machine Learning . 15

2.5.1 Reinforcement Learning 15
2.5.2 Supervised Learning 16
2.5.3 Unsupervised Learning 19

2.6 Software Defects And Machine Learning 20
2.7 Measurements of Model Performance 22

3 Methodology 26
3.1 Data Set Generation Theory 27

3.1.1 Source Code Snapshot Decision Analysis 29
3.1.2 Software Defect Snapshot Decision Analysis 29

3.2 Feature Selection Theory . 33
3.2.1 Feature Elimination . 33
3.2.2 Feature Clustering . 35
3.2.3 Recursive Feature Elimination 36

3.3 Prediction Analysis Theory 37
3.3.1 Regression Modelling 38
3.3.2 Binary Classification Modelling 38
3.3.3 Multi-class Classification Modelling 40
3.3.4 Model Tuning Parameter Search 43
3.3.5 Modelling Goals . 43

4 Results 45
4.1 Data Preparation . 45

4.1.1 Initial Data Set Creation 45

ii

4.1.2 Data Joining . 46
4.2 Feature Selection . 49

4.2.1 Feature Removal Results 50
4.2.2 Feature Clustering Results 55
4.2.3 Recursive Feature Elimination Results 61

4.3 Regression Results Analysis 70
4.3.1 Linear Regression Results 70
4.3.2 Neural Network Results 73
4.3.3 Linear Support Vector Machine Results 74
4.3.4 Summary of Regression Results 75

4.4 Binary Classification Results Analysis 77
4.4.1 Decision Tree Results 78
4.4.2 Random Forest Results 79
4.4.3 Neural Network Results 79
4.4.4 Linear Support Vector Machine Results 80
4.4.5 Summary of Binary Classification Results 81

4.5 Multi-class Classification Results 86
4.5.1 Decision Tree Results 87
4.5.2 Random Forest Results 88
4.5.3 Neural Network Results 89
4.5.4 Linear Support Vector Machine Results 90
4.5.5 Summary of Multi-Class Classification Results 90

5 Discussion 97
5.1 Feature Elimination . 97
5.2 Regression . 98
5.3 Binary Classification . 99
5.4 Multi-Class Classification . 100
5.5 Implications of Findings . 100

6 Conclusions and Recommendations 104
6.1 Summary . 104
6.2 Conclusions . 107
6.3 Recommendations . 111

References 114

Glossary 118

Appendices 119

A Supplementary Figures 119

iii

B Supplementary Tables 120

iv

List of Figures

1 Monthly Software Defect Detection Rates for Program 1 . . . 30
2 Monthly Software Defect Detection Rates for Program 2 . . . 31
3 Monthly Software Defect Detection Rates for Program 3 . . . 32
4 Scatter Plot of Software Defects by Software Application . . . 41
5 Density Plot of Software Applications by Number of Software

Defects . 42
6 Data Collection and Preparation Methodology Diagram 45
7 Feature Selection Methodology Diagram 50
8 Within Sum of Squares Totals by K-Value 56
9 Feature Count by Cluster Membership 57
10 Revised Feature Count by Cluster Membership After Applying

Minimum Cluster Size . 58
11 Graphcial Representation of the RMSE Performance of Each

Regression Model . 75
12 Graphical Performance Comparisons of Each Binary Classifi-

cation Model . 82
13 Cluster 1 Features Set Variable Importance in Fitting the

SVM Binary Classification Model 83
14 Cluster 1 Features Set Variable Importance in Fitting the Ran-

dom Forest Binary Classification Model 85
15 Graphical Performance Comparisons of each Multi-Class Clas-

sification Model . 91
16 All Features Variable Importance in Fitting the Random For-

est Multi-Class Classification Model 93
17 All Features Variable Importance in Fitting the Neural Net-

work Multi-Class Classification Model 95
18 Correlation Plot of Features and Outcome 119

v

List of Tables

1 Important Measurements by Program 26
2 Detail of a Sample of Five Features Not Detected in Sonar-

Qube Analysis . 34
3 Class Imbalance of Software Defect Occurrence in Software

Applications by Program . 39
4 Raw Metrics and Rules Table Row and Column Count by

Program . 47
5 Pivoted Metrics Table Observations and Counts Data 47
6 Pivoted Rule Table Observations and Counts Data 48
7 Static Analysis Software Defect Table Count by Observations

and Measurements . 49
8 Details of Features Removed Due to Zero Variance 51
9 IDs of Features Removed Due to Near Zero Variance 52
10 Top Ten Features Correlated with Outcome 53
11 Top Ten Inter-correlated Features 54
12 IDs of Features Removed Due to High Intercorrelation 55
13 Detailed List of Features in Cluster 1 59
14 Detailed List of Features in Cluster 2 60
15 Detailed List of Features in Cluster 3 60
16 Linear Regression RFE Performance Results - Cluster 1 Features 62
17 Linear Regression RFE Performance Results - Cluster 2 Features 63
18 Linear Regression RFE Performance Results - Cluster 3 Features 63
19 Linear Regression RFE Feature Details Based on Best Per-

forming Fits . 64
20 Neural Network Regression RFE Performance Results - Clus-

ter 1 Features . 65
21 Neural Network Regression RFE Performance Results - Clus-

ter 2 Features . 66
22 Neural Network Regression RFE Performance Results - Clus-

ter 3 Features . 66
23 Neural Network Regression RFE Feature Details Based on

Best Performing Fits . 67
24 SVM Linear Regression RFE Performance Results - Cluster 1

Features . 68
25 SVM Linear Regression RFE Performance Results - Cluster 2

Features . 69
26 SVM Linear Regression RFE Performance Results - Cluster 3

Features . 69

vi

27 SVM Linear Regression RFE Feature Details Based on Best
Performing Fits . 70

28 Linear Regression Coeficient Significance - Cluster 1 Features . 71
29 Linear Regression Coeficient Significance - Cluster 2 Features . 71
30 Linear Regression Coeficient Significance - Cluster 3 Features . 71
31 Linear Regression Coeficient Significance - All Features 72
32 Linear Regression Performance Summary 72
33 Neural Network Regression Performance Summary 73
34 Linear SVM Regression Performance Summary 74
35 Software Defect Outcomes Count Variable Statistics 76
36 Binary Classification Outcome Distribution Statistics 77
37 Binary Classification - Decision Tree Performance Summary

by Model . 78
38 Binary Classification - Random Forest Performance Summary

by Model . 79
39 Binary Classification - Neural Network Performance Summary

by Model . 80
40 Binary Classification - SVM Performance Summary by Model 81
41 Cluster 1 Features Set Confusion Matrix for the SVM Binary

Classification Model . 83
42 SVM Binary Classification Important Features Mapping to

SonarQube Rules . 84
43 Cluster 1 Features Set Confusion Matrix for the Random For-

est Binary Classification Model 84
44 Random Forest Binary Classification Cluster 1 Features Set

Important Features Mapping to SonarQube Rules 86
45 Multi-class Outcome Distribution Statistics 87
46 Multi-Class Classification - Decision Tree Performance Sum-

mary by Model . 88
47 Multi-Class Classification - Random Forest Performance Sum-

mary by Model . 88
48 Multi-Class Classification - Neural Network Performance Sum-

mary by Model . 89
49 Multi-Class Classification - SVM Performance Summary by

Model . 90
50 All Features Confusion Matrix for the Random Forest Multi-

Class Classification Model . 92
51 Random Forest Multi-Class Classification Important Features

Mapping to SonarQube Rules 93
52 All Features Confusion Matrix for the Neural Network Multi-

Class Classification Model . 94

vii

53 Neural Network Multi-Class Classification Important Features
Mapping to SonarQube Rules 96

54 Details of All Significant Features as Determined by Analysis . 101
56 SonarQube Rule and Metric Reference Table 125

viii

1 Introduction

1.1 Problem Statement

Software development projects are becoming increasingly large, complex, ex-

pensive, and difficult to predict [1]. One of the many issues with this es-

calation of complexity is the increased risk associated with cost or schedule

overruns in software projects. A major contributor to cost and schedule im-

pact in development programs is the detection of latent defects in software [2].

If the number of defects in a development project could be better anticipated,

then programs would be much less prone to budget or schedule overruns and

the potential for mitigation strategies could be increased. Such mitigation

strategies could include: focused code reviews, increased unit testing of par-

ticularly problematic code, and added supervision of junior developers, to

name a few.

Static analysis tools such as SonarQube provide key insight into the quality

of code much sooner than would otherwise be obtained if a development

team were to wait for the code to be tested manually [3]. The tool performs

static analysis of the code prior to compilation and execution, and because

of this, the tool has greater insight into the inner workings of the software

than a tester may have [4]. Unfortunately, tools such as SonarQube provide

so many metrics and rule count violation reports that it can be difficult to

focus on the important metrics and rules, potentially overwhelming a software

development team [5]. Due to this problem and the need to better predict

software defects, this research will attempt to address these issues through a

1

comprehensive analysis of a large dataset.

This study analyses data collected from more than 500 software applications,

across 3 multi-year software development programs, and uses over 150 soft-

ware static analysis metrics and rules collected and provided by the Sonar-

Qube application. The development programs analysed in this research were

composed entirely of modern, object oriented, Java-based software develop-

ment for mission-critical and safety-critical applications. To our knowledge,

no research to date has used such a large and modern data set for this

purpose, and the goal is to arrive at meaningful and time-appropriate pre-

dictions, conclusions and recommendations.

1.2 State of the Art

While recent research has demonstrated promising results of Machine learn-

ing being used to predict software defect rates based on Static Analysis met-

rics such as Code Complexity and Code Size [6, 7], the industry-standard is

still languishing behind. Most software development projects still use archaic

defect prediction methods, much of which are focused on the relationship

between the number of lines of code with the number of defects in an ap-

plication. While a significant correlation between these two measurements

has been proven a number of times [8], the implication of this relationship is

uninformative.

Why industries do not adopt more innovative and informative measurement-

driven prediction can be attributed to many factors, one of which is the

2

issue of Metrics Galore [5]. This situation can arise when a development

team is presented with an overwhelmingly large number of metrics and rules

to analyse. One such outcome of this situation is for the team to simply

continue using the status quo: Lines of code.

Clearly, a new solution is required to narrow the focus of software develop-

ment teams to a small list of important measurements that are significantly

related to software defect prediction.

1.3 Thesis Objectives

The ultimate goal of this study is to demonstrate the value of static analysis

metrics and rules in predicting software defects and provide development

teams with a manageable list of the most significant metrics and rules. While

it is difficult to define a specific threshold for avoiding the issues of Metrics

Galore [5], for the purposes of this research, an arbitrary number of 20 static

analysis metrics and rules will be used as the cut-off for team focus. It is

expected that through this goal, future software development projects will

be more successful, encounter less defects and be easier to predict.

More specifically, the fundamental objectives of this thesis are to:

1. Demonstrate a statistically significant correlation between static analy-

sis metrics and rules and the corresponding software defects predictions.

2. Produce a machine learning model that can be used to accurately pre-

dict software defects. Given an RMSE lower than the mean distribu-

tion of 40 or an AUC greater than 0.683 [7]. See section 2.7 for further

3

details on why these values were chosen.

3. Identify the 10 most significant static analysis metrics and rules that

attribute to the prediction of the software defects.

4. Provide an assessment of the results and recommendations for future

software development projects.

1.4 Thesis Overview

In order to accomplish the objectives of this analysis, a thorough under-

standing of the subject matter is required. This is accomplished through

an extensive literature review. The material that is presented in this thesis

spans all relevant topics including:

• Software Development methodologies and current issues.

• Software Defect background and implications.

• Current software defect prediction methods.

• Software Static Analysis theory and developments.

• Machine learning background.

• Methods for predicting software defects using machine learning.

Once the subject matter is thoroughly assessed, a clear methodology is

needed. This section of the thesis details the steps that have been taken

in order to prepare, process, train, test, and interpret the software defect

4

and static analysis data. The methodology will outline the acceptance crite-

ria for the results as well as any particular analysis methods used.

After the methodology is clearly laid out, the bulk of the analysis can be

performed. The analysis accomplished in this research is documented in the

results section of this thesis. All relevant model performance results will be

provided and a brief discussion will be included for each prediction type and

model.

A comprehensive discussion follows the results section of this thesis. The

discussion includes an analysis of the findings, performance of the model and

a logical analysis of the findings in order to interpret their meaning. Using

the results and interpretations, some conclusions are then presented.

Finally, the thesis will include a summary section which will provide a recap

of the analysis performed as well as an overall set of conclusions and some

recommendations on future research topics.

5

2 Literature Review

2.1 Software Development

Lehman’s Laws of Software Evolution have demonstrated that software de-

velopment programs are becoming larger and more complex as the years go

by [1]. With this ever-increasing complexity and size and decreasing quality,

it is becoming increasingly difficult to accurately predict how a development

program will unfold. As discussed by Brooks [9], software management teams

often search for the “silver bullet” solution to this problem. Unfortunately

there is no single solution that could even offer an order of magnitude im-

provement to performance, instead, software development teams must work

to improve their efficiency and quality through many facets [9].

Software development companies require insight into the amount of labour

required in order to complete a development program. By calculating this

labour, the company is able to estimate the cost, schedule and resources re-

quired to complete the program within an allotted time period [10]. Software

defects are one of the most important, but also one of the most difficult as-

pects of software development estimation [11]. Due to this difficulty, much

research has been invested into this field, namely the formalization of the

software development process.

Software development life-cycles have undergone various changes through

the years. In the early development years, most large development programs

were run in what is called a “Waterfall Process” [12, 13]. This process clearly

6

defines discrete states of software development, typically as follows:

1. Requirements Analysis

2. Detailed Design

3. Software Development

4. Software Integration

5. Software Testing

6. Product Acceptance Testing

The Waterfall Process breaks a software development program down into

these discrete steps where the inputs, work, and outputs are clearly defined.

The Requirements Analysis section involves reviewing the customer require-

ments and producing a set of documents that describe the technical inter-

pretation of the customer requirements at a much finer level of detail. Once

this detail is available, the team can then perform the Detailed Design anal-

ysis, which typically involves the production of UML diagrams [14] that are

used to describe the behaviour of the system including internal and external

sub-system interactions. Next, software development can commence, which

involves developers consuming the requirements and design documentation

and using it as blueprints to construct the software. Once the software is

completed, it can be integrated together and executed in a test environment.

Once functioning together as a cohesive unit, the software can be tested, typ-

ically first against the work products produced in the requirements analysis

phase of the program. Once those requirements are verified, the software can

then be acceptance tested against the customer requirements, often with the

7

customer involved in order to demonstrate compliance [15].

In many notable examples, large software development programs that fol-

lowed the Waterfall Process encountered many significant issues. The 1994

Standish Chaos Report [16] indicates that only 16.2% of software programs

that they surveyed had succeeded without significant issues. Notable fail-

ures include the 1987 California DMV Software Update program which was

cancelled after $45M of investment [16]. Additionally, American Airlines in-

vested $165M into a car rental and hotel reservation system before it was

cancelled [16]. Many software development experts [12] claimed that fol-

lowing such rigid processes could have led to the failures witnessed in these

examples. Others add that by deferring testing to the end of a program meant

that the cost of fixing the software defects discovered in the test phase were

significantly higher than if they had been discovered sooner [13].

Over time, software development practices changed, with the introduction

of the Agile Manifesto [17]. Since then, additional specializations of Ag-

ile and iterative processes were developed such as Scrum [18], Kanban [19],

Extreme Programming [20] as well as many others. These development prac-

tices encouraged breaking the software development problem down into small

iterations of work, in some cases, resembling that of the Waterfall Process,

but on a much smaller scale. In terms of Scrum, the development team is

responsible for performing short iterations of development, each of which in-

cludes a definition phase, a design phase, an implementation phase and then

a testing and verification phase [18]. Significantly fewer development pro-

grams have demonstrated major issues when using Agile methodologies [21].

8

It has been shown that Agile software development is more adaptable to

changing requirements and complexities of software programs, which can

accommodate the ever increasing size of new software development under-

takings [21]. However, most complex software development programs are

still prone to issues despite the relative improvements that Agile processes

have brought forward [22]. It has been demonstrated that different types

of Agile methodologies apply better to different situations. For example,

Scrum is ideally suited to development programs where much of the specific

detail is not known at the beginning of the program [23]. Aside from these

differences, studies have shown that the area of software development that

requires additional attention is within testing and verification [22].

As Oberscheven [24] explores, the collection and monitoring of software char-

acteristic measurements, also called metrics, must be incorporated into an

Agile methodology in order to improve the success rate of such development

programs. More specifically, it is suggested that Agile software development

teams perform metrics analysis and review at the end of each development

iteration. This applies quite well to the Scrum concept of a retrospective [18],

in that the team reviews their development metrics and they collectively make

an agreement to focus on improving a measurement that is unfavourable. The

team then regularly reviews these key metrics at the end of each iteration,

monitoring and adjusting their strategy depending on how the measurement

changes [24].

9

2.2 Software Defects

Software defects can cause various issues both during and after the main

phase of software development has completed. Software defects present in

code during development can hinder the progress of developers in completing

their task and cause the development program to absorb unplanned expenses.

Likewise, defects that are found during testing can be difficult and cost sig-

nificant effort to rectify. Worse still, depending on the severity of the defect

and the criticality of the software product, the defect could also endanger

lives [2].

If more software defects are found during testing than expected, not only

can this cost the company money, but it can also impair their ability to

meet customer deadlines or mission milestones. Software defects can also

complicate the warranty period of a software product, thus making it difficult

for a software development company to move on from a program when it

needs to continue to dedicate resources to supporting customers as they find

new defects through normal use [25].

It has been demonstrated in many reviews that the later a software defect

is found during development, the more costly it becomes to fix [26]. One

reason for this escalation has been attributed to the fact that the longer a

development program runs, the higher the overhead cost and the higher the

cost required to change the system [26]. For example, it has been shown

that a defect found during the maintenance period of an application can cost

100-times that of the cost to fix it during the main software development

10

phase of the program [27]. The aforementioned research demonstrates that

it is imperative to predict defect rates and detect such defects as soon as

possible in order to reduce software development cost.

2.3 Current State of Defect Prediction Methods

Generalized software development performance measurements have been

tested against the rate of defects in software applications. For example, one

study [28] demonstrated a strong correlation between requirements quality,

design quality and software defects. The study showed that there was a

negative correlation between the number of requirements and the number

of defects found in the software - this is to say that insufficient numbers

of requirements cause higher defect rates. Conversely, it was found that

developing fewer design artefacts resulted in higher defect rates - this is to

say that developers writing code that was not thoroughly designed will result

in higher defect rates.

Another study found a significant correlation between the defect rate re-

ported by a static lint tool with the actual software defect rate witnessed in

the software application [29]. The research demonstrated that if the lint tool

found a large number of errors in a particular software application, then it

was highly likely that software application would contain a large number of

latent defects.

Similarly, others found correlations between the number of lines of code of a

software application with the number of defects detected on that software ap-

11

plication [8]. This is a seemingly obvious conclusion: The larger the software

application, the higher the defect rate of that application. The research pro-

posed that the extraction of more granular measurements of software quality

could be used by a machine learning algorithm to predict defect rates be-

cause of the nature of the data. It also hypothesized that because the data

can be easily categorized, it would be very suitable for a classification-type

analysis.

2.4 Static Analysis

Static Analysis originated with the development of the Lint application by

Johnson in the 1970s [30]. The Lint application was intended to remove

unwanted parts of code that could cause issues. The name is derived from

the same term used to describe unwanted fragments of hair in sheep wool.

Johnson set the stage for the formal definition of static analysis tools by

describing the difference between Lint and Compilers: “Lint takes a more

global, leisurely view of the program, looking much more carefully at the

compatibilities.” [30, p. 1].

Fairley [4] provided a more formal definition for static analysers versus dy-

namic testing: static analysers look at the code without actually compiling

or executing it while dynamic testing requires the application to be run and

exercised. While dynamic testing is certainly required, it can be costly to

perform repeatedly and can also suffer from reproducibility problems and

completeness as human error is often involved.

12

Studies have demonstrated correlations with some static analysis measure-

ments and software defects [31]. The most commonly used measurements for

software defect predictions are software size and software complexity. Unfor-

tunately, it has been demonstrated that although size and complexity can be

strongly correlated with software defect outcomes, these measurements are

self-fulfilling and not easy to control. Basic logic can be applied to derive

the same results: It seems obvious that an application that is larger than

another would have the potential to contain more software defects than the

other. Similarly, an application that is more complex than another could

also contain more defects. The issue lies in the fact that a software develop-

ment team can do very little to affect these measurements: given consistent

developer experience, a software application will be as large and as complex

as it needs to be to solve the problem [31].

Many static analysis tools exist today, each of which provides a particular

focus on the quality of software. The problem is choosing the tool or tools

for a given software development program is complex and depends on many

factors [32]. It has been demonstrated by comparing several static analysis

tools, that the PMD Source Code Analyzer (PMD) is a very thorough Static

Analysis tool, but often generates a lot of false positives and can take a long

time to execute analysis. Conversely, FindBugs completes analysis quickly,

returns very little false positives, but can occasionally miss an important

defect in some complex code. It is also shown that although there is some

overlap between tools, each tool also detects unique errors that the other

tools do not. The research goes on to recommend that software development

13

teams should utilize a “meta-tool” that would allow them to combine the

results from various static analysis tools together, thus achieving a better

results. [32]

Several tools have been recently introduced that accomplish the above sug-

gestions [32]. SonarQube is such a “meta-tool” that provides a software

development team with the ability to import, customize and automatically

execute static analysis on code utilizing a variety of rule definitions. Camp-

bell and colleagues [3] describe in great detail level of customization and

capability of SonarQube. For example, SonarQube can be configured to ex-

ecute analysis using FindBugs rules, JLint rules as well as stock SonarQube

rules and metrics on each software module. Additionally, SonarQube can be

configured to execute rule analysis with customized user rules in order to fit

specialized software needs.

Unfortunately, with the advent of meta-tools such as SonarQube, a new

problem is created: Metrics Galore [5]. Metrics Galore is a situation where a

team is paralysed by attempting to monitor too many metrics simultaneously.

Many issues can occur such as de-motivation of the team, focusing on the

wrong metrics, losing sight of the important goals of the program, etc. Thus

it is necessary for program managers to use some means to narrow their focus

on the most important metrics that affect the software quality.

In order to address the Metrics Galore issue, while still providing metrics

and rules for the software development team to track and improve upon, it is

possible to employ machine learning algorithms to help. While unsupervised

learning can provide a solution to the overwhelming metrics issue [33], regres-

14

sion and classification could serve to solve the prediction issues by providing

a predictive model that could be used by the development team and by the

software development managers [32].

2.5 Machine Learning

Machine Learning involves training a computer model with data or historical

information in an attempt to optimize a system configuration [34], provide

insight into the behaviour of the system and to potentially predict the be-

haviour of the system in the future. Machine Learning can be divided into

three main subsets:

1. Reinforcement Learning

2. Supervised Learning

3. Unsupervised Learning

2.5.1 Reinforcement Learning

Reinforcement learning is used in live systems with a feedback mecha-

nism [34]. This form of learning involves a method of providing information

continuously to the model, allowing the model to make decisions and then

either reinforcing correct ones or correcting incorrect ones. The longer the

model runs, presumably, the more accurate the model becomes. This method

of machine learning differs from most in that there are no specific outcomes

fed into the model. Instead, the model uses a reward function that is com-

15

puted after taking a set of actions. The actions then provide the model

with a certain amount of reward. The model then reworks its behavior in

order to maximize the reward earned by its actions [34]. Other research

demonstrates that an excellent application of Reinforcement learning is in

training decentralized robotic behaviour [35].

2.5.2 Supervised Learning

Supervised learning involves the use of historical predictors and outcomes

with the intent that the model will provide useful predictions of new val-

ues given new combinations of predictors [34]. This learning is “supervised”

in that the outcomes of certain sets of predictors are already known and

can be used to monitor the accuracy of the predictions that the model pro-

duces.

Supervised learning algorithms come in many forms with specific strengths,

weaknesses and purposes [36]. Specific models that are suitable for the re-

search in this thesis include: Linear Regression, Decision Trees, Support Vec-

tor Machines (SVM), Neural Networks, and Random Forests. Each of these

models can provide insight into the relationship between a set of features and

the corresponding outcomes in a manner that permits the prediction of new

values given novel feature inputs [37].

Linear regression models can be used for performing standard regression

for a series of outcomes given a particular set of inputs, or features. A

linear regression model is especially useful when the relationship between

16

the features and the outcomes is linear in nature, this is to say that the true

mean of the outcome varies linearly with the features [38]. Where linear

regression models fail is when the relationship is non-linear as well as when

too many features are used to fit to the model. In the former case, either the

data must be transformed into the linear domain, or a different model must

be used. In the latter case, adding more features to a model may decrease

the error on the training set, but the test set may exhibit an increase of error,

this is known as an over-fitted model [36].

The classical implementation of Decision Trees is limited in application to

classification analysis only. They work by dividing the data space up into

consecutively smaller sections, each of which is fit by a simple model, such

as a constant. This process is repeated recursively until the model hits a

predetermined splitting limit or tree maximum imposed by the modeller [39].

Decision Tree splitting is typically done based on a threshold of a feature

leading to the outcome. This will look like a simple “if, then, else” statement

where the tree branches if a feature value is equal to or greater than a specific

value. The tree branches at this point, and additional feature values are

analyzed, eventually leading to an outcome decision. [37]. Decision trees

are especially good at handling data that contains missing or noisy values.

Conversely, Decision Trees can suffer from high error rates when the input

data set is small, more so than other machine learning methods, and thus

Decision Trees are more effective on larger data sets [36].

SVMs work by transforming the input feature space such that in the trans-

formed frame of reference, the outcomes are linearly separable [36]. Support

17

vectors are used to accomplish this transformation, and the formulas used

in SVM models require iteration over tuning parameters in order to find the

best fit. SVM models have demonstrated good performance when classifying

data for image recognition as well as image to text conversions [40]. SVMs

come with the added complexity of several tuning parameters and may re-

quire many executions with permutations in the tuning parameters in order

to find a good fit, which could be problematic for large data sets [36].

Basic Neural Networks are non-linear regression and classification modelling

algorithms. Their basis is on a series of neurons which invoke the sigmoid

function against a weight and input parameter, thus producing a 1 or a 0 for

an output. With a large number of these neurons arranged in layers, it is

possible to train Neural Networks to produce accurate predictions for a wide

range of data sets [41]. However, they are especially sensitive to over-fitting,

and thus care must be taken to properly perform cross-validation on any

results produced by a Neural Network [36].

Random Forests work by building a set of Decision Trees based on random

samples of the original data set, using replacement, also known as bootstrap

aggregation, repeatedly over an entire forest possible of Decision Trees. By

performing this aggregation repeatedly, iteratively and randomly many times,

Random Forests minimize the noisy results of a typical Decision Tree while

maintaining the benefits of a tree structure [36]. In recent years, Random

Forests have become quite popular as they have demonstrated significantly

higher performance on various classification problems over other models and

it is hypothesized that this is mainly due to the Law of Large Numbers [42]. It

18

should be pointed out, however, that Random Forests can be computationally

intensive as well, and do not perform as well in regression as they do in

classification [42].

2.5.3 Unsupervised Learning

Unsupervised learning is used when the order of outcomes of a dataset are

unknown and the user is looking for a pattern to analyse [34]. This is es-

pecially useful in situations where the distribution of the data is unknown

and the researcher is looking for some additional information about the be-

haviour of the data-space [34]. No expectations of results are fed into the

system by the analyst, instead, unsupervised learning models are used to find

the patterns, behaviour and help derive expectations of the data for further

analysis and understanding [33].

One of the best examples of unsupervised learning is known as clustering,

which has been found to be particularly important in performing dimensional

reduction [33]. Provided the optimal quantity and quality of data to Machine

Learning algorithms is important, as too little information will result in an

unreliable model. Conversely, if too much of the same information is pre-

sented to a model, it is likely to become over-fit [33]. Over-fitting can be

caused by a number of factors, one of which is when a model is fitted with

too many features, thus resulting in an unstable model with unreliable results

when the model is presented with new data. Clustering is a set of algorithms

which divides a data set into a number of clusters based on their similarities

given their respective feature observation values [43]. More specifically, by

19

performing Hierarchical Clustering on a large set of features, it is possible

to group similar features together and then fit each cluster separately to a

model [44]. This serves to avoid over-fitting when using too many features

that are distinctly different in behaviour [33]. The goal when using Hierar-

chical clustering is to analyse the group of features belonging to each cluster

separately with the expectation that better model performance will be a

result.

2.6 Software Defects And Machine Learning

Various parties have proposed applying the use of Machine learning to the

research of Static Analysis metrics and rules [6, 7]. In one research case, an

analysis on topics on the source code of various software applications was per-

formed. By categorizing the topics and performing statistical analysis, they

were able to use the topics metrics on top of the existing software metrics

in order to better predict defect outcomes. What was found was promis-

ing: If a particular source code file had a reputation for having introduced

defects in the past, then its reputation continues into the future and thus

has a high chance of contributing new defects later on in development or

testing. Additionally, source code files that had a large number of topics

recorded also demonstrated a high defect rate. These results suggest that

Static Analysis measures may have a promising impact on the prediction of

software defects [6].

A recent experiment demonstrated some significantly positive results through

analysing 12 NASA datasets using deep learning Neural Network configura-

20

tions. The research found strong correlations between some of the static

analysis metrics and predicting the outcome of defect detection. The find-

ings also suggest that machine learning algorithms outperform traditional

regression models and in most cases were statistically significant in predict-

ing software defect outcomes [7].

The research performed on software defect prediction using Static Analysis

features has generally focused on a relatively small feature set: 5 in one [6]

and 21 features in another[7]. While it is generally good practice to keep

a model feature set small and simple in order to avoid unnecessary com-

plexity and potential over-fitting [36], the large number of metrics and rules

that are produced by a Static Analysis tool such as SonarQube could be

useful for defect prediction and avoidance, but because of that large num-

ber, are not being taken to their full potential due to the effects of Metrics

Galore [33].

The goal of this thesis is to develop a statistically significant prediction model

for software defects using Static Analysis metrics and rules and provide guid-

ance on which subset of the Static Analysis metrics and rules are actually

important in producing this prediction. To this end, the results will allow

software development teams focus on a manageable set of metrics and rules

and work toward improving their measures in order to avoid, mitigate or fix

software defects as early as possible in order to reduce overall program de-

velopment costs. Finally, software program managers can use the prediction

models as a means to monitor and estimate the progress of a software de-

velopment program more accurately than they do currently, thus providing

21

better insight into the health of a development program.

2.7 Measurements of Model Performance

The most common performance measurement of a regression model that is

used to predict a numerical value is through the inspection of the Root Mean

Squared Error (RMSE) value of the model fit [37]. This measurement is a

mean measurement of the model error in predicting a particular value given

a set of input features from the test set. The RMSE is an absolute error

measurement, in that it is calculated by the square of the error, thus ignor-

ing whether the error was positive or negative from the actual value. The

RMSE will be the primary measure of regression model performance in this

analysis. When RMSE values are similar, additional measurement values

are analysed. One such measurement is R2 (RS) (2), that is, the coefficient

of determination. The R2 value provides a percentage measurement of the

coverage of output variable by the model. This is to say that the model

is able to predict the R2 percentage of variability of the problem set given

the available inputs. A lower RMSE value is preferred while a larger R2

value is preferred [37]. Another measure of regression model performance is

the Mean Absolute Error (MAE) (3) which is an averaged error measure-

ment. Likewise, Standard deviations for each of these measurements is also

included: Standard Deviation of R-Squared (R.SD), Standard Deviation of

RMSE (RSSD), and Standard deviation of MAE (M.SD) [37].

22

RMSE =

√√√√ 1

n

n∑
i=1

e2i (1)

R2 = 1− SSres

SStot

(2)

MAE =

∑n
i=1 | ei |
n

(3)

The most comprehensive performance measurement of a classification model

is through the use of the Receiver Operator Characteristic Curves (ROC) [37].

The calculations leading to the creation of an ROC curve for a particular

model takes into consideration several aspects of the performance of the

model. These considerations are as follows:

• The Recall (Sensitivity) of the Model(4) - The number of correct pre-

dictions of an event over the total number of occurrences of the event.

This measurement is also known as the true positive rate of predictions

of the model [37].

• The Specificity(5) - The number of correct predictions of the absence

of an event over the total number of absences of the event. This mea-

surement is also known as the true-negative rate of the model [37].

Sensitivity = Recall =
TruePositivePredictions

TotalRealPositiveEvents
(4)

23

Specificity =
TrueNegativePredictions

TotalRealNegativeEvents
(5)

By plotting the sensitivity versus the specificity of a model, an ROC curve

is created. The goal in this analysis is to maximize the performance of the

model by maximizing both the sensitivity as well as the specificity. In doing

so, the Area Under the Curve (AUC) must be maximized. The maximum

possible value for an AUC is 1, and thus model performance will be based

on the model which produces the highest AUC value [37]. Given existing

literature and studies in the area of Static Analysis and Software Defects,

the minimum acceptable threshold for an AUC in the Binary and Multi-

Class Classification analysis in this thesis shall be 0.683 as was the minimum

found in similar current research [7].

While the AUC alone is a reasonably strong indicator of model performance,

two other model measurements will be discussed during the analysis and

the implications of their results will be determined. These measurements

are:

• The Precision(6) - The number of correct predictions of an event over

the total number of predicted occurrences of the event. This measure-

ment is also known as the positive predictive value of the model [37].

• The F-Score(7) - The harmonic mean of the Precision and Recall of

the model. The F-Score is also used alongside the AUC measurement

as an overall model performance indicator [37].

24

Precision =
TruePositivePredictions

TruePositivePredictions + FalsePositivePredictions
(6)

F -Score = 2 ∗ Precision ∗Recall

Precision + Recall
(7)

Finally, the AUC is used to determine variable importance in the classifi-

cation model results. The Caret R model is used to calculate the variable

importance, and this library accomplishes this calculation using the trape-

zoidal rule calculation of the AUC of the ROC curve for each feature in each

model. In the case of multi-class classification, this comparison is performed

in a pair-wise fashion for each feature pairs in each model. The maximum

AUC value in these pair-wise comparisons is used as the variable importance

for the given model. These results are then averaged out across the k-fold

cross validation results [48].

25

3 Methodology

Analysis has been performed on a data set consisting of software metrics and

rules data collected from three large-scale software development programs.

A “software development program” in this context implies the execution of

a contract-based software development effort with the purpose of deliver-

ing a suite of software applications to an end customer. These programs

consist of defence domain software with high-reliability, high-criticality and

safety-critical performance requirements, and thus were extensively tested

during and after software development activities. Many individual software

applications were written for each of these programs, all using the Java pro-

gramming language and object-oriented design methodologies. The overall

size of each software development program is captured in Millions of Source

Lines of Code (MSLOCs). Refer to Table 1 for some key details of each

program:

Measure Program 1 Program 2 Program 3
Duration (Years) 2 1 7

Team Size (People) 30 10 80
Applications 290 132 352

LoC (MSLOCs) 4.28 2.96 7.72
Software Defects 2629 542 14926

Table 1: Important Measurements by Program

While Program 1 and Program 2 above were developed in an iterative and Ag-

ile methodology, Program 3 was developed using a Waterfall process. Despite

the differences between the programs, in all cases, the software development

activity was conducted as a separate phase from the final acceptance test-

26

ing phase of the programs. While low level software testing was conducted

through the development of all three of these programs, the large majority

of the software defects were discovered during the acceptance testing phase

of each program.

In all programs, the number of software defects that were discovered far ex-

ceeded the original expectations of the program plans, which caused schedule

and budget impacts to the development company. In an effort to avoid sim-

ilar impact and surprises in the future, it is the goal of the analysis to build

an effective defect prediction model as well as a strategy to focus effort on

particular Static Analysis metrics and rules that could lead to better software

defect rate results.

3.1 Data Set Generation Theory

The data used are snapshots of a continuum of ever-changing values. In order

to limit the scope of the research in this thesis to a manageable size, it was

determined that a single snapshot of software source code would be analysed

and a single snapshot of software defect data would be analysed.

In order to determine the optimum point in time to perform both of these

snapshots, intimate knowledge of the program plans was required. The the-

ory built around these data collections is based on two key points:

1. The source code should be analysed after major software development

was completed, but prior to acceptance testing was performed.

2. The software defect measurements should be analysed well after accep-

27

tance testing was performed.

The justification for point (1) above is the following:

• In order to generate a model that can be used for future programs, the

metrics and rules must be based on historical data.

• Since only one snapshot was taken per program, best results are gen-

erated by choosing a snapshot that has a maximum of undiscovered

software defects - this should be after major development is complete

but before acceptance testing has started.

The justification for point (2) above is the following:

• The software defect values are the outcomes that are to be predicted

by the model, and thus the snapshot of the defect rates was taken

after most defects had been discovered, this is to ensure that the model

accounts for as many defects as possible.

• Since these programs are completed, it was possible to profile their

defect detection rates in order to ensure that a reasonable time snapshot

was chosen.

It was important to ensure that the snapshots of the metrics and rules, and

of software defects were taken at the optimal times, as it is the best way

to maximize the number of latent defects in the SonarQube data, as well as

minimizing the number of undiscovered defects in the defect rate report. By

following the process outlined above, the features can be treated as current

values while the defect rates can be treated as future values, thus structuring

the model in a predictive format.

28

3.1.1 Source Code Snapshot Decision Analysis

Choosing a snapshot of the software source code was made possible through

the use of version control. All software applications analysed were maintained

in a source code version repository which consisted of a full historical record

of all changes made to the repository from inception until completion. In

order to perform this step, intimate knowledge of the program execution

schedule was required. This detail will not be discussed in this report as it

is considered proprietary to the company that provided the data.

3.1.2 Software Defect Snapshot Decision Analysis

The selection of the software defect measurements is a simpler analysis than

the source code selection, as most software development programs demon-

strate a similar defect detection trend [45]. By analysing the defect raise

trend, and ensuring that the defect detection rates have settled to near-zero

by the time of collection, it can be confirmed that all major software defects

have been detected in the snapshot and should suffice for the purposes of this

analysis [45].

The software defects rates for each of the three programs can be seen in the

following charts. The detection rates are noted as Software Problem Reports

(SPRs) and these are analogous to software defects in this context.

29

Figure 1: Monthly Software Defect Detection Rates for Program 1

For Program 1, it is apparent from Figure 1 that the defect detection rates

demonstrate a well defined completion time around 2017-07. This snapshot

can be used with a high degree of confidence that all major defects have been

discovered and thus the data set will aid in prediction of such defects given

the metrics and rules collected.

30

Figure 2: Monthly Software Defect Detection Rates for Program 2

Conversely for Program 2, as demonstrated in Figure 2, the defect detection

rates do not demonstrate as pronounced of a completion downturn as in

Program 1. Instead, the defect detection slowly ramps down until around

2017-02. At this point, the snapshot can be used with a reasonably high

degree of confidence that all major defects have been detected.

31

Figure 3: Monthly Software Defect Detection Rates for Program 3

Finally, for Program 3, as shown in Figure 3, there are several step downs

until the defect detection rates settles out around 2016-02. Given the longer

time-frame for this program, there is a very high degree of confidence that

all major defects have since been detected.

The predicted outcome for each software application will be the total number

of software defects detected in that corresponding application by the com-

pletion of the major software testing. This software defect count will be the

target for the regression analysis in this thesis and will form the basis for the

classification analysis as well.

32

3.2 Feature Selection Theory

Once the data for software metrics, rules, and software defects were col-

lected, they were combined into a table of predictors and outcomes. The

predictors correspond to the static analysis metrics and rules collected from

a SonarQube analysis of the software source code as discussed earlier. The

outcomes correspond to the number of software defects detected per software

application in each repository.

Since there are several hundred static analysis metrics and rules that could

be counted in the analysis, it was necessary to narrow down the predictors

to a more manageable number in order to aid in analysis as well as to avoid

model over-fitting [36].

3.2.1 Feature Elimination

The metrics and rules collected from the SonarQube analysis are derived from

an SQL database which stores the data in an easily extractable manner. The

metrics reports are stored in one table, while the rule reports are stored in

another. Each rule and metric is identified with a unique identifier, a key, and

another set of tables exists in the database which contain the rule and metric

definitions. Additionally, SonarQube simplifies data storage such that any

discretely measured software metric or rule that does not result in a single

observation in the analysis will not be recorded in the data export. This

eliminates a significant number of the possible metrics and rules from the

analysis at the outset of the data export steps as not all rules or metrics have

33

resulted in observations. Refer to Table 2 for the first five features that were

removed from the analysis due to lack of detection.

Feature ID Description
X136 Security - Servlet reflected cross site

scripting vulnerability
X137 Bad practice - Method may fail to close

database resource
X138 Sequence of calls to concurrent abstrac-

tion may not be atomic
X139 Bad practice - Comparison of String

parameter using == or !=
X140 Bad practice - Transient field that isn’t

set by deserialization.

Table 2: Detail of a Sample of Five Features Not Detected in SonarQube
Analysis

Next, once the data is imported into R for analysis, it is possible to further

eliminate insignificantly contributing features by analysing the variance of the

values for each feature. These predictors are called zero-variance and near-

zero variance predictors. Zero-variance predictors add no value to a model as

they are essentially a constant, keeping them would just add complexity to

a model and potentially contribute to a weaker fit [37]. Near-zero variance

predictors have the potential of becoming zero-variance predictors during

cross validation, which when run through most models will cause the model

fit to fail due to missing data. Additionally, near-zero variance predictors

are assumed to offer little value to the model as their values are mostly the

same and can be safely ignored [37]. Section 4.2.1 provides further detail on

this subject, including the thresholds used for this analysis.

Finally, predictor pairs which are highly linearly correlated with each other,

34

also called collinearity, are likewise a good target for removal. Only one

feature of a pair of highly correlated features will be removed as this accom-

plishes two goals:

1. Eliminate unnecessary complexity from the model [37].

2. Reduce the impact on the model of the two features to one feature,

avoiding potential over-fitting [37].

By taking these steps above, the goal is to eliminate any features that will

either have no effect, a trivial effect, or a detrimental effect on the behaviour

of the model.

3.2.2 Feature Clustering

Performing a clustering analysis on the behaviour of each feature across all

values can provide insight into a means to group similar features for further

analysis. By transposing the data and performing a k-means clustering anal-

ysis [46], it is possible to separate features and run each cluster separately

through analysis.

Several considerations have been made in order to ensure that the results

remain consistent:

1. A plot of the variability within clusters (total within-cluster sum of

squares) for each cluster has been generated in order to allow for

an appropriate selection of the number of clusters through the elbow

method [47].

35

2. A minimum cluster size has been set through trial and error, any clus-

ters that contain a feature membership less than or equal to this thresh-

old will be joined with each other. This will allow for a more meaningful

analysis as studies have shown that fitting very small numbers of fea-

tures to a model can produce less favorable results [33].

By taking the steps above, the goal is to identify groups of features that

behave similarly and perform further analysis on each of these clusters. By

doing this, it is expected that a more accurate and useful model will be

generated for each of the groups than would otherwise be created on the

entire feature space as a whole.

3.2.3 Recursive Feature Elimination

In some of the clusters, the number of features still remains high and could

still result in an over-fitted model if all are used when fitting. To avoid this

issue, Recursive Feature Elimination (RFE) is performed using the caret li-

brary in R [48]. By recursively attempting model fits with every permutation

and combination of the set of features in a cluster within a range of minimum

feature set sizes, it is possible to measure the performance of each of these

fits [49].

The method of RFE chosen in this study was to minimize the RMSE value

through each iteration of feature sets. This is accomplished by attempting

fits for each model using each set of features for each feature set length cho-

sen. For example, if there are 10 features available, RFE will be performed

36

on 1 to 10 features with each feature size iteration attempt itself consisting

of a set of iterations of each permutation of features. In this example, the

number of features will start at 1, and in this loop, every feature is fit to the

model separately, with the results of each fit recorded. Next, RFE attempts

2 features, this time iterating over every feature combination pair. This con-

tinues until reaching 10 features, where all features are fit at the same time.

After the entire execution is completed, the performance of each fit is ranked

by RMSE and the best feature set size and feature set is chosen [48].

By performing the recursive feature model fitting, it is possible to compare

the adjusted R-squared value, for regression, or the accuracy value for clas-

sification, of the resultant model for each run. In doing so, the results will

suggest the following:

1. The optimal number of features to use for fitting to the model

2. The list of the best features to use in fitting the model

By performing the process above, the goal is to arrive at an optimal feature-

set that will provide the most valuable information about predicting the

outcome of software defects while at the same time offering the least-complex

solution to the problem, thus avoiding over-fitting [37].

3.3 Prediction Analysis Theory

The predictive analysis performed can be summarized across the following

categories:

37

1. Regression

2. Binary Classification

3. Multi-class Classification

3.3.1 Regression Modelling

Regression is performed on the aggregated defect value directly and is used

to predict the actual number of defects per unique application using the

metrics and rules as features. This analysis is performed using the following

models:

1. Linear Regression Model

2. Neural Network

3. Linear Support Vector Machine

It should be noted that while the only results from Support Vector Machines

are with a Linear Kernel, other kernel types were attempted during this

research. It was determined that radial and polynomial SVM Kernels did

not perform well and thus, the results of those analysis are omitted from this

thesis.

3.3.2 Binary Classification Modelling

Binary classification is performed on a binary variant of the software defect

value. By converting the software defect count to a binary definition by

answering the following question: “Does the application contain a defect?”.

38

If the answer is yes, then the value is set to true, if not, the value is set to

false. This allows for classification to be performed, and thus the following

models are explored:

1. Decision Tree

2. Random Forest

3. Neural Network

4. Linear Support Vector Machine

Class imbalance must be taken into consideration when performing fitting

with the above models in a binary classification scheme [37]. As shown in

Table 3, the number of software applications with at least one defect far out-

number those that do not have a single defect. Given this class imbalance,

classifiers can sometimes favour the outcome that is most likely, and in ex-

treme cases, always predict that outcome, regardless of the inputs [37].

Classification Program 1 Program 2 Program 3
HAS SPR 73.10% 60.15% 81.84%
NO SPR 26.90% 39.85% 18.16%

Table 3: Class Imbalance of Software Defect Occurrence in Software Appli-
cations by Program

In order to avoid class imbalance side-effects, up-sampling of the minority

class data points will be performed in order to compensate for the class

imbalance issues [50]. By randomly adding additional data points that are

repeats of the minority class until both classes are equivalent, it will force the

models to perform more insightful fitting. Up-sampling will be accomplished

39

through the use of the preProcess method in the Caret library in R [48].

Caret accomplishes up-sampling by randomly sampling the minority class

with replacement, until the number of samples of the minority class are

approximately equivalent to the majority class. Up-sampling alone has the

potential of introducing inaccuracies in the model, and thus all analysis will

be done with repeated cross validation in order to ensure a consistent model

is produced.

3.3.3 Multi-class Classification Modelling

The selection of the classes was done with the overall software defect distri-

bution in mind. Refer to Figure 4 for a scatter plot of the defect counts for

each software application.

40

Figure 4: Scatter Plot of Software Defects by Software Application

As Figure 4 demonstrates, a large number of the software applications exhibit

a low number of software defects. This behaviour makes the scatter plot

difficult to interpret on its own, thus this necessitates further analysis via a

density plot, see Figure 5.

41

Figure 5: Density Plot of Software Applications by Number of Software
Defects

Given the above distribution, the software defect rate was stratified across

several value categories. These values will be defined as follows:

1. No defects

2. Low defect rate

3. Moderate defect rate

4. High defect rate

5. Extreme defect rate

The thresholds of the defect rate classes listed above will be determined based

42

on a statistical analysis of the distribution of the software defect rates across

all applications in all three programs.

Multi-class classification is more restrictive than binary classification, as most

multi-class classification models are built out of multiple binary classification

models [37]. Thus, only the following models will be tested:

1. Decision Tree

2. Random Forest

3. Neural Network

4. Linear Support Vector Machine

3.3.4 Model Tuning Parameter Search

In some cases, such as with Decision Trees, Random Forests, SVMs, and

Neural Networks, models require the configuration of model tuning param-

eters. In this thesis, only a narrow tuning parameter range will be shown

in the results in order to provide a concise results summary set. The ranges

of tuning parameters will be chosen using a parameter grid search technique

and trial and error. Once a range of tuning parameters are found to provide

best model performance, the range will be reduced to provide the results

shown in the following sections.

3.3.5 Modelling Goals

By employing several different methods of analysis, the goal is to either:

43

• Obtain the optimal model configuration for software defect prediction

or,

• Reasonably exhaust the options for exploring the solution space if no

statistically significant model is found

In sum, by following the methodologies outlined above, it is anticipated that

the analysis will be conducted with a sound process and will produce reliable

and potentially valuable results.

44

4 Results

4.1 Data Preparation

4.1.1 Initial Data Set Creation

A general overview of the data collection and preparation steps can be ob-

served in Figure 6:

Figure 6: Data Collection and Preparation Methodology Diagram

The initial data sets were created in several steps:

1. SonarQube analysis on three separate code repositories

2. Software defect analysis on three separate software programs

Once the SonarQube analysis was performed on each code repository, the

rules and metrics tables were extracted from the SonarQube SQL database.

The data from each of these tables was exported to csv files for analysis.

45

Likewise to the SonarQube data, the software defect data was extracted from

each of the software program defect databases and exported to corresponding

csv files.

Once all data was extracted, it had to be joined and aggregated, as discussed

below.

4.1.2 Data Joining

Each metrics and rules sets were generated using the same baseline of Sonar-

Qube, thus ensuring that the rule and metric identifiers would be consistent

across each execution. This allows for a simplistic joining of the data sets

from each of the three software programs via row and column binding.

The metrics tables from each of the three programs were read into R and

row-bound with each other, thus producing a single metrics dataset. The

same process was repeated for the rules and the software defects data sets,

again, producing single tables for each of the three types of measurements

being analysed in this research.

At this point, the metrics and rules tables were arranged in a tall format,

which is not conducive to prediction analysis. This is to say that the tables

each contained three columns:

1. The software application unique identifier

2. The rule or metric unique identifier

3. The rule or metric value

46

Table 4 depicts the characteristics of these tables for each program:

Program Metrics Rows Rules Rows
Program 1 9258 7905
Program 2 4306 3975
Program 3 10853 9421

Table 4: Raw Metrics and Rules Table Row and Column Count by Program

In order to perform effective prediction analysis, the data had to be pivoted

by the rule and metric identifiers, thus producing a number of columns equal

to the number of unique rules and metrics, with the value of each of these

columns equal to the value of the corresponding rule or metric in the original

table.

The metrics and rules data tables were pivoted vertically via the cast library

in R. This then resulted in two wide data tables. With the indexes set to the

software application unique identifiers, the two tables could be joined. This

resulted in a new, wide, data table with a column for every rule and metric

value and a row for every unique software application.

Table 5 depicts the characteristics of the pivoted metrics tables:

Table Observations Count
Program 1 Metrics 290 36
Program 2 Metrics 133 35
Program 3 Metrics 347 35

Table 5: Pivoted Metrics Table Observations and Counts Data

Similarly, Table 6 depicts the characteristics of the pivoted rules tables:

47

Table Observations Count
Program 1 Rules 257 129
Program 2 Rules 125 126
Program 3 Rules 312 133

Table 6: Pivoted Rule Table Observations and Counts Data

In both Table 5 and Table 6, the Observations value corresponds to the

number of software applications profiled in the analysis while Count indi-

cates the number of Metrics or Rules values that were recorded for each

application.

The software defect table simply contained a list of every software defect

recorded to date on each program. What is required instead, is a count of

defects per unique software application. This necessitated a pivot by software

unique identifier, with the aggregation method of count. At this point, the

resultant table contained two columns, one of the unique software identifiers

and the other of the count of software defects for the corresponding software

application.

Once pivoted and aggregated, it was then possible to join the metrics and

rules table with the software defect count table. The tables were aligned by

the unique software identifier and joined by column. The resultant data set

is a table that contains the unique software identifier per software applica-

tion, a column for every metric and rule analysed and finally, a column that

represents the number of defects detected for each software application. This

table contains all of the necessary data and in a format that is conducive to

analysis. Table 7 depicts the characteristics of the table used in the following

analysis. In this table, Observations indicates the total number of software

48

applications profiled in the analysis while Measures indicates the total num-

ber of Metrics and Rules measurements collected in the analysis:

Stat Count
Observations 770
Measures 170

Table 7: Static Analysis Software Defect Table Count by Observations and
Measurements

4.2 Feature Selection

The feature space was optimized using the following methodology:

1. Remove features that will either have no impact or a negative impact

on modelling

2. Group features using k-means clustering

3. Eliminate features using recursive feature elimination

Refer to Figure 7 for a depiction of the steps taken in the feature selection

process.

49

Figure 7: Feature Selection Methodology Diagram

Refer to Table 56 in Appendix B for the full list of rules and metrics used in

this analysis.

4.2.1 Feature Removal Results

The first analysis performed was with respect to the variance of the pre-

dictors in the Static Analysis Software Defect table which was described in

Table 7. This was broken into two parts: zero variance and near-zero variance

predictors.

Eliminating the zero variance predictors was accomplished by selecting the

columns from the main data set with the number of unique values set to one.

Refer to Table 8 for the features that were removed using this process.

50

Feature ID Description
X4 Lines of code per language
X27 Functions distribution /complexity
X28 Files distribution /complexity
X118 Directory cycles
X119 Directory tangle index
X120 File dependencies to cut
X121 Package dependencies to cut
X122 Directory edges weight
X132 Technical Debt on new code
X134 SQALE Development Cost

Table 8: Details of Features Removed Due to Zero Variance

Next, eliminating near-zero variance features required the definition of “near-

zero” by means of a minimum variance threshold. The thresholds chosen in

this analysis were done so using typical values as per the literature [37].

These thresholds were as follows:

1. Ratio of the most common feature over the second most common fea-

ture must be less than: 95
5

2. The number of unique values in a feature is less than: 10

Using the parameters described above, the features that were removed are

shown in Table 9 below.

51

Feature ID
X626
X631
X632
X637
X640
X645
X647
X648
X651
X653
X655
X660
X667
X671
X675
X677
X679
X681
X682
X687
X689
X690
X693
X703

Feature ID
X704
X705
X708
X713
X714
X715
X720
X723
X725
X726
X731
X732
X739
X740
X742
X744
X746
X747
X748
X754
X756
X757
X762
X764

Feature ID
X766
X767
X770
X772
X775
X777
X779
X792
X795
X801
X814
X817
X820
X821
X822
X824
X825
X828
X830
X832
X836
X838
X839
X845

Table 9: IDs of Features Removed Due to Near Zero Variance

At this point, it is possible to analyse the linear correlation coefficients of

each feature and the outcome. This analysis in its entirety can be seen

in Figure 18 in Appendix A. Note that features that are not significantly

correlated with each other are indicated by a large black ‘X’. Features with a

significant positive correlation are indicated with a blue circle. Features with

a significant negative correlation are indicated with a red circle. In either

positive or negative cases, the stronger correlations are indicated with larger

52

circles. Table 10 lists the top 10 features that are most strongly correlated

with the outcome. It is anticipated that these features will prove important

in the models fitted later in this thesis.

Feature ID Description C.Coef.
X641 Declarations should use Java collection inter-

faces such as List rather than specific imple-
mentation classes such as LinkedList

0.2605

X841 TODO tags should be handled 0.2603
X727 Exception handlers should preserve the orig-

inal exception
0.2391

X734 Methods should not be too complex 0.2381
X11 Accessors 0.2346
X823 Tabulation characters should not be used 0.2331
X8 Directories 0.2288

X788 Variables should not be declared and then
immediately returned or thrown

0.2268

X7 Files 0.2213
X683 Avoid commented-out lines of code 0.2110

Table 10: Top Ten Features Correlated with Outcome

Removing the highly inter-correlated features required a correlation analysis

to be performed on the entire feature space using the Pearson Correlation Co-

efficient. This correlation analysis provided insight into the inter-correlations

between features in a linear space. Doing this results in a complex correlation

plot that can be seen in Figure 18 in Appendix A. Additionally, Table 11 lists

the top 10 most highly inter-correlated features in the data set. This table

is filtered on magnitude of the correlation coefficient only, regardless as to

whether the correlation is positive or negative. This view provides a filtered

and focused snapshot of the most inter-correlated features.

53

Feat.
ID A

Description A Feat.
ID B

Description B C.Coef.

X423 Duplicated blocks X89 Duplicated files 1
X24 Complexity in functions X20 Complexity 1.0000
X13 Public API X10 Functions 0.9984
X20 Complexity X3 Lines of code 0.9963
X24 Complexity in functions X3 Lines of code 0.9962
X3 Lines of code X1 Lines 0.9948
X12 Statements X3 Lines of code 0.9924
X20 Complexity X1 Lines 0.9923
X24 Complexity in functions X1 Lines 0.9923
X20 Complexity X12 Statements 0.9895

Table 11: Top Ten Inter-correlated Features

In order to remove features with high inter-correlation, a linear correlation

threshold had to be selected. For the purposes of this analysis, a threshold

of 75% was chosen both as it is a typical threshold in similar analyses [37]

as well as it achieved the best results from other thresholds attempted in

this research. From this correlation matrix, Table 12 depicts the features

removed.

54

Feature ID
X3
X6
X7
X8
X10
X11
X12
X13
X15
X18
X20
X21
X24
X87
X88
X89

Feature ID
X131
X135
X423
X634
X649
X673
X686
X692
X697
X710
X727
X734
X738
X741
X753
X755

Feature ID
X774
X781
X782
X785
X787
X788
X790
X796
X804
X809
X827
X831
X834
X842

Table 12: IDs of Features Removed Due to High Intercorrelation

After all feature removal techniques are completed, there are 39 features

remaining for further analysis. This will start with Feature Clustering, Re-

cursive Feature Elimination and then Regression and Classification model

fitting as shown in the following sections.

4.2.2 Feature Clustering Results

In order to cluster the features, a number of clusters must be chosen. To do

this, a range of cluster values, k, was run through a k-means analysis and the

total sum of squares value (8) for each k-value was captured. Figure 8 depicts

the relationship between total sum of squares per k-value chosen.

55

TSS =
n∑

i=1

(yi − ȳ)2 (8)

Figure 8: Within Sum of Squares Totals by K-Value

Choosing the number of clusters at one k-value higher than the elbow of

the curve, 7 clusters are chosen [47]. The k-means analysis was performed

again for 7 clusters and each feature was assigned membership to a particular

cluster k-value. The distribution of the features by k-value can be seen in

Figure 9.

56

Figure 9: Feature Count by Cluster Membership

It can be seen that two clusters contain a reasonable quantity of features

while the remaining five clusters only contain a single member each. The

minimum threshold of membership per feature group was chosen at 5, and

thus, five of the clusters were merged together. By performing this cluster

merging, Figure 10 depicts the final cluster membership configuration:

57

Figure 10: Revised Feature Count by Cluster Membership After Applying
Minimum Cluster Size

Table 13 lists the feature membership for Cluster 1:

58

Feature ID Description
X133 SQALE Rating
X16 Comments (%)
X17 Public documented API (%)
X23 Complexity /class
X25 Complexity /function
X628 equals(Object obj) and hashCode() should be

overridden in pairs
X644 Loggers should be private static final and should

share a naming convention
X661 Generic wildcard types should not be used in re-

turn parameters
X700 Math operands should be cast before assignment
X709 Loops should not contain more than a single break

or continue statement
X729 Empty arrays and collections should be returned

instead of null
X751 Local variables should not shadow class fields
X760 Expressions should not be too complex
X761 Lambdas and anonymous classes should not have

too many lines
X763 Unused private fields should be removed
X769 Constants should be declared final static rather

than merely final
X771 Unused method parameters should be removed
X789 Return of boolean expressions should not be

wrapped into an if-then-else statement
X805 A field should not duplicate the name of its con-

taining class
X810 Try-catch blocks should not be nested
X815 Nested blocks of code should not be left empty
X837 Deprecated code should be removed eventually
X90 Duplicated lines (%)

Table 13: Detailed List of Features in Cluster 1

Similarly, Table 14 lists the feature membership for Cluster 2:

59

Feature ID Description
X641 Declarations should use Java collection interfaces

such as List rather than specific implementation
classes such as LinkedList

X680 String literals should not be duplicated
X683 Avoid commented-out lines of code
X699 System.out and System.err should not be used as

loggers
X736 Switch cases should not have too many lines
X758 Collapsible if statements should be merged
X808 Fields in a Serializable class should either be tran-

sient or serializable
X819 Right curly braces should be located at the begin-

ning of lines of code
X835 Strings literals should be placed on the left side

when checking for equality
X841 TODO tags should be handled

Table 14: Detailed List of Features in Cluster 2

Finally, Table 15 lists the feature membership for Cluster 3:

Feature ID Description
X665 The members of an interface declaration or class

should appear in a pre-defined order
X733 Method names should comply with a naming con-

vention
X793 Useless imports should be removed
X823 Tabulation characters should not be used
X844 Constant names should comply with a naming con-

vention

Table 15: Detailed List of Features in Cluster 3

As shown in the above tables, there is no obvious pattern in the feature

groupings in each Cluster. The following sections analyse each cluster in

further detail.

60

4.2.3 Recursive Feature Elimination Results

For each regression model, each permutation of all features in the cluster is

analysed for best fit. The results in the following sections depict the number

of features used in the fit as “No.Feat.”.

Linear Regression

The results of the RFE performed on the linear regression models gener-

ated for each set of features in each cluster are depicted in the following

tables.

61

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 120.0182 0.0515 52.6530 87.0148 0.0848 12.9153
2 119.4884 0.0876 52.2050 87.7059 0.1389 13.5808
3 121.0157 0.0666 52.7023 86.5923 0.0898 13.2556
4 121.5295 0.0711 52.8622 85.9967 0.0873 13.2140
5 122.9176 0.0683 53.1457 85.4873 0.0787 13.2430
6 125.6524 0.0592 53.8689 85.2324 0.0694 13.2741
7 129.3948 0.0594 54.8496 86.0261 0.0716 13.7886
8 131.8273 0.0539 55.5778 85.8978 0.0645 14.0532
9 132.6767 0.0507 56.0697 85.4009 0.0652 13.9811
10 133.8371 0.0458 56.6911 85.3318 0.0620 14.2631
11 134.7290 0.0415 57.2266 84.9935 0.0582 14.3732
12 134.9811 0.0409 57.3252 84.8086 0.0582 14.2936
13 134.6672 0.0443 57.1374 84.4388 0.0637 14.2511
14 134.0804 0.0444 56.9282 84.5188 0.0646 14.2596
15 134.1463 0.0455 56.9825 84.5355 0.0654 14.3233
16 133.6273 0.0464 56.8974 84.4201 0.0662 14.3418
17 133.5611 0.0468 56.9622 84.3501 0.0679 14.3081
18 133.3260 0.0462 57.0377 84.2773 0.0665 14.2898
19 133.3637 0.0460 57.2118 84.2533 0.0663 14.2778
20 133.2631 0.0462 57.2497 84.2859 0.0667 14.2315
21 133.1022 0.0463 57.2170 84.3823 0.0673 14.2603
22 133.0347 0.0468 57.3082 84.3722 0.0670 14.3105
23 132.8985 0.0474 57.2531 84.4241 0.0675 14.3508

Table 16: Linear Regression RFE Performance Results - Cluster 1 Features

As shown in Table 16, the best performing configuration for Cluster 1, with

the lowest RMSE value is with two features.

62

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 117.9568 0.1243 51.2574 86.4188 0.1667 13.1916
2 118.5452 0.1402 51.6701 86.1029 0.1825 13.5505
3 120.3171 0.1257 52.4586 85.6742 0.1631 13.6824
4 121.4376 0.1282 52.7184 84.8881 0.1655 13.5102
5 121.0671 0.1299 52.6847 84.9532 0.1683 13.5406
6 120.7130 0.1285 52.7024 85.1857 0.1699 13.5910
7 120.4337 0.1282 52.6233 85.2804 0.1670 13.5552
8 120.6840 0.1278 52.7525 85.1106 0.1662 13.5026
9 120.9211 0.1281 52.8636 85.0113 0.1683 13.5005
10 120.8802 0.1292 52.8795 84.9995 0.1687 13.5122
11 120.8006 0.1307 52.8545 84.9820 0.1703 13.4980

Table 17: Linear Regression RFE Performance Results - Cluster 2 Features

Similarly, Table 17 indicates that the best performing configuration for Clus-

ter 2 is with a single feature as this result has the lowest RMSE value.

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 119.9199 0.0635 53.3861 87.1557 0.0957 13.0542
2 121.1856 0.0274 53.5315 86.8848 0.0481 13.2898
3 120.3196 0.0517 52.8067 87.1525 0.0894 13.4784
4 119.8153 0.0719 52.7282 86.8557 0.1184 13.4334
5 119.9476 0.0696 52.7745 86.8727 0.1162 13.4864

Table 18: Linear Regression RFE Performance Results - Cluster 3 Features

Conversely, Table 18 shows that the best performing configuration for Cluster

3 is with four features.

Given the results above, the RFE analysis on the linear regression model

recommends the seven features shown in Table 19.

63

Feature ID Cluster Description
X133 1 SQALE Rating
X709 1 Loops should not contain more than a single

break or continue statement
X841 2 TODO tags should be handled
X665 3 The members of an interface declaration or

class should appear in a pre-defined order
X733 3 Method names should comply with a naming

convention
X793 3 Useless imports should be removed
X823 3 Tabulation characters should not be used

Table 19: Linear Regression RFE Feature Details Based on Best Performing
Fits

Neural Network

Since this is a regression analysis, a linear activation function was used in the

output layer for this Neural Network. For each cluster, the Neural Network

performance was measured in this Feed Forward, Single Hidden Layer Neural

Network model. The tuning parameters used were as follows:

• Size (S) - The number of hidden nodes in the Neural network: varying

from 8 to 10 in steps of 1,

• Decay (D) - The rate of the weight decay: varying from 252 to 254 in

steps of 1. Note: Decay refers to the rate of decay of the neuron weight

penalty used in the calculation of the Neural Network cost function.

This allows a variation in the trade off between error cost and large

weight size.

The results of the RFE performed on the Neural Network models are depicted

in the following tables.

64

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 116.3476 0.0425 51.5849 91.6029 0.0430 15.1324
2 115.6268 0.0626 50.5348 91.8366 0.0524 15.1701
3 115.5237 0.0650 49.9031 91.8711 0.0536 15.1185
4 115.3905 0.0662 49.6386 91.7614 0.0508 15.0969
5 115.3888 0.0657 49.6468 91.5877 0.0495 15.0116
6 115.2162 0.0676 49.3733 91.3957 0.0487 15.1552
7 115.3363 0.0655 49.3542 91.2983 0.0476 15.1084
8 115.5223 0.0617 49.3556 91.2685 0.0464 15.2249
9 115.5592 0.0621 49.4051 91.1674 0.0481 15.1441
10 115.4936 0.0648 49.3441 91.0498 0.0526 15.1503
11 115.6213 0.0623 49.3371 91.0393 0.0517 15.2426
12 115.7327 0.0619 49.4554 90.9665 0.0516 15.2139
13 115.6221 0.0628 49.3558 90.8758 0.0514 15.2309
14 115.5088 0.0649 49.3080 90.9438 0.0547 15.2995
15 115.5674 0.0657 49.2885 90.8184 0.0566 15.0780
16 115.6821 0.0626 49.2163 90.9242 0.0544 15.2619
17 115.5765 0.0648 49.1363 90.7512 0.0570 15.1295
18 115.7893 0.0608 49.3834 90.8769 0.0522 15.2996
19 115.9967 0.0592 49.5271 90.7997 0.0540 15.2642
20 115.8646 0.0612 49.2960 90.8361 0.0551 15.3611
21 116.0249 0.0585 49.4587 90.6913 0.0491 15.1451
22 116.2057 0.0554 49.4026 90.7028 0.0505 15.2322
23 116.0526 0.0583 49.2633 90.6590 0.0523 15.1875

Table 20: Neural Network Regression RFE Performance Results - Cluster 1
Features

As shown in Table 20, the Neural Network model had the best performance

with six features for Cluster 1.

65

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 117.1593 0.0931 49.6487 88.4655 0.0588 13.3960
2 116.6578 0.1070 49.2592 88.5293 0.0695 13.3188
3 116.6002 0.1072 49.1913 88.5392 0.0699 13.2193
4 116.6032 0.1073 49.2135 88.4798 0.0683 13.1069
5 116.6048 0.1081 49.2936 88.4614 0.0694 13.0742
6 116.6972 0.1059 49.3741 88.4141 0.0684 12.9359
7 116.7925 0.1042 49.4305 88.4042 0.0668 12.9288
8 116.7759 0.1038 49.6133 88.3939 0.0676 12.9983
9 116.7816 0.1030 49.6538 88.3999 0.0668 12.9340
10 116.9656 0.0998 49.7036 88.3200 0.0650 12.9989
11 116.8309 0.1023 49.5974 88.3186 0.0666 12.9954

Table 21: Neural Network Regression RFE Performance Results - Cluster 2
Features

As depicted in Table 21, the Neural Network performed best while using

three features for Cluster 2.

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 118.9183 0.0468 51.7974 88.2942 0.0474 13.2326
2 119.1451 0.0286 51.6721 88.2358 0.0331 13.2598
3 119.1950 0.0262 51.7126 88.1364 0.0262 13.1726
4 119.2186 0.0255 51.8040 88.1169 0.0218 13.1434
5 119.1878 0.0255 51.7683 88.0985 0.0232 13.2401

Table 22: Neural Network Regression RFE Performance Results - Cluster 3
Features

Finally, Table 22 indicates that the Neural Network performed best with a

single feature on Cluster 3.

Given the results above, the RFE analysis on the Neural Network model

recommends the ten features shown in Table 23.

66

Feature ID Cluster Description
X133 1 SQALE Rating
X23 1 Complexity /class
X25 1 Complexity /function
X644 1 Loggers should be private static final and

should share a naming convention
X760 1 Expressions should not be too complex
X771 1 Unused method parameters should be re-

moved
X699 2 System.out and System.err should not be

used as loggers
X736 2 Switch cases should not have too many lines
X758 2 Collapsible if statements should be merged
X665 3 The members of an interface declaration or

class should appear in a pre-defined order

Table 23: Neural Network Regression RFE Feature Details Based on Best
Performing Fits

Support Vector Machines

The Support Vector Machine used in this analysis was a Linear Kernel with

the tuning regularization parameter, ‘C’, tuned from 0.0012 to 0.0013 in steps

of 0.000001. The results of the RFE performed on the Linear Kernel SVM

models are depicted in the following tables.

67

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 121.6274 0.0245 41.2500 88.5668 0.0783 13.6673
2 121.2532 0.0254 41.2530 88.6632 0.0452 13.5831
3 120.7461 0.0432 41.1576 88.7705 0.0732 13.5713
4 120.2960 0.0599 41.0596 88.8663 0.0849 13.5498
5 119.9476 0.0802 41.0704 88.9328 0.1029 13.5581
6 119.6306 0.0977 41.0362 88.9428 0.1212 13.5256
7 119.4877 0.0965 41.0001 88.9719 0.1146 13.5749
8 119.3817 0.0988 40.9513 89.0234 0.1095 13.5526
9 119.3268 0.0988 40.9224 89.0261 0.1094 13.5325
10 119.2883 0.1015 40.8856 89.0466 0.1105 13.5800
11 119.2836 0.1054 40.8460 89.0195 0.1096 13.5671
12 119.2835 0.1055 40.8106 88.9924 0.1082 13.5909
13 119.2532 0.1079 40.8032 88.9775 0.1117 13.5937
14 119.2621 0.1085 40.7864 88.9733 0.1132 13.5954
15 119.2519 0.1123 40.7807 88.9719 0.1216 13.5863
16 119.3178 0.1076 40.7751 88.9562 0.1225 13.5755
17 119.3022 0.1072 40.7651 88.9681 0.1234 13.5618
18 119.1984 0.1122 40.7453 88.9525 0.1291 13.5413
19 119.1488 0.1135 40.6749 88.9566 0.1301 13.5236
20 119.1104 0.1134 40.6066 88.9452 0.1266 13.5440
21 118.9857 0.1183 40.4706 88.9345 0.1254 13.5735
22 118.9819 0.1154 40.3918 88.9294 0.1240 13.6057
23 119.0189 0.1125 40.3913 88.9247 0.1239 13.5618

Table 24: SVM Linear Regression RFE Performance Results - Cluster 1
Features

As shown in Table 24, the best performing configuration for Cluster 1 is with

22 features as this configuration exhibits the lowest RMSE value.

68

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 120.5461 0.1110 41.2564 88.5805 0.1345 13.5097
2 119.3357 0.1587 41.1663 88.6174 0.1983 13.4309
3 118.4193 0.1746 40.8625 88.7393 0.2014 13.4537
4 118.1804 0.1591 40.4493 89.0153 0.1656 13.4863
5 118.3473 0.1412 40.4472 89.0553 0.1449 13.4836
6 118.4919 0.1338 40.5085 89.0362 0.1425 13.4643
7 118.5247 0.1306 40.5262 89.0438 0.1397 13.4806
8 118.5308 0.1279 40.5351 89.0692 0.1339 13.4842
9 118.5572 0.1263 40.5746 89.0738 0.1326 13.4642
10 118.6313 0.1236 40.6037 89.0679 0.1305 13.4583
11 118.6471 0.1220 40.6101 89.0703 0.1294 13.4634

Table 25: SVM Linear Regression RFE Performance Results - Cluster 2
Features

Similarly, Table 25 shows that the best performing configuration for Cluster

2 is with four features.

No.Feat. RMSE RS MAE R.SD RSSD M.SD
1 121.9091 0.0703 41.3486 88.4323 0.1923 13.6225
2 121.8911 0.0477 41.3837 88.4288 0.1497 13.6168
3 121.8564 0.0471 41.4271 88.4173 0.1299 13.6195
4 121.8222 0.0568 41.4488 88.4510 0.1368 13.5859
5 121.5831 0.0471 41.4591 88.5314 0.0741 13.5415

Table 26: SVM Linear Regression RFE Performance Results - Cluster 3
Features

Finally, as depicted in Table 26, the best performing configuration for Cluster

3 is with five features.

Given the results above, the RFE analysis on the linear SVM model recom-

mends the thirty-one features shown in Table 27.

69

Feature ID Cluster
X805 1
X789 1
X709 1
X769 1
X644 1
X661 1
X760 1
X837 1
X763 1
X761 1
X751 1
X628 1
X815 1
X700 1
X16 1

Feature ID Cluster
X23 1
X810 1
X771 1
X729 1
X17 1
X90 1
X25 1
X641 2
X841 2
X683 2
X680 2
X823 3
X844 3
X665 3
X793 3
X733 3

Table 27: SVM Linear Regression RFE Feature Details Based on Best Per-
forming Fits

4.3 Regression Results Analysis

4.3.1 Linear Regression Results

The Linear Regression analysis produced straightforward coefficient perfor-

mance measurements via ANOVA analysis. These measurements provide

insight into the statistical significance of the predictors used during the fit of

each model. This analysis was performed for each cluster and the results of

these models can be seen in the tables that follow.

70

Coef. Estimate Std. Error t-value P-value
(Intercept) 39.2418 14.1503 2.7732 0.006

X133 −4.9187 10.7200 −0.4588 0.646
X709 14.3685 2.9709 4.8364 < 0.001

Table 28: Linear Regression Coeficient Significance - Cluster 1 Features

As shown in Table 28, only feature X709 is considered statistically significant

for Cluster 1 when using a 95% confidence level.

Coef. Estimate Std. Error t-value P-value
(Intercept) 24.7377 7.4173 3.3352 < 0.001

X841 23.7765 7.9464 2.9921 0.003

Table 29: Linear Regression Coeficient Significance - Cluster 2 Features

Furthermore, for Cluster 2, Table 29 indicates the only predictor used in this

cluster, X841, is statistically significant in the fit as tested to a confidence

level of 95%.

Coef. Estimate Std. Error t-value P-value
(Intercept) 27.9214 10.2497 2.7241 0.007

X665 12.4307 4.6351 2.6819 0.007
X733 −18.0618 21.3940 −0.8442 0.399
X793 −0.8454 9.4082 −0.0899 0.928
X823 −0.8158 4.6748 −0.1745 0.862

Table 30: Linear Regression Coeficient Significance - Cluster 3 Features

Next, for Cluster 3, as shown in Table 30, the analysis finds that feature X665

is significant while the rest are not, using a confidence level of 95%.

71

Coef. Estimate Std. Error t-value P-value
(Intercept) 23.5552 15.9978 1.4724 0.141

X133 5.3615 12.5002 0.4289 0.668
X665 6.9752 4.7894 1.4564 0.146
X709 13.3735 3.1846 4.1994 < 0.001
X733 −29.3922 21.9972 −1.3362 0.182
X793 −6.2021 9.6254 −0.6444 0.520
X823 −3.8331 4.9221 −0.7787 0.436
X841 18.1972 10.0595 1.8090 0.071

Table 31: Linear Regression Coeficient Significance - All Features

Finally, the results for a regression fit across all features is shown in Ta-

ble 31. The feature performance in this case is less desirable than the results

of each cluster separately, as is typically the case for linear regression models

(adding complexity can reduce the quality of the fit [36]). The only statisti-

cally significant predictor in this model is X709 while the remainder are not

significant, using a confidence level of 95%.

A summary comparison of the performance of each of these models is depicted

in Table 32 below. These results will be compared with the performance of

the other regression models in Section 4.3.4.

Name RMSE RS MAE R.SD RSSD M.SD
lm-1 117.6001 0.1029 51.4747 88.3889 0.1552 13.2767
lm-2 118.5308 0.0449 52.8058 88.6165 0.0425 13.3494
lm-3 119.0524 0.0304 53.0665 89.0329 0.0392 13.5706

lm-all 117.3171 0.0984 50.9282 88.8316 0.1249 13.3957

Table 32: Linear Regression Performance Summary

72

4.3.2 Neural Network Results

Analysing the Neural Network results requires a comparison of strictly the

RMSE and related performance variables across the relevant tuning argu-

ments. Since this is a regression analysis, the activation function for the

Neural Network output layer was set to linear. For each cluster, the Neural

Network performance was gauged multiple times while varying the input pa-

rameters to the Feed Forward, Single Hidden Layer Neural Network model.

These parameters are as follows:

• Size (S) - The number of hidden nodes in the Neural network: varying

from 8 to 10 in steps of 1,

• Decay (D) - The rate of the weight decay: varying from 252 to 254 in

steps of 1. Note: Decay refers to the rate of decay of the neuron weight

penalty used in the calculation of the Neural Network cost function.

This allows a variation in the trade off between error cost and large

weight size.

The following Table 33 depicts the best performance of the Neural Network

regression model against each cluster and for all features:

N. S D RMSE RS MAE R.SD RSSD M.SD
nn-1 9 253 117.00 0.07 49.03 88.74 0.05 13.66
nn-2 10 252 115.37 0.12 48.92 89.57 0.08 13.19
nn-3 8 252 118.41 0.04 51.66 88.94 0.04 13.55
nn-all 9 253 115.41 0.10 47.59 89.07 0.06 13.62

Table 33: Neural Network Regression Performance Summary

Given these results, the Neural Network performed best with Cluster 2 fea-

73

ture as well as on all features combined.

4.3.3 Linear Support Vector Machine Results

Analysing the Linear Kernel SVM performance is similar to that of the Neural

Network analysis in that the SVM model requires tuning parameters to be

varied and tested against the model inputs in order to determine best fit.

This process again results in a table of tuning performance values for each

cluster. The tuning value that is varied in the SVM configuration is the

regularization parameter ‘C’. For the purposes of this analysis, C is tuned

from 0.0012 to 0.0013 in steps of 0.000001.

The best tuning performance for each cluster and for all features combined

can be observed in Table 34 below:

N. C RMSE RS MAE R.SD RSSD M.SD
sl-1 0.001 291 118.43 0.12 40.43 89.76 0.13 14.05
sl-2 0.001 289 117.58 0.16 40.46 89.80 0.16 14.04
sl-3 0.001 268 120.91 0.05 41.46 89.44 0.09 14.21
sl-all 0.001 202 118.35 0.11 40.49 89.89 0.14 13.99

Table 34: Linear SVM Regression Performance Summary

Given these results, the SVM model demonstrates similar but slightly poorer

results as compared to the Neural Network model. A thorough comparison

of each model is presented in the following section.

74

4.3.4 Summary of Regression Results

By selecting the best performing tuning setting from each of the cluster runs

of each of the models, it is possible to sort the list by RMSE and determine

the best performing model. As shown in Figure 11, the Neural Network

model on Cluster 2 was the best performer.

Figure 11: Graphcial Representation of the RMSE Performance of Each
Regression Model

Although the Neural Network model outperformed the other models, it

should be noted that all models demonstrated similar performance. When

comparing their performance to the distribution of the software defect out-

come space, it is obvious that none of these models are significantly impor-

75

tant.

This can be further expanded when analysing the distribution of the software

defect counts column which is being used as the outcome dependent variable

for fitting these models.

Measure Value
Min. 0

1st Qu. 0
Median 5
Mean 40.2182

3rd Qu. 26
Max. 3097

Table 35: Software Defect Outcomes Count Variable Statistics

Table 35 depicts the distribution of the software defect counts per software

application. As shown, some software applications have exhibited 0 software

defects. Additionally, the First Quartile, or the Mean of the Minimum and

Median of the distribution, is also 0, indicating that there is a non-trivial

number of software applications with a defect count of zero. Said another

way, at least 25% of the software applications have 0 defects. Next, the Me-

dian is 5, indicating that the center of the distribution is skewed lower than

the Mean of the distribution. The Mean of approximately 40 demonstrates a

significant gap between the Median and Mean, thus confirming this observa-

tion of skew. The Third Quartile of approximately 26, which indicates that

25% of the software applications have at least 26 software defects. Finally,

at least one software application has a Maximum number of software defects

of 3097.

Analysing Table 35 further, the Mean of the defect distribution is approx-

76

imately 40 while the best performing regression model had an RMSE of

approximately 115 (Neural Network) and a Mean Absolute Error of 40.4

(SVM). Given that the RMSE of the best model is almost 3 times that of

the mean of the distribution of the outcomes and the MAE is approximately

equal to the mean of the distribution, the regression models are invalid and

can be rejected.

4.4 Binary Classification Results Analysis

Binary Classification involves modifying the prediction column into a factor

instead of an integer value. The factors considered in this section are as

follows:

• Has SPR: The defect count for a given application is greater than 0.

• No SPR: The defect count for a given application is 0

Using the definitions above, the output column was transformed into a bi-

nary factor column. The distribution of this classification can be seen in

Table 36.

Class Occurrence Percentage
HAS˙SPR 576 74.81%
NO SPR 194 25.19%

Table 36: Binary Classification Outcome Distribution Statistics

It is apparent that there is a class imbalance in favour of applications having

a software defect. Up-sampling will be used in the following analysis in order

to compensate for this imbalance.

77

4.4.1 Decision Tree Results

The Decision Tree model used in this analysis is the Classification and Re-

gression Tree (CART) and is provided by the rpart library in R [51]. This

particular Decision Tree accepts a tuning parameter of cost complexity (CP).

The values used for this analysis are in the range of 0.006 to 0.04 in steps

of 0.001. The model was developed multiple times using each of these pa-

rameters with all features as well as with all features from each feature clus-

ter.

Table 37 shows the best performing model for each cluster and for all of the

features:

Name CP AUC Precision Recall F
rp-1 0.0090 0.7738 0.8427 0.6157 0.7083
rp-2 0.0140 0.7598 0.8291 0.4960 0.6169
rp-3 0.0100 0.7433 0.7913 0.4570 0.5724

rp-all 0.0110 0.7835 0.8505 0.6074 0.7052

Table 37: Binary Classification - Decision Tree Performance Summary by
Model

Given the AUC results above, the Decision Tree model performed best using

all features. While the F score of the model using all features is slightly less

than that of the Cluster 1 model, the trade-off of higher Precision in the all

features model is the deciding factor.

78

4.4.2 Random Forest Results

The Random Forest model used in this analysis requires a tuning parameter

of mtry. This parameter defines the Minimum feature count used to TRY

and grow a tree in a Random Forest. This parameter was varied from 0 to

12 in steps of 1. Similar to models above, this model was executed against

each feature Cluster and then against the entire feature list. Table 38 shows

the best result for each run:

Name mtry AUC Precision Recall F
rf-1 2 0.8636 0.8216 0.7482 0.7818
rf-2 1 0.8121 0.8150 0.5771 0.6742
rf-3 4 0.7825 0.7888 0.6975 0.7393
rf-all 9 0.8630 0.8092 0.7942 0.8004

Table 38: Binary Classification - Random Forest Performance Summary by
Model

The Random Forest demonstrates similar positive performance for both Clus-

ter 1 and all features. In this case, however, the model executed on Clus-

ter 1 features demonstrates better results given the AUC and Precision to-

gether.

4.4.3 Neural Network Results

The activation function for the Neural Networks used in this Binary Clas-

sification analysis was sigmoidal. This Neural Network is a single hidden

layer Feed Forward network. The model used in this analysis accepts tuning

parameters of Size and Decay. These parameters were varied as follows:

79

• Size (S) - 1, 3, 5, 7, 9, 11, 13, 15, 17, 19

• Decay (D) - Varying from 0.05 to 0.5 in steps of 0.01

Refer to Table 39 for the results of the best execution from each run of the

Neural Network model:

Name S D AUC Precision Recall F
nn-1 7 0.45 0.8550 0.8294 0.6475 0.7254
nn-2 1 0.38 0.8195 0.8319 0.4698 0.5980
nn-3 11 0.19 0.7789 0.7785 0.5555 0.6458

nn-all 19 0.50 0.8609 0.8261 0.7096 0.7617

Table 39: Binary Classification - Neural Network Performance Summary by
Model

As shown, the Neural Network performance is also best for Cluster 1 and all

features, however, all features performs best given the AUC, Recall, and F

score together.

4.4.4 Linear Support Vector Machine Results

The Linear SVM requires tuning parameters to be varied and tested against

the model inputs in order to determine best fit. This process again results in

a table of tuning performance values for each Cluster. The tuning value that

is varied in the SVM configuration is the regularization parameter ‘C’. For

the purposes of this analysis, C is varied from 2 to 5 in steps of 0.01.

Refer to Table 40 for the results of the best execution from each run of the

SVM model:

80

Name C AUC Precision Recall F
sl-1 3.16 0.8694 0.8903 0.5450 0.6735
sl-2 3.20 0.8110 0.8308 0.3586 0.4985
sl-3 3.86 0.7598 0.7733 0.2238 0.3199
sl-all 2.74 0.8634 0.8835 0.5353 0.6646

Table 40: Binary Classification - SVM Performance Summary by Model

In a similar fashion as the other Binary Classification models, the SVM model

demonstrates best performance on Cluster 1 features as well as all features

together. It should be noted here however, that the Recall of all SVM models

is much lower than the Decision Trees, Neural Networks and Random Forest

models.

4.4.5 Summary of Binary Classification Results

Given the performance of each model above, the overall performance is plot-

ted in Figure 12 below.

81

Figure 12: Graphical Performance Comparisons of Each Binary Classification
Model

It is apparent that all of the models succeeded in providing an acceptable

AUC greater than the threshold of 0.683, with the SVM model demonstrating

the best performance for Cluster 1. The Random Forest model on Cluster 1

demonstrates the next best AUC value.

Table 41 depicts the averaged confusion matrix for the SVM model on Clus-

ter 1 features based on a 10-fold cross-validated model analysis. It can be

observed that the SVM model makes a large portion of its errors through false

positives. The false negative rate on the other hand is much smaller.

82

Predicted
Has SPR No SPR

A
ct

u
al Has SPR 40.7662 5.0909

No SPR 34.0390 20.1039

Table 41: Cluster 1 Features Set Confusion Matrix for the SVM Binary
Classification Model

Further analysis of the SVM model provides an importance ranking of each

of the features used during the model fitting. Figure 13 depicts the variable

importance of the SVM model for Cluster 1:

Figure 13: Cluster 1 Features Set Variable Importance in Fitting the SVM
Binary Classification Model

Taking a closer look at the features with an predictive accuracy of greater

83

than 50%, Table 42 depicts these features as they map to SonarQube rules.

These results indicate features that, according to the SVM Model, are

strongly correlated with the presence of software defects in software applica-

tions.

Feature ID Description Importance
X90 Duplicated lines (Percentage) 100%
X644 Loggers should be private static final

and should share a naming convention
88.77%

X760 Expressions should not be too complex 77.63%
X771 Unused method parameters should be

removed
54.88%

X751 Local variables should not shadow class
fields

53.61%

X17 Public documented API (Percentage) 53.02%

Table 42: SVM Binary Classification Important Features Mapping to Sonar-
Qube Rules

Table 43 depicts the averaged confusion matrix for the Random Forest model

on Cluster 1 features based on a 10-fold cross-validated model analysis. This

model has better performance in false positives than false negatives. The

rate of false negatives is almost split at 50%.

Predicted
Has SPR No SPR

A
ct

u
al Has SPR 55.9610 12.2078

No SPR 18.8442 12.9870

Table 43: Cluster 1 Features Set Confusion Matrix for the Random Forest
Binary Classification Model

Similarly, Figure 14 depicts the variable importance of the Random Forest

model on Cluster 1 features:

84

Figure 14: Cluster 1 Features Set Variable Importance in Fitting the Random
Forest Binary Classification Model

Again, Table 44 shows the mapping features with a predictive accuracy of

greater than 50% to their corresponding SonarQube rules. These results indi-

cate features that, according to the Random Forest Model, are strongly cor-

related with the presence of software defects in software applications.

85

Feature ID Description Importance
X90 Duplicated lines (Percentage) 100%
X16 Comments (Percentage) 64.79%
X17 Public documented API (Percentage) 62.26%
X23 Complexity class 58.77%
X25 Complexity function 53.25%
X644 Loggers should be private static final

and should share a naming convention
52.35%

Table 44: Random Forest Binary Classification Cluster 1 Features Set Im-
portant Features Mapping to SonarQube Rules

4.5 Multi-class Classification Results

Multi-Class Classification involves modifying the prediction column into a set

of factors instead of an integer value. The factors considered in this section

are as follows:

• No SPR: The defect count for a given application is 0

• Minimal SPR: The defect count for a given application is less than or

equal to 4

• Moderate SPR: The defect count for a given application is less than or

equal to 25

• High SPR: The defect count for a given application is less than or equal

to 500

• Extreme SPR: The defect count for a given application is greater than

500.

Using the definitions above, the output column was transformed into a mul-

86

tiple factor column. The distribution of this classification can be seen in

Table 45.

Class Occurrence Percentage
EXTREME˙SPR 7 0.91%

HIGH SPR 189 24.55%
MINIMAL SPR 185 24.03%

MODERATE SPR 195 25.32%
NO SPR 194 25.19%

Table 45: Multi-class Outcome Distribution Statistics

It is shown that there is a reasonable class balance this time, as the ranges

for the classification buckets were chosen carefully to ensure a fair distribu-

tion. This distribution is applicable to similar domain and quality threshold

software development programs across language types. If a different domain

is analysed, the ranges chosen above will need to be revisited. Given this

distribution of classes, up-sampling is still required for the Multi-Class Clas-

sification analysis.

4.5.1 Decision Tree Results

The CART Decision Tree model was used in this analysis as was used in the

binary classification analysis. The CP values used for this analysis are in the

range of 0.005 to 0.012 in steps of 0.0001. The model was executed multiple

times against each of these parameters as well as against each feature Cluster,

including against a pass with all features included.

Table 46 lists the best performing model fit for each Cluster and for all

features.

87

Name CP AUC Precision Recall F
rp-1 0.0072 0.6199 0.3097 0.3271 0.3148
rp-2 0.0058 0.5597 0.2780 0.2780 0.4240
rp-3 0.0107 0.5575 0.2761 0.3026 0.2685

rp-all 0.0115 0.6342 0.3172 0.3427 0.3268

Table 46: Multi-Class Classification - Decision Tree Performance Summary
by Model

Table 46 demonstrates that while the performance was best on Cluster 1

features and all features, as was the case in Binary Classification. However,

the overall AUC performance is much lower for Multi-Class Classification

than it was for Binary Classification. The Decision Tree demonstrates the

best performance in this case on all features with the highest AUC.

4.5.2 Random Forest Results

The same Random Forest model was used in this analysis as was used in the

Binary Classification analysis. The mtry parameter was varied from 9 to 13

in steps of 1. Similar to models above, this model was executed against each

feature Cluster and then against the entire feature list. Table 47 shows the

best result for each run:

Name mtry AUC Precision Recall F
rf-1 9 0.6723 0.3325 0.3084 0.3200
rf-2 9 0.6301 0.3007 0.2999 0.3003
rf-3 12 0.6076 0.2860 0.2645 0.3010

rf-all 11 0.7040 0.3696 0.3393 0.3538

Table 47: Multi-Class Classification - Random Forest Performance Summary
by Model

88

The Random Forest model returns more acceptable results than the Decision

Tree models with the rf-all model performing with an AUC of over 0.7. These

results will be compared with the other model performances in the summary

section presented later.

4.5.3 Neural Network Results

A sigmoidal activation function was used for the Neural Networks in this

Multi-Class Classification analysis. This Neural Network is a single hidden

layer Feed Forward network with a separate output for each class. The Neural

Network model used in this analysis accepts tuning parameters of Size and

Decay. These parameters were varied as follows:

• Size (S) - Varying from 4 to 17 in steps of 1

• Decay (D) - Varying from 0.05 to 0.5 in steps of 0.01

Refer to Table 48 for the results of the best execution from each run of the

Neural Network model:

Name S D AUC Precision Recall F
nn-1 6 0.4500 0.6635 0.2966 0.2999 0.3293
nn-2 4 0.4700 0.6412 0.2972 0.4075 0.3322
nn-3 16 0.1000 0.5646 0.2485 0.2531 0.2868

nn-all 4 0.3300 0.6866 0.3166 0.3025 0.3375

Table 48: Multi-Class Classification - Neural Network Performance Summary
by Model

As shown, the Neural Network models did outperform the Decision Tree

models, however, they did not perform as well as the Random Forest models.

89

The model based on all features performed best, followed closely by the

features of Cluster 1, as indicated by the AUC of each.

4.5.4 Linear Support Vector Machine Results

The Linear SVM used for the Multi-Class Classification utilized the tuning

parameter, C, which was varied from 2 to 5 in steps of 0.01.

Refer to Table 49 for the results of the best execution from each run of the

SVM models:

Name C AUC Precision Recall F
sl-1 3.51 0.6084 0.2960 0.2353 0.2342
sl-2 2.30 0.5898 0.2259 0.2538 0.2391
sl-3 3.40 0.5631 0.2391 0.2556 0.2471

sl-all 2.08 0.6199 0.3358 0.2550 0.3155

Table 49: Multi-Class Classification - SVM Performance Summary by Model

While the SVM models outperformed the Decision Tree models slightly, they

did not perform as well as the Neural Network or Random Forest models.

Again, all features and Cluster 1 features were the best performers.

4.5.5 Summary of Multi-Class Classification Results

Each model performance is captured in the comparison chart, Figure 15. The

results of this chart are ordered from best to worst performance. The dashed

line across the chart indicates the minimum AUC possible, as a reference

threshold.

90

Figure 15: Graphical Performance Comparisons of each Multi-Class Classi-
fication Model

These results imply that for the Multi-Class Classification analysis, the Ran-

dom Forest model executed over the entire feature set was the best perform-

ing prediction model followed by the Neural Network model executed over

the entire feature set as well. These two models were the only models to

successfully outperform the performance threshold AUC of 0.683.

Table 50 depicts the averaged confusion matrix for the Random Forest model

on all features based on a 10-fold cross-validated model analysis. This matrix

shows that the Random Forest Model is able to properly classify High and

None occurrences best with Moderate and Minimal next best. Overall, the

91

error cases appear to straddle the transition classes (High and Minimal for a

Moderate prediction for example).

Predicted
Extreme High Moderate Minimal None

A
ct

u
al

Extreme 0.0000 2.1169 2.3377 0.7532 2.2078

High 0.6234 11.8571 5.1039 2.9740 4.4675

Moderate 0.1558 5.0779 9.8571 5.2338 2.5065

Minimal 0.0000 1.4545 5.5325 9.3636 5.2208

None 0.1299 4.0390 2.4935 5.7013 10.7922

Table 50: All Features Confusion Matrix for the Random Forest Multi-Class
Classification Model

Further exploration of the Random Forest model demonstrates the impor-

tance ranking of each of the features used during the model fitting. Fig-

ure 16 depicts the variable importance of the Random Forest model for all

features:

92

Figure 16: All Features Variable Importance in Fitting the Random Forest
Multi-Class Classification Model

Taking a closer look at the features with a predictive accuracy of greater

than 50%, Table 51 shows these features as they map to SonarQube:

Feature ID Description Importance
X683 Avoid commented-out lines of code 100%
X90 Duplicated lines (Percentage) 74.47%
X16 Comments (Percentage) 64.75%
X769 Constants should be declared final

static rather than merely final
51.75%

Table 51: Random Forest Multi-Class Classification Important Features
Mapping to SonarQube Rules

Table 52 depicts the averaged confusion matrix for the Neural Network model

93

on all features based on a 10-fold cross-validated model analysis. This ma-

trix shows that the model is best at predicting a High defect occurrence

rate with None coming in a close second. Unfortunately, the model does

not perform very well on Minimal or Moderate with Extreme having the

worst performance. In a similar fashion to the Random Forest Model, the

Neural Network Model makes most incorrect predictions along the transition

between nearby classifications.

Predicted
Extreme High Moderate Minimal None

A
ct

u
al

Extreme 0.0649 2.5974 2.6234 0.8052 2.9610

High 0.3636 10.5974 4.7273 3.5714 4.0260

Moderate 0.0649 4.4935 6.8961 5.2338 2.3117

Minimal 0.0390 2.6753 6.8571 8.9351 6.8701

None 0.3766 4.1818 4.2208 5.4805 9.0260

Table 52: All Features Confusion Matrix for the Neural Network Multi-Class
Classification Model

Similarly, Figure 17 depicts the variable importance of the Neural Network

model for all features:

94

Figure 17: All Features Variable Importance in Fitting the Neural Network
Multi-Class Classification Model

Again, Table 53 shows the features with a predictive accuracy of greater than

50% as they map to their corresponding SonarQube rules:

95

Feature ID Description Importance
X837 Deprecated code should be removed

eventually
100%

X628 equals(Object obj) and hashCode()
should be overridden in pairs

83.63%

X789 Return of boolean expressions should
not be wrapped into an if-then-else
statement

81.41%

X733 Method names should comply with a
naming convention

74.98%

X751 Local variables should not shadow class
fields

67.58%

X771 Unused method parameters should be
removed

64.01%

X90 Duplicated lines (Percentage) 62.59%
X815 Nested blocks of code should not be left

empty
59.94%

X805 A field should not duplicate the name
of its containing class

58.24%

X841 TODO tags should be handled 57.25%
X760 Expressions should not be too complex 56.18%
X729 Empty arrays and collections should be

returned instead of null
53.46%

X133 SQALE Rating 51.67%

Table 53: Neural Network Multi-Class Classification Important Features
Mapping to SonarQube Rules

96

5 Discussion

5.1 Feature Elimination

The cluster analysis shows that most of the features easily group into two

main categories, with five independent features left in their own separate

clusters. It would not have been relevant to perform fitting on the individ-

ual clusters on their own, as they would not contain sufficient information in

order to provide significant insight by themselves. Instead, the individual fea-

tures were combined into another cluster, with the intent that this disparate

cluster would provide useful insights. Unfortunately it did not, as in most

cases, Cluster 3 performed the poorest in the later analysis. It is likely that

Cluster 3 performed poorly as it consisted of a collection of single features

that each had no relationship with any of the other features in the problem

space. This behaviour implies that these features have little importance in

predicting the outcome of software defects. It is also interesting to note that,

in most cases, the Features in Cluster 1 performed the best, which indicates

that this cluster is most strongly correlated with the prediction of software

defect rates.

The RFE analysis discarded a large number of features for the regression

analysis, with the goal that this would lead to a higher performing regression

model. As the regression analysis indicated, none of the models were able to

achieve an acceptable RMSE level. The Neural Network model performed on

Cluster 2 features provided the smallest RMSE value of 115.2162, but even

this value was almost three-times that of the mean of of the outcome variable

97

(40).

5.2 Regression

Due to the large discrepancy between RMSE and MAE and the mean, a

model that always chooses the mean value of the outcome variable would

demonstrate a smaller RMSE and a similar MAE than the regression models

fitted in this analysis. Clearly, the data in the features analysed are not rea-

sonably correlated with the outcome variable when expressed in a continuous

data space through regression.

Regression demonstrated very poor performance across all models tested.

This should come as little surprise given the complexity of the data set and

high variability in the results. Additional research can still be conducted in

this area, however, as more data is collected and more features are analysed,

it is possible that some rules and metrics do exhibit a linear relationship with

the outcomes and that a more favourable fit can be found if the right data

is analysed. Additionally, the regression analysis could be re-run with a set

of non-linear transforms applied to the features, as the relationship between

the features and the outcome are likely non-linear given the results of the

fitting in this result. Some examples of non-linear transforms are: Box Cox,

Yeo Johnson, Spatial Sign, as well as many others [37].

98

5.3 Binary Classification

The binary classification analysis provided much more promising results, with

the SVM and Random Forest algorithms proving most effective at predicting

the software defect outcomes. All of the models in this analysis provided

results that outperformed the performance threshold of 0.683, with the SVM

model, executed over the Cluster 1 feature set, demonstrating an AUC of

0.8694. This means that a model can be built that uses a minimal feature

set of less than ten SonarQube metrics and rules.

Binary Classification performance suffered significantly from the class im-

balance observed between the software applications. While up-sampling was

performed in an attempt to compensate for this issue, the overall perfor-

mance of the fit of the models was negatively impacted as a result as shown

in the confusion matrices in Tables 41 and 43. Notwithstanding this, the

Binary Classification analysis produced a moderately successful model for

defect prediction, and also helped narrow the focus of the SonarQube fea-

tures to a very manageable list of twelve of the most important metrics and

rules to monitor for defect management, as shown in Tables 42 and 44. A

software team could monitor this small list of metrics and rules and use it as

a guide to manage a set of actions to control the measurements and mitigate

their impact on the generation of software defects in the source code.

99

5.4 Multi-Class Classification

The Multi-Class Classification analysis provided less promising results than

the Binary Classification data above, with the Random Forest and Neural

Network algorithms proving to be the only models that could outperform the

AUC threshold of 0.683.

Multi-Class Classification performed poorer than Binary Classification, as

shown in the confusion matrices in Tables 50 and 52, and this poor per-

formance can be attributed to the additional complexity introduced in the

Multi-Class Classification problem. It is much more reliable to predict the

presence or absence of a software defect than it is to predict the specific de-

fect rate range. These results are in line with the poor results observed in

the regression results as well.

5.5 Implications of Findings

Both of the classification models provided additional insight into the level

of importance of the SonarQube metrics and rules, ultimately leading the

results shown in Table 54, a list of important features, ranked from most

important to least important.

100

Feature ID Description Importance
X683 Avoid commented-out lines of code 100%
X837 Deprecated code should be removed

eventually
100%

X628 equals(Object obj) and hashCode()
should be overridden in pairs

83.63%

X789 Return of boolean expressions should
not be wrapped into an if-then-else
statement

81.41%

X733 Method names should comply with a
naming convention

74.98%

X90 Duplicated lines (Percentage) 74.47%
X751 Local variables should not shadow class

fields
67.58%

X16 Comments (Percentage) 64.75%
X771 Unused method parameters should be

removed
64.01%

X815 Nested blocks of code should not be left
empty

59.94%

X805 A field should not duplicate the name
of its containing class

58.24%

X841 TODO tags should be handled 57.25%
X760 Expressions should not be too complex 56.18%
X729 Empty arrays and collections should be

returned instead of null
53.46%

X769 Constants should be declared final
static rather than merely final

51.75%

X133 SQALE Rating 51.67%

Table 54: Details of All Significant Features as Determined by Analysis

The list of important features shown above contain both expected and sur-

prising results. The expected results include a feature such as X760 (“Ex-

pressions should not be too complex”) as it would stand to reason that the

more complex a piece of software is, the higher the probability that it will

contain defects.

101

The surprising results in this list include: X683 (“Avoid commented-out

lines of code”), X837 (“Deprecated code should be removed eventually”),

X90 (“Duplicated lines”), and X16 (“Comments”). “Duplicated lines” is of

particular interest in that it highlights code that may be designed poorly,

perhaps by not capitalizing on Object Oriented methodologies, software may

exhibit high counts of the “Duplicated lines” metric. “Avoid commented-out

lines of code” is another interesting example as on their own, commented

out lines of code should actually have no impact on how well a software ap-

plication runs, but clearly, there is an impact as shown here. “Comments”

demonstrates that code that is not well commented may exhibit higher defect

rates, which could imply that due to the lack of comments, developers may

not completely understand how the code is working. Additionally, “Depre-

cated code should be removed eventually” may be an indicator of general

bad coding practice given that the deprecated code has not yet been cleaned

up.

Features at the bottom of this list include: X815 (“Nested blocks of code

should not be left empty”), X729 (“Empty arrays and collections should be

returned instead of null”), and X769 (“Constants should be declared final

static rather than merely final”). These features provide a predictive accu-

racy of marginally greater than 50%, so although they remain at the bottom

of this list, they should still be considered significant. Of interest is “Nested

blocks of code should not be left empty” as it appears to be a minor variant

of “Avoid commented-out lines of code”. The same reasoning behind “Avoid

commented-out lines of code” and “Duplicated lines” for their importance

102

relates to “Nested blocks of code should not be left empty”: These violations

indicate a more systemic problem with bad coding practice.

103

6 Conclusions and Recommendations

6.1 Summary

The source code analysed in this research was obtained from three major

software development programs. The software application source code for all

three programs was stored in an SVN version control system. Due to the

use of SVN, it was possible to obtain a historical snapshot of each of the

source code repositories at the desired phase of the corresponding software

development program. In each case, the code snapshot was taken after major

software development had concluded, but prior to the start of formal software

testing. This was done in order to obtain a snapshot of code that had the

highest potential for latent defect content prior to defect correction.

In order to ensure consistency and comparable results, the metrics and rules

sets were generated using the same baseline of SonarQube. In each case,

SonarQube was used to perform static analysis of the chosen software source

code snapshots. The resultant data was stored in an SQL database and

then exported into CSV files for analysis. This process was performed over

the course of several months, as the analysis of such large sets of code was

computer resource intensive. Additionally, several executions of the analysis

were performed in order to ensure consistency in the generated results.

The software defect data for each program was exported from the corre-

sponding software defect repository. The data format for each of the pro-

grams differed slightly as each program had been executed in different years

104

by different teams, and thus the reporting techniques had small variations.

Significant manual effort was spent in reconciling these differences in order

to produce a unified data set. This effort was necessary in order to allow for

an analysis of all programs simultaneously.

The static analysis data and software defect data was then joined and ag-

gregated. The aggregation performed was a simple mapping of software

defect occurrence count per unique software application. This aggregation

was then joined with the table that contained each static analysis measure

for each software application. The resulting data was a set of independent

variables: the static analysis metrics and rules, and the dependent variable:

the software defect measurements.

As indicated in the Literature Review, the issue of Metrics Galore became

apparent when the entire problem space was analysed. There were over 150

different Static Analysis metrics and rules generated by the SonarQube tool,

and analysing every one would have been nearly impossible. In addition, it

would not have been fruitful to blindly attempt to fit a regression or clas-

sification model against the entire feature set, as it would have most likely

either lead to an over-fitted model that would fail when faced with new data

or simply not result in a viable fit at all. This issue necessitated the use

of various feature elimination techniques in order to narrow the feature set

down to a more manageable set of variables. This was done using zero and

near-zero variance analysis, inter-correlation analysis as well as recursive fea-

ture elimination. After each of these methods were applied, the feature set

reduced correspondingly.

105

Prior to performing modelling analysis on the reduced feature set, one ad-

ditional data preparation process was applied: clustering. Clustering was

performed in order to group similar features together, thus allowing for sev-

eral models to be fitted for each algorithm type. The motivation behind this

step was to avoid pairing dissimilar features together that could negatively

influence the outcome of a model fitting attempt. By grouping similar fea-

tures together and then running model fits on each cluster separately, and

then again as a whole, it is possible to rule out the negative impact of such

dissimilar features.

Various regression algorithms were applied to the data set, with similarly

poor results. None of the models used in this analysis demonstrated a sta-

tistically significant performance in regression. This is unsurprising given

the relatively narrow scope of variables being considered for software defect

outcomes.

By stratifying the software defect count variable into different groupings,

it was possible to perform a classification analysis. First, by looking at

whether a particular software application had at least one defect or not,

Binary Classification could be performed. Similarly, by creating bins for

software defect amounts, a Multi-Class Classification could be performed.

In the case of the Binary Classification analysis, due to the disparity in

numbers of applications with defects versus applications without defects, a

class imbalance was present. In order to address this class imbalance, up-

sampling of the data points was performed prior to fitting the models. The

class imbalance problem could be avoided in Multi-Class Classification as the

106

groupings were selected in order to create a fair distribution across classes.

Similar distributions will have to be customized for the target analysis based

on the performance of the software defect count values.

Finally, given the favourable results of the Classification research, and due

to the nature of the Classification models used, it was possible to extract

an ordered list of important features from the most successful models. This

was possible, in particular in the SVM, Neural Network and Random Forest

analysis, due to the fact that the models inherently rank the most influential

features internally. Developing the method to generate the ranked list of

important features is considered the most valuable finding in this research,

as it can be directly applied to positively impact the focus of a software

development team today, by guiding them to manage the features that matter

most for software quality.

6.2 Conclusions

The results from this study were interesting and provide helpful insight into

the software defect prediction problem. The implications of this research

will help software development teams to focus their efforts on a manageable

list of software metrics and rules that can be used to mitigate the impact of

latent software defects.

During the course of this research, it was found that the given data set had no

significant correlations that could be explained by a regression model. This is

an expected finding given the complexities of software development and the

107

relatively narrow scope of this research as compared to the countless variables

that affect software development quality. Nonetheless, Binary and Multi-

Class classification models were able to demonstrate a reasonably significant

correlation between a certain subset of features and the prediction of software

defects.

Using the results of the Binary and Multi-Class Classification analysis, it

was possible to derive the subset of features that play the largest role in

predicting software defect outcomes. This list, Table 54, contains a mix of

expected and unexpected rule violations and metric values. The key impor-

tant takeaway from the subset of features is that the list is small enough to be

adequately managed by a software team during a typical development cycle.

This research has succeeded in providing a method for software development

teams to focus on a small set of critical measurements that, if carefully man-

aged, will have a positive impact in the quality of the code that the team

produces.

Given the findings in this research, a reasoning that could be used to explain

the results is that important features may serve as warning signs to software

developers, team members, peers, and managers. This suggests that the

developers working on a particular software application that exhibit a high

number of the code malpractices listed in Table 54 may not be adequately

skilled for the task at hand. It should be noted that these metrics and rules

should not simply be treated as indications of problems that should be fixed,

but instead, they should be looked upon as a “canary in the coal mine”. If

an application demonstrates a large number of violations of the metrics or

108

rules in Table 54, then action must be taken to carefully review contributor’s

code. More experienced developers should provide mentor-ship and guidance

to the developers who have introduced these violations as they indicate a lack

of skill or understanding of the problem at hand, the coding language being

used or a combination of any number of these or other factors.

It is expected that by using these results, a team of software developers will be

able to monitor, manage and control the measurements of the recommended

feature focus area items during regular software development. This effort

would fit in well with an Agile software development process, and could be

made a part of the retrospective analysis in a Scrum sprint. By doing this,

it is anticipated that software teams will experience fewer defects during

acceptance testing by being proactive in addressing the most likely indicators

of latent defects early, thus reducing potential cost and schedule impacts to

the development programs.

It should be noted that due to the removal of undetected features in this

analysis, the results and recommendations in this study are most applicable

to similar software development programs: Large Java-based data process-

ing and user entry applications without a web or mobile component. If

web, mobile or other types of development programs must be analysed, the

models developed in this research must be retrained as new metric and rule

measurements may provide valuable insight that have not been considered

here.

Finally, software development management teams will benefit from the pre-

dictive models by using them to gauge the health and status of ongoing

109

software development programs. While the results of these models cannot

predict an exact software defect measurement, they can predict a category

of software defect measurements and this information will serve to aid man-

agers to plan budgets, schedules and resources accordingly as well as enact

mitigation plans if deemed necessary.

Based on these findings, the following conclusions can be drawn based on the

goals of the thesis at the outset:

1. Correlation

• Goal: Demonstrate a statistically significant correlation between

static analysis metrics and rules and software defects.

• Result: A statistically significant correlation has been demon-

strated with both Binary and Multi-Class Classification. This

objective has been achieved.

2. Machine Learning Model

• Goal: Produce a machine learning model that can be used to

accurately predict software defects.

• Result: Several reliable classification models have been generated

that can apply to similar domains and purposes. Since the re-

gression analysis did not produce statistically significant models,

software defect counts cannot be accurately predicted as a num-

ber but instead of a range of values. This objective has only been

partially achieved.

110

3. Manageable List

• Goal: Identify the 10 most significant static analysis metrics and

rules that attribute to the prediction of the software defects.

• Result: A list of 16 of the most significant static analysis metrics

and rules. This objective has been achieved.

4. Assessments

• Goal: Provide an assessment of the results and recommendations

for future software development programs.

• Result: The important conclusions drawn from the unexpected re-

sults will serve to be very valuable to software development efforts

in the future. This objective has been achieved.

6.3 Recommendations

Despite all of the results and analysis performed herein, there is still a lot

more that could be done in this field to improve software defect estimation

and mitigation. Below is a list of future work, in order of decreasing prior-

ity:

1. Re-run the Multi-Class Classification analysis with a rank-based per-

formance optimization given the ordinal nature of the classifications.

This type of analysis should boost accuracy for software applications

that fall near the boundary line between two adjacent classifications.

This would help prevent a Minimal occurrence classification from being

111

incorrectly classified as extreme, since the two classes are not adjacent

with each other. Likewise, an incorrect classification between two ad-

jacent classes in this analysis would be less critical than an incorrect

classification across classes that are not adjacent with each other.

2. Supplement the Linear Regression ANOVA analysis with an intra-

feature performance analysis in order to determine feature combina-

tions that provide valuable insight.

3. Revisit near-zero variance feature elimination in order to determine if

any of these features could add value to the models [52].

4. Analyse the features eliminated due to collinearity as they may provide

additional insight into the behaviour of the software defects through

feature interaction.

5. Obtain more data from additional software development programs.

6. Only SonarQube and FindBugs rules and metrics were analysed in this

research, by adding more rule sets into SonarQube and performing the

analysis again, the model could be made more effective [32].

7. Perform a time-series analysis of metrics, rules, and defects relationship

by taking multiple snapshots of each of these repositories.

8. Attempt model fitting on deep learning, boosting and other algorithms

in an attempt to develop an even more effective model.

9. Analyse the data using Inductive Decision Trees as an alternative means

to determining feature importance.

112

10. Generate super-features based on the cluster heads of the existing fea-

tures and use these new feature sets to fit new models, potentially

generating a higher performing solution.

11. Re-run the analysis with the software application type as an additional

feature in order to determine if the application type has any impact on

software quality.

12. Analyse the SonarQube rule and metric severity values as additional

features in order to determine if they have any predictive value for

software defects.

13. Analyse the relationship between software application author and soft-

ware defect outcomes and add this variable as an additional predictive

feature.

It is anticipated that, as additional data is collected, more features are tested

and other models are tested, the results found in this research will be bol-

stered, with the ultimate impact of improving the overall effectiveness of

current and future software development programs.

113

References

[1] Lehman, M.M., Ramil, J.F., Wernick, P.D., Perry, D.E., Turski, W.M.:
Metrics and laws of software evolution - the nineties view. In: Proceed-
ings of the 4th International Symposium on Software Metrics. METRICS
’97, Washington, DC, USA, IEEE Computer Society (1997) 20–32

[2] Faris, T.: Safe and Sound Software: Creating an Efficient and Effec-
tive Quality System for Software Medical Device Organizations. ASQ
Quality Press (2006)

[3] Campbell, G.A., Papapetrou, P.P.: SonarQube in Action. 1st edn. Man-
ning Publications Co., Greenwich, CT, USA (2013)

[4] Fairley, R.E.: Tutorial: Static analysis and dynamic testing of computer
software. Computer 11(4) (April 1978) 14–23

[5] Bouwers, E., Visser, J., van Deursen, A.: Getting what you measure.
Commun. ACM 55(7) (July 2012) 54–59

[6] Chen, T.H., Shang, W., Nagappan, M., Hassan, A.E., Thomas, S.W.:
Topic-based software defect explanation. Journal of Systems and Soft-
ware 129 (2017) 79 – 106

[7] Tong, H., Liu, B., Wang, S.: Software defect prediction using stacked
denoising autoencoders and two-stage ensemble learning. Information
and Software Technology 96 (2018) 94 – 111

[8] Mrinal Singh Rawat, S.K.D.: Software defect prediction models for
quality improvement: A literature study. IJCSI International Journal
of Computer Science Issues 9, Issue 5(2) (Sep 2012)

[9] Brooks, Jr., F.P.: No silver bullet essence and accidents of software
engineering. Computer 20(4) (April 1987) 10–19

[10] Brooks, F.P.: The mythical man-month : essays on software engineering.
Anniversary ed.. edn. Addison-Wesley, Reading, Mass. ; Don Mills, Ont.
(1995)

[11] Malaiya, Y.K., Denton, J.: Estimating the number of residual defects
[in software]. In: Proceedings Third IEEE International High-Assurance
Systems Engineering Symposium (Cat. No.98EX231). (Nov 1998) 98–
105

[12] Benington, H.D.: Production of large computer programs. Annals of
the History of Computing 5(4) (Oct 1983) 350–361

114

[13] Royce, W.: Managing the development of large software systems. In:
Proceedings of IEEE WESCON. Volume 26 of WESCON 1970. (1970)
328–388

[14] Rumpe, B.: Modeling with UML Language, Concepts, Methods.
Springer International Publishing : Imprint: Springer, Cham (2016)

[15] Hambling, B., van Goethem, P.: User Acceptance Testing: A Step-by-
step Guide. BCS Learning & Development Limited (2013)

[16] Group, T.S.: Chaos report (1995)
http://www.cs.nmt.edu/ cs328/reading/Standish.pdf.

[17] Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham,
W., Fowler, M., Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern,
J., Marick, B., Martin, R.C., Mallor, S., Shwaber, K., Sutherland, J.:
The agile manifesto. Technical report, The Agile Alliance (2001)

[18] Schwaber, K., Sutherland, J.: The scrum guide. Online,
http://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-
Guide-US.pdf (nov 2017)

[19] Ono, T.: Toyota production system : beyond large-scale production.
Productivity Press, Portland (1988)

[20] Beck, K.: Extreme programming explained : embrace change. 2nd ed..
edn. Addison-Wesley, Boston, MA (2005)

[21] Ahimbisibwe, A., Daellenbach, U., Cavana, R.Y.: Empirical compari-
son of traditional plan-based and agile methodologies: Critical success
factors for outsourced software development projects from vendors per-
spective. Journal of Enterprise Information Management 30(3) (2017)
400–453

[22] Stoica, M., Mircea, M., Ghilic-MICU, B.: Software development: Agile
vs. traditional. Informatic economic 17(4) (January 2013) 64–76

[23] Schwaber, K., Beedle, M.: Agile Software Development with Scrum.
Agile Software Development. Prentice Hall (2002)

[24] Oberscheven, F.M.: Software quality assessment in an agile environ-
ment. Master’s thesis, Radboud University Nijmegen (2013)

[25] August, T., Niculescu, M.: The influence of software process maturity
and customer error reporting on software release and pricing. Manage-
ment Science 59(12) (December 2013) 2702–2726

115

[26] Haskins, B., Stecklein, J., Dick, B., Moroney, G., Lovell, R., Dabney, J.:
8.4.2 error cost escalation through the project life cycle. In: INCOSE
International Symposium. Volume 14. (06 2004) 1723–1737

[27] Dawson, M., Burrell, D., Rahim, E., Brewster, S.: Integrating software
assurance into the software development life cycle (sdlc). Journal of
Information Systems Technology and Planning 3 (01 2010) 49–53

[28] Muhammad Dhiauddin Mohamed Suffian, S.I.: A prediction model for
system testing defects using regression analysis. International Journal
of Soft Computing And Software Engineering 2(7) (Jul 2012)

[29] Marchenko A, A.P.: Predicting software defect density: A case study
on automated static code analysis. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics) 4536 LNCS (2007) 137–140

[30] Johnson, S.C.: Lint, a c program checker. In: COMP. SCI. TECH.
REP. (1978) 78–1273

[31] Fenton, N.E., Neil, M.: A critique of software defect prediction models.
IEEE Transactions on software engineering 25(5) (1999) 675–689

[32] Rutar, N., Almazan, C.B., Foster, J.S.: A comparison of bug finding
tools for java. In: 15th International Symposium on Software Reliability
Engineering. (Nov 2004) 245–256

[33] Hinton, G., Sejnowski, T.: Unsupervised Learning: Foundations of Neu-
ral Computation. A Bradford Book. MCGRAW HILL BOOK Company
(1999)

[34] Alpaydn, E.: Machine learning. Wiley Interdisciplinary Reviews: Com-
putational Statistics 3(3) (May 2011) 195–203

[35] Leottau, D.L., del Solar, J.R., Babuka, R.: Decentralized reinforcement
learning of robot behaviors. Artificial Intelligence 256 (2018) 130 – 159

[36] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical
Learning: Data Mining, Inference, and Prediction. Springer Series in
Statistics. Springer New York (2013)

[37] Kuhn, M.: Applied predictive modeling. Springer, New York, NY (2013)

[38] Rawlings, J., Pantula, S., Dickey, D.: Applied Regression Analysis: A
Research Tool. Springer Texts in Statistics. Springer New York (2001)

116

[39] Loh, W.: Classification and regression trees. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 1(1) (January 2011)
14–23

[40] Hearst, M.A.: Support vector machines. IEEE Intelligent Systems 13(4)
(July 1998) 18–28

[41] Huang, Y.: Advances in artificial neural networks methodological de-
velopment and application. Algorithms 2(3) (August 2009) 973–1007

[42] Breiman, L.: Random forests. Machine Learning 45(1) (Oct 2001) 5–32

[43] Kanungo, T., Mount, D.M., Netanyahu, N.S., Piatko, C.D., Silverman,
R., Wu, A.Y.: An efficient k-means clustering algorithm: analysis and
implementation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 24(7) (Jul 2002) 881–892

[44] Everitt, B.S., Landau, S., Leese, M., Stahl, D.: Hierarchical clustering.
Cluster Analysis, 5th Edition (2011) 71–110

[45] Kan, S.: Metrics and Models in Software Quality Engineering. Addison-
Wesley (2003)

[46] Hartigan, J.A., Wong, M.A.: Algorithm AS 136: A K-Means clustering
algorithm. Applied Statistics 28(1) (1979) 100–108

[47] Thorndike, R.L.: Who belongs in the family? Psychometrika 18(4)
(Dec 1953) 267–276

[48] Kuhn, M.: The caret package (2017)

[49] Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer
classification using support vector machines. Machine Learning 46(1)
(Jan 2002) 389–422

[50] Burez, J., Van den Poel, D.: Handling class imbalance in customer
churn prediction. Expert Syst. Appl. 36(3) (April 2009) 4626–4636

[51] Terry Therneau, B.A.: rpart: Recursive partitioning and regression
trees (2018)

[52] Zorn, C.: A solution to separation in binary response models. Political
Analysis 13(2) (April 2005) 157–170

117

Glossary

ANOVA Analysis of Variance.
AUC Area Under the Curve.

C Cost.
CP Cost Complexity.

D Decay.

LoC Lines of Code.

M.SD Mean Absolute Error Standard Deviation.
MAE Mean Absolute Error.
MSLOCs Millions of Source Lines of Code.
mtry Minimum feature count used to TRY and grow

a tree in a random forest.

R.SD Root Mean Squared Error Standard Devia-
tion.

RFE Recursive Feature Elimination.
RMSE Root Mean Squared Error.
ROC Receiver Operator Characteristic.
RS R-squared.
RSSD R-squared Standard Deviation.

S Size.
SQL Structured Query Language.
SVM Support Vector Machine.
SVN Apache Subversion.

118

Appendices

A Supplementary Figures

Figure 18: Correlation Plot of Features and Outcome

119

B Supplementary Tables

ID Description
X1 Lines
X3 Lines of code
X4 Lines of code per language
X6 Classes
X7 Files
X8 Directories
X10 Functions
X11 Accessors
X12 Statements
X13 Public API
X15 Comment lines
X16 Comments (%)
X17 Public documented API (%)
X18 Public undocumented API
X20 Complexity
X21 Complexity /file
X23 Complexity /class
X24 Complexity in functions
X25 Complexity /function
X27 Functions distribution /complexity
X28 Files distribution /complexity
X87 Duplicated lines
X88 Duplicated blocks
X89 Duplicated files
X90 Duplicated lines (%)
X118 Directory cycles
X119 Directory tangle index
X120 File dependencies to cut
X121 Package dependencies to cut
X122 Directory edges weight
X131 Technical Debt
X132 Technical Debt on new code
X133 SQALE Rating
X134 SQALE Development Cost
X135 SQALE Technical Debt Ratio
X423 Duplicated blocks

120

ID Description
X626 Classes should not be empty
X628 equals(Object obj) and hashCode() should be overridden in

pairs
X631 Methods named equals should override Object.equals(Object)
X632 public static fields should always be constant
X634 Modifiers should be declared in the correct order
X637 Octal values should not be used
X640 object == null should be used instead of object.equals(null)
X641 Declarations should use Java collection interfaces such as List

rather than specific implementation classes such as LinkedList
X644 Loggers should be private static final and should share a nam-

ing convention
X645 IP addresses should not be hardcoded
X647 The Object.finalize() method should never be overriden
X648 Loop counters should not be assigned to from within the loop

body
X651 The default unnamed package should not be used
X653 Non-constructor methods should not have the same name as

the enclosing class
X655 Execution of the Garbage Collector should be triggered only

by the JVM
X660 equals(Object obj) should be overridden along with the com-

pareTo(T obj) method
X661 Generic wildcard types should not be used in return parame-

ters
X665 The members of an interface declaration or class should ap-

pear in a pre-defined order
X667 Constants should not be defined in interfaces
X671 super.finalize() should be called at the end of Object.finalize()

implementations
X673 Class variable fields should not have public accessibility
X675 Short-circuit logic should be used in boolean contexts
X677 Identical expressions should not be used on both sides of a

binary operator
X679 Classes from com.sun.* and sun.* packages should not be used
X680 String literals should not be duplicated
X681 Exception types should not be tested using instanceof in catch

blocks
X682 java.lang.Error should not be extended

121

ID Description
X683 Avoid commented-out lines of code
X687 Nested code blocks should not be used
X689 static final arrays should be private
X690 for loop incrementers should modify the variable being tested

in the loop’s stop condition
X692 Empty statements should be removed
X693 Values passed to SQL commands should be sanitized
X697 switch statements should have at least 3 cases
X699 System.out and System.err should not be used as loggers
X700 Math operands should be cast before assignment
X703 The Object.finalize() method should never be called
X704 Credentials should not be hard-coded
X705 Assignments should not be made from within sub-expressions
X708 Public methods should throw at most one checked exception
X709 Loops should not contain more than a single break or continue

statement
X710 @Override annotation should be used on any method over-

riding (since Java 5) or implementing (since Java 6) another
one

X713 ConcurrentLinkedQueue.size() should not be used
X714 Long suffix L should be upper case
X715 Deprecated elements should have both the annotation and the

Javadoc tag
X720 Objects should not be created to be dropped immediately

without being used
X723 Exceptions should not be thrown in finally blocks
X725 Loop conditions should be true at least once
X726 Exception classes should be immutable
X727 Exception handlers should preserve the original exception
X729 Empty arrays and collections should be returned instead of

null
X731 Class names should comply with a naming convention
X732 Switch cases should end with an unconditional break state-

ment
X733 Method names should comply with a naming convention
X734 Methods should not be too complex
X736 Switch cases should not have too many lines
X739 String.valueOf() should not be appended to a String

122

ID Description
X740 Labels should not be used
X741 Collection.isEmpty() should be used to test for emptiness
X742 Case insensitive string comparisons should be made without

intermediate upper or lower casing
X744 Primitive wrappers should not be instantiated only to perform

a to String conversion
X746 Throwable and Error classes should not be caught
X747 super.clone() should be called when overriding Object.clone()
X751 Local variables should not shadow class fields
X753 Overriding methods should do more than simply call the same

method in the super class
X754 Printf-style format strings should not lead to any runtime

unexpected behavior
X755 Methods should not be empty
X756 Unused labels should be removed
X757 Object.wait(...) and Condition.await(...) should always be

called inside a while loop
X758 Collapsible if statements should be merged
X760 Expressions should not be too complex
X761 Lambdas and anonymous classes should not have too many

lines
X762 wait(...) should be used instead of Thread.sleep(...) when a

lock is held
X763 Unused private fields should be removed
X764 Synchronisation should not be based on Strings or boxed

primitives
X766 Cloneables should implement clone
X767 Conditions in related if/else if statements should not be du-

plicated
X769 Constants should be declared final static rather than merely

final
X770 Non-static class initializers should not be used
X771 Unused method parameters should be removed
X772 The Array.equals(Object obj) method should never be used
X774 Avoid too complex class
X775 Parentheses should be removed from a single lambda input

parameter when its type is inferred
X777 Object.finalize() should remain protected (versus public)

when overriding

123

ID Description
X779 instanceof operators that always return true should be re-

moved
X781 Unused local variables should be removed
X782 Switch statements should end with a default case
X785 Floating point numbers should not be tested for equality
X787 Literal boolean values should not be used in condition expres-

sions
X788 Variables should not be declared and then immediately re-

turned or thrown
X789 Return of boolean expressions should not be wrapped into an

if-then-else statement
X790 Useless parentheses around expressions should be removed to

prevent any misunderstanding
X792 Redundant casts should not be used
X793 Useless imports should be removed
X795 switch statements should not have too many case clauses
X796 Utility classes should not have a public constructor
X801 Package declaration should match source file directory
X805 A field should not duplicate the name of its containing class
X808 Fields in a Serializable class should either be transient or se-

rializable
X809 Methods should not have too many parameters
X810 Try-catch blocks should not be nested
X814 Return statements should not occur in finally blocks
X815 Nested blocks of code should not be left empty
X817 BigDecimal(double) should not be used
X819 Right curly braces should be located at the beginning of lines

of code
X820 If statement conditions should not always evaluate to true or

to false
X821 Collections should not be passed as arguments to their own

methods
X822 IllegalMonitorStateException should never be caught
X823 Tabulation characters should not be used
X824 System.exit(...) and Runtime.getRuntime().exit(...) should

not be called
X825 hashCode and toString should not be called on array instances
X827 Throwable.printStackTrace(...) should never be called

124

ID Description
X830 Package names should comply with a naming convention
X831 Statements should be on separate lines
X832 Reflection should not be used to check non-runtime annota-

tions
X834 Local variable and method parameter names should comply

with a naming convention
X835 Strings literals should be placed on the left side when checking

for equality
X836 Type parameter names should comply with a naming conven-

tion
X837 Deprecated code should be removed eventually
X838 Interface names should comply with a naming convention
X839 FIXME tags should be handled
X841 TODO tags should be handled
X842 Field names should comply with a naming convention
X844 Constant names should comply with a naming convention
X845 toString should not return null

Table 56: SonarQube Rule and Metric Reference Table

125

